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0. Introduciton

In this paper, we investigate holomorphic maps of Riemann surfaces using
homology groups and free homotopty. There is a famous finiteness theorem
concering holomorphic maps of compact Riemann surfaces.

Theorem 1 (de Franchis [3]). Let X be a compact Riemann surface of genus> 1.

(1) For a fixed compact Riemann surface X of genus>1, the number of
nonconstant holomorphic maps X — X is finite.

(2) There are only finitely many compact Riemann surfaces X; of genus>1
such that there exists a nonconstant holomorphic map X — X,

The second assertion (2) is often attributed to Severi. For algebraic proofs
of Theorem 1, see e.g. Kani [9], Martens [11][12], and Howard and Sommese
[5]. Imayoshi [6][7] gave analytic proofs of these for Riemann surfaces of finite
types.

Here we will study holomorphic maps of compact Riemann surfaces in terms
of homology groups. We will show some rigidity theorems which guarantee
Theorem 1. Let X, X be compact Riemann surfaces of genera g, g(>1), and let
{%1*>%23}> {X1>**>X2,} be canonical homology bases on X, X, respectively. Let
h;: ¥ > X be a nonconstant holomorphic map, and M;e M (2g,2¢; Z) be a maxtrix
representation of h; (i=1,2) with respect to {%1,“',)‘225}, {X1>>X2¢}- Then, we will
show

Theorem 2. If there is an integer 1>./8(¢—1) with M, =M, (mod.l), then
hl = hz.

In Theorem 2, the assumption concerns all of the entries of M,, M,. If we
take / larger, we may assume conditions concerning merely a half number of entries
of M,, M, to get the same conclusion. For M, write

Holomorphic maps of Riemann surfaces
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Mi=<M“ MiZ)’
Mi3 Mi4
where M;; (j=1,---,4) is g x § sized.

Theorem 3. Suppose that there is an integer 1> 8(3—1) with M, j=M,; (mod. )
SJor j=12 or for j=1,3. Then h,=h,.

In Theorems 2, 3, the target X is fixed. But the following theorem says that
if the number / in Theorem 2 is slightly large, then the matrix representation
determines the target. We will show

Theorem 4. Let X, and X, be compact Riemann surfaces of the same
genus g>1. Let {5(1,---,~)~(2§}, {Xi.1>" X124} (i=1,2) be canonical homology bases on
X, X; (i=12). Let h;: X — X; be a nonoconstant holomorphic map, and M; be the
matrix representation of h; with repsect to {31, %25}, {Xi,1>***sXi 24} (1=1,2). Suppose
that there is an integer l>\/§(g—1) with Mi=M, (mod.l). Then X,, X, are
conformally equivalent and there exists a conformal map f: X, — X, with foh,=h,.

Also, we will study conditions for an automorphism of a Riemann surface to
be the identity in terms of free homotopy. Related to this problem, Marden,
Richards, and Rodin [10] derived various results by using certain covering
surfaces. Some of their results were improved by Jenkins and Suita [8]. Taniguchi
[13] proved several theorems including an interesting theorem below.

Theorem 5 (Taniguchi [13]). Let X be a compact Riemann surface of genus
g(>1), {o}!-, be an admissible curve system on X, and let Te Aut(X) such that
(o) ~a; for every i.

If n>g, then T is the identity.

Here ~ denotes the equivalence in free homotopy.

We will use certain surfgeries of Riemann surfaces in order to get a relation
between fixed points and freely homotopically fixed loops of an automorphism. As
a theorem we will give

Theorem 6. Let X be a compact Riemann surface of genus g>1, and
id.# Te Aut(X). Suppose that there is an admissible curve system {o;}{-, on X such
that
X\{o;}I-, is connected and T(o)~a; for every i€{l,---,n}. Then we have

k+4n<2g+2,
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where k>0 is the number of fixed points of T.

We see immediately that this theorem is an extension of a well-known fact
that Te Aut(X) which is not the identity has at most 2g+2 fixed points. We will
also give a simple proof of Theorem 5.

The author wishes to express his gratitude to Progessor Shiga and Dr. Toki
for valuable suggestions.

1. The space of Hurwitz relations and the Rosati adjoint

Let X, X be compact Riemann surfaces of genera g, g(>1). We denote by
H,(X) the first homology group (with integer coefficients) of X. Any basis for
H(X) (say {xy,**,X2,4})» With intersection matrix (that is a matrix whose (k, j)-entry is
given by the intersection number ;- x;),

J=< 0 E)
—E 0
will be called a canonical homology basis, where E is the identity matrix of gx g
sized. Similarly for X. Let {};,+, %235} (resp. {X,"*»X2,}) be a canonical homology
basis on X (resp. X). Let {w!,---,w%} and {w!,--,w?} be the dual bases for
holomorphic differentials on X, X (ie. [, w*=0J; where &, is Kronecker’s delta),
and T=(E,Z), I1=(E,Z) be the associated period matrices. Let h: X — X be a
nonconstant holomorphic map. Then 4 induces a homomorphism h,: H,(X)
- H\(X). Let M=(m;)eM(2g,28;Z), where h*()"(j)z):,filmijk. (We denote by
M(m,n;K) the set of mxn matrices with K-coefficients) We will call M
the matrix representation of A with respect to {¥,---,%25} and {xy,- - Xa,}-

The integral j',,*(;j,w" is evaluated in two ways; by expressing A (};) in H,(X)
or by expressing the pull back of w' in terms of the holomorphic differentials on
X. This leads us to the so-called Hurwitz relation (see [11, p.210])

(a) AT =TIM,

where AeM(g,g;C). The set of all MeM(2g,2¢;Q) satisfying (a) for some
AeM(g,g;C) is called the space of Hurwitz relations. It depends on the choice
of the period matrices. We see immediately that it is a Q-vector space. We denote
it by S({1,17).

Lemma 1 ([12, p.534]). In the space of Hurwitz relations S(IT,17),
{M,N>=tr(J'MJ ~N) defines an inner product (‘M denotes the transposition of M).

DerINITION.  We define a norm in S(I1,1T) by
M| =<M,M)*.
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Lemma 2. If M is a matrix representation of a holomorphic map h:X - X,
then

1M =2dg <4(g—1),

where d is the degree of the holomorphic map h.

Although the equality | M ||>=2dg is already known (see e.g. [12, p.534]), we
will give a new proof using harmonic differentials here.

Proof. We will show that MJM=dJ which implies |M |*>=trMJMJ !
=2dg.

Let {&',---,@%3} (resp. {a',---,4?9}) be the dual basis for harmonic differentials
(ie. [;,8=6,) on X (resp. X). We denote by a*oh the pull-back of a*. Then,
denoting by 4, the induced homomorphism between homology groups, we may write

2g .
ak0h= dej&j (akJEC),
j=1

and

2§

= k__ ko — 5] —
mk-,—j 5 o —J‘ o oh— Zakla —‘akj.
h+(xj)

xi xii=1
Thus
2§ .
dkoh="Y md.
i=1

Then we have

25 2 .
Jf oc"/\ocf=JTa"oh/\afoh=JT Y m @AY, md
ha(X) X Xi=1 i=1

The left-hand side is equal to the (k,j)-entry of dJ, and the right-hand side is equal
to the (k, j)-entry of MJ "M, since a matrix whose (k, j)-entry is [{xa* Ao/ has the form

0 E
=2, o)
—-E O
Now we see that MJ'M =dJ.
To see the inequality holds, recall the Riemann-Hurwitz relation

23 —1)=2dg—1)+B,

where B is the total branch number of 4. By the assumption g>1, we have
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g—1 2¢g-2

and
. B ~
dg=g—1—5+d_<_2(g—1).
0

We denote the Jacobian variety of X by J(X)=C?/T’, where T is the lattice
(over Z) generated by 2g-columns of Il. Similarly for J(X). Let &: X — J(X),
k:X — J(X) be canonical injections. The following lemma is known (see e.g. [2,

p.137).

Lemma 3. Let ®: X — T be a holomorphic map of a compact Riemann surface
X (of genus>0) into a complex torus T. Then there exists a unique holomorphic
map ¥ :J(X)— T such that ®=Y -k holds.

Here, by a complex torus 7, we mean the quotient space, T=C"/G, where G
is a group of translations generated by 2n R-linearly independent vectors in C" (see [2,
p.133]). For any holomorphic map h:X — X, there exists a homomorphism
H:J(X) > J(X) with koh=Hok, because of Lemma 3. By an underlying real
structure for J(X), we mean the real torus R??/Z? together with a map
R?9/Z?% - J(X) induced by a linear map R?3x—IIxeC? It is known that for
any homomorphism H:J(X)— J(X), there are Ae M(g,g;C) and Me M(2g,28;Z)
such that the following diagram is commutative (see e.g. [2]).

1
R¥ 5 O > JX)

N "
R® 5 00 5 )

In particular, if H is induced by a holomorphic map 4:X — X, then MeM
(2g,2¢; Z) is the matrix representation of A.

DErFINITION.  For a nonconstant holomorphic map 4: X — X, we denote by
h*(Q)=Q'il ~Zk9 (Q~1""9Q~ke"7)

a divisor of the preimages of Q € X with multiplicities. Defining &(h*(Q)) by linearity
(ie. X Q»—»E'j=,nj1'€(Qj)eJ(A7)), we get a holomorphic map X — J(X). By Lemma
3, it can be extended to a homomorphism
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H*: J(X) - J(X).
The homomorphism H* is called the Rosati adjoint of H (see [12, p.535]).
The Rosati adjoint H* is induced by the matrix M*=JMJ ! acting on the

underlying real tori (see [12, p.535])).
The following theorem will play a significant role in Sectiion 2.

Theorem 7 (Martens [11]). Let X, X,, X, be closed Riemann surfaces of genera
>0. Let h;: X — X, be a nonoconstant holomorphic map and h;.: H (X) > H,(X) be
a homomorphism induced by h; (i=1,2). Assume that there is a homomorphism
f:H (X)) = H\(X,) with fohy,=h,,. Then there is a unique holomorphic map
[: Xy = X, with fohy=h, and f,=f.

2. Rigidity theorems in terms of homology groups.

Now, we will give proofs of the rigidity theorems.

Proof of Theorem 2. Let D=M,—M,. Then, by the assumption, D=0
(mod.)). Since M,, M, are matrix representations of holomorphic maps, we may use
Lemma 2 and have

DIl =I1M,—M || <M, | + || M, | =(2d2)* +(2d,g)%,
where d; is the digree of h; (i=1,2). By the inequality in Lemma 2,
(b) ID]? <16(g —1).

Write
D <E1 LZ)’
D3 D4

where D; (j=1,--+,4) is gx & sized. Then

o -D,D,+D,D *
o (00 )
iD>

* DID4_D

and we see that |D|? is a multiple of 2/2. Hence we may write |D|*=2al?
where a is a non-negative integer. But combining the inequality (b) and the
assumption />./8(§—1), we see that a must be 0. Therefore D=0, that is
M,=M,. Using Theorem 7, we obtain s, =h,. |

REMARK. Theorem 2 guarantees assertion (1) of Theorem 1 because it implies
that the number of nonconstant holomorphic maps is less than #M(2g,2¢;Z / (1)) =%
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for I>./8(F—1).

Proof of Theorem 3. By the equality (c) in the proof of Theorem 2, we see
that (D,D)=2al, where D=M,—M, and a is a non-negative integer. By
the same consideration as in the proof of Theorem 2, we have h,=h,. O

ReMARK. Theorem 3 also guarantees assertion (1) of Theorem 1.

Proof of Theorem 4. We use the Rosati adjoint. Let H.* be the Rosati adjoin
of h;, and let G;=M*M,=J'MJ ‘M, (i=1,2). Then we have endomorphisms of
J(X) with the matrices G,, G, acting on the underlying real tori, that is, for G,
there exists an 4 € M(§,g;C) with 4,f1=11G, (i=1,2). Martens ([12, p.535]) showed
that the restricted map H*|y is conformal. Also, he pointed out that if G;=G,,
the targets X,, X, are conformally equivalent and there exists a conformal map
f:X, = X, with foh,=h,. Indeed, we have the inverse map of H}y, and if G, =G,,
we compose H ¥y and the inverse map to obtain f: X, — X, with foh, =h,. Thus,
it suffices to show that G,=G,. Recall that MJ'MJ ! =d,E, where d; is the
degree of 4. Thus we have

JGI 'Gi=F(MIMJT VYT \TMJ ‘M)y=dJMJ ‘M,
and
IGi|I> =2d’g,

where || - || is the norm in S({1,fT). By the assumption, we may write M, =M, + D,
where D=0 (mod. /). Then,

G,=J(M,+D)J '(M,+D)=G,+D,
where D=0 (mod./). Using the triangle inequality, we have
IDI < 11G, 1l +11G, |l =(2d38)"/* + (2d3g)">.

By the inequality of Lemma 2 and

d==—- <g-1,

we have
2d?g <4(g—1)%,

and we obtain |D||?<16(—1)2. By the same consideration as in the proof of
Theorem 2, we see D=0 or G,=G,. O

For a matrix MeM(mn;Z), we denote by M,e M(mmn;Z/(l)) the natural
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projection of M; (i.e. my;—[m;]e Z/(l), where (m;)=M).

Corollary. Let X, and X, be compact Riemann surfaces of the same genus
g>1. Let {;Cx,“',f(za}, {Xi1>- > Xi2g) (i=1,2) be cannonical homology bases on X,
X;(i=12). Let h;:X — X, be a nonconstant holomorphic map, and M, be the matrix
representation of h; with respect to {31,255, {Xi1>*sXi,2) ((=1,2). Suppose that
there is a prime number | >\/§(g"— 1) and S,e Sp(2g;Z /(1)) with SiM ;= M ,,, where
Sp(2g; Z /(1)) denotes the symplectic group. Then X,, X, are conformally equvalent
and there exists a conformal map [: X, = X, with foh,=h,.

Proof. Recall that the group Sp(2g;Z/(/)) is generated by the symplectic
transvections (see [ 1, Chapter 3.5]). A symplectic transvection clearly has preimages
in Sp(2g;Z) and the natural projection Sp(2g;Z)— Sp(2g;Z/(/)) is homomorphic.
Thus, for any given S,eSp(2g;Z/(l)), there is a SeSp(2g;Z) whose natural
projection is S, We denote by S, ! the automorphism of H,(X,) induced by
S~ 'eSp(2g;Z). Then, SM, is the matrix representation of 4, with respect to
{1 X25) {Sw 11> (X1,29)}> While M is the matrix representation of h,
with respect to {¥;,-*, %25} {X1.10°X1,24)- SM;=M, (mod. /) and Theorem 4
complete the proof. O

REMARK. Theorem 4 implies that the number of isomorphism classes of maps
is less than #M(2g,2¢; Z/(1))=1%% for l>\/§(g— 1), and we know that the number
of automorphisms is finite. Thus, it implies Theorem 1.

Kani ([9]) showed that the number of isomorphism classes of maps is

<(g—1)228" 222 -1 _ 1),

To the best knowledge of the author, it is the smallest bound depending only on g.

3. Automorphisms and free homotopy

In this seciton, we will deal with another problem. We will give conditions for
an automorphism of a Riemann surface to be the identity in terms of free homotopy.

In this section, we treat Riemann surfaces whose universal covering surfaces are
the upper half-plane. By an automorphism, we mean a holomorphic bijective map
on a Riemann surface. We will denote by Aut(X) the set of all automorphisms on
a Riemann surface X. We will denote by [«] the free homotopy class of a closed
curve o We will use the symbol ~ to denote the equivalence in free
homotopy. Now let us recall the definition of an admissible curve system.

DEFINITION (see e.g. [4, p.192]). A system of closed curves {a;}]-; on a
compact Riemann surface X is called admissible if
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(a) each «; is simple and no o; intersects any «; for i#j;
(b) no «; is homotopic to any «; for i#j; and
(c) no w; is homotopically trivial.

In above definition, we identify a curve a with —a homotopically. The
following lemma will be useful.

Lemma 4 ([4, p.210], [14, Lemma 4.9]). 1) Let p be the minimal number
of self intersections of a closed curve in the free fomotopy class [o,]. The Poincaré
geodesic in [o,] has p intersections.

2) Let q be the minimal number of intersections between curves chosen from
the free homotopy classes [a,], [a,]. The corresponding Poincaré geodesics intersect
q times to each other.

Before proving Theorem 6, we will introduce certain surgeries of Riemann
surfaces. Let a be a homotopically non-trivial closed curve on a Riemann surface X,
and let T'e Aut(X) with T{e)~a. We know that each homotopy class has a unique
representative which is a Poincaré geodesic in X. We consider « as the
geodesic. Then, T(x)=a set-theoretically. Let / denote the length of a for the
Poincaré metric. Then o with the Poincaré metric and S={ze C;|z|=1/2n} with
the Euclidian metric are isometric. We denote by Ty the action of T on S.
Then we may write

Tg:z—e%z  (0<0<2nm),

since T € Aut(X) is isometric with respect to the Poincaré metric. The map T can
be extended to the closed disk D={ze C;|z|<I/2r}. We denote by Tp:z+>e"z
(ze D) the extended map. Of course, 0e D is a fixed point of Tj,. Next we cut
X along the geodesic « and paste two copies of D by identifying « with S to get
a Riemann surface (or a union of Riemann surfaces) X. We denote by 7: ¥ - X
the extension of T whose restricted map T],=7, Then T has a fixed point on
each of the pasted disks. We will call the above surgery the a-surgery.
We sum up the above as a propositon.

Proposition. Let X be a Riemann surface whose universal covering surface
is the upper half-plane, and o be a simple closed curve on X. Let X be a Riemann
surface (or a union of Riemann surfaces) obtained by using the a-surgery. Let
Te Aut(X). Suppose that T(x)~o. Then T can be extended to a conformal map
T:X - X naturally, and T has a fixed point on each of the pasted disks.

REMARK. By Proposition, we see at once the following.
Let X be a Riemann surface whose universal covering surface is the upper
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half-plane and let Te Aut(X). Suppose that there is a curve syetem {o;}i_, (n=2
or 3) such that one of components of X\{o;}!-, is a pair of pants whose boundaries
are {a;}}-y and T(w)~o; for every i. Then T=id.

Proof of Theorem 6. By Lemma 4, we may assume that each element of the
admissible curve system {o;}]-, is the geodesic in the free homotopy class of
each. For each a;, we apply Proposition and obtain a compact Riemann surface
X since X\{«}7-, is connected. Then, the extended map T has k +2n fixed points
on X (recall that k is the number of fixed points of T).

Calculating the Euler characteristic, we see that the genus of X is g—n. Since
T+#id, T has at most 2(g—n)+2 fixed points. Now we see k+2n<2(g—n)+2
and k+4n<2g+2. O

Now let us recall the difinition of y-hyperellipticity. A compact Riemann
surface X is called y-hyperelliptic (ye N) provided there is a compact Riemann
surface X, of genus y and a holomorphic mapping of degree 2, n: X — X,. On
every y-hyperelliptic Riemann surface X, there is a y-hyperelliptic involution ; that
is a TeAut(X) such that there are 2g+2—4y fixed points of T and ord T=2,
where g is the genus of X. “O-hyperelliptic” is corresponding to the usual notion
of “hyperelliptic”. The y-hyperelliptic involution on a surface of genus g is unique
(if it exists) provided g>4y+1 (see e.g. [2, Chapter 5.1.9]).

Corollary. Let X be a y-hyperelliptic Riemann surface and let Te Aut(X) be
a y-hyperelliptic involution. If there is an admissible curve system {a;}}-, on X
such that X\{a;}!_, is connected and T(o;)~o; for every i€{l,---,n}, then n<y.

In particular, if T is a hyperelliptic involution, then there is no non-dividing
simple closed curve a (i.e. X\{a} is connected) with T(x)~o.

Proof. In the ineguality of Theorem 6, k+4n=2g+2—4y+4n<2g+2 since
T has 2g+2—4y fixed points. Thus n<y. O

Here we will give another proof of Theorem 5.

Proof of Theorem 5. We may assume that each element of the admissible
curve system {o;}7_, is the geodesic in the free homotopy class of each, by Lemma
4. Apply Proposition to each «; to have compact Riemann surfaces (X}, Let
x(X)) be the Euler characteristic of X;. Then,

Y x(X)=2—2g+2n>2-2g+2g=2.

i=1

If the genus of a compact Riemann surface is >0, then its Euler characteristic is
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<0. Thus, at least one of {X;}7,, say X;, must be of genus 0. On X, the
conformal map induced naturally by T has at least three fixed points by the
construction of X,. Thus T is the identity. O

Here we exhibit examples showing that the inequality in Theorem 6 is sharp. It
is well known that a hyperelliptic involution has 2g+2 fixed points. Thus the
inequality is sharp for n=0. We shall consider automorphisms with n#0.

ExaMPLE 1. Let D(a,r)={ze C;|z—a|<r}, and i=\/—_1. From the Riemann
sphere €, we remove 2n (n>1) disks D(i, 1/3), D(2i, 1 /3), -+, D(ni, 1/3), D(—i,
1/3), D(—2i, 1/3), -+, D(—ni, 1/3) to get a compact bordered Riemann surface
M. Consider now two copies M and M’ of M, and construct a compact Riemann
surface N=M UM’ known as the double of M. Here N is of genus 2n—1. Let
p€M and we denote by p’ the point which is on M’ and corresponding to p. Let
j:N — N denote the reflection (the anti-conformal involution). Let z be the usual
coordinate on M, and consider an anti-conformal map a:z+Z, ze M. It is clear
that the map a can be extended to an anti-conformal map on N. We also denote
it by a:N— N. Composed map aoj:N— N is an automorphism. Let o=
{ze M;|Imz|=k, 1/3<Rez<k}uU{Rez=k, —k<Imz<k}u{z'eM';|Imz'|=k', (1/
3y <Rez’ <k'}u{Rez =k', —k'<Imz'<k'}, (k=1,---,n). It is easy to see that
{oty,-+,a,} is an admissible surve system, M\{a,,--,a,} is connected, and a o j(o;) ~ t;,
(i=1,---,n). In the ineguality of the theorem k-+4n=4n since a-j has no fixed
points, and 2g+2=2(2n—1)+2=4n. We see that the equality holds.

In example 1, the automorphism has no fixed points. Next, we will give an
example that the automorphism has fixed points (i.e. in the inequality nk #0).

ExAMPLE 2. We do the a,-surgery on the surface N (constructed in example
1) to get a compact Riemann surface N of genus 2n—2. Let b:N— N denote
the automorphism induced by a-j. Then b has two fixed points. It is easy to
see that equality holds.
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