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0. Introduciton

In this paper, we investigate holomorphic maps of Riemann surfaces using

homology groups and free homotopty. There is a famous finiteness theorem

concering holomorphic maps of compact Riemann surfaces.

Theorem 1 (de Franchis [3]). Let Xbea compact Riemann surface of genus > 1.

(1) For a fixed compact Riemann surface X of genus > 1, the number of

nonconstant holomorphic maps X -» X is finite.

(2) There are only finitely many compact Riemann surfaces X{ of genus > 1
such that there exists a nonconstant holomorphic map X^Xt.

The second assertion (2) is often attributed to Severi. For algebraic proofs

of Theorem 1, see e.g. Kani [9], Martens [11][12], and Howard and Sommese

[5]. Imayoshi [6] [7] gave analytic proofs of these for Riemann surfaces of finite

types.

Here we will study holomorphic maps of compact Riemann surfaces in terms
of homology groups. We will show some rigidity theorems which guarantee

Theorem 1. Let X, X be compact Riemann surfaces of genera g, g(>\\ and let

{Xi>'">%2g}> {#ι> >%20} be canonical homology bases on X9 X9 respectively. Let
hi'. X-* X be a nonconstant holomorphic map, and M,eM (2g,2g;Z) be a maxtrix

representation of A 4 (ι=l,2) with respect to {ίι, ,ϊ2g}» {Xι, ;X2β}
 τhen» we wil1

show

Theorem 2. If there is an integer l>^/%(g — 1) with Ml=M2 (mod./), then

In Theorem 2, the assumption concerns all of the entries of Ml9 M2. If we

take / larger, we may assume conditions concerning merely a half number of entries

of M19 M2 to get the same conclusion. For Mi9 write

Holomorphic maps of Riemann surfaces
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where M^ (j=l, 94) is gxg sized.

Theorem 3. Suppose that there is an integer /> 8(g- 1) with Mlj = M2j (mod. /)
for j= 1,2 or for j= 1,3. Then hί=h2.

In Theorems 2, 3, the target X is fixed. But the following theorem says that
if the number / in Theorem 2 is slightly large, then the matrix representation
determines the target. We will show

Theorem 4. Let Xv and X2 be compact Riemann surfaces of the same

genus g>\. Let {Xi,--,^}* {Xi,ι>'"Λi,2g} (' = 1,2) be canonical homology bases on
X, Xi (z'=l,2). Let hi'.X-^Xi be a nonoconstant holomorphic map, and M{ be the

matrix representation ofh( with repsect to {χit fas}, {Xi,i,-'iXi,2g} (*' = 1>2). Suppose

that there is an integer l>^/8(g—\) with Ml=M2 (mod./). Then Xί9 X2 are
conformally equivalent and there exists a conformal map f'.X^ -> X2 with f°hί=h2.

Also, we will study conditions for an automorphism of a Riemann surface to
be the identity in terms of free homotopy. Related to this problem, Marden,
Richards, and Rodin [10] derived various results by using certain covering
surfaces. Some of their results were improved by Jenkins and Suita [8]. Taniguchi
[13] proved several theorems including an interesting theorem below.

Theorem 5 (Taniguchi [13]). Let X be a compact Riemann surface of genus
g(>l), {αj"=1 be an admissible curve system on X, and let ΓeAut^) such that

Tfai) ~ αt for every i.
If n>g, then T is the identity.

Here — denotes the equivalence in free homotopy.
We will use certain surfgeries of Riemann surfaces in order to get a relation

between fixed points and freely homotopically fixed loops of an automorphism. As

a theorem we will give

Theorem 6. Let X be a compact Riemann surface of genus g>l, and

id.^TeAut(X). Suppose that there is an admissible curve system {αj"=1 on X such

that
X\{a,i}"=ι is connected and T^α,-)~αf for every /e { l , ,«}. Then we have
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where k>Q is the number of fixed points of T.

We see immediately that this theorem is an extension of a well-known fact
that ΓeAut(A') which is not the identity has at most 2g + 2 fixed points. We will
also give a simple proof of Theorem 5.

The author wishes to express his gratitude to Progessor Shiga and Dr. Toki
for valuable suggestions.

1. The space of Hurwitz relations and the Rosati adjoint

Let X, X be compact Riemann surfaces of genera g, g(>l). We denote by
Hι(X) the first homology group (with integer coefficients) of X. Any basis for

H^X) (say {Xir-sfojX w^h intersection matrix (that is a matrix whose (fcj)-entry is
given by the intersection number χfc χj),

-E 0

will be called a canonical homology basis, where E is the identity matrix of g x g

sized. Similarly for X. Let {χ1? ,χ2f?} (resp. {χl5 ,χ2 J) be a canonical homology
basis on X (resp. X). Let {wV ,κ^} and {wl, 9w

β} be the dual bases for
holomorphic differentials on X, X (i.e. §χjw

k = δjk where δjk is Kronecker's delta),
and Π = (/?,Z), Π = (E,Z) be the associated period matrices. Let h:X-+ X be a
nonconstant holomorphic map. Then h induces a homomorphism h^'.H^X)
-+Hl(X). Let M=(mkJ)eM(2g,2g',Z), where hJχ^Σ^m^. (We denote by
M(m,n;K) the set of mxn matrices with ^-coefficients.) We will call M

the matrix representation of h with respect to {χι,'-,χ2g} and { χ ι , ,χ2g}'
The integral J^j^w1' is evaluated in two ways; by expressing /**(#/) in HV(X)

or by expressing the pull back of wl in terms of the holomorphic differentials on
X. This leads us to the so-called Hurwitz relation (see [11, p.210])

(a) ΛΠ = ΠM,

where AeM(g,g;C). The set of all MεM(2g,2g;Q) satisfying (a) for some
AεM(g,g;C) is called the space of Hurwitz relations. It depends on the choice
of the period matrices. We see immediately that it is a β-vector space. We denote

it by 5(Π,Π).

Lemma 1 ([12, p.534]). In the space of Hurwitz relations
N) defines an inner product ( *M denotes the transposition ofM).~ 1

DEFINITION. We define a norm in Sf(ft,Π) by

||Af||=<A/,Af>*.
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Lemma 2. If M is a matrix representation of a holomorphic map h'.
then

where d is the degree of the holomorphic map h.

Although the equality \\M\\2 = 2dg is already known (see e.g. [12, p.534]), we
will give a new proof using harmonic differentials here.

Proof. We will show that MJlM=dJ which implies \\M\\2 = trMJtMJ~l

Let {&1

9~ ,&29} (resp. {αV »α2ίf}) be the dual basis for harmonic differentials
(i.e. J~yα

fc = δjk) on X (resp. X). We denote by αfc o h the pull-back of αk. Then,
denoting by h # the induced homomorphism between homology groups, we may write

and

Thus

of°h=
J

Then we have

Γ Γ 2*
=1 α*°λ = Σ% αJ = %

Jίj J ϊ jV=ι

ΓΓ ΓΓ ΓΓ 2

α f c Λα j = α f c o Λ / \ y o Λ =
JJMX) JJ^ JJχί=

The left-hand side is equal to the (k j)-entry of dJ, and the right-hand side is equal
to the (fcj')-entry of MJ 1M, since a matrix whose (fcj)-entry is JJxa

k Λ«J has the form

-E 0

Now we see that MJtM = dJ.
To see the inequality holds, recall the Riemann-Hurwitz relation

where B is the total branch number of h. By the assumption g>l, we have
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* Z~l B .- 1

g-ι 2g-:
and

B
dg=g—l— —

2

D

We denote the Jacobian variety of X by J(X) = C9/Γ, where Γ is the lattice
(over Z) generated by 2g-columns of Π. Similarly for J(X). Let k\X-+J(X\
κ:X-+J(X) be canonical injections. The following lemma is known (see e.g. [2,
p.137]).

Lemma 3. Let Φ: X-* T be a holomorphic map of a compact Riemann surface
X (of genus >G) into a complex torus T. Then there exists a unique holomorphic
map Ψ : J(X) -> T such that Φ = Ψ ° K holds.

Here, by a complex torus T, we mean the quotient space, T=Cn/G9 where G
is a group of translations generated by In /^-linearly independent vectors in Cn (see [2,
p. 133]). For any holomorphic map h:X-+X, there exists a homomorphism
H:J(X)^>J(X) with κ°λ = //°/c, because of Lemma 3. By an underlying real
structure for J(X\ we mean the real torus R20/Z2g together with a map
R2<>/Z29^J(X) induced by a linear map R2βBxt-+Πx€Cβ. It is known that for
any homomorphism H\J(X}^J(X\ there are AεM(g,g\C) and MeM(2g,2g;Z)
such that the following diagram is commutative (see e.g. [2]).

π
R2~9 _> O -> J(X)

\ M I A I H

Π

» C9 -

In particular, if // is induced by a holomorphic map h:X-+X, then MeM
(2g,2g',Z) is the matrix representation of A.

DEFINITION. For a nonconstant holomorphic map h:X->X, we denote by

a divisor of the preimages of Q e X with multiplicities. Defining k(h *(Q)) by linearity
(i.e. X$Q\- >Σk

j=lnjk(Qj)EJ(X)\ we get a holomorphic map X -* J(X). By Lemma
3, it can be extended to a homomorphism
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H*:J(X)->J(X).

The homomorphism H* is called the Rosati adjoint of H (see [12, p.535]).

The Rosati adjoint H* is induced by the matrix M*=J*MJ~l acting on the

underlying real tori (see [12, p.535]).

The following theorem will play a significant role in Sectiion 2.

Theorem 7 (Martens [1 1]). Let X, Xi9 X2 be closed Riemann surfaces of genera

> 0. Let ht'.X -+ Xt be a nonoconstant holomorphic map and h^: HV(X) ->• HV(X^ be

a homomorphism induced by h{ (/=1,2). Assume that there is a homomorphism

\\HI(XI )->//! (X2) with f ° A ι # = Λ 2 r Then there is a unique holomorphic map
f: Xv -> X2 with f°hί=h2 and /„ = f.

2. Rigidity theorems in terms of homology groups.

Now, we will give proofs of the rigidity theorems.

Proof of Theorem 2. Let D = M2 — Ml. Then, by the assumption, £> = 0

(mod. /). Since M 15 M2 are matrix representations of holomorphic maps, we may use

Lemma 2 and have

I = \\M2-M,\\ < ||M2|| -f |

where d{ is the digree of ht (ι=l,2). By the inequality in Lemma 2,

(b)

Write

where Dj (j=Λ, •••,4) is gxg sized. Then

(c)
(C)

and we see that \\D\\2 is a multiple of 2/2. Hence we may write \\D\\2 = 2al2

9

where a is a non-negative integer. But combining the inequality (b) and the

assumption />Λ/8(g:-l), we see that a must be 0. Therefore Z> = 0, that is

M2 = Λf1. Using Theorem 7, we obtain hi=h2. Π

REMARK. Theorem 2 guarantees assertion (1) of Theorem 1 because it implies
that the number of nonconstant holomorphic maps is less than #M(2g,2£;Z/(/)) = /
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for />,

Proof of Theorem 3. By the equality (c) in the proof of Theorem 2, we see
that </),/)> = 20/, where D = M2 — M{ and a is a non-negative integer. By
the same consideration as in the proof of Theorem 2, we have hί=h2. Π

REMARK. Theorem 3 also guarantees assertion (1) of Theorem 1.

Proof of Theorem 4. We use the Rosati adjoint. Let H? be the Rosati adjoin
of ht, and let Gί = Mi*Mί = JtMiJ~ίMi (ι'=l,2). Then we have endomorphisms of
J(X) with the matrices Gl9 G2 acting on the underlying real tori, that is, for Gi9

there exists an A εM(g,g;C) with Aίfί = ΠGi (i= 1,2). Martens ([12, p.535]) showed
that the restricted map H^\x is conformal. Also, he pointed out that if G^ = G2,
the targets Xί9 X2 are conformally equivalent and there exists a conformal map
/: Xγ -> X2 with/o A! = h2. Indeed, we have the inverse map of H}\X9

 and if (?ι = G2,
we compose Hf\x and the inverse map to obtain/: A\ -> X2 with/o A 1 =A2. Thus,
it suffices to show that G^ — G2. Recall that MίJ

tMiJ~1=dίE9 where dv is the
degree of A f. Thus we have

and

)J

where || || is the norm in 5(Π,Π). By the assumption, we may write M2 = M1 4- D9

where Z) = 0 (mod. /). Then,

where D = Q (mod./). Using the triangle inequality, we have

\\D\\ < I I G i l l + ||G2||

By the inequality of Lemma 2 and

, 1-1 B
d=- -

we have

2d2g<4(g-l)2,

and we obtain ||/5||2<16(£ — I)2. By the same consideration as in the proof of
Theorem 2, we see D = 0 or Gί = G2. Π

For a matrix MeM(m,n\Z\ we denote by M^M(m,n\Z /(I)) the natural
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projection of Mf (i.e. /Wyh->[/Wy]eZ/(/), where

Corollary. Let X^ and X2 be compact Riemann surfaces of the same genus

g>\. Let { χ l 9 ~9χ2S}, {Xi,i,~;Xi,2g} ('=1,2) be cannonical homology bases on X,
Xt (i= 1,2). Let ht : X -* X{ be a nonconstant holomorphic map, and M{ be the matrix

representation ofh{ with respect to {χi9" 9χ2j}9 {Xitι,—,Xi,2β} (* = 1»2). Suppose that

there is a prime number />v/8(g— 1) and SleSp(2g'9Z/(l)) with SlMil = M2h where
Sp(2g Z / (I)) denotes the symplectic group. Then Xi9 X2 are conformally equvalent

and there exists a conformal map f\Xv -> X2 with f°hί=h2.

Proof. Recall that the group Sp(2g;Z/(l)) is generated by the symplectic
transvections (see [1, Chapter 3.5]). A symplectic transvection clearly has preimages
in Sp(2g\Z] and the natural projection Sp(2g\Z) -+ Sp(2g\Z /(I)) is homomorphic.

Thus, for any given SleSp(2g:>Z/(l)), there is a SeSp(2g'9Z) whose natural

projection is St. We denote by S"1 the automorphism of Hγ(X^ induced by
S'1 eSp(2g;Z). Then, SM^ is the matrix representation of h1 with respect to

{Xι> ,χ20}, {5 f*1(Xι,ι)» '5'*1(^ι,2g)}) while Mv is the matrix representation of h±
with respect to {χl9" 9χ2g}9 {Xι,ι,- ,Xι,2g}' SMV=M2 (mod. /) and Theorem 4
complete the proof. Π

REMARK. Theorem 4 implies that the number of isomorphism classes of maps

is less than #M(2g,2g;Z/(/)) = /4^ for />v/8(^-l), and we know that the number
of automorphisms is finite. Thus, it implies Theorem 1.

Kani ([9]) showed that the number of isomorphism classes of maps is

To the best knowledge of the author, it is the smallest bound depending only on g.

3. Automorphisms and free homotopy

In this seciton, we will deal with another problem. We will give conditions for
an automorphism of a Riemann surface to be the identity in terms of free homotopy.

In this section, we treat Riemann surfaces whose universal covering surfaces are
the upper half-plane. By an automorphism, we mean a holomorphic bijective map
on a Riemann surface. We will denote by Aut(Jf) the set of all automorphisms on

a Riemann surface X. We will denote by [α] the free homotopy class of a closed
curve α. We will use the symbol ~ to denote the equivalence in free
homotopy. Now let us recall the definition of an admissible curve system.

DEFINITION (see e.g. [4, p.192]). A system of closed curves {αj"=1 on a
compact Riemann surface X is called admissible if



RIGIDITY OF HOLOMORPHIC MAPS 493

(a) each α, is simple and no α( intersects any α, for
(b) no αf is homotopic to any α7 for iΦj\ and
(c) no αf is homotopically trivial.

In above definition, we identify a curve α with — α homotopically. The
following lemma will be useful.

Lemma 4 ([4, p.210], [14, Lemma 4.9]). 1) Let p be the minimal number
of self intersections of a closed curve in the free fomotopy class [αj. The Poincare
geodesic in [αt] has p intersections.

2) Let q be the minimal number of intersections between curves chosen from
the free homotopy classes [o ]̂, [α2]. The corresponding Poincare geodesies intersect
q times to each other.

Before proving Theorem 6, we will introduce certain surgeries of Riemann
surfaces. Let α be a homotopically non-trivial closed curve on a Riemann surface X,
and let Γe Autpf) with 7Ί(α)~α. We know that each homotopy class has a unique
representative which is a Poincare geodesic in X. We consider α as the
geodesic. Then, Γ(α) = α set-theoretically. Let / denote the length of α for the

Poincare metric. Then α with the Poincare metric and S={zeC;\z\ = l/2π} with
the Euclidian metric are isometric. We denote by Ts the action of T on S.
Then we may write

Ts:z\-+ewz (0<0<2π),

since ΓeAut^) is isometric with respect to the Poincare metric. The map Ts can
be extended to the closed disk Z> = {zeC;|z|<//2π}. We denote by TD:z\-+eiθz
(zeZ)) the extended map. Of course, Oe/) is a fixed point of TD. Next we cut
X along the geodesic α and paste two copies of D by identifying α with S to get
a Riemann surface (or a union of Riemann surfaces) X. We denote by f\X-* X
the extension of T whose restricted map T]D = TD. Then f has a fixed point on
each of the pasted disks. We will call the above surgery the en-surgery.

We sum up the above as a propositon.

Proposition. Let X be a Riemann surface whose universal covering surface

is the upper half-plane, and α be a simple closed curve on X. Let X be a Riemann
surface (or a union of Riemann surfaces) obtained by using the en-surgery. Let

TeΔut(X). Suppose that Γ(α)~α. Then T can be extended to a conformal map

f :X -+ X naturally, and T has a fixed point on each of the pasted disks.

REMARK. By Proposition, we see at once the following.
Let X be a Riemann surface whose universal covering surface is the upper
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half-plane and let TeAut(X). Suppose that there is a curve syetem {αj"=1 (n = 2

or 3) such that one of components of A^{αJ"=1 is a pair of pants whose boundaries
are {αf}"=1 and Γ(αf) ~ αf for every i. Then T=id.

Proof of Theorem 6. By Lemma 4, we may assume that each element of the

admissible curve system {αj"=1 is the geodesic in the free homotopy class of

each. For each αί5 we apply Proposition and obtain a compact Riemann surface
X since X\{oci}1=l is connected. Then, the extended map T has k + 2n fixed points
on X (recall that k is the number of fixed points of T).

Calculating the Euler characteristic, we see that the genus of X is g — n. Since
f^id., f has at most 2(g — n) + 2 fixed points. Now we see k + 2n<2(g — n) + 2
and

Now let us recall the difinition of y-hyperellipticity. A compact Riemann
surface X is called y-hyperelliptic (ye TV) provided there is a compact Riemann
surface Xy of genus γ and a holomorphic mapping of degree 2, π:X-+Xr On
every y-hyperelliptic Riemann surface X, there is a y-hyperelliptic involution that

is a ΓeAut(JO such that there are 2g + 2-4y fixed points of T and ord Γ=2,
where g is the genus of X. "0-hyperelliptic" is corresponding to the usual notion
of "hyperelliptic". The y-hyperelliptic involution on a surface of genus g is unique
(if it exists) provided g>4y + l (see e.g. [2, Chapter 5.1.9]).

Corollary. Let X be a y-hyperelliptic Riemann surface and let Te Aut(A') be
a y-hyperelliptic involution. If there is an admissible curve system {αj"=1 on X
such that A\{αJ"=1 is connected and T(u,d ~ <*i for every ιe{l, •••,«}, then n<y.

In particular, if T is a hyperelliptic involution, then there is no non-dividing

simple closed curve α (i.e. X\{a} is connected) with jΓ(α)~α.

Proof. In the ineguality of Theorem 6, fc + 4« = 2g-h2-4y + 4«<2g + 2 since

T has 2g + 2-4y fixed points. Thus n<y. Π

Here we will give another proof of Theorem 5.

Proof of Theorem 5. We may assume that each element of the admissible
curve system {αJJL t is the geodesic in the free homotopy class of each, by Lemma
4. Apply Proposition to each α, to have compact Riemann surfaces {>?jΓ=ι Let

χ(Xi) be the Euler characteristic of X{. Then,

If the genus of a compact Riemann surface is >0, then its Euler characteristic is
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<0. Thus, at least one of {A^}Γ=ι> say Xί9 must be of genus 0. On Xl9 the
conformal map induced naturally by T has at least three fixed points by the
construction of Xίf Thus T is the identity. Q

Here we exhibit examples showing that the inequality in Theorem 6 is sharp. It
is well known that a hyperelliptic involution has 2g + 2 fixed points. Thus the
inequality is sharp for « = 0. We shall consider automorphisms with

EXAMPLE 1. Let £>(α,r) = (ze C; \z-a\ <r}, and / = v ~ l From tne Riemann
sphere C, we remove 2n (n>\) disks D(i, 1/3), D(2i, 1/3), •••, D(ni, 1/3), D(-i,
1/3), D( — 2/, 1/3), •••, D( — ni, 1/3) to get a compact bordered Riemann surface
M. Consider now two copies M and M' of M, and construct a compact Riemann

surface N=MvM' known as the double of M. Here N is of genus 2ft- 1. Let
peM and we denote by /?' the point which is on M' and corresponding to p. Let
j:N-+N denote the reflection (the anti-conformal involution). Let z be the usual
coordinate on M, and consider an anti-conformal map a:z\-+z9 zeM. It is clear
that the map a can be extended to an anti-conformal map on N. We also denote
it by a:N->N. Composed map a°j\N-^N is an automorphism. Let αfc =

(zeM;|Imz|=A:, l/3<Rez<fc}u{Rez = fc, -k<lmz<k}v{z' eM'ι\lmz'\=k\ (I/
3)'<Rez'<λ:/}u{Rez'=:λ:', —k' <Imz' <&'}, (fc = !,-••,«). It is easy to see that

{αl9 ,αM} is an admissible surve system, M^o^, •••,<*,,} is connected, and 0 ̂ (α,) ~ α(,
(/=!, •••,«). In the ineguality of the theorem k + 4n = 4n since 0oy has no fixed

points, and 2g + 2 = 2(2n-l) + 2=4n. We see that the equality holds.

In example 1, the automorphism has no fixed points. Next, we will give an
example that the automorphism has fixed points (i.e. in the inequality

EXAMPLE 2. We do the α j -surgery on the surface N (constructed in example

1) to get a compact Riemann surface N of genus 2n — 2. Let b'.N^N denote
the automorphism induced by a°j. Then b has two fixed points. It is easy to

see that equality holds.
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