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Abstract
We propose an approach for the generation of topology-optimized structures with text-guided appearance stylization. This 
methodology aims to enrich the concurrent design of a structure’s physical functionality and aesthetic appearance. Users 
can effortlessly input descriptive text to govern the style of the structure. Our system employs a hash-encoded neural net-
work as the implicit structure representation backbone, which serves as the foundation for the co-optimization of structural 
mechanical performance, style, and connectivity, to ensure full-color, high-quality 3D-printable solutions. We substantiate 
the effectiveness of our system through extensive comparisons, demonstrations, and a 3D-printing test.

Keywords  Topology optimization · Stylization · Text-guidance · Neural field

1  Introduction

Topology optimization is a mathematical method that auto-
matically designs structures with optimal performance under 
physical boundary conditions and constraints (Rozvany 
2009). Its utilization has progressively extended into engi-
neering domains like automotive engineering (Yang and 
Chahande 1995) and aerospace engineering (Zhu et  al. 
2016; Aage et al. 2017), where the demand for high-perfor-
mance structures is paramount. With the advancement of 
topology optimization algorithms, users can now generate 
high-quality structures by manipulating a small number of 
parameters, such as material properties and manufacturing 
costs (Kazi et al. 2017; Chen et al. 2018; Ma et al. 2021). 
Consequently, even individuals with limited expertise can 
effectively wield optimization tools following brief training 
(Nobel-Jørgensen et al. 2016). This simplicity of structure 
design and reduced demand for user expertise have facili-
tated the wide-ranging application of topology optimization 
across domains, including garment design (Zhang and Kwok 
2019) and the development of musical instruments (Yu et al. 
2013; Li et al. 2016).

The advent of commercially available topology-optimized 
products has sparked an upsurge in the desire for visually 
appealing designs. The appearance of a product holds con-
siderable sway over user preferences, with aesthetic and 
symbolic characteristics assuming dominant roles (Creusen 
and Schoormans 2005). However, designing structures that 
balance both performance and appearance remains a chal-
lenging task, even for seasoned designers. We refer to this 
task as stylized topology optimization.

Due to the difficulty in building a comprehensive and 
differentiable description of the structure style, previous 
investigations into stylized topology optimization have 
primarily relied on texture-based approaches to guide the 
visual aesthetics of the structure (Martínez et al. 2015; Hu 
et al. 2019; Navez et al. 2022). These methods locally apply 
geometric features to the structure that align with the user-
provided texture, albeit at the expense of a holistic styliza-
tion perspective. Furthermore, they necessitate the labori-
ous task of manually designing textures, thus compromising 
user convenience. On the other hand, Loos et al. creatively 
introduced a general evaluation criterion, unity-in-variety, to 
assess structural style (Loos et al. 2022). This approach has 
demonstrated its ability to improve user aesthetic preference 
while requiring manually adjusted structures.

We are motivated to address the aforementioned issues by 
exploring a comprehensive and differentiable structural styl-
ization evaluation metric, for bringing enhanced stylization 
expressiveness. Inspired by the recent success of large-scale 
image-text neural networks in content generation (Radford 
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et al. 2021), we present a novel approach to topology opti-
mization that incorporates text-guided stylization. By input-
ting the desired appearance’s descriptive text alongside the 
physical boundary conditions, this method can generate 
mechanically optimized, full-color stylized, and 3D-print-
able structures.

Our research object can be succinctly viewed as a multi-
objective optimization problem of an implicitly neural rep-
resented structure (Xie et al. 2022). To this end, we employ a 
hash-encoded neural network (Müller et al. 2022) to encode 
coordinates into color and density, effectively capturing 
both the topology and appearance of the structure. This 
approach offers a superior representation of structural high-
frequency details and demonstrates a faster convergence rate 
when compared to methods relying on Fourier-featured posi-
tional encoding (Tancik et al. 2020; Sitzmann et al. 2020). 
Subsequently, we leverage a pre-trained image-text neural 
network called CLIP (Radford et al. 2021) to evaluate the 
latent feature similarity between the appearance image of the 
structure and the user’s textual description. This evaluation 
guides the stylization process, facilitating effective control 
over the desired appearance. Furthermore, we conduct struc-
ture connectivity optimization based on connected compo-
nent labeling (He et al. 2017) to ensure the structure can be 
3D-printed in one piece. In the experiments, we analyzed 
the structural mechanical performance in benchmark tasks 
(Valdez et al. 2017), showcased various stylized structures, 
presented the structure stylization control achievable with 
this research, and concluded with a 3D-printing test.

In summary, we present a text-driven stylized topology 
optimization method. It employs more user-friendly text-
based guidance for the appearance design of a diverse range 
of topology-optimized structures, and for the first time, takes 
into account the overall style of the structure, in full-color.

2 � Related works

2.1 � Topology optimization methods

In mechanical engineering, topology optimization is a 
method that maximizes structural performance by reallocat-
ing the spatial distribution of materials (Sigmund and Maute 
2013). Its applications include a range of areas, such as 
enhancing the flexibility of structures (Bruggi and Duysinx 
2012), adjusting the natural vibration frequency (Tsai and 
Cheng 2013), and optimizing heat conduction (Dbouk 
2017). Based on the representation of structures, topology 
optimization methods can be categorized into explicit and 
implicit, with representative algorithms being solid isotropic 
material with penalization (SIMP) (Andreassen et al. 2011), 
bi-directional evolutionary structural optimization (BESO) 
(Huang and Xie 2009), and level-set-based methods (Wang 

et al. 2003; Zhang et al. 2016). Recently, the advent of 
implicit neural representation (INR) in topology optimiza-
tion (Chandrasekhar and Suresh 2021; Woldseth et al. 2022) 
has enabled novel functionalities, such as arbitrary resolu-
tion sampling or solution space generation (Zehnder et al. 
2021; Zhong et al. 2022).

Regardless of the representation form of the structure, 
the primary flow of topology optimization involves project-
ing the structure onto a finite-element mesh for mechanical 
performance analysis and then back-propagating the gradient 
of mechanical performance to update the representation of 
the structure. This optimization process typically yields a flat 
solution space, wherein multiple local optima coexist for the 
given boundary conditions (Sigmund and Petersson 1998). 
Exploiting this characteristic, we are afforded an ample com-
putational realm to introduce stylized design aspects to the 
structural appearance.

2.2 � Stylized topology optimization

On this basis, previous works have explored various styl-
ized topology optimization methods with texture guidance, 
in order to enhance the structural aesthetics. Martinez et al. 
(2015) proposed using exemplars as a guide to stylize 2D 
topology-optimized structures, endowing the structures 
with features resembling the exemplar. Their work entailed 
deriving the first derivative of the structural similarity to 
the exemplar and re-formulating the multi-objective opti-
mization problem to balance mechanical performance and 
appearance. Subsequently, Hu et al. (2019) introduced a tex-
ture-guided generative structural design method that simul-
taneously generates a series of stylized structures based on 
textures. Navez et al. (2022) recently extended these efforts 
from 2D to 3D, with enhanced local stylization control. 
Additionally, Loos et al. (Loos et al. 2022) analyzed the 
aesthetics of topology-optimized structures using the prin-
ciple of unity-in-variety in industrial design and proposed 
a simulation for improving the design. These studies have 
well demonstrated the potential and applications of stylizing 
topology-optimized structures.

However, there is still no widely accepted structural style 
evaluation metric in the field of topology optimization, 
which is due to the highly abstract and complex nature of 
structural aesthetics and styles. As a consequence, previous 
investigations have concentrated on specific structural char-
acteristics, such as local geometric patterns, in an attempt 
to establish quantifiable style evaluation metrics. However, 
these approaches often sacrifice the overall expressiveness of 
stylization. Moreover, highly specialized style metrics lead 
to the lacking of stylization controllability. Furthermore, 
they have not fully considered the connectivity of 3D-printed 
structures. Our study addresses these limitations.
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2.3 � Text‑guided generation

The challenge of stylized topology optimization lies in 
establishing a differentiable and objective evaluation crite-
rion of structural appearance. Recently, data-driven methods 
show a feasible solution. For instance, Chen et al. proposed 
a neural network that bridges shape and its human-evaluated 
aesthetics. After training, the network prediction of shape 
aesthetics could be leveraged to guide the beautification of 
novel input shapes (Chen and Lau 2022).

The proposed text-guided structure stylization method is 
further inspired by the recently prominent text-guided AI 
drawing and modeling (Frans et al. 2021; Rombach et al. 
2022; Jain et al. 2022; Poole et al. 2022), where text, one 
of the most common and expressive mediums, is utilized 
to guide the stylization and creation. This technique gen-
erally relies on a neural network trained on huge datasets 
of image-text pairs, to create a multi-modal relationship 
in between. Then the network estimates the cross-modal 
similarity between the generated object (often rendered as 
an image) and the user-input text description and performs 
optimization. For example, Kevin et al. utilized CLIP guid-
ance to generate drawings based on text input (Frans et al. 
2021). Michel et al. proposed a Text2Mesh system that opti-
mizes the position and color of mesh vertices through CLIP 
guidance, thereby generating 3D objects that conform to the 
textual description (Michel et al. 2022). Though previous 
researches show prominent simplicity and expressiveness 
in shape creation, those involving physical properties (e.g., 
mechanical performance, connectivity of 3D-printed struc-
ture) have not been fully explored.

To address this disparity, we present a novel topology 
optimization method enriched with text-guided stylization. 
Our approach enables the generation of visually captivat-
ing and structurally robust designs without the need for 
arduous geometric editing. It also featured much stronger 
convergence than prevalent Fourier-featured methods (Chan-
drasekhar and Suresh 2021), and further ensured 3D-print-
ing capability through our introduction of connectivity con-
straints. Through comprehensive experiments, we explore 
the trade-off between structural mechanical performance and 
aesthetics and demonstrated the structure stylization expres-
siveness and controllability in various applications.

3 � Proposed method

In this study, we present a problem formulation as a multi-
objective optimization scenario. Initially, we adopt a hash-
encoded neural network as a means to implicitly represent 
a structure S . Subsequently, we concurrently assess the 
mechanical performance, aesthetic style, and connectivity 
aspects of S . Finally, we update the structure S utilizing the 

gradients associated with these three objectives. The com-
plete optimization workflow is shown in Fig. 1.

In the three subsections of Sect. 3, we provide a sequen-
tial account of the methodologies employed to compute each 
objective function as outlined below:

•	 Sec. 3.1: Compute the mechanical performance Lmech of 
the structure through density-based topology optimiza-
tion.

•	 Sec. 3.2: Compute the aesthetic style Lsem of the structure 
by the image-text neural network CLIP.

•	 Sec. 3.3: Compute the connectivity Lconn of the structure 
by applying the Connected Component Labeling algo-
rithm.

The integration of the three objects is accomplished through 
the utilization of the penalty method, a technique that con-
verts a constrained optimization problem into an uncon-
strained form, as shown in Eq. 1. Here, the penalty factors � 
and � are assigned to govern the semantic and connectivity 
losses of the structure, respectively.

We employ the Adam optimizer (Kingma and Ba 2014) with 
a decreasing learning rate to ensure convergence. The gradi-
ents of the loss function L are back-propagated to the hash-
encoded network, encompassing both the hashed grid fea-
tures and the network’s weights, as depicted in Fig. 1. This 
completes a single iteration of the structure optimization.

We contemplate the selection of structural representa-
tion methods from the following perspectives. Firstly, with 
regard to the explicit and implicit depiction of the structure, 
we have opted for the latter in order to acquire a more adapt-
able design space. The utilization of implicit representation 
allows for the interpolation of the structure to higher reso-
lutions. Moreover, by employing different resolutions for 
computing the objective functions (e.g., conducting FEM 
analysis at low resolution while optimizing style at high-
resolution), we can enhance computational efficiency.

Secondly, among the various implicit representation 
methods, we have selected neural networks to approximate 
the implicit representation of the structure. This choice 
enables us to achieve a higher degree of structural expres-
siveness. Conversely, alternative implicit methods (Wein 
et al. 2020) like level sets (Wang et al. 2003) or moving 
morphable components (Zhang et al. 2016) tend to simplify 
the structural representation by assuming the structure is 
composed of basic elements. Such simplifications conflict 
with our objective of ensuring a rich and expressive repre-
sentation of the structure’s appearance.

Lastly, in our approach of utilizing neural networks to 
implicitly represent the structure, we have adopted a hybrid 

(1)L = Lmech + �Lsem + �Lconn
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representation technique, namely the instant neural graphics 
primitives (Müller et al. 2022). Specifically, we store the spa-
tial features of the structure in multi-resolution hashed grids, 
which are subsequently decoded into color and density using 
a neural network. Within this framework, the neural network 
is exclusively responsible for feature decoding and does not 
need to store the structural features within its network weights, 
as seen in previous works (Chandrasekhar and Suresh 2021). 
Therefore, we can employ a compact neural network for this 
purpose. This approach significantly enhances the convergence 
speed of the optimization process compared to previous stud-
ies and effectively preserves high-frequency details in the 
structure.

In this framework, the multi-resolution hashed grids encode 
the input coordinate x into a feature vector hx , while the neural 
network Φ decodes hx into the structural parameters Sx , as 
Eq. 2.

The multi-resolution hashed grids consist of L layers of two-
dimensional grids, each with a resolution of Nl , as shown 

(2)Sx = Φ(hx)

in Eq. 3. Here, l is the layer index, Nmin and Nmax are the 
coarsest and finest layer resolution, respectively. Within each 
layer, the encoded coordinate x is looked up from an inde-
pendent hash table �l with T  entries and F dimensions. The 
multi-resolution hashed grids encompass a total of L × T × F 
parameters.

Figure 2 depicts the encoding process from the input coor-
dinate x to output Sx in a multi-resolution grid, with its two 
layers illustrated in blue and orange. Consider the encoding 
process within the lth layer of the grids: firstly, we find the 
four corner vertices coordinates xl around the input point 
coordinate x . Next, xl are scaled by Nl and rounded down, 
then subjected to spatial hash encoding function (Hamming 
1952) to obtain integer indices as shown in Eq. 4.

(3)
Nl = ⌊Nmin ⋅ b

l⌋
b = exp

�
lnNmax−lnNmin

L−1

�

(4)ixl = (xl
⨁

�) mod T ,

Fig. 1   The system overview. a The overall optimization workflow. 
First, multi-resolution hashed grids are used to store and interpolate 
the coordinate-dependent features of a structure S . Second, these fea-
tures are decoded to the density � and colors r, g, b using a tiny neu-
ral network. Third, through uniform sampling in the grids, a colored 
structure S is obtained. Fourth, we compute the structure’s mechani-
cal performance, semantic similarity to the user-input stylization 
prompt, and connectivity. Finally, these optimization objects are 

assembled as a single loss L , and its gradients are backpropagated to 
both the grids and neural network to update the structure represen-
tation. Therefore, the three optimization objects are simultaneously 
optimized during each iteration. b The optimization process of a 
Bridge structure with a stylization prompt “golden, Baroque style”. 
The optimization starts from a randomly initialized structure, and 
converges to a stable topology taking around 100 iterations
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Where 
⨁

 is  a bit-wise XOR operation,  and 
� = [1, 2654435761] are large prime numbers for better 
cache coherence.

Secondly, we perform a look-up in the lth layer hash table 
�l with the indices ixl , to obtain the corresponding F-dimen-
sional feature vectors hxl of the corner vertices, as shown in 
Eq. 5. [ ] denotes indexing.

Third, we bilinear-interpolate the feature vectors of corner 
vertices back to the input coordinate x , as hx.

Fourth, we repeat the above steps for all L layers, then 
concatenate the feature vectors at all layers into an LF × 1 
vector. A neural network, Φ , finally decodes it into the 
output Sx . We utilize a two-layer convolutional neural net-
work (CNN) with a kernel size of 1 × 1 to reduce network 
parameters.

Upon confirming the sizes of the multi-resolution grids 
and the network, the count of design variables remains 
consistent during computations at any resolution. This con-
stancy stems from the fact that, for any given sampling posi-
tion in each layer of the hashed grids, the feature value is 
obtained through interpolation from the neighboring grids. 
In the case of 2D, this entails bilinear interpolation using 
the surrounding four grid feature values, while in 3D, trilin-
ear interpolation employs the surrounding eight grid feature 
values. As a result, the network serves solely for decoding 
purposes and exerts negligible influence on the structural 
representation, so we can maintain a constant size for the 

(5)hxl = �l[ixl]

convolutional neural network (CNN) throughout computa-
tions across different resolutions. Ultimately, the number 
of design variables exhibits a linear relationship with the 
size of each layer T in the multi-resolution grids and posi-
tively correlates with the number of layers L. In other words, 
L, T, F determine the number of design variables besides the 
1 × 1 CNN network. Within the specified parameter selection 
outlined in Table 1, the hash-encoded network necessitates 
a storage capacity of 67.1MB per structure.

The core advantage of this methodology lies in its low 
resource consumption and fast convergence, which is attrib-
uted to its usage of a tiny neural network. Methods like the 
Fourier-featured network (Tancik et al. 2020; Sitzmann et al. 
2020), which is widely employed in implicit neural repre-
sentation topology optimization, necessitates a much larger 
neural network, such as a multi-layer perceptron, to store 
structural information, resulting in higher memory usage, 
larger storage, computational burden, and difficulties in 
convergence. In practice, the use of multi-resolution hashed 
grids has been shown to reduce the iterations from hours 
using the Fourier-featured network to seconds in the applica-
tions like gigapixel image fitting.

3.1 � Topology optimization

A typical procedure for topology optimization entails con-
ducting gradient-descent on the mechanical performance of 
a structure to iteratively refine its volumetric representation 
(Sigmund 2001). In our study, we introduce an additional pre-
processing step involving the application of average pooling 

Fig. 2   The Multi-resolution hash encoding process, where an input 
coordinate x is encoded to a four-dimensional output Sx . Initially, we 
encode the corner vertices of the element containing x , and employ 
the encoded values as indices to look-up in the hash table, thus 
obtaining the feature vectors of the corner vertices. Subsequently, we 

obtain the feature vector at x via bilinear interpolation of the feature 
vectors of corner vertices. Finally, we concatenate the feature vectors 
of x at L layers and feedforward through a neural network to attain the 
output Sx
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(AP) to the structural density. Then, a conventional topology 
optimization process is performed using the finite-element 
method (FEA). The overall workflow is shown in Fig. 3.

The purpose of the average pooling is to provide more 
optimization space for structural stylization and alleviate the 
computational burden of obtaining high-resolution solutions. 
Specifically, following the principles of multi-resolution topol-
ogy optimization, we perform topology optimization on the 
down-sampled grid Sap obtained through pooling, while con-
ducting style optimization on the original structure S output by 
the network. This approach relaxes the constraints imposed by 
the gradients of mechanical performance on structural details. 
We empirically set the kernel size and stride of the average 
pooling to 4 × 4.

In this study, compliance minimization (Bruggi and 
Duysinx 2012) was adopted as the objective of the topology 
optimization, with the aim of achieving optimal rigidity while 
minimizing the weight of the structure, as shown in Eq. 6.

Wherein, C is the compliance of the structure, which reflects 
its deformation energy under external forces; V is the volume 
of the structure; V0 is the volume of the entire optimiza-
tion space, i.e., the volume of all-filled grids; and � ∈ (0, 1) 
denotes the user-specified objective volume fraction.

We employ an L2 loss to enforce a volume constraint on 
the structure and convert the constraint optimization problem 
into a single-objective optimization problem through the use 
of a penalization method, as demonstrated in Eq. 7, where � is 
a fixed penalization factor.

The structure volume can be obtained by summing its den-
sity values � over all elements, and its compliance C can be 
calculated with the SIMP topological optimization method 

(6)
argmin

S

C(S)

s.t. V(S)∕V0 ≤ �
,

(7)Lmech = C + �(V∕V0 − �)2

(Andreassen et al. 2011) and finite-element analysis (Rao 
2017). The procedure is briefly outlined as follows.

Firstly, the pooled structure Sap is constructed as a 
finite-element mesh comprising of rectangular elements, 
and the structure’s stiffness matrix K and element stiff-
ness matrix Ke are formulated based on the material elastic 
properties. They indicate the deformation of the structure 
under external loads.

Secondly, we solve the structure’s deformation U under 
the external force F , according to the generalized Hook’s 
law KU = F.

Finally, the compliance C is calculated as C = �UTKU , 
thus completing the calculation of Lmech . Here � denotes 
the h × w × 1 density channel of the structure Sap . Readers 
may refer to established research (Andreassen et al. 2011) 
for a detailed derivation of the topology optimization for 
compliance minimization task.

Upon establishing the value of Lmech , we opt to uti-
lize the Adam optimizer instead of the optimality criteria 
method (OC) (Sigmund 2001) or the method of moving 
asymptotes (MMA) (Rojas-Labanda and Stolpe 2015), 
which are mathematical programming methods. The 
rationale behind this decision is: MMA, OC, and similar 
optimization methods are specifically tailored for topol-
ogy optimization applications. They have demonstrated 
their effectiveness in enforcing tight constraints (e.g., 
volume constraint) during the topology optimization pro-
cess. However, when the optimization objective involves 
a neural network, we favor the adoption of more versatile 
gradient-descent optimizers, which facilitate stable con-
vergence. However, general neural network optimizer has 
significant limitations in that it’s hard to reach the set con-
straints, and users have to manually decide the trade-off 
between optimization objects (e.g., in topology optimiza-
tion cases, the optimized structures always have a larger 
volume than the objective volume fraction �.)

Fig. 3   Structure topology opti-
mization. Within, we perform 
an average pooling (AP) on the 
structure S and then conduct a 
finite-element analysis (FEA)
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3.2 � Style optimization

In order to stylize a structure based on a textual description, 
the CLIP model (Radford et al. 2021) is introduced. This 
is a neural network trained on a large corpus of text-image 
pairs. It converts images and texts into latent codes through 
corresponding encoders and learns the text-image match-
ing relationship by minimizing the similarity between the 
latent features of images and texts. After training, it can be 
utilized for tasks such as image labeling (Zhou et al. 2022), 
image highlighting (Decatur et al. 2022), and text-to-image 
synthesis (Frans et al. 2021). In this paper, our objective is 
to maximize the semantic score, i.e., to maximize the simi-
larity between the image I (Eq. 11) of the structure (with 
the rho-channel treated as the alpha-channel of an image) 
and the prompt P that describe the style of the structure, as 
shown in Eq. 8.

The image I and prompt P are, respectively, encoded as 
512-dimensional latent codes lcimg and lctxt by the image and 
text encoders of CLIP, as illustrated in Fig. 4a. The semantic 
similarity between them is established by utilizing cosine 
similarity, and negation is added to convert this semantic 
score into a loss function, as Eq. 9.

Prior to acquiring the image latent code lcimg , we perform 
augmentation on the image I in order to gain controllabil-
ity of the generated results and improve the convergence. 
Image augmentation has been previously validated in the 
research of text-guided image (Frans et al. 2021) and 3D 
shape (Michel et al. 2022) generation as a means to avoid 
generating content with a numerically high image-text simi-
larity but hard for humans to identify.

During each optimization iteration, we augment image I 
with a batch size of B. Each augmentation consists of four 
components: Random grayscale, which transforms image I 
into grayscale with a specific probability, so as to encourage 
the system to focus more on the topology of the structure 
rather than merely altering textures; Random resized crop, 
which randomly crops a portion of the image and resizes it 
to its original dimensions to focus the system on the central 
parts of the structure; Random affine, which applies a ran-
dom affine transform to the image to avoid generating adver-
sarial solutions; and Random background, which generates 
a random Gaussian-blurred background to avoid the system 
cheating the semantic score Lsem by generating textures with 
the same background color.

We recognize that readers may have doubts about the 
tendency of text-image models of stylizing the structure, 

(8)argmax
I

similarity(I,P)

(9)Lsem = −cos(I,P)

i.e., that neural networks tend to optimize texture over 
topology to achieve higher semantic scores. We assert 
that this tendency can be regulated by enforcing grayscale 
image input to the neural network, through operations like 
an image alpha-channel penalty or a higher random gray-
scale probability. We will systematically demonstrate the 
controllability of the stylization in Sec. 4.

As for the prompt latent code lctxt , it can be generated 
by feedforwarding the prompt into the text encoder. Addi-
tionally, through multiple experimental trials, we have 
found a correlation between the convergence speed of 
stylization and the choice of prompts. Generally, prompts 
that encompass a greater level of detail and incorporate 
additional semantic constraints lead to faster convergence. 
For instance, as depicted in Fig. 4b, the prompt “golden, 
Baroque style” only achieves a blurry golden image after 
500 iterations. However, when the prompt is completed 
to “golden, Baroque style texture”, more intricate details 
have been obtained.

Fig. 4   Structure style optimization. a Structure stylization work-
flow. Augmented image batch and descriptive prompt are input to 
image and text encoders of CLIP correspondingly, and the difference 
between the output latent codes are minimized to enforce the struc-
ture style to be consistent with the prompt. b Structure optimization 
process. We visualize the process of structures (image in this case) 
that are solely optimized with the semantic score Lsem
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In conclusion, we adopt a trained, fixed-parameter CLIP 
model (ViT-B/32) to infer the image and text latent codes, and 
minimize their difference to encourage the structure stylization 
that is semantically consistent with the text description.

3.3 � Connectivity optimization

In the preceding two sections, we performed topology opti-
mization on an averaged-pooled structure and subjected it to 
text-guided stylization. These processes may result in the pres-
ence of disconnected parts, which are meaningless in actual 
fabrication. Thus, we aim to introduce constraints to ensure 
the generated structure is integral, meaning the structural den-
sity of the disconnected parts �d should be zero. Note that the 
proposed connectivity constraint shares a similar motivation 
to the perimeter constraint, which indirectly suppresses the 
checkerboard pattern by minimizing the perimeter of internal 
boundaries of the material distribution (Borrvall 2001).

It is important to emphasize that while compliance opti-
mization also promotes connected structures, a separate con-
nectivity optimization step is necessary. This requirement 
arises due to the nature of density-based topology optimiza-
tion, where a minimum density value (e.g., 1e-3) is assigned 
to each element in the structure to prevent numerical instabili-
ties during convergence, rather than setting it to zero. Conse-
quently, without connectivity optimization, the CLIP network 
may generate floating decorations in non-load-bearing regions 
of the structure in order to maximize appearance scores while 
incurring minimal penalties. Through empirical investigation, 
we have observed that this phenomenon occurs in the absence 
of connectivity constraints.

Therefore, we employed connected component labeling (He 
et al. 2017) to identify disconnected regions within the struc-
ture and used them as a mask to construct the loss function 
Lconn , so as to enforce the density value of disconnected parts 
�d to be zero, as shown in Eq. 10.

The process is depicted in Fig. 5. Firstly, the structure den-
sity � was thresholded into binary values of 0 and 1, with a 
threshold of 0.1, and the portion with � = 1 was extracted 
as the mask M. Secondly, a labeling matrix Q of the same 
size as the structure ( h × w × 1 ) was initialized with element 
values ranging from [1, hw]. The non-masked portion of the 
labeling matrix was then set to zero, i.e., Q[∼ M] = 0 , and 
the matrix was iteratively subjected to max-pooling (kernel 
size = 3, stride = 1, padding = 1) to obtain the labeling of 
the connected regions within the structure. Finally, using 
the volume fraction � as a threshold, we designated regions 
with a label corresponding to fewer than �hw elements as 
disconnected, and obtained the indices d of these elements, 

(10)Lconn = | �d|

thus making the density value of disconnected parts to be 
zero, �d , in the structure.

Essentially, users need to specify one parameter for the 
connectivity constraint, which is the number of iterations 
for performing the connected component labeling (CCL). 
Let’s assume we are performing CCL on a structure with a 
resolution of h × w . In the worst case, where the entire struc-
ture resembles a checkerboard pattern, it would necessitate 
h × w iterations of CCL. In practice, due to the prevalence 
of extensive connected regions within optimized designs, we 
recommend users empirically reduce the iteration number to 
0.5hw to expedite computation.

4 � Experiments

Experiments overview. During the experiments, we focus on 
the mechanical performance of the structure (Sec. 4.1), the 
controllability and visual quality of text-guided generation 
(Sec. 4.2), and the connectivity of the structure (Sec. 4.3). 
Note the results presented in Sec. 4 are all based on 2D 

Fig. 5   Structure connectivity optimization. a A structure could be 
disconnected without connectivity constraints. b Through applying 
connected component labeling, we successfully divide the discon-
nected parts marked in pink, and enforce them to be of zero density to 
optimize structure connectivity. c Connectivity optimization process, 
where colors indicate the component labels
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structures or their sketch-ups for easier understanding, and 
we introduce the extension to 3D structures in Sec. 5.

Experiment environment. The proposed system runs on 
a laptop PC (CPU: Intel Core i9-13900HX, GPU: Nvidia 
RTX4080, OS: Windows11, Python3.9). In particular, we 
used the algebraic multigrid method (Wu et al. 2015; Bell 
et al. 2022) for an accelerated solving of the deformation 
matrix U of the structure during topology optimization. Most 
of the computations are run on the GPU, and VRAM is the 
determining factor of the computational scale.

Optimization parameters. The hyperparameters and set-
tings for all the experiments involved in this paper are shown 
in Table 1. Within, the scale of the hash table and CNN are 
positively correlated with the convergence rate, the high-
frequency details of the structure, and computational cost. 
Our system is capable of achieving convergence within 500 
iterations for typical topological optimization tasks (Val-
dez et al. 2017) under various parameter settings. The CCL 
iterations are set to 2000 to accommodate tasks at various 
resolutions. Both iteration numbers are conservatively set.

Initialization. We randomly initialized the design param-
eters for allowing a certain degree of randomness in the 
optimized design, with the intention of enhancing the novel 
user experience when using our algorithm. The design vari-
ables consist of two components: feature values of multi-
resolution grids, and weights of the decoding neural network 
(i.e., decode feature values to density and RGB values). The 
randomness can be disabled: First, feature values of multi-
resolution grids. We set the initial feature values of multi-
resolution grids as random values between −1−4 and −1−4 . 
After applying the Sigmoid activation function (Han and 
Moraga 1995), their values will be closely centered around 
0.5, resembling traditional uniform initialization. All fea-
ture values of the multi-resolution grids can be set to 0 to 
achieve a conventional uniform design variable distribution; 
Second, weights of the neural network. Random weights of 
the neural network imply that under different random seeds, 
the network will decode the same feature value into differ-
ent values. We can also fix the random seed to eliminate 
this randomness. The optimization solutions are influenced 
by the initial random design variables, as shown in Fig. 8.

Gradients computation. We employ the wording ’gra-
dients’ to elucidate the derivative of the loss term L with 
respect to the design variables. Within the realm of top-
ological optimization, ‘gradients’ is also recognized as 
’sensitivity.’ To streamline the programming, we use the 
Autograd function of PyTorch (Paszke et al. 2019), which 
enables automatic gradient computation (i.e., no manual 
derivation of the derivatives is required). The derivatives 
of the three terms Lmech , Lsem , and Lconn are all computed 
in the same manner. The motivation for adopting auto-
matic differentiation is its convenience. Specifically, when 
the system involves complex networks, manually deriving 

the derivatives of the loss function with respect to network 
parameters can be cumbersome and error-prone.

Note that new training is required for each distinct opti-
mization task, as the hash-encoded neural network is trained 
to implicitly represent a single structure optimized under 
specific boundary conditions and stylization. In other words, 
each task is independent and there is no shared prior between 
different tasks for accelerating the training. Due to the ran-
domly initialized design, the final solutions may have a float-
ing performance difference around ±3% . Users may also fix 
the random seed to ensure the same solutions are obtained 
under identical input conditions.

4.1 � Validation

This section presents the optimization performance of the 
system and verifies its core design.

Mechanical performance. To assess the mechanical per-
formance, we conducted an evaluation of our system by 
comparing the optimization performance among the tradi-
tional SIMP method (here we adopt the 165-line Python 
code written by Niels Aage and Villads Egede Johansen) 
(Andreassen et al. 2011), our method with only Lmech acti-
vated, and our method with the full loss term L. We per-
form the comparison under three representative compliance 
minimization tasks: a Bridge, a Messerschmitt-Bölkow-
Blohm (MBB) beam, and an L-bracket, as depicted in Fig. 6. 
Throughout the experiments, the inputs were specified as 
“golden, Baroque style”. Finite-element analysis was con-
ducted at a resolution of 64 × 64 (i.e., the original 256 reso-
lution grids were subjected to pooling with a kernel size 
of 4), while the appearance stylization optimization was 
performed at a resolution of 256 × 256 over a total of 100 
iterations.

Firstly, we compared the optimized solutions from the 
SIMP method and our method with only Lmech activated, in 
other words, without semantic and connectivity constraints. 
We set the penalty factor of SIMP to be the same as of our 

Table 1   System hyperparameters

Parameter Notation Value

Layers of multi-resolution grids L 16
Size of hash table T 219

Feature dimensions per entry F 2
Grid max/min resolution Nmin,Nmax 8, 256
CNN layers 2
CNN channels 64
Optimization iterations 500
CCL iterations 2000
Loss function penalty factors �, �, � 9e3, 1, 3e3
Image batch size b 16
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method (p=2.0) and fine-tuned the sensitivity filter radius 
rmin to 1.5 for obtaining a good optimization outcome. It 
turns out that our method leads to structures with sharper 
edges after 100 iterations. Moreover, we numerically com-
pare the performance. As for the Bridge, MBB-beam, and 
L-bracket optimization tasks, SIMP and our method ( Lmech ) 
yield structure with the compliance of (181.06, 181.08), 
(39.48, 40.80) and (169.80, 177.23), while their corre-
sponding volumes are (0.368, 0.366), (0.293, 0.293) and 
(0.332, 0.333). The volume difference is due to the fact that 
we applied a penalty method to construct the loss, which 
inevitably leads to a different volume than the preset volume 
fraction delta. It turns out that our method shares a similar 
topology optimization performance to SIMP while featuring 
additional capabilities of structure resolution and pooling.

Second, we visually compared the stylized solutions to 
the previous ones and observed that they effectively preserve 
the primary load-bearing components while incorporating 
stylized elements around them. This observation is consist-
ent with the mechanical performance results depicted in the 
“Compliance and volume” plots of Fig. 6. Specifically, our 
method yields structures with approximately 30.27% higher 
compliance ( 19.94% , 39.69% , and 31.17% higher compliance 
for the Bridge, MBB-beam, and L-bracket, respectively) 
while maintaining an enhanced aesthetic style compared to 
the strict compliance-minimized structures obtained through 
the traditional method.

Third, we observed that the proposed method tends 
to converge to a stable topology within 100 iterations. 
Meanwhile, the colored texture of the structure takes more 
iterations to enrich the details. The slower convergence 
speed of the texture is mainly due to the nature of seman-
tic loss Lsem , as shown in the “Semantic and connectivity 
loss” plots of Fig. 6. Here we leverage image augmenta-
tion (Fig. 10) to relieve this issue. Image augmentation is 
proven effective in various research of text-guided gen-
eration (Michel et al. 2022; Poole et al. 2022; Jain et al. 
2022), despite its random augmentation (e.g., crop, affine 
transform, grayscale) will lead to a noisy semantic loss. 
Besides, we observed that the compliance minimization 
process also serves as an augmentation that accelerates 
the overall convergence, whose effects can be visualized 
from the comparison between the optimization process 
shown in Fig. 1 and Fig. 4. As for the influence of the 
connectivity constraint, Lconn has substantial values only 
during the transition interval when the structure evolves 
from the initial gray density field to a connected structure 
(approximately within the range of 0 to 100 iterations). 
Subsequently, once the optimization stabilizes, we found 
that Lconn always remains zero. The primary effect of the 
connectivity constraint lies in its capability to eliminate 
disconnected parts within the structure. This removal is a 
task challenging to achieve solely through the loss term 
associated with compliance minimization.

Fig. 6   A comparison of the optimization performance among the 
traditional SIMP method, our method with only Lmech activated, and 
our method with the full loss term L. The comparison is performed 

under three tasks. In the right figures, C denotes the compliance and 
V denotes the volume
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Influence of penalty factors. The penalty factors, � for 
the semantic loss Lsem , � for the connectivity loss Lconn , 
and � for the volume, collectively impact the optimization 
results as constituents of the loss function L (Eq. 1). As 
depicted in Fig. 6, the connectivity loss, Lconn , remains zero 
for the majority of the optimization process, indicating its 
limited influence on the final loss function. Therefore, we 
focus our analysis on the effects of � and � , as illustrated in 
Fig. 7. In Fig. 7a, while keeping the volume penalty factor, 
� , constant, we progressively increase � . It is observed that 
� exhibits a negative correlation with Lsem while displaying 
a positive correlation with compliance and volume. Evi-
dently, this signifies that by increasing � , it is possible to 
trade-off the mechanical performance of the structure for a 
lower semantic loss, thus achieving a higher similarity with 
the user-defined prompt. Similarly, in Fig. 7b, by increasing 
the volume penalty factor, � , the structure’s volume can be 
reduced, albeit at the cost of an increase in semantic loss.

It is noteworthy that the selection of � , � , and � depends 
on various factors, including the boundary conditions of the 
topology optimization problem or user-input prompts, intro-
ducing a degree of uncertainty. To alleviate the difficulties 
associated with user penalty factor selection, we propose a 
simple method. Upon examining the magnitudes of the dif-
ferent terms in the loss function, compliance is determined 

by the boundary conditions of the topology optimization, 
semantic similarity takes values between 0 and 1, while 
connectivity plays a minor role in the optimization process. 
Therefore, we neglect the impact of Lconn on the loss func-
tion L by setting � = 1 . Additionally, we only activate Lmech 
to evaluate the convergence of the structure’s compliance, 
and empirically set � and � to be one order of magnitude 
larger than the compliance. Consequently, the weighted 

Fig. 7   The impact of penalty factors on optimization results is exam-
ined by observing the optimized Bridge structure under different 
combinations of penalty factors. Specifically, the structure optimiza-
tions are conducted at the locations indicated by the dots in the plots, 

and part of the results are demonstrated. The results are pointed to 
their corresponding dots by red dashed lines. a The influence of the 
penalty factor � while keeping � and � fixed. b The influence of the 
penalty factor � while keeping � and � fixed

Fig. 8   Randomness of our approach. The optimized structure is plot-
ted beside its mechanical performance (the blue dots). The structure 
optimized with uniform design parameters initialization is marked 
with the red dot
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terms in the loss function are of similar magnitudes. After 
initializing the weights using the aforementioned method, 
users can adjust the weights within one to two orders of 
magnitude to achieve personalized design requirements. Fur-
thermore, we can generate a series of optimized solutions 
under different penalty factors and employ user-in-the-loop 
Bayesian optimization to select appropriate penalty factors.

Convergence. We compare the optimization convergence 
of our multi-resolution hash-encoded network and the Fou-
rier-featured network (Chandrasekhar and Suresh 2021) as 
implicit-neural-representation-based topology optimization 
techniques, as illustrated in Fig. 9. Both methods encode the 
input coordinates to generate the respective feature values 
(e.g., RGB color of an image, or density of a structure). In 
the comparison experiment, the hashed grids utilized a two-
layer CNN, while the Fourier-featured network employed 
a three-layer sinusoidal activated multi-layer perceptron of 
512 layer widths, with the first sinusoidal activation layer 
set at a frequency of 90 to ensure the capture of adequate 

high-frequency structural details. Upon completion of 500 
iterations, it was found that our hashed-grids-based method 
obtained a more abundant representation of high-frequency 
structural details and better mechanical and aesthetic perfor-
mance, thereby validating the enhancement in convergence 
speed achieved through the reduction of neural network 
parameters.

Computational cost. We examine the training time and 
memory consumption of the optimization of a bridge with 
a resolution of 256 × 256 , as shown in Fig. 11a. Under 100 
optimization iterations, the average iteration time was 0.587s 
(i.e., a total time of 58.66s), with the computation time for 
the loss functions of topology, appearance semantic score, 
and connectivity being 0.203s, 0.060s, and 0.139s, respec-
tively. In other words, topology optimization consumes the 
most computation (training) time as 35% , while style opti-
mization and connectivity optimization costs 10% and 24% . 
The rest training time is spent on the feedforward and back-
propagation (i.e., automatic differentiation) of the neural net-
work. The peak memory consumption under the 256 × 256 
resolution during training was 1.43GB, which is within the 
computational capability of mainstream commercial GPUs, 
shown in Fig. 11b. Within, CLIP (clip-Vit-B-32) consumed 
a fixed amount of VRAM as 1.07GB. A trained network 
under the settings listed in Table 1 costs 67.1MB for storage.

Ablation study of image augmentation and loss terms. 
The augmentation of structural images plays a significant 
role in both convergence speed and quality. Here we visu-
alize their effects under 100 iterations of optimization. In 
Fig. 10a–e, image augmentations were successively removed 
to observe their impact. The result indicated that: the pres-
ence of a random background is crucial to avoiding the 
generation of adversarial content. Without it, the network 
tends to generate textures of the same color as the back-
ground in an effort to cheat for a higher semantic loss. The 
random affine transforms and random resized crop ( 10% of 
the image) focus the network’s attention on local regions of 
the structure, allowing for fine-grained updates to be made 
to both topology and texture. The random grayscale, which 

Fig. 9   A comparison of the optimized results after 500 iterations to 
the methods using the Fourier-featured network SIREN

Fig. 10   Ablation study of the designs in the proposed method. a–e 
study the image augmentation, wherein random background, random 
affine transform, random resized crop, and random grayscale, are suc-

cessively removed. f, g depict the ablation study of connectivity and 
stylization optimization, where ’full’ represents the utilization of all 
proposed image augmentation and loss functions
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randomly converts 10% of the image to grayscale, encour-
ages the network to focus more on the structure’s topology 
than its texture. In Fig. 10e, the removal of the connectivity 
loss terms reveals a notable inhibitory effect on disconnected 

parts within the structure. Lastly, the stylization loss term 
Lsem was removed to serve as a reference in the absence of 
stylization.

Comparison with texture-guided stylization. Finally, we 
perform a visual comparison between texture-guided (Mar-
tínez et al. 2015; Hu et al. 2019; Navez et al. 2022) and our 
prompt-guided stylization, as shown in Fig. 12. The results 
indicate that owing to the highly abstract nature of semantic 
representations, we can stylize the structure from a holistic 
perspective, which would be much more difficult for texture-
guided methods.

4.2 � Stylization gallery

In this section, we present the controllability of stylization 
and a stylization gallery.

Stylization controllability. In addition to modifying the 
description prompt, the structure style can also be controlled 
by adjusting the hyperparameters of the system. In Fig. 13a, 
the control of the high-frequency details (i.e., length-scale) 
of the structure’s topology and texture is achieved by adjust-
ing the maximum resolution Nmax of the multi-resolution 
hashed grids, as shown in Fig. 15. Specifically, Nmax is nega-
tively correlated with the length-scale of the structure. The 
reason is that when Nmax takes a small value, the features 
of the structure (i.e., density and color) will be interpolated 
from a sparser grid, which is similar to applying a low-pass 
filter on the geometry and color of the structure over the 
design space.

Given that the topology and texture features of the 
structure are obtained from the bilinear interpolation of 
hashed grids vertices values, the maximum resolution Nmax 

Fig. 11   Computational cost. a The 100-iteration computation time 
of a bridge structure under the stylization prompt “golden, Baroque 
style.” b The VRAM usage under different resolutions and number of 
design variables

Fig. 12   Visual comparison between texture-guided and prompt-
guided stylization. a Texture-stylized results from the state of the art 
research. b Prompt-stylized results. The tiny figures in the lower right 

are optimized only with the semantic constraint Lsem by our method. c 
Prompt guidance enables unique stylization
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of the grids directly determines the level of detail in the 
solution, and reducing Nmax can be viewed as adding a 
low-pass filter to the solution. The same concept is applied 
in the length-scale control of density-based topology opti-
mization: filters are applied to avoid the checkerboard pat-
tern. From a frequency domain perspective, this is equiva-
lent to applying a low-pass filter to the density field of 
the structure, i.e., removing high-frequency components 
(i.e., checkerboard) at each optimization iteration. Con-
sequently, this regulation will assist the user in balancing 
the trade-off between structural details and manufacturing 
difficulty or cater to a personal aesthetic sense.

In Fig. 13b, the focus is on the system’s ability to opti-
mize the structural topology. In cases where color 3D man-
ufacturing may be unavailable, we expect the system to 
still be able to express its stylization through the topology. 
To encourage the network to focus on the structural topol-
ogy, stronger grayscale inputs are encouraged. Enhanc-
ing topological stylization involves two steps: first, the 
structure images are all converted to grayscale; second, 
the image’s transparency is penalized by a factor p, as 
shown in Eq. 11.

where I ∈ ℝ
h×w×3 is the structural image, Y ∈ ℝ

h×w×3 is the 
RGB channel of the image, � ∈ ℝ

h×w×1 is the density chan-
nel of the structure (i.e., the alpha-channel of the image), 
Z ∈ ℝ

h×w×3 is the random background, and p is the penalty 
factor. As p increases, the network’s output becomes increas-
ingly binary, thus the optimization will also become more 

(11)I = Y�p + Z(1 − �
p),

focused on the structural topology, which is validated by the 
increasing semantic score. Note that we applied the same 
volume constraint in the optimizations presented in Figs. 9, 
10 and 13 for enabling a consistent comparison.

Stylization gallery. We have validated the efficacy of 
stylization in three prototypical topology optimization 
cases, as shown in Fig. 14. The results demonstrate that 
the system not only generates textures that align with tex-
tual description, but also stylizes the structure in one piece 
rather than repetitively mimicking local texture patterns 
(e.g., Baroque style decorative patterns, spiderweb pat-
terns, and branch patterns). Please take note that our pro-
posed methodology facilitates the optimization of numer-
ous abstract aesthetics (e.g., “wood appliques” and “floral 
ornament”) that pose a challenge to be solely represented 
by a single exemplar, as demonstrated in Sec. 2.2. Specifi-
cally, the application of periodic replication of exemplars 
on a structural level proves to be more suitable for styliza-
tions encompassing periodic geometric features, such as 
the “Eiffel Tower” or a “spider’s web”. These approaches, 
however, encounters difficulties when dealing with intri-
cate or abstract stylized objectives. Consequently, the 
above observation provides a justification for considering 
the holistic optimization of textual descriptors.

Moreover, users may tweak the input text to fine-tune 
the appearance, as shown in Fig. 16. While simultaneously 
achieving performance and global stylization in structural 
design remains a challenging task, we believe that the pro-
posed system provides users with an accessible and effi-
cient tool to rapidly iterate ideas.

Fig. 13   Stylization controllabil-
ity. a The structural topology 
and texture characteristics are 
modulated by adjusting the 
maximum resolution, Nmax , of 
the hashed grids. b The topol-
ogy-only stylization is amplified 
by promoting grayscale image 
inputs and increasing the penali-
zation, p, of the structure image 
alpha-channel
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4.3 � Full‑color 3D‑printing

We 3D-printed sample objects generated from our method 
to validate the connectivity of the structures. As demon-
strated in Fig. 17, we printed a set of topologically opti-
mized bookshelves, which are subjected to distributed 
loads on the top surface and fixed on the sides. After com-
pleting the optimization, we fed refined grids into the net-
work to obtain higher-resolution structures with smoother 

surface contours (Chandrasekhar and Suresh 2021). The 
2D structures were then sketched and converted into a 
mesh in PLY format using the marching cube method 
(Lorensen and Cline 1987), with structural textures rep-
resented by vertex color. The experimental results attest 
to the significance of incorporating a connectivity loss 
term in the optimization process and exhibit the structural 
capacity of weighty external loads.

Fig. 14   Stylization gallery of topology-optimized structures, including (top) bridges, (middle) MBB-beams, and (bottom) L-brackets. The 
prompts that were used for stylization are shown above each structure

Fig. 15   Length-scale control of the structure through progressively tuning Nmax
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5 � Limitations and future works

The system can be extended to stylized topology optimi-
zation in 3D, as shown in Fig. 18. The primary difference 
between 3D and 2D problems lies in the fact that the struc-
ture images are obtained from the differentiable rendering 
I ∈ ℝ

h×w×3 of a 3D volumetric representation, which is a 3D 
grid with four channels of colors and density: S ∈ ℝ

x×y×z×4 . 
This is achieved by leveraging the neural radiance field 
(Mildenhall et al. 2021), which samples the structural fea-
tures along the camera view directions within the optimiza-
tion space, and accumulates these features into the pixels 
corresponding to each camera view, so as to render an image. 
The computational cost of obtaining high-quality optimized 
structures significantly increases with the dimensionality. 
Currently, our pipeline that performs topology and appear-
ance optimization synchronously in each iteration often 
requires tens of minutes to produce a well-stylized 3D result.

Another major drawback of the proposed method lies in 
the application of penalty optimization. In this case, it is 

much more difficult to reach a desired volume fraction (or 
other pre-defined constraints) due to the nature of penalty 
optimization. The same situations are happening to stress 
and displacement-constrained optimization. This limita-
tion is also noticeable when performing pure topology 
optimization tasks: both the optimization quality and the 
convergence speed are not as good as traditional explicit 
methods. Introducing conventional optimizers like MMA 
into the current method would be a promising solution.

In future work, we will enhance the parameterization 
of the system to gain more controllability over stylization 
(e.g., parameterize the structure with skeletons for manual 
shape adjustment). Additionally, we believe that extending 
the system for multi-material 3D-printing is also a promis-
ing avenue.

6 � Conclusions

The simultaneous pursuit of functional and aesthetical 
design in commercial or personalized products has long 
been a challenging task, requiring designers to possess a 
sound understanding of physics and an impeccable sense 
of aesthetics. We present a text-guided stylized topologi-
cal optimization method, achieved through the introduction 
of a large-scale text-image neural network. Upon input of 
mechanical design requirements and a textual description of 

Fig. 16   Editing text-based stylization of a synthesizer stand. The tex-
tual description “streamline style” maintains the geometric feature, 
and the edited text “silver, complex” leads to an appearance update

Fig. 17   3D-printing results of stylized topological optimized struc-
tures. The prompt was “golden, Baroque style”. The stylized struc-
tures were 3D-printed using the XYZ da Vinci Color mini 

Fig. 18   The optimization workflow for 3D stylized topology optimi-
zation. The main difference with 2D cases is that images are rendered 
from the 3D volumetric representation rather than directly obtained. 
Then, multi-view images are feedforward to the CLIP network for 
assessment of their semantic similarity to the user-input prompt. We 
visualize several optimized 3D structures below, labeled by their styl-
ization prompts, respectively



Topology optimization with text‑guided stylization﻿	

1 3

Page 17 of 18  256

desired structure style, our system is capable of generating 
full-color, 3D-printable solutions with stylistic tunability.

We consider the proposed system both as a fabrication-
ready design tool for DIY enthusiasts, and a backbone and 
source of inspiration for advanced structure stylization 
design using powerful and controllable generative methods 
(Zhang and Agrawala 2023). At present, there are numer-
ous intriguing issues that remain to be investigated, such as 
the stylization of multi-material structures and part-aware 
shape parameterization (Hertz et al. 2022). We believe these 
developing techniques will finally aid in making topology 
optimization a more user-friendly automated tool, improving 
design efficiency and inspiring design creativity.
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