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Abstract

A risk-aware decision-making problem can be formulated as a chance-constrained
linear program in probability measure space. Chance-constrained linear program in
probability measure space is intractable, and no numerical method exists to solve this
problem. This paper presents numerical methods to solve chance-constrained linear
programs in probability measure space for the first time. We propose two solvable
optimization problems as approximate problems of the original problem. We prove the
uniform convergence of each approximate problem. Moreover, numerical experiments
have been implemented to validate the proposed methods.

Keywords Sample approximation - Function approximation - Chance constraint

Mathematics Subject Classification 90C15 - 90C17 - 90C59

1 Introduction

Let X C R” be a compact set with the infinity norm defined by ||x|x =
max;—i, ., |xi|,x € X.Denote D > 0 such that D := sup{[lx — x[loc : x,x" € X}
for the diameter of X. In this paper, we assume that X’ can be specified as X = {x €
R™ : g(x) < 0"¢} where g : R” — R"z is a continuously differentiable constraint

function. We have the following assumption on g throughout the paper.
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Assumption 1 Cottle Constraint Qualification (CCQ) holds at any points in X.
Namely, for any x € X, there is a d € R” such that

Vg(x)'d < 0% (1)

holds.

Let A(X) be Borel o-algebra on metric space X. This paper uses Z(-) to denote
the Borel o-algebra on a metric space. Notice that (X', (X)) is a Borel space. Let u
be a Borel probability measure on Z(X). Let M (X) be the space of Borel probability
measures on metric space X. Let § be a random vector with support A € R* and P{-}
be the probability measurable defined on Borel o -algebra Z(A) on A. Let p(8) be the
probability density function associated with P{-}. Given a scalar function J : X — R,
and a vector-valued function 2 : X x A — R, a chance-constrained linear program
in probability measure space is formulated as:

min / J(x)du
X

HEM(X)

(P)
s.t. / Fx)du >1—a,
X
where o € (0, 1) is a given probability level and F(x) is defined by
F(x) = / [{A(x, 6)}dP{s} = f I{A(x, 8)}p(8)ds. 2
A A

Here, I[{y} presents the indicator function written as

_f1, ity <o,
H{y}—{o, if y > 0.

Note that F(x) is the probability of having A(x, §) < O for given x. Throughout the
paper, we assume the following conditions on J(x) and Ak (x, §).

Assumption 2 For functions J (x) and & (x, §), the followings are supposed to be held:

J(x) is continuously differentiable with respect to x;

h(x, 8) is continuously differentiable with respect to x for any § € A;

For every x € X, h(x, §) is continuous with respect to §;

The probability density function p(8) is continuous with respect to §;

Let hi(x, 8) := max; h;(x, 8), supp p := cl{§ € A : p(8) > 0} (cl{-} denotes the
closure), and for each x € X,

o0 op

ASUPP(x) := {8 € supp p : h(x,8) = 0}.
For each x € X, the following is assumed to be true:

P{ASUPP (x)} = 0.
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Besides, suppose that /(x, §) has a continuous probability density function for
every x € X;
f. There exists L > 0 such that

Ih(x,8) —h(x', 8)llso < LlIx — X'lcc, Vx,x' € X and V6 € A,

and
[J(x) = J@D) < Llix = x'lloo, Vx,x" € X.

In fact, according to the content of pp. 78-79 of [18], we can obtain the continuity of
F(x) from Assumption 2.

Denote the feasible region of Py as My (X) := {u € M(X) : fX Fx)du > 1—a}.
The optimal objective function value of P, is

Jo := min {/ J)du s e Ma(?()} . A3)
X

The optimal solution set of P, is therefore written as

Aq = {MEMa(X):/XJ(X)dM=ja}, 4)
e € Ay is called an optimal measure for P,.

1.1 Motivation

The motivation for addressing chance-constrained linear programs in probability mea-
sure space is from seeking an optimal stochastic policy for the optimal control problem
with chance constraints, which is vital for the deployment of reliable autonomous sys-
tems by control algorithms that are robust to model misspecifications and for external
disturbances [2, 10, 28]. The optimal control problem with chance constraints aims
at maximizing a reward function or minimizing a cost function with the constraints
that the system state should locate in the safe area with a required probability. The
deterministic policy has a fixed value in the decision domain at every time index. In
contrast, the stochastic policy provides a probability measure on the decision domain
at every time index. The deterministic policy can be regarded as a particular case
of the stochastic policy by concentrating the probability measure on a fixed value in
the decision domain. The existing techniques for addressing optimal control prob-
lems with chance constraints do not touch the essential parts of the problem and may
require application-specific assumptions. For example, [10, 17] enforces pointwise
chance constraints that ensure the independent satisfaction of each chance constraint
at each time step, which leads to a more conservative solution. In general, joint chance
constraints are desired, which requires all chance constraints to be satisfied jointly at
all times. However, it is challenging to tackle the joint chance-constrained optimal
control problem since the distribution of the state trajectory needs to be considered
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fully. It is possible to address the joint chance-constrained optimal control problem
by using Boole’s inequality [2, 24, 36] or performing robust optimization within the
bounded model parameters obtained by specifying a confident set [19]. However, these
two methods are conservative. More investigations from the viewpoint of optimization
theory should be addressed to enhance new breakthroughs for optimal control with
chance constraints.

Obtaining open-loop stochastic optimal policies under chance constraints can be
essentially written as a chance-constrained linear program in probability measure space
[32]. Open-loop stochastic policies mean that the stochastic policies only depend on
the initial state. Unfortunately, there is still no research on solving chance-constrained
linear programs in probability measure space to our knowledge. Investigating the
chance-constrained linear programs in probability measure space is vital, which can
give more insights into optimal control with chance constraints.

1.2 Related Works

Optimization with finite chance constraints in finite-dimensional vector space is
generally challenging due to the nonconvexity of the feasible set and intractable refor-
mulations [9, 27]. The existing research has two major streams: (1) give assumptions
that the constraint functions or the distribution of random variables has some spe-
cial structure, for example, linear or convex constraint functions [23], finite sample
space of random variables [21], elliptically symmetric Gaussian-similar distributions
[33], or (2) extract samples [5-7, 20, 25, 26, 29, 31] or use smooth functions [13]
to approximate the chance constraints. For sample-based methods, the most famous
approach in the control field is scenario approach [5-8, 28]. Scenario approach gener-
ates a deterministic optimization problem as the approximation of the original one by
extracting samples from the sample space of random variables. The probability of the
feasibility of the approximate solution rapidly increases to one as the sample number
increases. However, the convergence of the optimality of the approximate solution
is not discussed. In another sample-based method, the sample-average approach [13,
20, 26, 29], both feasibility and optimality of the approximate solution are presented.
However, neither scenario approach nor sample-average approach can be directly used
to solve chance-constrained linear programs in probability measure space since the
deduction of the convergence of either scenario approach or sample-average approach
assumes that the dimension of the decision variable must be finite.

Optimization with chance/robust constraints in finite-dimensional vector space is
also intensively studied, in which the number of chance constraints is infinite [1, 11,
34, 35]. In [34], the generalized differentiation of the probability function of infi-
nite constraints is investigated. The optimality condition with an explicit formulation
of subdifferentials is given. In [35], the variational tools are applied to formulate
generalized differentiation of chance/robust constraints. The method of getting the
explicit outer estimations of subdifferentials from data is also established. An adaptive
grid refinement algorithm is developed to solve the optimization with chance/robust
constraints in [1]. However, the above research on optimization with chance/robust
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constraints in finite-dimensional vector space can prove convergence only when the
dimension of the decision variable is finite.

Recently, chance constraints in infinite dimensions have attracted a lot of attention.
In [12, 14, 15], some essential properties, such as convexity and semi-continuity, are
generalized into the chance constraints in infinite dimensions. However, the results in
[12] assume that the random variable should have a log-concave density to ensure the
semicontinuity. In [15], the continuity of the probability function as chance constraints
is proved under the assumption of continuous random distributions. The properties of
chance constraints in infinite dimensions are crucial to constructing the optimality
condition and implementing convergence analysis for optimization with chance con-
straints in infinite dimensions. In [14], chance-constrained optimization of elliptic
partial differential equation systems is addressed by inner—outer approximation. It
proves that the inner and outer approximation converges to the original problem and
can provide approximate solutions with ensured convergence. However, the proof of
the convergence requires the assumption that the state domain is convex. Besides, it
concerns the specific problem in partial differential equation systems.

1.3 Overview of Proposed Method and Contributions

This paper extends the sample-based approximation method to solve chance-
constrained linear programs in probability measure space. We show the relationship
between chance-constrained optimization in finite-dimensional vector space and
chance-constrained linear program in probability measure space. By solving a chance-
constrained linear program in probability measure space, we can obtain a stochastic
policy to improve the expectation of the optimal value further. We also show that the
optimal objective values of the chance-constrained linear program in probability mea-
sure space and chance-constrained optimization in finite-dimensional vector space are
equal if the constraints involved with random variables are required to be satisfied
with probability 1. Namely, in this case, by concentrating the probability measure on
an optimal solution of chance-constrained optimization in finite-dimensional vector
space, we can obtain an optimal measure for the chance-constrained linear program
in probability measure space. Besides, a sample approximate problem and a Gaussian
mixture model approximate problem of problem P, are proposed, by solving which
the approximate solution of P, can be obtained. The convergences of both approxi-
mate problems are investigated. Numerical examples are implemented to validate the
proposed methods.

Chance-constrained linear program in probability measure space involves chance
constraints in infinite dimensions. Our work differs from the [12, 15] in that our purpose
is to provide numerical methods for solving chance-constrained linear programs in
probability measure space. The properties of chance constraints in infinite dimensions
are essential for convergence analysis.

The rest of this paper is organized as follows: Sect.2 presents two approximate
problems of P, and gives the main results on the convergence for each approximate
problem. The proofs of the main results are presented in Sect.3. Section4 presents
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the results of two numerical examples, which show the effectiveness of our proposed
methods. Section 5 concludes the whole paper.

2 Main Results

This section introduces two approximate problems of P,. We also present the conver-
gence for each approximate problem. The proofs are presented in Sect. 3.

2.1 Chance-Constrained Optimization in Finite Space

Chance-constrained optimization Q, is an optimization problem with chance con-
straints in a finite-dimension vector space. The problem is written as

min J(x)
rer (Qa)
st. F(x)>1—aq,

where o € (0, 1) is a given probability level.

Let Xy ;= {x € X : F(x) > 1 — «a} be the feasible domain of Q,. Denote
Jy = min{J(x) : x € Xy} for the optimal objective value of Q, and X, := {x €
Xy J(x) = J_a}for the optimal solution set of Q. We have the following assumptions
over Q, throughout the paper.

Assumption 3 There exists a globally optimal solution x of Q,, such thatforany e > 0
thereis x € X suchthat) < ||x — x|| <eand F(x) > 1 — «.

The existence of chance constraints gives rise to several difficulties. First, the struc-
tural properties of 2 (x, §) might not be passed to F(x) > 1 — «. The feasible set A}
can be equivalently obtained as

X, = U ﬂ Xs, (5)

AgeF §ely

where X5 := {x € X : h(x,§) < 0} and F := {A; € B(A) : P{Ag} > 1 — o}
Even if h;(x,8),i = 1,..., m are all linear in x for every § € A, the feasible set &,
may not be convex due to the infinite union operations. Second, it is difficult to obtain
a tractable analytical function F(x) to describe the constraint or find a numerically
efficient way to compute it. In most applications, p(8) is unknown, and only samples of
6 are available. We briefly review the sample-based approximation method presented
in [20, 25, 26]. Let Dy = {8V, ..., 8™} be a set of samples randomly extracted
from A where N € N. Suppose the sample extraction is independently and identically
distributed. Then, Dy can be regarded as a random variable from the augmented
sample space A" with probability measure PV {-} defined on the Borel o -algebra
B(AN). Giving Dy, € € [0, «), and y > 0, a sample average approximate problem
of Q,, defined by Qe,y(DN), is written as:
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g/
(Qe.y (D))

N
1 .
st~ X;H{h(x, SN 4yt >1—e.
j=

The feasible region of Qe,y (Dy) is defined by

N
> 1 )
Xe,y(DN) = X € X . Njg_l H{h(x’a(])) +y} > 1—¢

Denote JNE,),(DN) =min{J(x) : x € /'\Nfe,y(DN)} for the optimal objective function
value of Q¢ (Dy) and XELV (Dy) == {x € )ée,y(D@) CJ(x) = ie,y(DN)J for
the optimal solution set of Q¢ , (Dy). We can regard Je , (Dy) as a function J¢ , :
AN — R for given € and y. Since Dy is a random variable from AN, J. ., (Dy)
is consequently a random variable. The sets fe,y(DN) and )N(EVV(DN) also depend
on Dy and can be regarded as /f’e,y AN 5 B(X) and f('é,y AN 5 B,
Qee,y(DN) and XG,V(DN) are called random sets [22]. In [20, 26], the convergence
analysis on é\?e,V(DN), )?E,V(DN), J;,},(DN) is given. We summarize Theorem 10 of
[20] and Theorem 3.5 of [26] as Lemma 1.

Lemma 1 Suppose that Assumptions 2 and 3 hold. Let € € [0, ), B € (0, ¢ — €) and
y > 0. Then,

PV (Ey ) € % 2 1= | 1 |22 ] expt-2@ - e - 2.

Besides, X'E,),(DN) — Xy and je,y(DN) — J, with probability 1 when N — 09,
€ —>a,y—0.

According to Lemma 1, we can obtain the solution of Q, with probability 1 when
N — 00, € — «, y — 0. A natural question arises: can we use the solution of Q4 to
obtain an optimal probability measure for P,? Let x, € X, be an optimal solution of
Qq- Notice that we have {x,} € Z(X) and thus it is possible to define a probability
measure py, which satisfies that uz, ({Xo}) = nx, (X) = 1. Then,

/ J(0dps, = / J(0duz, = Jo
X {Xa}

and
/ Fodps, = / F(odps, = F(Ga) > 1 —a.
X {Xa}

Thus, uz, is a feasible solution for P, with objective value as J_x’a. However, 1z,
is not sure to locate in A,. Only when o = 0, we have uz, € A,. Notice that it
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is not ensured that the set X, is a Borel measurable set. However, it is possible to
find a subset X' € X, that is Borel measurable. A particular example is to choose
Xy = {xq} where X, € X, is one element in the optimal solution set. In this paper,
without loss of generality, we assume that X, is Borel measurable for all o € [0, 1].
Besides, we also assume that Xy # @. Then, &, # @ holds for all « € [0, 1]. The
above content is formally summarized in Theorem 1.

Theorem 1 Suppose that Xy is measurable for all o € [0, 1] and Xy # V. The optimal
value of problem P, satisfies Jy < Jq. Besides, if « = 0, we have

Jo = Jo
and
Ao ={u e M(X) : n(X) = u(Xo) = 1} (6)

with probability 1.

The proof of Theorem 1 is given in Sect.3.1.

Remark 1 Theorem 1 implies that deterministic policy is optimal for robust optimal
control where o = 0.

2.2 Sample-Based Approximation

Let X" be the set of all interior points of X'. By using Hit-and-Run algorithm [30]
and Billiard Walk algorithm [16], uniform samples can be generated from X'". For
a positive integer S € N, let Cs := {x® .., x®} be a set of uniform samples
independently extracted from X'™. The set Cs is an element of the augmented space
(X i”)s. Since each element x@,i = 1,...,SinC s is extracted independently, we
define a S-fold probability Pﬁni (= Puyni X -+ X Pyni, S times) in (Xi“)S. Here, Pyni
is the probability measure of uniform distribution on X",

_ With Cs and Dy, we can obtain a sample approximate problem of Py defined by
Pou(Cs, DN):

S
min ; J(x Dy (i) )
N (P,(Cs, Dy))

S N
s.t. Zu(i)% D oI, 89} = 1 —a,

i=1 j=1

where Us := {u € RS : Y% u@) = 1, uG) > 0, Vi = 1,...,S}. Define
FuCs.Dy) = {u € Us : iy u)gy X0 Hhx @, 60} = 1 — o} as the
feasible set of P,(Cs, Dy). Denote the optimal objective function value as
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S
Ja(Cs. Dy) := min {Z T D)) i€ Fo(Cs, DN)} :

i=1

Denote the optimal solution set for P,(Cs, Dy) as

N
Aa(Cs, Dy) = {u € FolCs, Dy) 2 ) I Dpli) = Ju(Cs, DN)} :
i=1

Let /iy € Ay(Cs, Dy)bean optimal measure. The optimal value T (Cs, Dy ) depends
on Cg and Dg, and thus it can be regarded as a function J, : X5 x AY — R. Then,
Ju(Cs, Dy) is a random variable. Besides, A, (Cs, D) is a random set.

The deduction of the convergences of Ju(Cs,Dy) and Ay (Cs, Dy) requires
another assumption on P,. We state the assumption after a brief introduction of weak
convergence.

Define a space of continuous R-valued functions by

C(X,R) :={f : X > R|f is continuous}. @)

It is able to define a metric on % (X, R) by

T(fv f/) = ”f_f/”OOs (8)
where || f |00 is defined as
I flloc := sup | f(x)].
xeX

The metric (-, -) turns €' (X, R) into a complete metric space.
The weak convergence of probability measures is defined as follows [4].

Definition 1 Let {/x}7°, be a sequence in M(X). We say that {u}72,, converges
weakly to p if

lim ’/ f(x)duk—/ f(x)du' =0, forall fe% (X, R). )
k—oo | Jx X

Since X is compact, M (X) can be proved to be weakly compact by Riesz repre-
sentation theorem [4]. Therefore, giving any sequence of {ui}e, C M(X), there is
a subsequence which converges weakly to some . € M (X) in the sense of Defini-
tion 1. By Assumption 2, we have that J(x) and F(x) are continuous with respect to
x. Therefore, if {,uk},fio converges weakly to u, (9) also holds for J(x) or F(x). We
give the following assumption on Problem P, .

Assumption 4 There exists a globally optimal solution u* € A, of Problem P, such
that for any § > O thereis u € M (X’) such that f)( F(x)du > 1 —aand W(u, u*) <
8, where W(u, u*) is defined by
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Wi, 1) = ’ / J()dp — / Jdut|. (10)
X X

As §, N — o0, the convergence analysis on Ju(Cs, Dy) and Ay (Cs, Dy) is sum-
marized in Theorem 2.

Theorem 2 Consider Problem P, with a > 0. Suppose Assumptions 1,2, 3, and 4
hold. As S, N — oo, we have

liminf J,(Cs, Dn) = Ja,
S,N—o0
with probability 1. Besides, as S, N — 0o, we have Ay (Cs, Dy) C My(X) == {u €
M(X) : f)( F(x)du > 1 — a} with probability 1.
The proof of Theorem 2 is given in Sect.3.2.
2.3 Gaussian Mixture Model-Based Approximation

Another option of approximation is to constrain the choice of p in Mp(X) € M (X).
Here, My (X) is defined as

My(X) = {u € M(X) : u(X) = / po(r)dx, VX C X} ,
X

where the probability density function pg(x) is written as

L
Po(x) =) wip(x,mji, T). (11)

i=1

Here, w; € [0,1],Vi =1,...,L, ZI-LZI w; = 1, and ¢ (x, m;, X;) is multivariate
Gaussian distribution written by

1 _
¢ 0 mi E)) = iz O (—5@ —mi) 7 x — m») :

The notation € denotes the parameter vector, including all the unknown parameters in
w;,mi, X;,¥i =1, ..., L. Denote the dimension of 0 as ng. The feasible domain of
0 is denoted by

L

i=1
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Then, given a data set D and the number of Gaussian distributions L, we can obtain
a Gaussian mixture model-based approximate problem of P, defined by Py (L, Dy):

g;l(g /;( J(x) po(x)dx

N . (Pu(L, D))
— J —
s.t. fXjZ:;NH{h(x,B MNpe()dx > 1 —a.

Denote the feasible set of P, (L,Dy) as

N
1 .
Ou(L,Dy):=0€ O : / D —Th(x, 8 D) pp(x)dx = 1 —a
xio N
and the optimal objective value as

Ju(L,Dy) := min {/ J(xX)pe(x)dx : 6 € Oy(L, DN)}.
X

Besides, the optimal solution set is
Ou(L, Dy) = {9 € Oy(L,Dy) : /X J(x)po(x)dx = Ju(L, DN)} :

The optimal objective value Ju(L, Dy) depends on the number of used Gaussian
models and thg data set Dy . Since data set Dy is essentiall)A/ random variable with
support AN 7. (L, Dy) is also a random variable. The set ©4 (L, Dy) is a random
set.

_As LN — oo, optimality and feasibility of using the optimal solution of
P, (L, Dy) are summarized in Theorem 3.

Theorem 3 Consider Problem P, with a > 0. Suppose Assumptions 1,2, 3, and 4
hold. As L, N — oo, we have

liminf Jo (L, Dy) = Ja
L,N—oo
with probability 1. Besides, let 6 e @a (L, Dy) be an optimal solution of Isa (L, Dn).

The corresponding probability density function is p;(x), and the obtained probability
measure is

wg(X) :=f pp(x)dx, VX CX.
X
We have p; € My(X) :={n € M(X) : fX F(x)du > 1 — o} with probability 1 as
L, N — oc.

The proof of Theorem 3 is given in Sect.3.3.
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3 Proofs of Main Results
3.1 Proof of Theorem 1

Proof (Theorem 1) Define a measure by ji, (-), which satisfies that 14 (X,) = 1. Then,
we have

/ J(0dfig = / Tty = Ja.
Xy Xy
Besides, for the constraint, we have

f F(0)djia(x) = f Fo)diia(x) = 1 — a.
X

X

Then, fiq(-) € My (X) holds. Thus, we have Jy < [y J(x)djiq = Jq.

When o = 0, let X§ = {x € X : F(x) < 1} be the complement set of X, namely,
X5 Uy = & and X () Ap = #. Notice that X is Borel measurable since Xj is
Borel measurable. Suppose that there is ji(-) € Mo(&X) such that fi(Xj) > 0. Then,

[ Fedac = [ Fedaco+ [ Feodiw < +aa) = 1. 12)
X Xo X

which conflicts with that i € Mo(X). Therefore, we have u(Xx5) = 0 for all u €
My (X), which implies that fX Jx)du = on J(x)du forall u € My(X).

Notice that X is a Borel measurable set. Let ug(-) € Ap be an optimal proba-
bility measure for Py and suppose j15(Xo) < 1 for deriving the contradiction. Thus,
1y (X\Xp) > 0. The corresponding objective function is

/ J(x)d,ué:[ J(x)dug
X Xo

- /X sedui+ [ Tdeg

o\ Xo

=/ J_od,u3+/ J)dug ¢ (Jx) = Jo, ¥x € Xo)
Xo Ao\ Xo

=Jo [ duj+ / J(x)dug
Xo Ao\ Xo

= u(Xo) - Jo +/ J(x)dug. (13)
X0\ Xo

Denote a measure by fio(-), which satisfies that f1g(Xo) = 1. Then, we have

[ seodio— [ swdis = [ seodio- [ seodu;
X X Xo R
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= Jo — uj(Xo)Jo — / J(x)dug
X0\ Xo

= (1 = p§(X0) - Jo — / J(x)dpg
X0\ Xo

= [ o= snde;
Ao\ Xo

- / (J(x) = J (¥)dug = 0. (14)
Ao\ Xo

Thus, u3(~) is not the optimal measure. Therefore, (6) holds, which leads to jo = Jo.
O

3.2 Proof of Theorem 2
Lemma 2 Suppose that Assumption 1 holds. For any x € X, denote a set as
Be(x) :={y e X:llx —yll < ¢}

where ¢ > 0 is radius. For any ¢ > 0, we have
lim P, HcsﬂBg(x) ;é@} =1 (15)

Lemma 2 First, we show that the interior point set X" is not empty when Assumption 1
holds. Let x € X and thus we have

g(x) < 0%. (16)
By Assumption 1, CCQ holds at x. Thus, there exists d € R" such that
Vg(x)'d < 0%. (17)
Notice that (16) and (17) directly give
g(X) +Vg(@) Td < 0. (18)
Since g(-) is continuously differentiable, there exists a small enough £ > 0 such that
g(x + &d) < 0 holds for any & € (0, &) and thus x + £d € X'". It implies that X™ is

not empty. .
We start from discussing P5_{Cs () Be(x) # @) for x € XM Notice that X’ is

uni . .
compactand Cy is a set of uniform samples extracted from X'". Thus, forany x € ™",
the probability that a sample x) € Cs, i =1, .., S locates in B, (x) is

Punifx® € Be(x)} > 0.
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Then,

pSy fes (M) B-) = v}

- (1 ~ Punile® € B,()) . (19)

BS, {Cs B £ 0} = 1

v

If S — oo, we have PS_{Cs () Be(x) # @} > 1, which implies (15).

uni

Then, we discuss PS5 _{Cs () B:(x) # @} for x € 3X, where 3 X defines the bound-

uni

ary of X. Let x € dX be a boundary point. Again, by Assumption 1, x satisfies the
CCQ. By replacing X in (16) and (18) by x, we have that there exists a small enough
& > 0 such that g(x + £d) < 0 holds for any £ € (0, &) and thus x + £d € X'™.
Let ey € (0, &) and we can find x’ := x + &d € B, (x) () &™ with a small enough
&. Besides, the probability that a sample x® eCs, i =1,...,8 locates in Be, (x)
satisfies that Pyni{x® € B, (x")} > 0. Thus, we have Pyni{x® € By, (x)} > 0. Let
&1 = &/2, and we can obtain (19) for a boundary point of X, which completes the
proof. O

With sample set Cs = {xM, ..., x®}, a sample average approximate problem of
Py, defined by P,(Cy), is written as:

N
min Z J DY)
i=1

nels .
(Pu(Cs))

N
D nOFD) =1 -a,

i=1
where Ug := {u € RS : Ziszl,u(i) =1, u@) =0, Vi = 1,...,S}. Denote the
feasible region of problem 15a (Cs) as
S .
Ful(Cs) := {u € Us: Z,u(i)F(x(’)) >1-— oe.} )
i=1
Then, the optimal objective function value of f’a (Cs) is defined by
S .
Ju(Cs) 1= min {Z J @) s e &(cs)] .
i=1
The optimal solution set for P, (Cs) is therefore defined by
S .
Aa(Cs) = {u € FuCs): Yy T D) = Ja(CS)} .
i=1

A measure [iy € Aa (Cs) is called an optimal measure for 130, Cs).
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Theorem 4 For given sample sets Cs and Dy, define two functions of u € Usg as
s ' S '
Ga(it,Cs) =Y n@F (D) =" p) f I{h(x®, 8)} p(8)ds,
i=1 i=1 A
and

s N
=~ 1 . .
Go(u,Cs, Dy) = E M(i)ﬁ E I{h(x®, 50},
i=1 j=1

Then, Gy (i, Cs, D) uniformly converges to éa(u, Cs)onUsw.p. 1, ie.,

sup Gu(n,Cs, Dy) — éa(u,Cg)‘ — 0, w.p. 1l as N — oo.
nel

Proof (Theorem 4) For any given XD, {h(xD, 8)} is a measurable function of §.
According to the strong Law of Large Numbers (LLN) [3], we have

N

1 . . .

~ § Th(xD, 89} — E{I{h(x, 8)}} > 0, wp. 1 as N — oo,
j=1

where
E(I{h G, 8)}) = / I, )} p(8)ds.
A

Thus, for every u € Usg, we have

j=1

S N
v ~ 1 . . .
Ga(1t,Cs) = Go (1, Cs, Dy) = Y (i) (N D T{h(x D, 89y — B{I{A (D, 6)}})
i=1
N
— Zu(i) x0=0.wp.las N - oo.
i=1

Uniform convergence is ensured since the set Ug is compact. O

Nextly, we show that J, (Cs, D) and A (Cs, Dy ) converge to Jy (Cs) and Ay (Cs),
respectively, with probability 1 as N — oo.

Theorem 5 Consider Problem Py, witha > 0. Assume that there exists a x®) € Cg that

satisfies F(x") > 1 — a. As N — 00, Jo(Cs, Dy) = Ju(Cs) and Ag(Cs, Dy) —
Ay (Cs) wp. 1.
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Proof (Theorem 5) Theset Us is acompact set. The objective function Zle J(x DY (i)
is a linear function of u € Ug. Besides, F(x(i)) is a constant value within [0, 1] for a
fixed x @, which makes the constraint function éa (u, Cs) alinear function of u € Usg.
Therefore, }v’a (Cs) is alinear program. Due to the assumption that there exists x® e Cy
such that F(x) > 1 — «, there is & € Us such that éa(u, Cs) > 1 — « and thus
Ag(Cy) is nonempty. Since Go(i, Cs, Dy) converges to Ga(ut,Cs) w.p. 1 by The-
orem 4, there exists Ny large enough such that Ga(u, Cs,Dny) = 1 —a wp. L.
Because Gy (1, Cs, Dy, ) is a linear function of p and Uy is compact, the feasible set
of Py (Cs, Dy,) is compact as well, and hence Ay (Cs, Dy,) is nonempty w.p. 1 for all
N > Nj.

Let {Nk}fjo=1 be a sequence such that Ny — oo and Ny > Ny holds for every
k = 1,.... Let fixy € Ay(Cs,Dy,) such that Gy (fix,Cs,Dy,) = 1 — a, and
Zle J(x ) (i) = Ju(Cs, Dy, ). Let i be any cluster point of {fiz}2 . Let {1 }72,
be a subsequence converging to ji. By Theorem 4, we have

Ga(ft,Cs) = lim Go(fis,Cs, Dy,), w.p. 1.

Therefore, GO‘ (@, Cs) zl-a and [ is feasible for problem P, (Cs) which implies
S0 J(xD)ji(i) = Ju(Cs). Note that ji, — fi w.p. 1, which implies that

N N
Jim o (Cs, Dy,) = lim Z] T ) =y T D)) = Ju(Cs), wp. 1.

i=1

Since this is true for an arbitrary point of {ji;}7° | in the compact set Us, we have
lim Ju(Cs, Dy,) = lim Y J(x)fix(i) = Ja(Cs), wp. 1. (20)
k— 00 k—o00 P

Besides, we know that there exists a globally optimal solution of Py(Cs), w*, such
that for any ¢ > O thereis u € U suchthatO < ||u—pu*| < e and éa(,u, Cs) > 1—a.
Namely, there exists a sequence {ji;};°, € U that converges to an optimal solution y*
such that G, (fis, Cs) > 1 — a for all 7 € N. Notice that Gy (fir, Cs, Dy, ) converges
to éa (fir, Cs) w.p. 1. Then, for any fixed ¢, 3K (¢) such that Gy (i, Cs,Dy) = 1 -«
forevery k > K (t) w.p. 1. We can assume K (¢) < K (¢ + 1) for every ¢ and define the
sequence {ﬂk},fozK(l) by setting iy = i, for all k and r with K () < k < K(t + 1).
Then, Gq (fix, Cs, Di,) = 1 — a, which implies 7, (Cs, D,) < Y5, J(x)jug (i)
for all k > K (1). Thus, we have that

S
Jim Jo(Cs. Dyy) < YT D)t (i) = Ta(Cs). wp. 1. 1)

i=1
With (20) and (21), we conclude that J, (Cs, Dy) — ja (Cs) wp.l as N — oo.
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The proof of Aa (Cs, Dn) — Aa (Cs) can be referred to Theorem 5.3 of [27]. 0O

Nextly, we show that ja (Cs) converges to J. with probability 1 as S increases.

Theorem 6 Suppose Assumption 2 and 4 hold. As S — oo, with probability 1, we
have

lim in Tu(Cs) = T (22)

Proof (Theorem 6) The outline of the proof of Theorem 6 is summarized as follows:

A. Prove that the limit of lower bound of (Za (Cs) is larger than ja_by (23);
B. Prove that the limit of upper bound of 7, (Cs) is smaller than 7, by (38);

B1. Find a sequence {u )2, converges weakly to an optimal solution p* of Py;

B2. Show that [, F(x)duk(x) and [5 J(x)dug (x) can be approximated by using
discrete probability measure on Cg, which refers to (34) and (35);

B3. Show that optimal discrete probability measure on Cg for P, (Cs) has a smaller
objective value than the discrete probability measure for approximating any
i in B2. Then, we obtain (38).

Then, we give the details of the proof. 5
For any discrete probability measure MS € F,(Cs), we have

S
/ Fdu’@) =) n (xPPFaD) = 1 -
X

i=1

Thus, 1% € My (x). Then, it holds that

S
Y I dx Dy = / J@dud () = o, Vb € FulCs).
i=1 X

Furthermore, with probability 1, we have

lim inf Ja(Cs) = Ta. (23)

Assumption 4 implies that there exists a sequence {ui}72; S M(X) that converges
weakly to an optimal solution p* such that

/ Fx)dur(x) >1—«a (24)
X
for all k e N. Since {u ]2, converges weakly to u*, we have
tim [ Jdueo = [ I0det @) = fim W wt =0, @25)
k—o0 Jx X k—o00
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Notice that Jo = 3 J(x)du*(x) by (3).
For any given ¢; > 0, 3K (¢y), if k > K(gy),

/ JOdue() — Ju < .
X

Let C~k {x(l) R )E,ES)} be a sample set obtained by sampling from X according
to probablhtyﬂmeasure uk. By Law of Large Numbers (p. 457 of [27]), for any f €
€ (X, R), as S — o0, with probability 1, we have

13
52 FED) = By 1F@) = fX £ du (). 26)
i=1

Since J(-) and F(-) are also elements in € (X, R), (26) also holds by replacin~g f@)
by either J () or F(-). Namely, for any &, there exists S|(£) such that, if S > Sj(g),
with probability 1, the followings hold:

3

z Z ) / Fo)du ()| < &, @7)

S5 X

1S ,

=G - [ sedun) <& (8)

S5 X
On the other hand, according to Lemma 2, as S — 00, forany s € {1, ..., S } and
& > 0, with probability 1, there exists a sample x@) e Cg = {x(l), R x(S)} such

that

x5 e Bs (%)). 29)

i® , hamely, x5 e

With a little abuse of notation, let x ) be the closest sample to X,
arg min{||x ) — ~,£S)|| : x@ e Cg). Define a set Ig :={i1, ..., ig} as the set of index
corresponding to x ). Without loss of generality, we assume that x5 £ xUs) if
is # Js» 15, s € I5. The intuitive explanation of the relationship between Cs and Ck
is illustrated in F1g 1.

Define a discrete probability measure ;L,f € RS such that

1
uiG) = % Vi € I3, (30)
pi() =0, Vig¢l;. (31)

For any given positive integer S and positive number &, due to the continuity of
J(-) and F(-), there exists S|(S, &;) such that, if § > S|(S, £;), with probability 1, the
followings hold:
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s S
Sl - 2 Y G| <6 (32)
i=1 i=1

S . 1 S .
Dm0 = 23 IED)| < é (33)
i=1 i=1

By cor~nbining 27 \ivith (32)and combi~ning ~(28) with (33), therl, for given &1, &;, there
exist S)(€1) and S|(S, &) such that, if § > Sj(&1) and S > S|(S, &>), with probability
1, the following holds:

N

D OFED) /X F)dug ()| < & + &2, (34)
i=1

S .

Do) - fX T du ()| < & + &a. (35)
i=1

According to (24) and (34), we can find §)(¢1) and Si(S, &) such that, if § > §(&)
and S > (S, £2), with probability 1, the following holds

S
D OFED) = 1. (36)
i=1
Thus, u,f is a feasible solution of Problem 13a (Cs) and thus
S .
PNTAGIACIEN A (Y (37)
i=1

Since IX J (x)dug (x) converges to T w.p. 1 as k — oo, thus, considering (35) and
(37), we have

lim sup J;, (Cs) < Ja- (38)
S—o00
With (23) and (38), we have (22). O

The proof of Theorem 2 can be obtained immediately by using the results of The-
orems 5 and 6, which is omitted here.

3.3 Proof of Theorem 3

Main results of [37] are summarized as:
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@® Sample :Z'S:) in Cg,
@® Sample {,U(Z) in CS’

Fig. 1 The intuitive explanation of the relationship between Cg and (fg

Lemma3 Let Xt be a compact set. Let p : R" — R be a probability density function
on the domain R". If there exists a positive number p' > 0 such that p € {p : p(x) >
o', VYx € XT), then there exists py(x) defined by (11) such that

lim (p(x) — po(x))? dx = 0,
XJr

L—o0
where the positive integer L is the number of Gaussian kernels in (11).

PAroof (Theorem 3) For given Cg, Dy and L, we have problems P,(Cs, Dy) and
Py(L,Dn).Let Xp;,i =1,..., S be the partitions of X, which satisfy

(a) x ¢ Xpis
(b) Ui Xy = s
(¢) Xpi[)Xpi» =0 with probability 1 if i # i’.

For any 15 € U, we can correspondingly define a Dirac measure on X’ as
,ug(x) = ,LLS(x(i)) if xed);.

Define a set of index as I+ = {i : u5(x)) > 0}. Then, we can define a compact set

xt=J .

ielt

According to Lemma 3, there exists a sequence {pg(x)}; such that

2
Lli_)moo /X+ (ug(x) — pg(x)) dx = 0.
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Thus, we have

lim / J(x)dpe (x) = f J()dpg (x)
L—oo Jx X

and

N N
lim /X%;H{h(xﬁ(j))50}p9(x)dx=/X%Z}I{h(x,8(j)) < 0} (x)dx.

L—o0 -
j=1
For any § and N, by applying Lemma 3, we can find a sequence {p;‘ (x) } ;. such that

lim / J(x)dp}(x) = Ju(Cs, Dy) (39)
L—oo Jx

and

N S N
- 1 Uy N Sy L s _
Jim /X ; N]I{h(x, 8UNY pi(x)dx = ;M (x ); N]I{h(x LU > 1—a.
(40)

There exists the limit of 130, (L, Dy) that converges to P, (Cs,Dy) as L — oo.
Theorem 3 can be obtained by using Theorem 2. One point should be clarified here.
In Theorem 2, the convergence holds for § — oo. In Theorem 3, L — o0 is used
instead since we have (39) and (40) for any S increasing to infinite. O

4 Numerical Examples

This section provides the results of two numerical examples to validate our proposed
methods. All computations were executed on Windows 10 with 32GB RAM and
an Intel(R) Core(TM) i17-1065G7 CPU running at 1.30 GHz. The algorithm and all
computations were implemented in MATLAB R2021b. We check the performance of
the following methods:

1. Dirac-Delta: solving sample average approximate problem Qe,y (D) of Qq;

2. Sample: solving sample-based approximate problem Py (Cs, Dy) of P,;

3. GMM: GMM-based approximate problem ﬁa(L, Dn).

We use the terminology Dirac-Delta for the method of solving sample average approx-
imate problem Qe,y (Dy) of Qy since it equivalently gives the measure constrained
to be a Dirac-delta, namely, the measure is concentrated on one fixed solution.

4.1 One-Dimension Example
In the first numerical, we use an extremely simple example to demonstrate the concepts

of Theorems 1, 2, and 3. The compact set X is definedby X = {x e R: x € [—1, 1]}.
Moreover, the cost function J (x) is
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Fig.2 Results of the numerical example 1: a profile of J (x) and optimal solution obtained by Dirac-Delta;
b optimal measure by Sample; ¢ optimal probability density function obtained by GMM

J(x) = —(x +0.6)> + 2. (41)
The constraint function A (x, §) is
h(x,8) =x>+8—2 (42)

where § ~ N(mgs, X5),ms = 0, and X5 = 1. The probability level « is 0.05. The
optimal solution from method Dirac-Delta is x; = 0.595 and the optimal objective
value is 0.572, which s plotted in Fig. 2a. In Dirac-Delta, we sete = o, N = 2000, and
y = 0.01. Besides, Fig.2b, c shows the discrete measure obtained by Sample and the
probability density function obtained by GMM, respectively. For Sample, we choose
samples —1, —0.98, —0.96, ..., 0.96,0.98, 1 from &' (S = 201) and 2000 randomly
extracted samples from A (N = 2000). For GMM, we extracted 2000 samples from
A randomly. Besides, we choose L = 6. The solutions of Sample and GMM satisfy
the chance constraints. For the objective function, Sample achieves 0.5601 and GMM
achieves 0.5615, which are better than the optimal objective value achieved by Dirac-
Delta.

A more comprehensive analysis of CPU time and sample numbers is summarized
in Table 1. The CPU time increases as the sample size increases for each method.
Unsurprisingly, Sample has a very fast computation time since it only needs to solve a
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Table 1 Statistics of CPU time for one-dimension example

Dirac-Delta

Size N 1000 2000 5000 10000
Avg. (s) 0.0105 0.0136 0.0154 0.0169
Max. (s) 0.0281 0.0337 0.002 0.0583
Sample

Size N 2000 5000 10000

Size S 50 100 200 50 100 200 50 100 200

Avg.(s) 0.0113 0.0123 0.0140 0.0119 0.0145 0.0185 0.0143 0.0162  0.0229
Max. (s) 0.0263  0.0349  0.0415  0.0238 0.0341 0.0445 0.0343  0.0409  0.0530

GMM
Size N 2000 5000 10000
Size L 2 4 6 2 4 6 2 4 6

Avg.(s) 0.0325 0.0431 0.0991 0.0472 0.0783 0.1671 0.0773  0.1429  0.2134
Max. (s) 0.0721  0.0784  0.1562  0.0793  0.1318 0.2011  0.1267  0.1892  0.2690

linear program. In this example, since it is one dimension, the required sample number
for obtaining good samples in Sample or approximating probability integration in
GMM is few. It can achieve acceptable accuracy with only 50 samples. However, if
the dimension of x increases, the “Curse of Dimensionality” will emerge. We will
show it in the second example.

4.2 Quadrotor System Control

The second example considers a quadrotor system control problem in turbulent con-
ditions. The control problem is expressed as follows:

min  E{5(x) + " (u)}
neMUT)

st X1 = Axp + Bmuy +d(xp, 9) + o, u~ MU, (Pgsc)
r=0,1,...,T -1,
Prixy ¢ OVt =1,...,T = 1), (x7 € Xpoa)} > 1 —a,

where A, B(m), d(x;, ¢) are written by

1A100 Az Allvelve
0100 1| A o At|vg|vy
A= 0014} Blm) = m| o 42| A, ¢) = =¢ Afvylvy |
2 2
0001 0 A Atlvy|vy
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and Ar is the sampling time, the state of the system is denoted as x;, =
[Px,ts V1o Pyyt> Vys] € R4, the control input of the system is u; = {uy , uy ,} within
U :={u; e R2: —-10 < uy; < 10,—10 < uy, < 10}, and the state and control
trajectories are denoted as x = (x,)tT:1 and u = (ut)tT:_ll. The system starts from an
initial point xg = [—0.5, 0, —0.5, 0]. The system is expected to reach the destination
set Xooal = {x € R*||l(px — 10, py — 10)|| < 2} at time T = 10 while avoiding two
polytopic obstacles O shown in Fig.3. O is defined by the following constraints:

DPxy <635, py; >335 pyy—02—py, >0,

Pxi = 3.35, pyy <635, py;+02—py, <0.

The dynamics are parametrized by uncertain parameter vector §; = [m, ¢]', where
m > 0 represents the system’s mass and ¢ > 0 is an uncertain drag coefficient.
The parameter vector § of the system is uncorrelated random variables such that
(m — 0.75)/0.5 ~ Beta(2,2) and (¢ — 0.4)/0.2 ~ Beta(2, 5), where Beta(a, b)
denotes a Beta distribution with shape parameters (a, b). w; € R* is the uncertain
disturbance at time step ¢, which obeys multivariate normal distribution with zero
means and covariance matrix

For the cost function, we adopt

T—-1
|
e = ; ((px,t+1 — P+ (Pyrst — Py,t)2> ,
T—-1
0.1
e == 3 (ud, +ud,).

(=}

t=

Results are shown in Fig.3 for different methods by setting o as 15%. Figure3
shows 5000 Monte Carlo (MC) simulations of the quadrotor system using the open-
loop policy computed using Dirac-Delta (¢ = o,y = 0.01, N = 2000), Sample
(§=5.1x 106, N = 2000), and GMM (L = 6, N = 2000). When using Dirac-Delta,
the algorithm gives a deterministic control policy that satisfies the desired success
probability 1 — «. When using Sample, or GMM, the algorithm gives a stochastic
control policy that satisfies the desired success probability 1 — «. The control inputs
that generate trajectories passing through the riskier middle corridor between the
obstacles are selected randomly for the stochastic control policies. The costs by using
Sample and GMM are reduced by 8.2 and 7.9% compared to using Dirac-Delta. This
shows that our approach can compute a better policy that solves the problem than a
deterministic policy.
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Fig. 3 Solutions from different methods for the tolerable failure probability threshold @ = 15%. Blue
trajectories from Monte Carlo (MC) simulations denote feasible trajectories that reach the goal set Xgoa
and avoid obstacles O. Red trajectories violate constraints: a Dirac-Delta (MC = 11.6% represents that
the violation probability is 11.6% in the MC simulations); b Sample (MC = 12.8% represents that the
violation probability is 12.8% in the MC simulations); ¢ GMM (MC = 11.2% represents that the violation

probability is 11.2% in the MC simulations)
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Fig. 4 The statistics of the control performance: a reduction of cost; b required samples; ¢ computation

time
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A more comprehensive comparison between the GMM-based and sample-based
approximations is plotted in Fig.4. Five cases are considered with different sample
numbers for extracting the control input. Figure4a shows that the two algorithms
similarly reduce the optimal objective function value. Figure 4b shows each case’s used
sample number S of decision variables. By comparing Fig. 4a, b, we can see that enough
samples are required to ensure the performance of the approximations. As shown in
Fig.4c, the computation time increases dramatically as the sample number increases.
In this comparison, for GMM, we choose L = 6, and the probability integration is
approximated by using the same samples of Sample. The computation time of GMM
is even longer than Sample. One way to decrease the computation time of GMM is to
develop fast algorithms for probability integration. We leave this for future work. In
this example, the dimension of the decision variable is 20. If the dimension increases,
the required sample number will increase, and the computation time will consequently
increase for Sample and GMM. We leave the issue of the “Curse of Dimensionality”
for future work.

5 Conclusions

In conclusion, the chance-constrained linear program in probability measure space has
been addressed using sample approximation or function approximation. We establish
optimization problems in finite vector space as approximate problems of chance-
constrained linear programs in probability measure space. By solving the approximate
problems, we can obtain the approximate solution of the chance-constrained linear
program in probability measure space. Numerical examples have been implemented
to validate the performance of the proposed method. Future work will be focused on
the following points:

— To implement sample approximation method Py (Cs, Dy), samples of decision
variable are required. As the dimension of the decision variable increases, the
required sample number for a good approximation will also increase, bringing
the issue of the “Curse of dimensionality.” To overcome the issue of the “Curse
of Dimensionality,” it is important to develop efficient sampling algorithms to get
“good but small samples” to ensure good approximation performance and mitigate
the computation burden;

— For Gaussian mixture model-based approximation method ﬁa (L, Dy),theremain-
ing issue is how to approximate the probability integration by fast algorithms when
the problem is with complex cost function and constrained functions in high dimen-
sion space.
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