|

) <

The University of Osaka
Institutional Knowledge Archive

On vanishing theorems of square-integrable o -
Title cohomo logy spaces on homogeneous Kihler
manifolds

Author(s) |Konno, Yasuko

Osaka Journal of Mathematics. 1972, 9(1), p.

Citation 183-216

Version Type|VoR

URL https://doi.org/10.18910/9356

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Konno, Y.
Osaka J. Math.
9 (1972), 183-216

ON VANISHING THEOREMS OF SQUARE-INTEGRABLE
d-COHOMOLOGY SPACES ON HOMOGENEOUS
KAHLER MANIFOLDS

Yasuko KONNO

(Received August 7, 1971)

1. Introduction

Let G be a connected non-compact semi-simple Lie group. We assume
that G has a complex form G€ and a compact Cartan subgroup H. The
quotient manifold D= G/H carries a G-invariant complex structure and a
G-invariant hermitian metric. Then, corresponding to each character A of H,
one can construct a homogeneous hermitian line bundle .£y=G X zC over D.
Let HY(L)) be the g-th square-integrable 9-cohomology space with coefficients
in the bundle _/,, i.e. the Hilbert space of all square-integrable _[,-valued
harmonic (0, ¢)-forms on D. P.A. Griffiths and W. Schmid [4] have obtained
some vanishing theorems for these cohomology spaces, assuming that the
character \ is sufficiently non-singular.

Now the manifold D does not necessarily admit a G-invariant Kihler
metric. In fact, P.A. Griffiths and W. Schmid used a non-Kihler hermitian
metric on D. The purpose of this paper is to prove certain vanishing theorems
for these d-cohomology spaces under the assumption that D has a G-invariant
Kihler metric. The main result is Theorem 2 in §7. In some cases, our result
is considerably better than the one given in [4]. (cf. §7. Example)

In §2, we recall some facts about Lie algebras and homogeneous vector
bundles. In §3 and following sections, we assume further that the Riemannian
symmetric space G/K is hermitian symmetric, where K is a maximal compact
subgroup of G containing H. Under this assumption, we introduce canonically
an invariant complex structure and an invariant Kihler metric on the manifold
D. Next, we shall define in §4 the g-th square-integrable 3-cohomology space
HY(_L,) on D with coefficients in _£,. Also we shall give explicit formulas for
the differential operator 3 and the inner product on the space of all compactly
supported _[,-valued C~-forms on D.

In [1], A. Andreotti and E. Vesentini expressed the Laplace-Beltrami
operator [ ] on a hermitian manifold in terms of the metric connection and
showed that this expression of [ ] becomes simpler if the manifold is Kihlerian.
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In §5, we construct the metric connection in the bundle _/, and the Riemannian
connection of D, applying Wang’s results about invariant connections.
Moreover, in §6, we express the operators 9, § and [] in terms of these con-
nections. From the fact that the metric on D is Kihlerian, we get a simple
explicit formula for the operator [] (cf. §6. Proposition 2). In §7, we shall
prove the main vanishing theorem. In this proof, we use the criterion for the
vanishing of square-integrable 9-cohomology spaces which has been established
in [1].

Finally, the author wishes to express her hearty thanks to Prof. S. Murakami
who suggested this program to her and gave helpful advices in the preparation
of this paper.

2. Preliminaries

Let G be a connected non-compact semi-simple Lie group. We denote by
g, the Lie algebra of left invariant vector fields on G and by g the complexi-
fication of g,. 'Throughout this paper, we assume that G has a compact Cartan
subgroup H. Let K be a maximal compact subgroup of G which contains H.
Let £, and Y), be the subalgebras of g, corresponding to the subgroups K and
H, and f and § the complexifications of , and Y, respectively. For each x=g,
we denote by % the image of ¥ under the conjugation of g with respect to the
real form g,. Let A be the set of all non-zero roots of g with respect to the
Cartan subalgebra f). Then, the Lie algebra g decomposes into the direct sum

(2. 1) g =bhdX g,
where we put
g” = {xegl|[h, x] =<a, k>x  forall heh}.

Since H is compact, each root ¢ =A takes purely imaginary values on Y,
Thus, we may consider A as a subset of the dual space Hg* of hr=+/—1 b,
and we have

g¢*=g" forall acA.

Now, let B be the Killing form of g. We denote by ( , ) the natural inner
product on Y),* obtained from the restriction of B on ). Put

p = {xeg|B(x,y)=0 for all yet}.
Then we have

2.2) g = tdp, [t plcyp, [b, plct.

A root « is called compact or non-compact according as g*C¥ or g*cCp. We
denote by At(resp. Ap) the set of all compact (resp. non-compact) roots. Then
we have
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A=AtUAyp.
For each a €A, let k, be the element of §) such that
(2.3) B(h, h,) = a(h) for all keh.

Then we can choose root vectors e,=g” (¢ €A) satisfying the following condi-
tions:

(2.4) 1) [ew e_a] =ha,
2) [es 5] =0 if a+PB=+0 and a+B<«A,
3) [ews €8] = Nuglars if a+BeA,
4) e,=¢&ze_q,

where the N, g’s are non-zero real constants, and §,=—1 if a=Ar and &,=1
if c€Ayp [5]. Moreover, the N, g’s satisfy following equalities:

(2.5) N_4 _g=—Nu s
N—w,——ﬂ:N—B,w+ﬁ=Nm+B, —o .

For convenience, we define N, s=0 if a+3+0 and a+G8&A. We denote by
{w®|a € A} the left-invariant 1-forms on G which are dual to {e,|a = A}.
We consider the quotient manifold D=G/H. In the decomposition (2.1)
of g, we put
"= ‘Z‘Agm’ n,=1nnNg,.

Then, we have
(2 6) qo = f)oesno’ [f)o’ no]Cno ’

and D is a reductive homogeneous space. The tangent space of D at the point
o=eH may be identified with the subspace n, of g,, where e denotes the
identity element of G. Now, let »: H— GL(E) be a representation of H in a
complex vector space E. We denote by E, the homogeneous vector bundle
over D associated with the representation = of H. Let A?(E,) be the space of
E.-valued C= p-forms on D. A form in A?(E,) can be identified with an E-
valued C= p-form @ on G satisfying the conditions

0(i)p = —n(h)p
i(h)p =0
where (k) and i(k) denote the operator of Lie derivation and interior product

by the vector field 2 and = is the representation of §) in E induced by the
representation = of H [7]. Let C~(G) be the space of all complex-valued

2.7) forall hep,
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C~-functions on G. Let n* be the dual space of n and An* the p-th exterior
product of n*. For an ordered p-tuple C=(\,, -*+, A ,) of roots, we put

0 = oMA - Aots.
Let A be a set of ordered p-tuples such that {»®|Ce&A} forms a basis of

An*. The vector space C*(G)QER® Ant is generated by monomials Fo® with
FeC~(G)QE and CeA. By (2.7), the space A?(E,) can be identified with

the subspace of C=(G)®EQ® An* consisting of all elements gp=3) FowC satis-
fying the condition CeA

(2. 8) hF; = _”(h)Fc+<| Cl,>F..

for all Ce A and ke, where |C|=\,+ -+, and hF denotes the differen-
tiation of the function F. by the vector field 4. In particular, the space
A°(E,) is identified with the subspace of C~(G)QE consisting of all elements
FeC~(G)QE such that

hF = —n(h)F  forall heh.

3. Homogeneous Kiihler manifolds

Let G be a connected non-compact semi-simple Lie group with a com-
pact Cartan subgroup H. In the following, we assume that there is a complex
Lie group G¢ with Lie algebra g which contains G as a Lie subgroup corre-
sponding to the subalgebra g,.

We introduce an ordering for the roots and denote by A, the set of all
positive roots with respect to this ordering. Put

n=2>g% n=>3g".
aEA, aEA

Then we have

3.1) g=5HPn, P n_
n,=n_ n_=n,

[, nJen, [, n]Jcn,.

For the quotient manifold D=G/H, the complexified tangent space of D at the
point o may be identified with the vector space n=un,®n_, and then, by
(3.1), D has a G-invariant complex structure such that the holomorphic tangent
space of D at o corresponds to nn,. This complex structure of D can also be
obtained in the following way. Let B be the Borel subgroup of G€ corres-
ponding to the Borel subalgebra h@Pn_ of g. The group G acts on the
homogeneous complex manifold G¢/B. Since we have
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gNGHSn) =g NOHSn)N (Hdn_)
= gon [7 = bo s
the Lie algebra of the isotropy subgroup GN B is Y),. Therefore, H is the
identity component of the subgroup GNB and GN B normalizes H. The

normalizer of H in G is compact and H is a maximal compact subgroup of the
Borel subgroup B. Hence we have

GNB=H,
and D=G/H is identified with the G-orbit of eB in G¢/B. Since
dim G¢/B = dimn, = dim G/H ,

D is open in G€/B and D has a G-invariant complex structure as an open sub-
manifold of G¢/B. Then, it is easily seen that the holomorphic tangent space
of D at o corresponds to 1, [4].

In the following, we will assume that the Riemannian symmetric space G/K
is hermitian symmetric. By (2.2), the complexified tangent space of G/K at eK
may be identified with p. Let p (resp. p_) be the subspace of p corresponding
to the holomorphic (resp. anti-holomorphic) tangent space of G/K at eK under
this identification. We know that there exists an element %, belonging to the
center of , such that

- f
(3.2) T e
-V —=1x for xeyp_.
It follows that

[p+’ p+] = 0, [b_, p_] =0
[f’ D+]Cp+, [f’ D_]CP_

and in particular

[5, p.1ch,, [b, p-lch_.
Hence, we see that for some subset A, of A

Pr=22 0% P-= 297"

We may choose an ordering for the roots in such a way that the roots belonging
to A, are all positive, i.e.

(3.3) Ay=A,NAyp.

We choose such an ordering once for all, and introduce an invariant complex
structure on D defined by this ordering.
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Lemma 1. There exists an element T of 9 * satisfying following conditions:

( (¢, )>0  for all acA.NA

(3.4
(¢, V<0 for all asA.NAy.

Proof. Since the element 4, belongs to the center of f,, we have
a(v/=1h)=0 for acA,.NAr.
By (3.2) and (3.3), we have also
a(v/—1h)=—1 for aeA.NAp.
We denote by 7, the element of hr* such that
B(h, \/ —1 k) = 7(h) forall hehg.
Then, we obtain

0 for asA,NA;

T,) —
(@, 7o) {—1 for a€A,.NAy.

On the other hand, we know that for the element pz% > «a of hg* we have

XEA
(p, @)>0 for a=A,. Therefore, if we put 7=p-c7, with a sufficiently large
constant ¢, we get

(a, p)>0 for asA,NAt

(a, 1) = { :
(a, p)+c(a, 7)<O0 for aeA,NAy. q.e.d.

Now, let T be an element of hg* satisfying the condition (3.4). Using this
7, we shall construct an invariant Kihler metric on D. We define a complex
symmetric bilinear form B, on n=2_g” by the following formula:
aEA

(3.5) B (ea; €5) = B,(¢_a, €_5) = 0
B.(ea; e_p) = —3a,5(a, 7)
for a, B A,. Clearly, B, is invariant under the adjoint action of H on 1 and

the restriction of B, on the real subspace n,=mnnNg, is a positive-definite
symmetric bilinear form on 1n,. Define the endomorphism J on n by

V-1« for xen,
—V—1x for xen_.

Ju=

Then we have also
B?(Jx’ Jy) = B‘r(x’ y)
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for all x, yen. Therefore, we can define a G-invariant hermitian metric on
D such that the metric on the tangent space of D at o corresponds to B, |1,
on 11, The Kihler form of this hermitian metric corresponds to the complex
2-form Q on G given by

Q =MEXA} V=1 (a, o N ™.
We see easily that
da=0.

is Kahlerian. We denote by g, this

T

Thus the metric on D induced by B
invariant Kahler metric on D.

RemMARK. In the above, we constructed an invariant Kihler metric on
D under the assumption that the symmetric space G/K is hermitian and the
natural projection G/H— G/K is holomorphic. Conversely, it is known that
if the manifold D has a G-invariant Kihler metric, then G/K is hermitian
and the fibering G/H — G/K is holomorphic [2].

4. Homogeneous line bundles and square-integrable 9-cohomology
spaces

Let D=G/H be the homogeneous complex manifold of 2z real dimension
with the G-invariant Kihler metric g,. Let A be a character of H. We con-
sider the homogeneous real line bundle £,=G X zC over D associated with A.
Let B be the Borel subgroup of G€ such that the quotient manifold G¢/B
contains D as an open submanifold (cf §3). The character \ can be extended to
the unique holomorphic character on B [3]. We can consider the homogeneous
complex line bundle G¢X zC over G¢/B. Then, the bundle £ is isomorphic
to the restriction of the bundle G€X 5z C on D as a real line bundle. Therefore,
L, has a G-invariant complex structure as an open submanifold of G¢X zC.
We get thus a hermitian line bundle ./, with a natural hermitian metric in the
fibers.

Let A?9(_L,) be the space of all _[y-valued C~-forms of type (p, q) on D,
and Ag°(.L}) the subspace of all compactly supported forms in A4#?(_L,). The
hermitian metric on D defines the complex linear operator x of A?'%(_[,) into
A*" 2" 2([y). On the other hand, the hermitian metric on the fibers of [}
gives rise to a conjugate linear isomorphism

#: Ap’q(_f)\) - Aq’p(u[.)\*)

where _[,* is the complex dual bundle of .£,. We define an inner product (,)
on Ag'q(,[;\) by

(@, ¥) = SD‘PA*“’



190 Y. KonNo

for @, ¥ in 434 L,). Let L39(L}) be the completion of A3%(L,) with respect
to this inner product. The type (0, 1)-component of exterior differentiation
defines the differential operator

3: AL — AT L) .

Let &: A*9(L,)— A*?7' (L)) be the formal adjoint operator of 3. We define
the Laplace-Beltrami operator [] by

(0=06+80.
Then the space

$(L) = {peLy/(L)NA"(L) | Op = 0}

is called the g-th square-integrable 3-cohomology space of D with coefficients
in the bundle /. (cf. [1]). .

Let n_* be the dual space of n_ and An_* the ¢g-th exterior product of
n_*. We denote by {a,, -*-, a,} the set of positive roots A,. For an ordered

g-tuple of positive roots 4=(a;,, -+, a;,), we put

1’
- -, -,
0 =0 A No .

Let A be the set of all ordered g-tuples A=(a;,, -+, @;,) such that 1<z, <--- <

i,=n. Then the space C~(G)® An_* is generated by monomials fo™# with
feC=(G) and A= A. From the discussion in §2, the space A*?(L,) is

identified with the subspace of C=(G)® /q\n_*. Let o= > fa0™* be an
AeU
element of C~(G)® ;\n_*. Then, according to the condition (2.8), ¢ belongs

to A”%(L,) if and only if the following condition is satisfied:

4.1) hfg=<—N—|A4], E>f4

for all AW and kY, where M is the representation of § induced by the
character A of H. Under this identification, the space 4¢%(-L,) corresponds to

a subspace of C3(G)Q /q\n_*, where C3(G) is the space of all compactly sup-
ported functions in C=(G).

Now, we give an expression of the inner product on AJ%L,). The
bilinear form B, on n induces the following hermitian inner product By on n_:

Br(e_u, _g) = B, (e_q, &_p)
= O4,8(—Eu(at, 7)) .

q
From B;, we obtain the hermitian inner product (, )_ on An_* as follows:
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(0™ 0 B)_=0 if (4)=(B) as sets,
4.2) {

hon = o (),

ac4 ea(a’ T)

Let dg be a G-invariant volume element of G. Then dg defines an inner
product (, )¢ on C5(G). These inner products (, )_ and (, )¢ define an inner

product on C3°(G)®/q\11_* in a canonical way. In fact, for two elements
p= 3 fao 4 v= 3 g0 4 in C3(G)® An_*, this inner product (¢, V) is
=D Aew

given by
(@ ¥) = 23 (far gA)G'(“fA’ “’_A)—
AU

ZAEH ale_[A(_Em(oll, 'r)>. ngA-gjdg )

The following lemma asserts that if we choose a suitable volume element dg of
G, the inner product on Ag%(/,) is the restriction of this inner product ( , ) on
the subspace A3 (L)).

Lemma 2. If we choose a suitable G-invariant volume element dg on G,
the inner product of A3 (L)) is given by the following formula:

W =2 T (=) fagade

AeN acAN Eua, T)
where p= > fao % and \r= 3 g, 0”4 are forms in AYY(L)).
AN 4

Proof. We apply the methods used in the proof of Proposition 5.1 in [7].
Let dv,, be the G-invariant volume element on D determined by the metric g..
Then, we can choose invariant volume elements dg on G and dk on H such that

[ s = (| fighrando,

for all feC5(G) ([5], p- 369, Theorem 1.7). Let p: G— D be the natural

projection. Then we have
4 1 /
(4.3) [ rravo =21 fopae
D Vg JG
for every compactly supported C=-function f’ on D, where vy is the volume of

H with respect to dh.
For a root a;€ A, we put
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Then, {X,, -+, Xa,, X4, ***, Xa,} is a basis of n and we have
4. 4) B (%a;5 %5,) = 8;; -

We take a point p(g)(¢€G) in D. By (44), {ps(%a,)s> ' Ps(¥an)gs Pi(Xar)es
«=, Px(Xa,),} is a basis of the complexified tangent space of D at p(g) such that
g‘r(P*(xo),')g) P*(‘k;])g) = 81] ’

where py is the differential of p. For a sufficiently small neighbourhood U of
p(g) in D, we can find (1, 0)-forms @', ---, 6* and (0, 1)-forms &', ---, 8" such that

Onco(P(%a;)g) = O P5(¥a))g) = 85

O ex(Px(%a,)e) = OpceX(P(¥a,)) = 0 -
Let @ and Y- be forms in 45%(;). We denote by 2 faw *(resp. Z gAw 4)
an element of CF(G)® An_* which corresponds to @ (resp. V) under the
identification of A%%(.£,) with the subspace of C5(G)® An_*. The forms @

and +r are written on U in the form

@ = E u,-l...,.qg"x/\--- Nbiq

i<

Y= 2 ;.. ,qg'x/\ <Abiq.

i< <ig

Then, we have

4.5) U;,..i(P(8) = ¢’p<g>(P*(xa,~1 Jer =t P*(&a_,-q)g)
= v(g, (X fao ™ (%a;))gr 5 (¥as)e))

= f[ <_ h‘l_______)>1/2. (g, f(a,-l, - a;q)(g))

ji=1 Smij(ai’., T

where v is the projection of G x C onto £,=G X zC. Similarly, we have also

1
eas;j(aij, T)

6 vpe)=T1(- Y8 8 )

On the other hand, by the definition of the inner product ( , ) on A3%(L)), we
have

@)= @Ay

Ui.igs Viroig) - GUD
| B i Pii)

where (, ) p is the inner product on the fibers of 3. By (4.5) and (4.6), we get
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q 1 I —
(Wiymigr Vi) £, (P8 = 1 (‘§<7—)> Featy &) By ®)
Therefore, by (4.3), we obtain
=2 1 (~gom) |, fagaden

_ 1
“AEQI acd ( Es(a, T)

— 1
)S farga—dg .
G ‘I)H

Thus, taking la'g as a G-invariant volume element of G, we obtain the
(-
lemma. q.e.d.

For later use, we give an expression of the operator 3 due to [4]. First,
we define some operators. Since we have

[n_, n_]cn_,

the vector space n_ is an n_-module under the adjoint representation, and so
n_* is also an n_-module. Then the action of e_,(€¢=A,) on n_* is given by

N_m,p(l)m_ﬁ if B_aEA+

4.7 w0 P =
*.7) b-a® 0 otherwise.

q
This action of n_ on n_* is extended to An_*. On the other hand, for
xen, and yen_, we put

x-y =[x, ¥],

where [x, y], is the n_-component of [x, y]. Then, since HPn, is an
n,-module, n_ becomes an n,-module, and so n_* is an n,-module. The
action of e¢,(€¢=A,) on n_* is given by

(4.8) g P =N, ®P,

This action of n, on n_* is also extended to /q\n_*. In the case ¢=0, we
define e,c=0and e_,c=0 for ceC= /o\n_*. Moreover, we define the operators
e(w™®); /q\n_* — q/+\ln_*

(0% An* —> An_*

by the following formulas:

4.9) fo )0 ™ = 0" Aa™4
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() =0 on C= An_*,
(4. 10) i )4 =0 if add,
(o) 0 N0 ™) =04 if agA4.

Now, returning to the holomorphic line bundle [}, from the definition of
the complex structure of _/,, we obtain the formula

(4' 11) 5(]((0”4) =a§ (e"‘”f)w_w/\w_A‘*‘% w§ fw_m/\e_mco“A
=5 (@e(@ ()0 4+ feu0™?)

for each monomial fo 4= A”%(_L,), where 1 denotes the identity operator in
C=(G).

5. Connections

Let D=G/H be the homogeneous complex manifold with the G-invariant
Kihler metric g, induced by B,, and let .£,—D be the homogeneous hermitian
line bundle defined by the character A of H. In this section, we will discuss
the metric connection in the bundle _{, and the Riemannian connection of D.

We consider the bundle £, — D. By the reductive decomposition (2.6) of
the Lie algebra g, we can define a canonical G-invariant connection in the
principal bundle G— D=G/H. This connection in G— D induces a connec-
tion in the associated line bundle .£;—D. We denote by V,: A%(L,) =>A4Y(L))
the covariant differentiation with respect to this connection. It is easy to see
that for a C'=-section f: G— C of £, V,f is given by

(5. 1) Vif = Neaf@a”.

ReMmark. The connection V, in [, is the metric connection in the
hermitian vector bundle _/, i.e. the connection of type (1, 0) such that for C~
sections f, f/ of £, we have

d(f, ') £y = (VAL L) £ V) 1y

where d is the exterior differential operator and (, ) ,, is the hermitian inner
product on the fibers of £ [4].

Now, we consider the tangent bundle 7'(D) of D with the Kihler metric g,
on the fibers. The bundle 7'(D) may be identified with the homogeneous
vector bundle G X yn, over D associated with the adjoint representation of H in
n,. We denote by » the canonical projection of GXxn, onto T(D)=GX gn,.
Let L, (g<G) be the action of g, on D, then L, induces the transformation
(Lg,)+ on the bundle T'(D) and we have '
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(Lgo)x(v(g, %)) = (8,8, %)
for (g, x)eGxn,. Let P(D) be the frame bundle of D. We fix a basis of n,
and identify the set of all frames of n, with GL(n,). Then the bundle P(D)
can be identified with the homogeneous principal bundle G x yGL(n,) defined
as follows: The group H acts on G X GL(n,) by

(& Mh = (gh, Ad(h™)-M)

for (g, M)e GXGL(n,) and heH. The space GX yGL(n) is the quotient
space (GX GL(n,))/H. We denote by p the natural projection of G X GL(n,)
onto P(D)=GX yGL(n,). The transformation (L, )«(g,E G) on P(D) induced
by L,, on D is given by

(Lgo)*(ﬂ(g’ M)) = :U/(gog7 M)

for (g, M)e GX GL(n,). We fix a frame u,=pu(e, 1) at the point oeD. We
will now apply the following lemma due to Wang ([6], II, p. 191, Theorem 2.1).

Lemma 3. There is a one-to-one correspondence between the set of G-
invariant connections in the bundle P(D) and the set of linear mappings A, ; n,—
gl(n,) such that

(5.2) A, (Ad(hyx) = Ad(h)A,, (x)Ad(R)™

for he H and x=n,, where Ad is the adjoint representation of H on n,. A linear
mapping A, satisfying (5.2) corresponds to the invariant connection whose con-
nection form o is given by

ad(x) if xeh,

-3 “uf®) = An®) if wem,

where X is the vector field on P(D) defined by the 1-parameter group of transfor-
mations (Lo, t2)%-

Let A, be a linear mapping satisfying (5.2). The connection in P(D)
corresponding to A, induces the connection in the bundle 7(D). We denote
by VAno; A(T(D))— AY(T(D)) the operator of the covariant differentiation with
respect to this connection. The operator VAno is complex-linearly extended
to the operator of A°(T(D)¢) into A(T(D)€). The complexified tangent bundle
T(D)¢ may be identified with the homogeneous vector bundle G X yzn associated
with the adjoint representation of H in n. Therefore the space A?(T(D)°) is

identified with a subspace of C(G)@nQ ;\n*.

Lemma 4. Let F; G—nbe a section of T(D)°. Then Va Fe A(T(D))
is given by ’
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(5.4) VagF =a§;(3‘” F+A, (ea)F) Q0"
where A, is extended to the complex linear mapping of n into gl(n).

Proof. Letx be a vector field in n,, and % (resp. x,,) be a vector field on
P(D) (resp. D) defined by the 1-parameter group of transformations (L., )%
(resp. Leyy:,)- The curve (Lo, ¢.)5(4,) on P(D) gives rise to the vector %, and
the curve (L.,,,)(0) on D gives rise to the vector (xp),. By Proposition 11.2
[6] II. p. 104, the horizontal lift v, of the curve L,,,:.(0) such that v,=u, is
given by

Vs = (Lexp t2)5(to) a2

where a, is the 1-parameter subgroup of GL(n,) generated by o, (%). By (5.3)
in Lemma 3, we have

Uy = (Lexp tx)*(“o)‘(exp tAno(x))-l
= p(exp 2x, (exp tAn(%))7) .

Thus, when we denote by 7§ the parallel displacement of the tangent space
T.xp t2-o(D) along the curve L., ,.(0) from exp #x-0 to o, we have

T§(v(exp tx, F(exp tx))) = v(o, exp tAy(x)- F(exp tx))

Since we have py(x,)=(%p),, by the definition of the covariant differentiation,
we get

(Vag F) () = ‘—g(exp tAn(x)- F(exp 12)),-,
= (xF)(e)+An,(%)-F(e) .

Since the connection is G-invariant, we have
VAnO(F)(x) = xF++ Ay (x)-F.

If we extend complex linearly the operator Vy, to the operator of A(T(D)°)
into A(T(D)), we obtain the formula (5.4).

Lemma 5. Under the correspondence of Lemma 3, the Riemannian con-
nection in T(D) is given by the following mapping

1
(5.5) An(®)y =% ¥, + U, 3) »
where U(x, y) is the symmetric bilinear mapping of n,Xn, into n, defined by

(5. 6) 2B (U(x, y), %) = B.(%, [2, 3],,) +B([*, ], )

for all x,y, xEn, Here, [%,y], is the n-component of [x, y] with respect to
the decomposition (2.6) of g,.
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For the proof, see [6] II, p. 201, Theorem 3.3.

We denote by A, the linear mapping of n, into gl(n,) which gives the
Riemannian connection of T(D) in Lemma 5, and by the same letter A, its
extention to the complex linear mapping of n into gl(n). Then, by (3.5) we
can calculate the mapping A, and we get

(5.7) Ade)es = — BT fo, o]

(a+8B, 7)
A-,-(em)e—ﬂ = [ew’ e—ﬂ]n_

A.,(e_a)ep = [e-m eﬁ]n+

AT(e_a,)e_,; = «7(—[:’77)?)[8—”’ e—ﬂ]

where a and 3 are positive roots and [«, y],, (resp. [x, ¥], ) is the n,(resp. nn_)
component of [x, y]. By (5.5) and (5.6), we verify easily the following
property of A, :

(5.9) B(A(x)y, 2)+B(y, Afx)z) =0

where x, y, zen. We denote by Vyp,¢; A(T(D)€)— A(T (D)) the covariant
differentiation with respect to this Riemannian connection. By Lemma 4, the
operator V¢ is given by

Ve F = ;23 (es F+A(€x)F) R0

for a section F'; G—n of T(D)C.
Let ©(D) be the holomorphic tangent bundle of D. The bundle 7T(D)¢
decomposes into the Whitney sum

T(D)¢ = @(D)®6(D)
= (GX g )D(GX )
where @(D) is the conjugate bundle of @(D). Since
A(x)(n)cn,, A(x)(n)Cn_
for all x&n, we have
Ve (A(&(D))) = 4(&(D))
Vzp0(A'(O(D))) = A(O(D)) .

Therefore, the restriction of Ve on A°(©(D)) (resp. A%(O(D))) defines a
connection in @ (D) (resp. ©(D)) which we denote by Ve (resp. Vg). The
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connection Vg induces a connection Vg« in the dual bundle ®*(D) of (D) [1].
It is easy to see that, for a section F*; G—n_* of ©*(D), Ve F* is given by
(5.9 VerF* =37 (e F*—tA (€x)F*) Q0 ,

aEA

where the linear mapping A, (e,); n_* —>n_* is the transposed mapping of
A, (es)|, ; n_—n_ and given by

‘A (en)0 P = —e 0P
(5.10) ‘A (e o = (@=B,7), a0
B, 7)
for a, B A..

In the above, we have constructed the connections V, in £, and Vg
in ©*(D). These connections give rise to a connection in the bundle

LR ;\@*(D), where ;\@*(D) is the g-th exterior product of the bundle ©*(D)
[1]. We shall denote this connection by

V; AL NO*(D)) — (L@ AS*(D)) -
Then, for an element fo ™4 of A*Y(L,)=A4(LL&Q /q\@*(D)), we get
(5.11) V(fo ) = 2 (eafo™ " —=f (A (ea)0™)) Q0"

q q
where the mapping fA.(e,); An_*— An_* is the natural extension of the
endomorphism *A (e,); n_*—n_*. In the following sections, we shall use

this connection V.

6. Computation of the Laplace-Beltrami operator

We retain the notation introduced in the preceding sections. In this sec-
tion, we will give an expression of the Laplace-Beltrami operator [ ]=088- 50.
To begin with, we give expressions of the operators 3 and § in terms of the
connection V in §5. For each e, g, we define a linear mapping

V,,; C*(G)® An_* — C=(G)® An_*

by the following formula:

(6.1) Veu (fo ) = (eaf)o A —f(*A (€)™ %) .
Proposition 1. Let fo™ be a form in A”Y(L,). Then we have

(6.2) o(fo™) =m§+ (1Qe(0™ )V, _,(fo )

(6.3) fo )= 3 (10 )V,,(fo ).

&l , (a, -r)
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Proof. By (5.10) we have

%) (—* ® _ (18 a, T) - o
I oW eo) = 3 B Doene

for o, B A,. If we replace B—a by « in the right side, by (2.5) and (4.7),

we get also

3 o)~ Aleao™) = B D Dot ney po?

a3B(B, T)
(a, T) 05— -
=& et N
(@) 7)  -o
TS, AN-apo™
(a’ 7) 0 " Ne_z0 P

(B, 7)

Hence, we get
2 D o) (—iA(e_a)0P) = D 0 Ne_j07P.
aEA ®EA,
This formula can be extended to the formula for o 4 /q\n_* and we have
S el (— A, ()0 ) = L 3V 0 0A ey 4
@EA 2 L=
Then, by (4.11) and (6.1), we obtain
3(fo ) = 32 ()0 Ao+ f( 3 07" Ne w0
=2 (eaf )e(w_‘”)w"“—Ffwg (0™ ")(—*A(e_a)o ™)
2 (1®e0™)((e-af Jo  A—f(A(e_a)0™?))
=2 Re(w ")V, _(fo ™).

This proves (6.2).
In order to obtain the expression (6.3) of §, we construct the adjoint
operators of the operator e_, on Cg(G) and the operator e(w™*) and *A, (e_a)

on /q\n_*. For two functions f, g= C5(G), we have

[ e-alf-2)lg =0

([7], Lemma 5.1). Thus, we see that
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(6. 4) (e-afs &)c = (f, —€atag)c

where (, )¢ is the inner product on C§(G) defined in §4. On the other hand,
by easy computations, we get

(6. 5) ({004, 0B)_ = (w-A, ) i(w"”)w'B) )

where (,)_ is the inner product on ;\n_* introduced in §4. Also, by the
definition (5.7) of A,(e,), we have

A‘r(ew)y = EU A'r(e—ﬂ')y
for each yen and a=A.. Since the operator A (e,) satisfies the formula
(5.8), we obtain
B (A(e-0)%, ¥) = B.(A.(e_a)%, 7)

= B'r(x) ——A‘r(e—w)y)

= B-r(x) _Ed’ A'r(eﬂ’)y)

= B (%, —&a A (e4)Y) -
for x, yen_. It follows that we have
(6. 6) (A (e_w)o ™, 0 B). = (0 4, —E4*A ()0 B)_ .

By the formulas (6.1), (6.2), (6.4)—(6.6) and Lemma 2, the formal adjoint
operator § of 3 is given by

(fo®) = 3 L (1R )(eaf)o A —f (A feao™)

&x, (at, 7)

| (1Qi(0 )V, (fo™) . qed.

s, (a, 7)

, Now,if a, BEA,, we have the following relations among operators on
An¥:

6.7) (o™l ™?) = —e(0P)e(w™)
(6.8) (0™ )i(0 ") Hi(o P)e(0™®) = Sas
(6.9) [ea, e ™)] = e(ea™?)

(6. 10) [ew i(0™")] = —i(e_a0™)

(6. 11) Cr ™= 31 eleaw ()0

All these are easily prgved [4], and the equalities (6.9)-(6.11) hold also when
we replace a by —a.
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Lemma 6. For roots o, BE A, we have the following relations:

(6.12) [‘A(ea), e(o™F)] = e(*A.(ea)o™?)
(6. 13) (A (€s), (0 7P)] = i(e_s™P)
. (e FY] — B, 7) . -
(6. 14) [A.(e-a), i(7P)] @tB, 7 T)z(em )
(6. 15) PA(ex)0 ™4 =BEZA e(*A(es)0 P)i(0 P4 .

The relations (6.12) and (6.15) hold also when we replace a2 by — a.

Proof. The equalities (6.12) and (6.15) are easily proved and (6.13) follows

from (5.10) and (6.10). We will prove the relation (6.14) on /q\n_* by the
induction on q. For a 1-form ™, we have

Ade_2i(@ )0 = 0
e_si(0P)o™=0.
Hence, by (5.10) and (6.10), we get
[Aea), (0 Mo = —i(o YA (o™

_ _(a=7,7)
(7, 7)

—Mi ez P,
@ ( )

(0 P)e_g0™

On the other hand, by (4.8) we have

i(ea0 P)o™ = N, pti(0 * F)o™
0 if at+B=*v,
Nyg if at+B=v.

Therefore, we obtain the equality
¢ =BV ™Y — (:8»7)_' ~BY Y
[fA(e_s), t(07P)]w (@18, -r)l(e“m Vo™
Now, assume that the equality (6.14) holds on the space q/_\l n_*. By (6.8) and
(6.12) we have
[A(e-a); i(0P)]e(w™)
= tA(e_a)i(0 P)e(w ™) —i(w P) A(e_s)e(0™?)
= "As(e_a)3py—"As(e_a)e(w )i P)—i(w P)e(w ™) Ae_a)—i(o P)e(*Ale_a)o™)
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= — (0 " Ae_q)i(oP)—e(*Ae_a)o M)i(wP)
+e(o )0 PY Ale_a)—i(0 Fe(*A(e_a)o™)

— — oM ALe), (0 A]—ELIN, fe(0 Mi(0F)+i(0P)e(o™ M)}

(v, 7)
= —e(0™[*Ale_a), i(w-ﬂ)]—%%*)zv_a,ya,_m,a.
Since
(6. 16) Nowais=Nas,
we get

[FAe_a), (0 P)]e(0™) = —e(o [FA(e_a), z‘(w-ﬂ)]+(Ol(f_’—ﬁ’,);)NL.,,,E,a‘,.ﬂL,g,y .

By the assumption and (6.8), for a ¢-form w™*Aw ™ with o4& ll/iln_*, we
obtain

[ALe_a), 0 )@ Ao™)
= —e(0 ) [Ade-), i@ P)o A4 BTN, 5, 54074

(a+8, 7)
- w(:i’“TT,)T) {—e(0™)i(es0 )™ A+ Ny 5845y 0}
= (T.ff_—'ﬂf’ LT)z'(e.,.m-f’)e@‘*)w'A
_ w(f—;ﬁt)f) i(ea> P) 0T A 4).
This proves (6.14) and the lemma is proved. ged.

We recall also following equalities proved in [4]:
(6. 17) @Nﬂ.ﬁ-ﬁN—ﬂ,ﬂ’ = (ZP_a, 0()

where p=%w§ a ([4], p. 266, Lemma 3.1), and

0 if a<p
(6.18) (e_aby—eye )0 P—[e_y, &y = { (v, Bo™ if a=p
\ N_wley,g_mwm_B_y if C(>ﬁ

for all a, B, yEA, ([4], p- 281).
Proposition 2. Let fo™* be a form in A*9(L,). Then
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_ 1
Ay 1
O™ =2 sy Vs
Proof. By (4.7) we have e_,0 =0 and thus
A(e_a)o™®=0.

Hence, by (6.12) and (6.13) in Lemma 6, e(w~®) commutes with *A,(e_,) and
i(07f) with ‘A.(eg). In particular, 1®i(0™®) commutes with V,,. Using
Proposition 1 and (6.8) we have

O(fe™) = (58+85)(fw_“)
(1@e(o™)V._, Vo (1Qi(0P))(for™4)

Vel (B0 for

“§A+ (:8, 7)
1
+m;§+<ﬁ )

(1®e(0™)Ve_ Ve (1@ ) (fo™)

Ve (1@ P))(1Qe(0™)V._,(fo™)

% ‘§A+ (:8’ )

1 -
Ve Ve w 4
MEA+ (a’ ) (f )
1 ) - —A
a2y o )Ve (1Qeo™))(1@Ue )V, _,(fo ).
By the definition (6.1) of V.__, and Ve We get
- 1 -
[O] 4) = Ve Vg (O] A
O™ =2 o 2 {fo™)

LR W L CREA SR e L T

@, ﬂEE:A+ (B’l —)€5fe(m m)( A (e m)l(w—ﬂ)—l(a)_'g)tl\ (e ,,))Q)

3 e_o f(e(0™®) Ar(eg) —*Ar(eg)e(0™*))i(w )™ *

@, §A+ (/5’

t,2 mf(e(w Y A(e_a) Arleg)i( ")

— A (eg)e(w™")i(w P) A (e_a))0 ™ .
By (6.14), the third term can be written as follows:

- ——1— ~%)g| -By,, - A
B e e
and by (5.10), (6.12) the fourth term as follows:

Lo, fe(ego™)i(oP)o™A

—w,§A+ B, 1)
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On the other hand, from the formula

[ean e—m] = Ry, [e—m eﬂ] = N—w,ﬂeﬂ—w ’

we have

B By eenS e el i Mo

= - 3 o hafeo i )0

aEh, (a 7)

+ 0<Zm:<p (B’ )eﬂ mfe(a) d)l(N—mﬂﬂ) )m—A

N e G

Heré, we replace 8—a by B in the second term and 8—a by —« in the third
term. Then, by (2.5) and (4.8), we have

(e_ataf—epe_af)e(0™)i(0 )0

“Eﬂ (B; 7)
== B et o

aEa, ( o,

esfe(w™®)i(esw P4

+“'5§A+ (a',"ﬁ’ )

+wr§+ ()6', 3 e_afe(ego™®)i(0 Po™4

By (4.1) in §4, the function f; G — C satisfies the following property:

hof = —(N+ 4], a)f forall acA,.

Therefore, if we put

(6.19) Ro 4 =. §A+ (/8, = (e(0™ ) A (e_u) A (eg)i(0™®)
—*A(eg)e(0™")i(w Py Ale_a))0 ™4,
we have
(6. 20) O(fo ™) =3 1 v,.V. (fo%)
aEh, (a, )
ST @AHIAD fo-a o o-a
+(weA (a, 7) )f R,

. q q . .
It remains to compute the operator R : An_*— An_*. We begin with
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the operator R, -e(w™”) for yeA,. Using (6.7)(6.15), we will exchange the
operator e(w ") with the operators e(w™?), #(w™*), *A.(e;) and ‘A (e_,) (@EA,)
one by one. By (6.8) and (6.12) we have

Reeo) =, 8 o )(e(co-% (e_aY A (ep)i(™)
'A7<eﬁ)e(co (@ P A fe_a))-el")

e(0™ Y Ar(e-a) A (es)e( )i ™)

@, §A+ (B, T)

(0 YA (e_a)'A(ey
E+(%)( Y A(e_a)'Ar(en)

1
“§A+ (8, 7)
1
e B

By (5.10) and (6.8), we get

A (e)e(0™")i(wP) e('A(e_a)o™)

A (eg)e(o™)i(P)e(w ") A (e ) -

(0 P)e(* A (e_a)o ) = C=V TN (e P)e(0®™)

(7, 7)
— (0( i) T)N my(——e(a)“ Ni(ew™ ﬁ)+3y ®.8)
(7, 7)

= —e('A,<e_m)w-*)i(w'ﬂ)—§ﬁ’—3N_f..yay,w

b

provided that «<vy. By (4.8) and (5.10), we have also
A oo = —e0™ = e = —*A(eg)o,
and thus by (6.15) we have
'Ade) = 3 e(Adedo i)
== 2 d(Aleg)o i)

Therefore using again (4.8) and (6.12) we get

Ree(w™) = (™Y A (e-a)e(w ™) A (ea)i( ™)

= «a, 2

T, (,8, o0 YAl A o i)

T, 7 )6’(w“’°)’A (e-a)e(*Ar(eg)o )il ™P)
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P2y (B,l 5 MmN e 2Jo i)

1 A (ey_s)e(w™®

+ ;y T )N_,,,-,AT( y-a)e(0™®)
B o 5 Aol e(w N YA (e-0)

= B, M A )
= 1 -y YA (e_u) A (eg)i(w”
- = (B’ 5400 YA (- A er)i(o™)

e(0™")e(*Ar(e-a)o™") A (es)i(wF)

)

+ (8,
wiSh, <(,3, A () )e( “e(*A(e_a) A (eg) ")i(wF)

“)e(*Ar(es)eo ") Ar(e_a)i(w )

@psa, (B, )

s 17) e(0™)e(*A(eg)o ") Mo(e-a)i(@™F)

w8k, ( B, 3 e(o Y A (eg)e(* A (e_a)")i(~P)

+ e(*A(eg)o*)e(* A (e_a)oo ")i(wP)

N_aye(0™)e(*Ae(ey-a)o P)i(w™")

N_oye("A(ey-a)o™)

— el Aleg)e(@™*)i(wP) Ar(e-a)

— el )e("Ale)o ™) PY A (e_a)

o~ )e(w M)e(*Ar(eg)o )i F) A(e_a)
1
@,fEA, (ry, )

e(*A(ey)o™")e(*A(e_a)o PYi(w™F) .

Changing suitably the order of the terms in the above equality, by (6.19), we get

R,-e(07) = e(o?)-R +O<O‘Z<Y mN_Me(A Aey_a)o™®)
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— B (Gt g e e o™i ™)

2y ((B,IT) ] AN T (N O G B B NG
o, (/3, )e(‘A (ep)o™*)e(*A(e_a)o i)

BT B, 5 0 WA Ler)elCAfe-e)o ™) e A fe-a)o YA (eni(o™)

+ (@ ")e(N_ay A (ey-a)o P)i(wF)

0<a<y (fy, 7)

- .,2% 0,7 )e(‘A (ex)o™)e(*A(e_a)o P)i(@7F) .

Now, by (5.10) and (6.17)

6.21) S LN, e(A(ey oo = (33 NoayNy_aale(o™)
oa<y (7, T) (ry T) o<axy

_ 2o, %)
7 (™)
By (5.10), we have

‘A (e_a)Afeg)o™ = —Npy'A(e_a)o™ P

0 otherwise.

Hence, as for the third term in the above equality, we obtain

TR T YN
(6.22) —Mzejh((ﬁ’ ST —))L’(w Ye('Ae_a) Arles)o )i P)

_ (a'B'Y’)w"‘NN,, 0® B (e P
02";;’*7———-_(:3; 7, 7 )e( Ye(Ny,e N _apy i)

_ (a 18 'yr ) w—w O.)w- e AYY o
= o§<3 m—’“)—e( )e(Ny N _g py0® P )i(wP)

SEA+

(a B—7, ) o &® PNl
VB e M-

5EA+
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1 _ ey
+5§+ @, 7) e(w P)e(Ny N _p giyo )i(wF)

1 _ e -
+ ﬁEEA+ ) e(o™")e(Ny sN_y pyo P)i(o #).

If we use (5.10) and (6.14) and replace a+ 3 by @ in the fourth term, we have

1 1 “e(* N(A(e_y)i(0 B)—i(w P) (e
B (G oy ) e el A (e i Y Afe-2)

- _BENT) e A (en)oNiene"
b, {7y Y@t By ) LA )

- _BFT) - P
wpa, (v, .r)(a_i_ﬁ, T)B(CD )E(NB,VNw,p B Ni(w B)

- (@=B=%7) (= Bty
s (7, 7)(B, ) (@™ )e(Np-a.1No g™ P 7i(0™F) .

Hence, from (2.5), the fourth term is equal to

@=B=%T) s s(N - <N« B Ni(e?
Fo (7, @, 7y (AN oMo
As for the fifth term, we use (5.10) and replace a+3 by a. Then we get

1
a’%Jr (B: T)

= ((X—’)’, T) —— . o Ni(e"
= B (@ N )

e(*A(es)o"*)e(* Ar(e-a)™)i(e™P)

— (a_i@_')’»"') "%l — a-B-y\;( . .—B
p<Fhes (8, 0y, 1) e o TEOT)

Hence, from (2.5), the fifth term is equal to

(@ =B ) gy @-B-1);( (P
< (B, ) N s,

Therefore, the sum of the fourth and fifth term is equal to

(6.23) =, %%‘é——(—lé?;?e(w'“)e(N_,,ﬁNyﬁ_wco‘”"'"’)i(w"")
aty,pea

(@=B—%,7) o~ wmporir -
s<d<prr (7, 7)(B, 7) e(w™")e(N_a,8Ny,p-0 0" " ")i(0F)
wV,BEA
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2, (7} oy A0 VAN s Npy g P)i(0™?)

By (5.10) and (6.12), we have |
e(*Arfe-a)o ") A(es) —*Ar(ep)e(* Ar(e_a)o™)
= e(*A(ep)' A (e_s)07?)

@Y DN, Nay oo™ if a<y
= (v, 7)

0 otherwise.
By (5.10), we have also
e(N_uv'Ay_a)o™®) = e(N_syNp y_s0® *7)
provided that a<<7y. Thus, the sum of the sixth and seventh term is equal to
— M_—')/,T) il @-B-Y\,(,.~B
0@2}@ @ 00, e(0 ®)e(N_y yNp y_aw (™).
BEA
In the eighth term, we use (5.10) and replace a4 by . Then by (2.5) we get

— aEEA+ ({y} = e(*A(ey)o*)e(* A(e_ o) P)i(wP)

= — _(a_ﬁ’ T) _ w ©® BVilw™
Zi’%f O 1 A e

_ — (a—ﬁ—'Y) T) 0 ® =B~);(¢p™
szﬂ (7, 18, 1) @ VN2 Noya0™ P iw0).

Therefore, the sum of the sixth, seventh and eighth term is equal to

(6. 24) gaif?;i %f)(‘y—"y;;)e(m-a)e(N_,,,Nm_,a,a-a-v)i(w—s)

— (E{:ﬁ_—_'y_,l) =® B Ni(e"
B<a<p+y (18, T)('Y, T) e( )e(N—‘”.‘YNﬂ,y_a, B y)t(a) B)

@y, pEA

+ a§+ (,81, 3 e(0 P)e(N_pyNpy_po ") i(w0™?).

Now, we use the equality (6.18). In the case o << we have

(Ny,pN_a,’p_;.y—N_m’pNy’p_w)wa_ﬂ_y—N_w,yNy_o,,pCz)a—B_y = 0 .

Since e_, 0 =0 for >, in the case >3 we have also
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(N‘/,ﬁN—ﬂ,B'F'Y—[_N_a,yNﬁ'7_0’)(0“_5_7 — N—u,ﬂN‘Y,ﬁ—a wa-g—y
ie. (NysN_apiv—N_48Nyp o) P '—N_gyNy_yp0" *7=0.
From (6.21)—(6.24), it follows that

R.e(0™) = e(w”y)-m,—l—(—b——we(m_")
(v, 7)

+ﬁEZA+ (:3, )e(a) B)e((Ny,sN_ppiv—N_p,yNy_p p)o ") i(wF)
52 e(0™)e((Np,yN_y p:y—N_y s Np_y,y)o P)i(07F).
= (ry, )

On the other hand, by (6.18) in the case a=/ we have

(NysN_gpiy—N_gyNy_gglo™ = (v, B~
(NoaN_ypiy—N_ypgNg_yy)o™? = (B, 7)o

Hence we obtain

(6.25) R,-e(0?) = e(w-V)-mTJr(Z_P_V_'l)e(w-V)
(v 7)

“NelwPlilw™P) .

2 815+ )M )

Now, we compute R.» 4. For a 1-form o, by (5.10), (6.17) and (6.19) we
have

Ro™ == 2. G~ )'A {en)e(o™)i(0PY A (e_a)o™

= — la—7,7) V’T)N viA(eg) (0™ *)i(w P)® Y
B Ve M N

= 2 LN_w'ytA.,(ey_m)w—w

oa<y (7, T)

1 -
= ( > N—w,'va—u,m)(" Y

(v, T) o<a<y

_ Q=7 7) v
(v, 7)
Using the induction on the number of elements in 4 and applying (6.25), we
obtain easily

q (2p—0{,«k, Olik

oot = {8 s B @ ) (@ T )




VANISHING THEOREMS OF SQUARE-INTEGRABLE 0-COHOMOLOGY SPACES 211

-(He- 2, e
= { N é;l)_ (Sa: BO;}w—A

a€a (a, 'r) age4 (@, T)

where 4=(a;, --+, ;). Therefore, by (6.20) the Laplace-Beltrami operator
[ is expressed as follows:

O(fot) = 31 !

-a oA
LT (a, 'T) Vewve_m(fm )+CA fw

where C, is a constant depending on 4. In fact, we get

(a, M4 228)
CA _ BEA (29» (X) — (a’ __'8)
;4 (a’ —r) + acA (a, T) ®,BE4 (C(, 7')
— 3 (2, A+2p)
- ,§ @n q.e.d.

7. Vanishing theorems of square-integrable 5-cohomology spaces

We retain the notation introduced in the previous sections. Using proposi-
tion 2 we will give vanishing theorems of the square-integrable 9-cohomology
space H§(L,). The following lemma is due to [1] Proposition 8.

Lemma. 7. Let q be an integer such that 0<q<n=dim D. If there exists
a constant ¢>0 such that for every p= Ay (L)) we have the inequality

(O, p)zc(o, @),
then we have HY(.Ly) = (0).

For each character A, put
A, = {aeA|&y(a, X)>0}.

Let ¢, be the number of all elements in A, N A,. Then we have the following
vanishing theorem about 0-th square-integrable 9-cohomology space H 3(-[y).

Theorem 1. Assume that q, is not zero, i.e. there exists an element a = A,
such that €,(a, N\)>0. Then we have H3(L,)=0.

Proof. Let f be a section in 43°(L,). From Proposition 2, we have

Df= 2 “_l_“ewe—wf'

«&h, (a, T)

Since h,=[e,, e_,], we get
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of=,_ % hoft B e seft B e
¢EA+nAh(a,T) acdTnax (o, T) aca-ap (a, )
A section f: G — C satisfies the following formula:
hof = =Mha)f = —(a, M)f .

By (6.4), the formal adjoint operator of e, with respect to the inner product
(5 )ein C3(G) is —E,e_, (cf. the proof of Proposition 1). Hence we have

Orn=_3 (- &a))q,n I (ey TS
NEA+-AA ( )(e‘“f.e—af)G

—&, - ... ..
Here, ( @_ is positive for every positive root «¢. Therefore we have
o, T

Orz( 2, (-EDNDn.

If o belongs to A, N A,, we have

_(a,) >0.

(a, T)
Thus, if we assume that A N A, is not empty, the bundle [, satisfies the
condition of Lemma 7 for g=0, and we have H 3(_£,)=(0). q.e.d.

RemMARK. This theorem follows also from the expression of [] on p. 282
of [4] instead of our Proposition 2.

For general ¢-th 9-cohomology spaces, we get the following main theorem.
Theorem 2. Let q be an integer such that 0<<q<n. Assume that for any
g-tuple A of positive roots the scalar cA—mZ}4 (gt:L)ZP) is positive. Then we have
HY(L)=(0). ’
Proof. Let ¢=A§ﬂwa'A be a form in A3%(L,). By (6.4) and (6.6), we

have
(Ve,,¢’ <P) = —&4(p, Vc_qu)

where (, ) is the inner product in C5(G)® An_*. From Proposition 2, we get

O, @) = 31 (—

@A,

o) Veea? Vea)
+ 3 (3 @A) g o oa £ 070,

Acu\aca (a, T)
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Put
¢=min ¢, = min( > ((M_—Iip))
AN AeA\aed (a, T)
Since ——S=_ is positive for every positive root «¢, we have

(a, 7)
(O, p)zde, @) .

From the assumption, ¢ is positive. Therefore, by Lemma 7 we obtain the
theorem. q.e.d.

We note that the criterion for the vanishing in this theorem depends on
the choice of 7.

Corollary 1. Assume that
(cty A +2p) >0  for acsA,NA;
(a, A +2p)<0  for acsA,.NAy.
Then we have HY(L))=(0) for all g=1.

Proof. By the assumption, we have

c‘,=(a—’L2p)>0 forall acA,.
(@, 7)
Since ¢, = EACM ca is positive for any g-tuple A provided that ¢=1. By
Theorem 2, we obtain the corollary. q.ed.
We consider the case g=0. From Corollary 1, if we have (a, A)<—(a, 2p)
for all k= A, N Ap, we obtain H$(_L,)=0 for ¢=+0.
Now, let .L¥ be the dual line bundle of £, and 8*(D) be the dual bundle

of the holomorphic tangent bundle of D. By Theorem 1.2 in [8], we obtain
the Seere’s duality

(7.1) HY L)=HyY(L¥® AO*(D)).
On the other hand, the bundle _£¥ is the homogeneous line bundle associated
with the charactor 7! of H. The bundle }\@*(D) is the homogeneous line

bundle G X ybAn,* associated with the representation AAd* induced from the
adjoint representation Ad, of H in n,. Therefore

xS A -
LXQNOM D)=Ly o7 gan -

The differential of the charactor A 7'® AAd ¥ is —A—2p. By Theorem 1, 2
and (7.1) we obtain the following corollaries.
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Corollary 2. If we assume that q_,_,, is not zero i.e. there exist a root
aeA, such that &,(a, A2p)<0, we have H3(L,)=(0).

Corollary 3. Let q be an integer such that 0<q<<n. Assume that for any
g-tuple A of positive roots the scalar dA:EM is negative. Then we have
HE(L)=(0) )

From Corollary 3, we have also the following.

Corollary 4. We assume that

(a, N)<<0  forall acA, NA;
(¢, \)>0  forall acA,NAy

i.e. y=n. Then, we have HYL,)=(0) for all g<n—1.

ExampLE. Let G=SU(2, 1) and T be the subgroup of G consisting of all
matrices

u, 0 0
U=|0 u, 0
0 0 u

where u;€ U(1) (i=1, 2, 3) and det U=1. We denote by K=S(U(2)x U(1))
the subgroup of G consisting of all matrices

0

U
0
0 0 o

where U € U(2), ve U(1) and det U-v=1. Then, H is a compact Cartan sub-
group of G and K is a maximal compact subgroup containing H. The com-
plexification of the Lie algebra of G is g=38I(3, C) and the subalgebra ) is

given by

fxl 0 0
f= (0 xe 0 ||n;€C At At n, =0},
(\o 0

The root system of g with respect to the Cartan subalgebra § is given by
A= {n—N;likjf, 154,53} .

We choose a fundamental root system {A,—x\,, A,—\,} and take an ordering
for the roots corresponding to this system. Then, the positive root set is
A, ={N,—N\; A;—A, A, —2;} and we have
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Let a be a positive real constant, and put

A NA = {7\1_7\'2}
A NAp= {xzﬂ)\'aa 7\'1—7\'3} .

0 0 0
h'r =0 —a O EDR .
0 0 a
Figure 1.
(i).9=0 n (ii). ¢=1
- — n
? — Ry RN NN
L — S~ el ~__
/% s\ \\\\\
/// = I~ ~
/::/ L ¢'L/’5
///i// i "_4 _
/ ? /// —2
—
(iii). q=2 (iv). ¢=3 .
o
~ ~
\ - \
1 > \\
\\‘\
1 \. \‘\\1
*“//& i\:
—4 \\—z
' ~]
%ﬁ 1 §\
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Let 7 be an element of h* corresponding to & Ehg with respect to the Killing
form of g. Then, the element 7 satisfies the condition (3.4). Hence, we have
the homogeneous complex manifold D=G/H with the invariant Kahler metric
g.. The space hp* is generated by A, and A, over R. The set of all elements
of hr* which are the differentials of charactors of H is given by

{NEE)R* 2(%0%)62 for all aeA}

ie. {(A=mr+nn,|m neZ}.

We can consider a character A of H as a lattice point in R’. As for the
vanishing of the cohomology space H3(.[,), our theorems give the following
figures (cf. Figure 1). Here, the space HY(L,) vanishes for all characters
belonging to the shadowed domains.

On the other hand, the vanishing theorems in [4] are written as follows:
There exists a positive constant 7 such that, if the character A\ statisfies
|(x, @)| >n for every a€ A, the space H3(L,) vanishes for all g4=¢,. In the
case of this example, we can see that a positive constant » must be larger than
12 and the above condition on A is equivalent to the following inequalities:

lm|>6777 |n|>677’ |m—n,>677-

OsakA UNIVERSITY
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