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0. Introduction

In the paper [8], P. Samuel has developed the theory of ^-radical descent
of exponent one by making use of logarithmic derivatives. In this article we
shall give a generalization of his theory to the case of ^-radical descent of higher
exponent with the aid of a finite set of higher derivations of finite rank.

In the first section some preparatory results are collected. Let i be a
Krull domain of characteristic p>0 and K be its quotient field. Let D=(D(1\
• *,Z?Cr)) be an r-tuple of non-trivial higher derivations Z)(ί)>s of rank τwt on K
which leave A invariant. For simplicity we shall abuse the notation D(i) to
denote the ring homomorphism of K into a truncated polynomial ring of order
πii over K, i.e., i φ , : mt]: =K[Ti]IT?ti+1 associated to the higher derivation D(iK
Let Kr be the intersection of the fields of Z)(ί)-constants (l<i<r) and let A': =
Af)K'. Let T=(Tly •••, Tr) be an r-ruple of indeterminates and let /, be the
residue class of Γ, modulo 77'+ 1 in K[T^jTT^\ We shall set t: =(tu ••, tr)

r

and m: =(mly •••, mr). We shall denote Π K[ti'. mi\ by K[t: m]. Similarly we

denote Π A[tii mi\ by A[t: m] where A[ti'. m^[ is a truncated polynomial ring

of order mi over A. Furthermore we shall define a ring homomorphism D of
K into K[t: m] by D(z)=(D^(z)9 •••, &r\z)) (z<=K). Let XA and X'A be the
sets of elements defined respectively by

-CΛ = {D(z)jz<ΞK[t: m]|*ei<:*, D(z)/z<=A[t: m]} ,

XΆ= {D(U)IU\UΪΞA*} .

Let j : Div(^4') -^Div(^4) be the homomorphism defined by j(S)=e(3>)<3? where,
Q is a prime ideal of height one in A\ 3? is the unique prime ideal of height one
in A with i?Π A'=Sand e{9?) is the ramification index of 3* over Ω. Then we
can define the homomorphism j : Cl(A')->Cl(A) induced by j (cf. [8]). Let 3)
be the subgroup of Div(^Γ) consisting of divisors £"s such that j(E) is principal
and let Φo: <3)->XA\XΆ be the homomorphism defined by Φ0(E)=D(x)lx modulo
XΆ, where ESΞS) and j(E)=diγA(x). Let Φ: Ktv(j)=£llF(Af)->XAjXA be the
homomorphism induced by Φo where F(A') denotes the subgroup of
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generated by principal divisors. Furthermore we put μt = min {j\D^%) Φθ,
l<j<mi} and, ni = min{n\mi<μip

n} where Z>(ί) = {D{p\0<j<m^ (ί<j<r).
We denote the Jacobian dtt(D^(ak))s^itk^r by J(D: a;s,r) for a=(au ~ ,ar)(ΞAr

and l<s<r. We shall use the notation J(D: a) instead oϊJ(D: «; 1, r). Our
main result in §1 is the following:

Theorem (cf. 1.6). Assume that the following two conditions hold:

(1) [K: K']=p»i+''+nr.
(2) For each prime ideal S of height one in A, there exists a in Ar such that

the Jacobian J(D: u) is not contained in S.
Then the homomorphism Φ: Ker(J)->XA\XA is an isomorphism.

The property (2) in the above theorem will be referred to as "the height
one property". When the height one property is not satisfied, Φ is not neces-
sarily surjective. Even if Φ is not surjective, we can determine, in some cases,
the cokernel of Φ (§2). As a byproduct we get the following:

Theorem (cf. 2.7). Assume that A is a unique factorization domain with
J(D: A):={J(D:*)\*eΞAr} +{0} and [K: K']=pn^"+n'. Let 2> = cA be a
principal prime ideal of height one in A and let s^\S)\ =mm {s<E:N\(D(i)(c)lc)s(Ξ
A[tii mi]} for l<i<r, and s(3>): =max {^(S*) 11 <i<r}. Then the fallowings
are equivalent to each other:

(i) Φ: Ker(j)-+XA/XA is an isomorphism.
(ii) For each prime ideal j? of height one in A, either J(D: A)<t 3? or

e(S>)=s(3>) occurs.

If A is a unique factorization domain, it turns out that Ker(jr) is isomor-
phic to C l ^ ' ) . Therefore, in order to determine Cl(A'), it suffices to know
Ker(jr). In the final section some examples of rings are presented whose divisor
class groups are calculated by applying Theorem 1.6.

The autohr is very grateful to Professor Y. Nakai for many valuable sug-
gestions and encouragement during the preparation of this paper.

Each ring appeared in this paper is commutative with identity. Our ter-
minology and notation are as follows:

Let A be a Krull domain.
P(A): the set of prime ideals of height one in A.
Div(A): the free abelian group generated by elements of P(A). An ele-

ment of Div(^4) is called a divisor.
We shall define the divisor divA(a) (a^A— {0}) by divA(a)=*Σιvg(a)2>

where the sum is taken over all prime ideals iP's in P(A) and v$> is the normalized
valuation associated to the prime ideal 3?. Let K be the quotient field of A
and x be an element of K*. We define άivA(x): =άxvA(a)—ά\vA(b) where
x=ajb(a, b(=A,
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F(A): the subgroup of Όiv(A) generated by {divA(x)\x^K*}. We call

an element of F(A) a principal divisor.

Cl(i4): = Oiv(A)/F(A): the divisor class group of A.

cl(E): the divisor class of a divisor E.

Supp(i?): the support of a divisor E> i.e., the set of all prime ideals ίPs in

P(A) such that E=*Σ n$$ and

1. Fundamental theorem

Let A and B be commutative rings with common identity such that AdB.

A higher derivation D={Dj\0<j<m} of rank m of A into B is a collection

of additive homomorphisms of A into B satisfying the following conditions:

(1) D0(a) = a for all a in A.

(2) Dn(ab) = ±Dj(a)Dn_j(b)

for 0<n<m and ay b(=A (cf. [5], [6]).

Let B[t: m] be a truncated polynomial ring of order m over 5, i.e.,

B[t: m] = B[T]/Tm+1. We can define the ring homomorphism ΦD_ of A into

B[£: rri\ associated to a higher derivation D by the following manner:

For simplicity we shall abuse the notation D to denote the ring homomorphism

Φz> when there is no fear of confusion. If D(a)=a, a is called a Z)-constant.

We say that D is non-trivial if there exists an element in A which is not a D-

constant. For a non-trivial higher derivation D, the smallest integer among

those j such that DjΦθ for l<j<m is denoted by μ{D). Let C be a subset of

A. We say that D leaves C invariant if D ; ( C ) c C for l<j<m. Let D{i) be a

higher derivation of rank mt of 4̂ into B for 1 <i<r. Let T=(Tly •••, Tr) be an

r-tuple of indeterminates 7\, •••, Tr and let ί: ={tλ, •••, £r) where ίt is the residue

class of 7\ modulo Γff+1 in £[7γ]/Γf« + 1 . We shall denote Π B[ttr. mλ by

B[t: m] where m: =(mly •••, mr). Then β[ί : m] is a B-algebra in the usual way.

Let D=(D(1\ •••, ,D(r)) be an r-tuple of higher derivations of rank m of A into

J5. A ring homomorphism D of 4̂ into B[t: m] is defined by D(a)=(D{l\a),

•••, D{r\a)) (a^A). The intersection of ,D(x)-constants for l < z < r is called the

ring of /^-constants. First we shall prove two lemmas:

Lemma 1.1. Let AdB be integral domains of characteristic p>0 and let

D— {Dj 10<j<m} be a non-trivial higher derivation of rank m of A into B. Set

μ: =μ(D) and d{: =D^. Then ds(apk)=0 if s<k and ds(apk) = ds_k(a)pk if

s>k (ct^A, μps<m).
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Proof. The proof is easy, hence we omit it. Q.E.D.

Lemma 1.2. Let M=(aij)1^i ;<ςr be a non-singular matrix. Then after a

suitable change of columns we can bring M into the one such that every

M(k) (ί<k<r) is a non-singular matrix where

<*kk~'<*kr'

Proof. Let a^ be the cofactor of αf y. Then det M =
Λ-aXraXr. Since det M does not vanish, α 1 ; /Φ0 for some j ' . Interchanging the
first column with the j '-th column, we may assume an Φθ, i.e., detM ( 2 )Φθ.
Continuing this process we will arrive at the desired situation. Q.E.D.

Let D=(D(1\ •••, D(r)) be an r-tuple of non-trivial higher derivations of rank
m=(m1, •• ,mr). We shall set μ, ; =μ(Z>(t)) and n{\ =min {n^N\mi<μipn}
where N denotes the set of positive integers. Furthermore we shall set n(D)=

Ki\ \-nr. Then D$ is a derivation. We denote the Jacobian det(D$(ak))
by J(D: a) for *=(au •••, ar)^Ar. Let T=(Tl9 —, Tr) be an r-tuple of in-
determinates Tly —, Tr. We shall denote (Tfrp\ —, Γ ^ ; ) by Γ^/1 where

Proposition 1.3. Let LaF be fields ofcharacteristic p>0 and let D=(Da\

~, Ώ(r)) be an r-tuple of higher derivations of rank m=(mly •••, mr) of L into F.

Let U be the field of D-constants. Suppose that there exists an element a=(au •••,

ar) in Lr such that the Jacobian J(D: #) does not vanish. Then we have

[L: U] >pn(D). Furthermore if the equality holds, then L=L'[alf •••, α r ] .

Proof. (I) First we shall prove the Proposition in the case n: =n1=' =nr.
Let Lj be a subfield of L defined by {z<=L\D(z)=(z, —,0) mod Tp'/*} for
\<j<n. Then we have L0Z)LXZ)•• Z)Ln where we put L0:=L and Ln:=L'.
It suffices to show that \Lj_x: Lj]>pr for l<j<n. For simplicity we shall set
d(jt):=D(il}pj. From the definition of Ly_i, the restriction of dγ2i to L^x is a
derivation of Lj.1 for \<ί<r. Let L ; _χ be the intersection of the kernels of
these derivations. Then we have LJ_1'DLJ_1IDLJ. By Lemma 1.1 we know
J{D\L^X\ a^"1) =J(D: Λ j ^ φ O and ct^ '^eL^i . Hence these derivations are
linearly independent over F. This implies that [Lj^: LJ..1]>pr

y hence
[L/-i: Lj]>pr. From our argument we get the following sequence:

L,-{DL): =Lj[aΓ\ ..., α r ^ L y

for \<j<n. To prove the latter half, assume that [L:L']=:^ w r . Then
we have [Lj-X: Lj]=pr. Since rfjL^ |LJ (l<i<r) are linearly independent over
F9 [L):Lj]>pr. Therefore we see that Lj_1=L* for l<j<n, hence L =
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L'[al9 — ,ar].
(II) Next we shall prove the general case. Without loss of generality

we may assume that nx<n2< ••• <nr. Moreover by Lemma 1.2 we may assume
that J(D: U;k,r) Φθ for 1 <k<r. This implies that for every k there exists an
integer kr such that dik\ak') Φθ and k<k'<r. Let n 1 < < ή p be integers with
the property {nly •••, nr} = {ήly •••, np} and let rλ: = # {i\ni=nλ, 1 <i<r} for

1 < λ < p. Then we know

*i+r2-\ \-rP = r,

rini+r2n2-l \-rPήp = nλ-\-n2-\ \-nr.

For convenience sake we put r o :=O, ΰo:=O and δ λ :=r 0 - | |-rλ. Let Kλ be
the subfield of L defined by

) = z mod Tp (wι = μ,p*λ , δ λ </<r)}

for 1 < λ < p — 1 (note that n, > nλ + 1 > fiλ). Then we have

Kol = LZDKiZD ••• ZD/Cp-jIDjfCp! = L .

We shall claim the following inequality for l < λ < p :

where £λ: =(r—Sλ_ι)(nλ—nλ_1). Let Δ ( ί ) be the restriction of D{i) to ^ λ _!. Then
for l < λ < p , Δ ( ί ) is a higher derivation of Kλ_λ into F oί rank mr for δ ^ ^ i ^ δ x
and of rank zo, —1 for 8λ<i<r respectively. For λ = p , Δ ( t ) is a higher deriva-
tion of i£λ_i into F of rank w, for δ p _!<ί<r. The following five assertions are
easily verified:

(1) Kλ= Π (the field of Δ^-constants).

(2) μ(A^)=μip*
(3) F o r l < λ < p ,

min

For l < λ < p ,

min

where iV denotes the set of positive integers.

(4) α ? e ^ λ _ ! where q:=p*λ-i (δλ_1<i<ίr).

(5) /(Δ: α ; δ ^ + 1 , r)=J(D: *; 8 ^ + 1 , r) f Φθ where Δ=(Δ ( 1 ) , - , Δ(r))

Therefore we get [K^: K]>p*K Furthermore Σ ^ = %H Vnr = n(D).
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Hence we have [L: L']>pn(D). In order to prove the latter half, it suffices to
prove the following: KX^=KX where Kλ : = Kλ[api\ K-ι<i<r] for l < λ < p .
Since [L: L']=pn(D\ we have [Kλ^: Kλ]=p**. Applying the step (I) to Kλ and
4 ( O l^λ(δ λ -i<*'^)> it is seen that [Kλ:Kλ]>p\ Since Kλ^-DKλi)Kλy we
have KX^=KX. Q.E.D.

REMARK 1.4. The converse of the latter half of the Proposition 1.3 does not
hold. Let k be a field of characteristic ^>>0. Let x> y be indeterminates over
k and let L: =k(x,y). Let D(i) (i=ίy 2) be higher derivations on L over k of
rank p— 1 and p2— 1 defined respectively by

Ώ«\y)=y(l+t2).

Then nx=\y n2=2 and J(D: (x,y))=xy—l Φθ. By a simple calculation we see

that U=k(xp\ y 2 ) . Therefore L=L'[xy y], while [L: L']=p4>pni+n2.

(1.5) Let ̂ 4 be a Krull domain of characteristic p>0 with the quo-
tient field K. Let D=(D{1\ •••, D(r)) be an r-tuple of non-trivial higher deriva-
tions of rank m=(mu •••, mr) on ̂  which leave A invariant. Let K' be the field
of /^-constants and A':=Af)K'. Then A' is also a Krull domain. Since any
element of K is of the form αjb with flGA, b^A\ K' is the quotient field of ̂ 4'.
For any prime ideal Q in P(A')y there exists only one prime ideal S in P(^4) such
that £Pf)A'=<2. From this fact we define the homomorphism j : Div(^4')->
Div(^4) by j(β)=e(3>)3> where e{3?) stands for the ramification index of & over
Q. Since A is integral over A', we can define the canonical homomorphism
j : Cl(A')-»Cl(A) induced by the homomorphism j (cf. [8]).

Let XA and X'A be sets of elements defined respectively by

XA\ = {D(z)lz£ΞK[t: m] ! * & £ * , D(z)lz^A[t: m]} ,

XΆι= {D{u)lu\u*ΞA*}

where * denotes the set of invertible elements. Since we have

(D(z1)lz1)(D(z2)lz2) = D(zιz2)jzιz2

and

lz)-' = D{z-*)lz-1 (*ΦO),

XA is an abelian group and XA is its subgroup.
Let 3) be the subgroup of Div(^Γ) consisting of divisors E's such that j(E)

is principal. Then we get Ker(j) = 3)\F(A'). We shall define the homo-
morphism Φo of 3) into XA\X'A by the following manner: Let £ b e a divisor
of 3) and x be an element of K* satisfying j(E)=divA(x). Then we set Φ0(E):
—D{x)jx modulo XA. It is easily seen that Φo is well-defined. Moreover if x'
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i s ini£ ' , Φ0(divA'(x'))=D(x')lx'=l where 1=(1, •••, l)^Ar, hence the homo-

morphism Φ of Ker(J) into XA\XA induced by the homomorphism Φo is also

well-defined. On the other hand, the relation D{x)jx=D(u)lu (x^K*y u^A*)

implies D(xu~1)/xu~1=l, i.e., xu~ι^K' and E=άivA'(ocu~ι). This implies that

Φ is injective (cf. [8], p. 86). Set μ\ =(μι, ~,μr) and n(D):=n1-\ \-nr where

μi:=μ(D(i)) andni:=min{n<^N\mi<μip
n}

Theorem 1.6. Let A, K, K', D and n(D) have the same meaning as in

1.5. Assume the following two conditions hold:

(1) [K:K']=ρu(m.

(2) For each prime ideal 3> in P(A), there exists an element & in Ar such that

the Jacobian J(D: «t) is not contained in S>.

Then the homomorphism Φ: Ker(j)-+XA/XA is an isomorphism.

Proof. Since Φ is injective, it suffices to prove the following: If D{x)jx is

in XA (x^K*), then there exists a divisor E in 3) such that j(E)=divA(x). Set

n: = max {nly •••, n r}. Note that for each prime ideal Q in P{Af) there exists a

unique prime ideal in P(A) which contracts to Q because ApndA\ Therefore

the surjectivity of Φ is seen by showing that if D(x)jx is in XA (x^K*)> then

e{3?) divides v&{x) for every prime ideal 3? in P(A) where v$>(x) denotes the

normalized valuation of K associated to the prime ideal 3?. Hence by localizing,

we may assume that A is a discrete valuation ring with the maximal ideal S>.

Thus we have only to show the following:

Proposition 1.7. Let A be a discrete valuation ring with the maximal ideal

3? and let K, Kr, D and n{D) have the same meaning as in 1.5. Assume that the

following two conditions hold:

(1) [K: K']=pn«>\

(2) There exists an element a in Ar such that the Jacobian J(D: Λ) is not

contained in 3.

If D(x)/x is in JCA (XGX"*) , then e divides v(x) where we put e: =£(ίP) and

v is the normalized valuation of K associated to A.

Proof. Our proof consists of several steps:

(I) First we shall consider the case w, = l (hence μi=ni= 1) for l<i<r.

We shall set Z) ( ί )= {id, Z)(ί)}. Then D ( ί ) 's are derivations. We shall define the

higher derivation Δ ( ί ) = {id, Δ(I)} of rank 1 on K in the following way:

= J-1 del
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for z<=K(l<i<r) where J:=J(D: a). Then we have Δ ( ί )(α j k)=8, A where Sik

denotes the Kronecker's delta (l<i,k<r). Since/is not in ίP, / is a unit of
A, hence A^(A)dA for \<i<r. Set Δ: =(Δ ( 1 ) , —, Δ<r)). Since Δ ( t ) is an bi-
linear combination of D(k)9s and D(k) is also an ^4-linear combination of Δ(*)Js, we
have the following three assertions:

(1) K' is the field of Δ-constants.
(2)
(3)

Hence it suffices to prove the Proposition with respect to Δ instead of D. We
shall prove that e divides v(x) by induction on r. As is well known e takes no
other value than some power of p. Hence in the case r = l , it suffices to prove
the following: If p does not divide v(x), then e=l.

Let π be a uniformisant of the discrete valuation ring A. Then we can
write x=uπv(x) for some u^A*. Since

and since/) does not divide v(x)> we have Δ(1)(7r)/τreA This implies that we
can define the derivation A™ of A\& induced by Δ(1). Set JC: =A\& and JC:
= A'lβ where β: = 3>f]A\ Since A™(a1)=l implies A(I) Φθ, we have
[JC: JC'\>\. Therefore from the inequality e[JC: JC]<[K: K'\=p, it follows
that e=l.

Suppose r > l and the assertion holds for r—ί. Set K: =the field of Δ(1)-
constants and A: =A ΠR. Since [K: K']=ρr and J(A\K:*\2yr)=ly Proposi-
toin 1.3 implies that [K: K]=p and [K: K']=pr~1. Furthermore we have
K=K[ax] and K= K'[a2, •••, ar]. Then the restriction of Δ ( 0 to K is a deriva-
tion on JKΓ such that Δ(I)(^4)C^4 for 2<i<r. Let e1 be the ramification index of
S over ffΠi. Since [K: K]=p and Δ ^ α O ^ l , ^ divides v(x) from the
argument in the case r = l . Therefore we can write Λ =^/y for some u in ^4* and
y in JC*. _It follows from A(x)lx = (A(u)lu)(A(y)/y) that Δ(y)/j; e (A Π JK)
χ [ ί : jιt]=2Ϊ[ί:nι]. Furthermore J{A\R\ a; 2, r ) = l e ^ ϊ * and α2, •• ,α r e^4.
Let ί?2 be the ramification index of Q: =S>f]A over Q'\=$ΐ\A' and C be the
normalized valuation of K associated to the prime ideal Q. Apply the induction
assumption to Δ | Ry then we see that e2 divides ^( y). On the other hand v(x)=
v(y)=e1ϋ(y) and ^ = ^ 2 . Hence e divides v(x)

(II) Suppose that n\=nγ=~-=nr. We shall prove the Proposition by
induction on n. For the case n = l , let K= {z^K\D(z) = (z, •••, z) mod Tμ+λ}.
Then KZ)K(zKf and Proposition 1.3 implies that [K:K]>pr. Since [K: K']
=pr, we get K~Kr and £ divides v(x) by the previous argument. Suppose that
n>\ and the Proposition is proved for n— 1. Let Lj — {zGiί|Z>(<2f) =
(<2r, ••-, 5:) mod Tpμ} and A{:=A (ΊLi. It is easily seen that

(1)
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(2) min {s^N\mi<μip
1+s}=ni-ί=n-ί (l<i<r).

(3) JiDm: *>)=J(D: *)>$£:=&(] Aί.
(4) €tp^A[.

Hence Proposition 1.3 implies that [K:L1]=pr and [L1:K']=p(n~1)r because
[K: K']=pnr. We shall prove that the restriction of D to Lx is an r-tuple of
non-trivial higher derivations of rank m on Lx which leave A{ invariant. We
know L1=Kf[a{y •••, ctp

r] by Proposition 1.3. For any element z in Lίy z is of
the form

where ^denotes the set of non-negative integers. Therefore we get

D{z) = Σ v M l i M f l W v

From Lemma 1.1 and the definition of Lϊ9 it follows that D(aίt)^L1[t: m]. This
implies that D^L^aLxlt: m]. Since Aί=AΓ\Lly D\LX becomes an r-tuple of
non-trivial higher derivations of rank m on Lλ with the desired property. Let
eλ be the ramification index of & over Qλ. Let K be a subfield of K defined by
{z(=K\D(z)=(z, .-,«)mod Tμ+1} where 1 = ( 1 , —, 1). Then we have KZ)
Kz^Lx and Proposition 1.3 implies [K: K]>ρr. Since [K: L^=pr

y we get K=Lλ

and ex divides v(x) by the argument in (I). Hence we can write x—uy for some
u in A* andy in Lf. Therefore D(y)jy^Aι\t: τn\. Let ^2 be the ramification
index of Qλ over 9?f\A' and z;' be the normalized valuation of Lx associated to
the prime idea Qλ. By induction hypothesis, we know that e2 divides v\y) and
therefore e divides v(x).

(Ill) We shall prove the general case. Without loss of generality we may
assume the following:

(1) ^ ! < n 2 < <n r .

(2) J(D:*;k,r)$& for \<k<r.

Let nly •••, ήp and Kλ have the same meaning as in the step (II) of the proof of
Proposition 1.3. We shall use the induction on p. The case ρ=ί is treated
in (II). Suppose that p > l and the Proposition is proved for p—1. Proposi-
tion 1.3 and its proof shows [Kλ^:Kλ]>p9K Since [K: Kf]=pn(D\ we have
[K: K^p'*! and [Kλ: K']=pn<iD)-r*κ Let Ax\ =A ΠKx and ex be the ramifica-
tion index of 3? over Qλ\ = 5 > Π ^ i . Then the step (II) implies that eλ divides
v(x). Hence we can write x=uy for some u in A* and y in ̂ * . Then
D(y)ly^A1[t: m]. For ̂ Ί</</, we have the followings:

(1) μiD
(2) min
(3) JiDlK,: «'; rj+1, r ) = / ( Λ «; r , + l , r ) ? e ^ f where ? : =/>»i.
(4) #{«,—«! I
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Let e2 be the ramification index of Qx over &[\A' and v' be the normalized
valuation of Kx associated to the prime ideal Sλ. Then induction hypothesis
implies that e2 divides v'(y), hence e divides v(x). Q.E.D.

2. Cokernel of Φ

We shall retain the same notations and assumptions used in §1, (1.5).

Proposition 2.1. Let S be a multiplίcatίvely closed subset of A' consisting of
prime elements in A. Let H be the subgroup of Dίv{A') generated by
such that 3f]S Φφ, and L be the subgroup of XA generated by the set
XAI a G A Π A%\. Let L V XΆ denote the subgroup of XA generated by L and XA.
Let f be the restriction of Φ to (H+F(A')IF(A'))ΓiKer(j). Let the homo-
morphisms j s : Cl(As)->Cl(As), Φs: Ker(js)->XAsIXΆs be defined in a similar way
as j and Φ respectively. Then we have the following commutative diagram of exact
rows and columns:

0

ί
Coker(/)

t
LVXΆIXΆ —

(A')IF(A'))Γ[R

1
0

0

ί
--> Coker(Φ)

i

0

0

t
> Coker (Φs)

1
— • XAs/XΆs

* \
>Ker(3s) —

ί
0

where XA\Xf

A->XAs\XΆs is the homomorphism induced by the inclusion XA-*-CAS

and Ker(j)->Ker(js) is the natural homomorphism Cl{A') ^Cl(A's).

Proof. The homomorphism Ker(J)->Ker(J5) is well-defined since we

have a commutative diagram:

C\(A) • C\{AS)

C\{Af) >C\{A's).

The middle sequence forms evidently a complex. For any element D{
XA Π XΆS (x^K*), we can write

D(x)/x = D{ajs)j(ajs) = Ό(a)\a
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for some ajs^A% (a^A,s^S). Since a\s is a unit of As, a is in A%. Hence
D{a)ja is in L V -CΆ and the middle row is exact. The exactness of the third row
is seen as follows:

00 —• H+F(A')IF(A') —> C

ί
ί
0

ϊ.^er(j

1
0

) — Cί(A's)

I
0—Ker(Js)

ί
0

is commutative where G = (H+F(A')IF(A')) Π Ker(J). Since S is generated
by prime elements of A, we have CI(A)G&C\(AS) ([4], Cor. 7.3, [7]). Therefore
Ker(J)->Ker(J5) is surjective. Furthermore Im(/)cLV-£V-£i. The rest is
immediate from the Snake lemma ([2], Chap. 1, §1. Prop. 2). Q.E.D.

Proposition 2.2. Let D= {Dj 10<j<m} be a higher derivation of rank m on
A and let $ be a principal prime ideal in P{A), say, S>=cA. Let

s0: = min {s<=N\(D(c)lc)s<^A[t: m]}

and

{if Dy(c)<=& for all l<7<nι, we put ro:=m+l).

Then the following three assertions hold:

(1) s0 is a power of p.

(2) Write so=p*oy then ao=min{a^Z+\rop*>m+l} whereZ+ denotes the
set of non-negative integers.

(3) (D(c)lc)h (=A[t:m]if and only if s0 divides h.

Proof. (1) Write so=s'p*y pXs\ Then it suffices to prove that ί ' = l .
In the relation

(D(c)lc)so = ( l+. . .+(ΰ r f l (φ)^+. . . ) s / ,

the coefficient of *V* is of the form s\Dro(c)lc)pΛ+a(a^A). If r^p<A>m,
then (D(c)lc)pΛGA[t: m]> i.e., s'=l because of the minimality of s0. Hence if
ί ' > l , we must have r^Km. Then the coefficient of fop(* is in A and Dro(c)pa

is in cp*A. This implies that Dro(c) is in cA=S, which contradicts to the de-
finition of r0 (note that rQ<m).

(2) Set α ' : - m i n { α e Z + | r 0 ^ > m + l } . Then we have (D(c)lc)p"'e
A[t:m], hence by the minimality of s0 we have so<p*'. On the other hand
rop"o>m-\-l because otherwise {D{c)jc)pa°^A[t: m]. Hence ao>a'. Combin-
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ing these, ao=a'.
(3) It suffices to prove the "only if" part. Write h=soq+h\ Q<h'<sQ.

Suppose that (D(c)lc)h(=A[t:m]. Since (D(c)lc)so<=A[t:m] and (D(c)lc)s° is a
unit of A[t:m]9 we see that (D(c)lc)'Όq^A[t: m]. Hence (D(c)lc)h'(=A[t: m]
and h'=Q by the minimality of s0. Q.E.D.

Corollary 2.3. In the above notations, s0 divides e where e:=e(3?).

Proof. Notice that e is a power of p because ίP n CίPn^4 ' for some n.
Hence it remains only to prove that {D(c)jc)e^A[t\ m\. For every prime ideal
Q in P(A), we can write ce=ux for some u^A% and xGK'. Then we know
that (D(c)lc)e = D(u)lu<=AQ[t: m]. Since A= fj AQ9 we have (D{c)jc)e(ΞA[U m].

Q.E.D.

Lemma 2.4. Le£ A be a Krull domain and let au ,av (v>2) be elements
of A such that Supp(divA(ak))f]Supp(divA(aι))=φ for \<ky l<vs βφ/. Let
fk{X) (l<k<v) be polynomials in one variable X over the quotient field of A
defined by

= l+(a[k)X+-+aWXm)lak

with a[k\ —, α ϊ } G A If the product /j(ί) "/v(0 is in A[t: m], then all fk(t)'s are
inA[t:m] (\<k<v).

Proof. We shall use the induction on v. Let γΛ be the smallest integer
among those j such that aψ/ak^A (if aψ\ak^A for all l<j<m, we put
cγk==m-\Γ\y In the case v=2, we may assume that 7ι<rY2- If 7i = w + l ,
then fγ2=m-\-ί ^nd f1(t)9f2(t) are already in A[t: m]9 hence the Lemma is proved.
Suppose that γ ^ m . The coefficient of t^oί f^ή^t) is

Hence (cCy1^la1)-\-(a^la2) is in ^4. This means that ^^y^+^i^yf is in α^^t,
hence a2a

(

y^ is in β^ . Since Supp(divA(a1)) Π Suρp(divi4(^2))=φ, α^ } is in axA.
This is absurd. Suppose that z>>2 and the assertion holds for v— 1. Notice
that Supp(divi4(β1))n Supp(divil(α2 βv)) = Φ By our argument in the case
v=2, f^t) is in A[t:m] and f2(t)-"f^(t) is in A[t:m], From the induction
hypothesis, it follows that/2(ί), •• ,/v(0 is in ^4[£: in], Q.E.D.

Proposition 2.5. L /̂ D be a higher derivation of rank m on A and let
a=ucji" cj» (i/Gi*,;*!, -",j\^Z and cly « ,£v are distinct prime elements of A).
Let

sk: = min {s^N\(D(ck)lck)
s^A[t: m]} .

Then D{a)ja^A[t: m] if and only if sk divides j k far l<k<v.
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Proof. The "if" part of the Proposition is obvious. We shall prove the
"only if" part. Assume that D(a)ja is in A[t: m]. Then we have (Z^O/^)'1---
(D(cv)lc^y» is in A[t: m]. Since cly •••, cv are distinct prime elements of A, the
assumptions of Lemma 2.4 are satisfied. Hence by Lemma 2.4, (Z)(c*)/c*y* is
in A[t: m] for \<k<v. Therefore Proposition 2.2, (3) implies that sk divides

Q.E.D.

Let D=(D^\ * ,Z)(r)) be an r-tuple of non-trivial higher derivations of
rank m=(mly •••, mr) on A. Let c be a prime element of A. Set

s<*>: = min {s^N^D^φ

and

ί0: = max {s^

Then ί0 is a power of >̂ by Proposition 2.2, (1) and s0 divides the ramification
index of cA over cA[\A' by Corollary 2.3.

Let J(D:A): = {J(D:a)\* = (aii: ,ar)ίΞAr}. If /(Zλ ,4) Φ {0}, {<?e
P(^4) |/(2>: ̂ ί j c ^ } is a finite set because 4̂ is a Krull domain.

Theorem 2.6. Lei A, A1\ K, K', D and n(D) be as before. Assume that
J(D: A)*{0} and let 2>ly - , ^ v be all of &ys in P(A) such that J(D: A)d&.
Furthermore assume that [K: K']=pn{D) and S^s (l<k<v) are principal Set

4°: - min
and,

sk: =

Let ek be the ramification index of 9?k over &k[\A' for \<k<v. Then we get
the following exact sequence:

0 -> Ker (j) - XA\X'A -> Π Z\{ek\sk)Z - 0 .

Proof. Let n: =max {nu •••, nr} and S be the multiplicatively closed subset
of A' generated by cf, - ,cξ\ Then we get an isomorphism Φ s : Ker(Js)-»
XAJXΆS from Theorem 1.6. Therefore Proposition 2.1 implies that Coker(/)^

Coker(Φ). Hence it suffices to prove Coker(/)^ Π Z\{ek\s^)Z. Set Qk\ =

SkΓίA' (\<k<v). Then βly —9βv are all prime ideals inP(Ar) with SkΠS =f=φ.
For each k (\<k<v)y we have j(Sk)=ekS

>

k=άΊvA(ckή by the definition. Hence

Next we shall prove the following:
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LV-CΆI-CΆ = <{D(ck)icky>\\<k<v>\/j;AiX'A.

Suppose that D(a)ja<=L (a^A Π^4*), then it is seen that

Hence we can write a=ucji-"C^ for some « G i * and j u " yjv^Z. Notice
that ^(cήjaίΞAltiimi] for \<i<r. Then Proposition 2.5 implies that 4 °

divides j k for \<i<r and \<k<v. Therefore sk divides j k for \<k<v.
Conversely, it is easily seen that (D(ck)lck)

sk is in L (l<k<v). So we have the
required result. Consequently we know

Coker m « <(D(ck)jφ\\<k<vy\/X'Λ
U) <W)l{φ\\£k<>VX''

We shall define the homomorphism θ by the following manner:

θ: πZI(eklsk)Z-> Coker (/),

θ (the residue class of (ju ••• jjv))
V

= the residue class of Π (D(ck)lck)
skh t

Then it is easily seen that θ is well-defined and surjective. We shall show that
θ is injective. Suppose that

θ (the residue class oί(jly ••-,>)) = 1 .

Then there exist elements ily *",i^Z and a^A* such that

(B(a)la) Π (D(ck)lck)*> = U(D(ck)lch)V>.

PutΛ;:= Π act* where dk:=skjk—ekik. Then D(x)/x=l and x^K'. Let vk

be the normalized valuation of K associated to the prime ideal £Pk and Aί be the
localization of A' with respect to 3k. Let uk be a uniformisant of Aί for 1 <k<v.
Since Λ? is in K', there exist elements ak^A'* and fk^Z such that x=akul* for
1<&<>. Then we have dk=vk(x)=vk(aku{ή=vk(u{ή=fkek. Hence ̂  divides
skjky i.e., ^/jΛ dividesyΛ for \<k<v. This implies that ^ is injective. Q.E.D.

Let 9?=cA be a principal prime ideal in P(A) and let ί ( 0(ίP): ==min
^ i<r)y and s ^ ) : =max {$

Theorem 2.7. Assume that A is a unique factorization domain and let

D=(D(1\ * ,Z) ( r )) be an r-tuple of non-trivial higher derivations on A satisfying

the conditions J{D: A)* {0} and [K: K']=ρn(DK Then the fallowings are equi-
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valent to each other:
(i) Φ: Ker(j)->XAIXA is an isomorphism.
(ii) For eachprίme ideal £P in P(A), either J(D: A)<t3?or e(3>)=s(3>) occurs

where e(3>) stands for the ramification index of 5? over 3> Π A'.

Proof. Immediate from Theorem 2.6. Q.E.D.

3. Calculus of divisor class groups

In this section we shall determine divisor class groups of certain rings as
applications of the preceding results. As before k will be a field of charac-
teristic p>0 unless otherwise specified.

Proposition 3.1. Let A=k[x,y] be a two-dimensional polynomial ring over
k with the quotient field K. Let a, β be integers such that 0 < α , β<pn. Let
D be the higher derivation of rank pn—l on K over k defined by

D(x) = x(l+t)*, D(y)=y(l+t)e

and let K' be the field of D-constants. Let py be the maximal p-th power which
divides GCD{a, β). Set a=a'fl, and β=β'ρy. Then we have the following
assertions:

(1) [K:K']=p»-i.
(2) XA\Xf

A=Z\p»-*Z.
(3) Assume that p does not divide either a or β. Then Cl(A')^Z\pnZ

where A': =A ΠK', and A1 is the normalization of k[xp\yp", x**-*'y"'].

Proof. (1) We may assume that p does not divide a'. Set Fs: =
k(xp\yp\ x~&'y*') for 0<s<n. Then we have

Hence G C D ( α ' , / ) = l implies that Fa.1 = Fs(o^"1) and / " ' ε ί ' ^ - F , .
Therefore [F,^: F,]=p for \<s<n. Set sQ\=mm{s\xps^K\ \<s<n). We
shall show that so=n—j. From D(xpnmmΊ)=xpn^\ it follows that

y 1 7 1
o ()

and so<n—γ. On the other hand D(xpn~y~1)ΦΛ^""7""1 because^ does not divide
α'. This implies that so=n—y. Since μ(D)=py

y we know that [K: i^ ' ]>^ n " 7

by Proposition 1.3. Then we get K'=FS0 because FsoαK' C.K=F0 and
[Fo: Fso]=pso=p*-t. Hence [K: Kf]=pso=pn~\

(2) Since A* = k*, we have X'A={1}. We shall show that XA =
{(l+t)ds^k[t:m]\s<=Z} where d:=GCΌ(α, β) and m:=pn—l. Notice that

-CA= {D(f)lf<=K[t:m]\ftΞA-{0}, D{

because fi(/i/Λ)/(/i/Λ) = WfifVlfifT (f» Λ( Φ 0) e il). For every polynomial
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— {0}, the total degree of the coefficient of V in D(f) is not more than that

off for 0<j<m by the definition of D. Hence D{f)ff^A[t: m] implies that

D(f)lf€Ξk[t: m\ S e t / : = Σ % * y (au^k*) and D(f)/f=h(t) where h(T)£Ξk[T].

Then we see

Σ tf,vtf'y(l+O'"+;73 = Σ aijx

Since #, j and Γ are algebraically independent over k, we get (l+t)ι*+jβ=h(t).

Hence ia-\-jβ is constant modulo pn for any i, j with Λ^ 4=0. On the other hand

ia+jβ is a multiple of d=GCΌ(a> β). Therefore we know D(f)lf=(l-\-t)ds'

where s'=(ia+jβ)ld. This means that XA is contained in {(l+t)ds<=k[t: m] \

s^Z}. Since GCD(α, β)=d, there exist integers a, b such that aa+bβ=d.

Then we have D(xayb)lxayb=(ί+t)d. This implies that (l+t)d is in XA.

Hence XA= {(l+t)ds£Ξk[t: m]\s^Z). Let (9: Zlpn~yZ->XA be the homomor-

phism defined by 0(the residue class of s) = (l+t)ds. Then we see easily

that θ is well-defined and surjective. We shall prove the injectivity of θ.

Assume that <9(the residue class of s)=l. Then (l-\-t)ds=ί in a truncated poly-

nomial ring k[t:m\. Write d=d'py and s = s'p\pXdr and p/s'). Since

( l + ^ = ( l + ^ 7 + y * ' and pXά'$\ the coefficient of ^ v + δ does not vanish.

Hence py+δ>pn and h>n—j. This implies that s(=pn~yZ and (9 is injective.

Finally we have XJX^X^Z/p^Z.

(3) Since p does not divide either α or ft we see that the height one

property for D is satisfied. It follows from (1) that [K: K']=pn (note that

7=0). Therefore Theorem 1.6 implies that Ker(j)s*XAIXΆ. Since i is a

unique factorization domain, we have Cl(i4')=Ker(J), hence Cl(A')^ZlpnZ.

The rest is obvious from the fact A' is normal-and integral over k[xpn,yp*y

/ - β / / ] (note that K'=Fn). Q.E.D.

By making use of Proposition 3.1 we get the following:

Proposition 3.2. The divisor class group of a surface S: Zpn=XY is a cyclic

group of order pn.

Proof. Let x, y be independent variables over k. Then the coordinate

ring of the surface S is isomorphic to AΊ: = k[xpn,yp*, xy\. Set a: = l and

β:=pn—l in Proposition 3.1, then we have Qλ(A')^Z\pnZ where A'=AΠK'

is a Krull domain in Proposition 3.1. We shall show that A[=A'. We see

that A[ is normal because the surface S has only isolated singular point (cf. [4],

Th. 4.1). Since A' is the normalization of k[xp", yp", xy] by Proposition 3.1,

(3), we get A{=A'. " Q.E.D.

REMARK 3.3. Let Q be a prime ideal in P(Af) generated by xp* and xy.

Since j(S)=άvrA(x) and since Φ(cl(£))=£(*)/*, c\{3) generates C\{A')^ZjpnZ.
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In order to generalize Proposition 3.2, we shall prove

Π Cl(i?t ) in a certain restricted case as an application of Theorem 1.6.

Proposition 3.4. Let A{ be a polynomial ring in a finite set of variables over
k and set Ki:=Q(Ai) (\<i<r). Let Z)(0 be a non-trivial higher derivation of
rank m{ on K{ over k leaving A{ invariant. Let K\ be the field of D{i)-constants
and set A\: =A{ Π K'{ (1 <z <r) . Assume that the height one property holds for D(i)

and [KiiK<]=pn{ where Λ ί :=n(β^) for \<i<r. Set A:=A1® -®Ar and

A':=A[®-®A'r with L:=Q(A) and L':=Q(A'). Then we have Cl(A')eχ

Π
» = 1

Proof. We have only to prove the Proposition in the case r=2 because we
can get the general case by induction on r. SetA1=k[xu " ,xd] and A2=
Myι>%">yΛ where xly ~,xd and yι, '9ye are independent variables over k.
Then A^k[xlf " ,xd,yι, ••• ye] We shall extend Z)α) to L by the following
way:

Similarly we shall extend Z>(2) to L. Then D: =(Z>(1) D(2)) is a 2-tuple of non-
trivial higher derivations of rank m\=(mv m2) on L over k leaving A invariant.

We shall show that A'=Af)L'. Since K{ (i=ί 2) are regular extensions
of k, K'i(i=l 2) are also regular extensions of k. Besides, Ai(i=l, 2) are in-
tegrally closed integral domains. Therefore Af—A{®A2 is an integrally closed

integral domain ([2], Chap. 5, §1, Cor. of Prop. 19). Furthermore Af)L' is
an integral extension of A' with the same quotient field L'=Q(A f)L')=Q(A')
Hence we have A'=A Π Lf

Next we shall prove that U is the field of /^-constants. It is easily seen
that A{®A2=A'ι[y1, ~,ye] is the ring of Z)(1)-constants in A. Similarly

A^®Ar

2 is the ring of Z>(2)-constants in A. We know that A{®A/

2=(A/

1®A2) Π

(A^Aί) ([2], Chapter 1, §2, Proposition 7). Therefore A'^A[®Af

2 is the ring

of /^-constants in A. It is clear that L'=Q(Ar) is contained in the field of D-
constants. Since A is the integral closure of A' in L, any element of L is of the
form ajb{a^A,b^Ar). Suppose that Ό(a\b)=a\b (a^A,b^Af). Then we
have D[a)=(D(alb)b)=D(alb)D(b)=(alb)b=a, hence a is in A'. This implies
that a/b is in ZΛ Finally U is the field of Z)-constants.

We shall show that the height one property holds for D. Since A is Ar

flat, we know that ht{$[λAi)<\ ( t = l , 2) for all ffGP^) ([4], Proposition 6.4).
Set 3>

i:=S>f]Ai. Then there exists an element a{ in A{ such that the Jacobian
J(D(i): cίi) is not contained in i?,- because the height one property holds for Z)(0.
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On the other hand we have J(B: (aly a2))=J(Dω: αi)/(Z?(2): a2). Suppose that
J(D: (aly a2)) e 3>, then either J(D^: a,) or J(D™: a2) is in S>, say, / ( β ω : a,) e £\
This means that J(D(1): a1)^3>ΠA1=S>

ly which contradicts to the height one
property for Z>(1).

We shall show that [L: L'\=pn{D\ Set L ^ ρ ^ ί ® ^ ) , then we have

LlDLilDL'. We know that [L: L']>^)M(Z)) because of Proposition 1.3. Since
[L:L/] = [L:LJ[L1:L

/], it suffices to prove that [L: Lx]<pnι and [Lx: L']<^n2.
We shall prove that [L:L^\<pni. It is easily verified that L=Q(K1®K2)y

Lλ=Q{K{®K2) and Kl®K2=L} Π (ϋd®!^). Therefore any element of L is of

the form a/β with a^Kx®K2 and β^K[®K2. Let α2, •••, αv (î : ==^wi) be K{-

basis of i^!. Then Kχ®K2 is generated by aλ® 1, •••, αv® 1 over K{®K2. Since

any element of L is of the form a/β (a^Kλ®K2y β^K(®K2), L is generated

by ax®ly •••, β v ®l over Lx, hence [L: L1]<i/=/>ni. Similarly we have [Lx: L']<

Let

for / = 1, 2 ,

X = {D(z)jz\zeίL*y D(z)lzt=A[t: m]}

and,

X9 = {D{U)\U\UΪΞA*)

where f = ( ί i , t2). Since we know that C l ( ^ ί ) — - £ 7 - # ( ί = 1 > 2)» { ) l

and J 7 ; = < i 7 ' = { l } , it remains only to prove that X\χX2^X. Let 0 be the

homomorphism of J?j X X2 into J ? defined by

( f l ( 1 ) ( * , Ω(2\a2)la2) = Ό{aιa2)\aλa2, ( ^

It is easily seen that 0 is injective. We shall show that θ is surjective. Suppose
that D(f)lf^X (f£ΞA-{0}). Then there exist polynomials ^(T t ) in A[Tt]
(i—l, 2) such that D(f)/f=(g1(t1)yg2(ΐ2)). Comparing the total degree with re-
spect to yly " ,ye of D(1)(f) with that oίfg^), we see that gi(ίi) is in A^tλ\ mj.
Writef=^Oyby (ay^Aly by^A2 and {by} is linearly independent over k)y then

Y

we have

This implies that D{1\ay)=g1(t1)ay for all 7. Therefore Ώ{χ\a)ja=gι{tι) for some
flG^ Similarly D<®(b)lb=g2(t2) for some * G i 2 . Hence θ(Dw(a)lay ΰ(2)(δ)/έ)
= D(f)lf. Furthermore we know that X={D(f)lf\f(=A-{O}yD(f)lf£E
A[t: m]}. Therefore θ is surjective and we get the desired result. Q.E.D.
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REMARK 3.5. By the similar method as the proof of Proposition 3.4, we
can get the following fact using units theorem ([10], Corollary 1.8). But the
proof is more complicated, so we omit it:

"Let A{:= © (A{)s ( l < z < r ) be graded unique factorization domains with

(Ai)0=k and let K{ be its quotient field. Assume that Kt (l<i<r) are regular
extensions of k. Let Z)(I) be a non-trivial higher derivation of rank m{ on Ki
over k leaving A{ invariant for \<i<r. Let K\ be the field of Ώ{i)-constants
and set Ai :=AiΓ\Ki (l<i<r). Assume that the height one property holds for
2 ( 0 and [Ki:K<]=pni where w,: = n(Z)<f'>) for \<ί<r. Set A: = A1®>»®Ar

and A':=Ai®-~®A'r with L:=Q(A) and L':=Q(Af). Forthermore assume

that A1® -®Ai (l<i<r) are unique factorization domains. Then we have

C\{Ar)^ Π C\{A\)".

The following Proposition is immediate from Proposition 3.4.

Proposition 3.6. The divisor class group of an affine variety in Λ3r defined by
r

the equations Zii=XiYi (l<i<r) is isomorphic to Π Z\q{Z where q{: =pn*.

REMARK 3.7. The coordinate ring of this variety is isomorphic to A': =
k[xfi,y?i9x1y1, " ,x?r,y?r,xryr]. And if we denote by 3{ a prime ideal in
P(A') generated by xfi, xφ for l < i < r , then cl(^) (\<i<r) generate C\(A').

As another generalization of Proposition 3.2 we have the following:

Proposition 3.8. The divisor class group of a hyper surf ace S: Zpn=XιX2~
Xr (**^2) is isomorphic to (ZjpnZ)r~ι. The coordinate ring of this hypersurface S
is isomorphic to A': =k[xf", x£"9 •••, xf, xλx2^'X^\ where xu x2, •••_, xr are independ-
ent variables over k. If we denote by Q{ a prime ideal in P(A') generated by xf
andxλXϊ~xrfor \<i<r— 1, then cl{βϊ) (\<i<r—\)generate Cl(A').

Proof. We see easily that A' is the coordinate ring of the hypersurface S.
We shall set A=k[xl9 x2, •••, xr] and K: =Q(A). Let D(i) be the higher deriva-
tion of rank^)Λ— 1 on K over k satisfying

for 1 <i<r— 1. Then we have

J(D: («,, - , &„ -,xr)) = (-l)'+'«, i, »*,

for l < ί < r where D=D(a\ •• ,D(r~1)) and the symbol Λ over a letter means
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that the letter is missing. Let K' be the field of /^-constants. Then Proposi-

tion 1.3 implies that [K: Kf]>p^r~ι\ We shall set

for \<i<r-l and Kr:=k(x{\ - , *>", xλ-xr). Then i ^ - ^ , £ , = Ki+1(xi+1)
and #f + 1 e iΓ / + 1 for 1 < z < r — 1 . Besides, Kθ>K'lDKr. This implies that
[K: Kf]<pn^r-ι\ hence [i£: I Γ ] ^ " 0 " " 1 ' . Since the hypersurface S has no sin-
gularity of codimension one, we see XhaxA' is normal. Then we get A'=A Π K'.
Therefore we have Q\(A')^XA\X'A by Theorem 1.6. Let θ be the homo-
morphism of (Z\pnZ)r~~ι into XA defined by

#(the residue class of (jly •• ,yr_1))

= D{ά)la

where Λ: ==#/i • #ίl~1

1. Then # is well-defined and bijective by the similar de-
vice to the proof of Proposition 3.1. Consequently C\{A')^XAIXA^XA^

(ZlpnZ)r-\ Since D{xi))xi (1 <i<r- 1) generate ^ , c l (^ ) (1 < / < r - l )
generate Cl(i4'). Q.E.D.

For future reference we shall recollect the known results concerning Galois
descent and semigroup rings. Let G be a finite group of automorphisms of a
Krull domain A and let A' be the invariant subring of A with respect to G.
Since A is integral over Af, we can define the homomorphism j : Cl(A')—>Cl(A)
by J(cl(ώ))=cl(Σ e{S)&) where the sum is taken over all prime ideal £> in P(A)
such that 3?|Ί A'=Q. If every prime ideal ίP in P(A) is unramified over ^ Π A'y
A is called divisorially unramified over A'.

Lemma 3.9. If A is divisorially unramified over Ar, there is an isomorphism
Ker(j)^H\GyA*) (cf. [4], Theorem 16.1).

Lemma 3.10. Let 3){A\A') be the Dedekind different of A over A1. Then

we have the following] a prime ideal 2? in P(A) is unramified over 3*0 A' if and

only if S)(A\A')<t$ ([4], Proposition 16.3).

Let f{X) be the minimal polynomial for a primitive element a of Q(A)
over Q(A'). Let/'(X) denote the derivative of f(X) with respect to X. Then
we havef'(a)<^£)(AIA'). Hence each prime ideal & in P{A) such t h a t / ^ α j φ ^
is unramified over 3? Pi A' by Lemma 3.10.

Furthermore we need the following fact concerning semigroup rings.

Lemma 3.11. Let K^T] be a semigroup ring over afield K{ generated by a
semigroup ΓdZΐ (i= 1,2). Assume that K{ [Γ] (£= 1, 2) are Krull domains. Then
we have C/(ίΓ1[Γ])=C/(JR:2[Γ]) (cf. [1], Proposition 7.3).
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By making use of Proposition 3.8 and Galois descent we get the following:

Proposition 3.12. Let k be a field of arbitrary characteristic. Then the

divisor class group of a hypersurface S: Zd=X1X2"'Xr (r>2) over k is isomorphic

to {z\dzγ-\

Proof. It is easily seen that the coordinate ring of the hypersurface S is

isomorphic to A':=k[xd, " ,xi, x^ x,] where xu •••,#, are independent varia-

bles over k. Since A' is generated by monomials, we may assume that k is

algebraically closed by Lemma 3.11. Let p denote the characteristic of k. In

the case ^ = 0 , we can conclude the result simply through Galois descent. So

we omit the proof. Assume that jp>0 and write d=apn, pXa. We shall set

B=k[xi", •••, xpr y Xi' 'Xr]* t n e n w e have BID A'. Let ω be a primitive α-th root

of unity and σ, be the automorphism of B defined by the following manner:

σ, (*?") = ω*f , σi(xf) = xf ( l < j < r - l , j φ ί ) ,

σi(xf) = ω~ιxF and, σi(Xi "Xr) = x^-x,

for \<i<r— 1. Then σι is well-defined. Let G be the subgroup of Aut B

generated by σ, (l<i<r— 1). Then we get BG=Af. In order to use Galois

descent, we must prove that B is divisorially unramified over A'. We shall set

K i l = k ( x d

u •••, XJ, Xf+U •••, xf, Xi — Xr)

for \<i<r— 1. Then Fs(T)=Ta—xd

s is the minimal polynomial for a primitive

element xp° of Ks_x over Ks and F's(x?)=a(xp")a~ι for \<s<r where J^o: =j?(5)

and Kr:=Q(A'). Therefore every prime ideal & in P(B) except <£s=(x£, xx—x})

(\<s<r) is unramified over 3*0 A'. By a direct calculation the ramification

index of £P, over 3?s Π -4' is one. Hence B is divisorially unramified over A'. By

Galois descent we get the following exact sequence:

0 - * H\G, £*) -> C1(J5G) -

Since G acts trivially on β * = β * , we know that ^ ( G , β * ) ^ H o m z ( G , A*).

Furthermore it is easily verified that Homz(G, k*)^(Z\aZ)r~x because ω is in k.

On the other hand, Proposition 3.8 shows that Cl(B)^(Z/pnZ)r~1. Let Q{ be a

prime ideal in P(Af) generated by xd and xl"-xr for \<i<r— 1. Then we have

ffiΠil^^ and j ( ^ ) = 2>. w h e r e j : Div(^r)-^Div(J5). Besides, c l ( ^ ) ( l <

*'<>— 1) generate C\(B)^{ZjpnZ)r~ι. Finally we get the following exact se-

quence :

0 -* (Z/aZγ-1 -> Cl(Af) -> (Z//Z) r - ! -> 0 .

Since α and^M are relatively prime, Έxtι

z((ZjpnZ)r'1, {Z\aZ)r~x) vanishes and the

above sequence splits ([3], p. 290, Theorem 1.1). This implies that Cl(^4')^

(Z\dZy~\ Q.E.D.
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REMARK 3.13. In the notations of the proof of Proposition 3.12, pnc\{Qt)
(1 <i<r— 1) generate Ker(j) because j(pn£i) = divB(xf) and Ker(j)e^
Hom z(G, k*)^(ZlaZ)r-\ Furthermore it follows from Proposition 3.8 that
cl(^) ( l< i<r—1) generate Cl(A') modulo Ker(J). Hence c l (^ ) ( l < / < r - l )
generate Cl(A').

Proposition 3.14. Let k be a field of arbitrary characteristic. Then the
divisor class group of the homogeneous coordinate ring of a Veronese transform vd(Pr)
of a projective space Pr over k(d>2) is a cyclic group of order d.

Proof. Let x0, xl9 •••,#,, be independent variables over k. We shall set
A: =k[x0, xu •••, xr]. Let A' be the subring of A generated by monomials with
degree d. Then A' is isomorphic to the homogeneous coordinate ring of vd(Pr).
We may assume that k is algebraically closed by Lemma 3.11. Let̂ > denote the
characteristic of k. In the case ρ=0, we have Qλ(A')^Z\dZ by [8], p. 85, (1).
Assume that^>>0 and d is a power of p, say, d~pn Let D be the higher de-
rivation on Q(A) over k of rank d—\ defined by D(xi)=xi(l-\-t) (0<i<r).
Then we see easily that A' is the ring of ^-constants and [K: K'] = d
where K: =Q(A) and KΊ =Q{A'). Since J(D: Xi)=Xi(0<i<r), the height one
property is satisfied. Hence by Theorem 1.6, Cl (^') ^ Ker (7) ̂ J?^/J?i ̂ -£4.
Let θ be the homomorphism of Z\dZ into XA satisfying θ (the residue class of
j)=D((xo)lxoy. It is easily seen that θ is well-defined and bijective. Hence we
have C\(A')^ZjdZ. If d is not a power of p, write d=apn, pXa and let B be
the subring of A generated by monomials with degree pn. Let ω be a primitive
fl-th root of unity and let σ be the automorphism of B defined by σ(M)=ωM
for every monomial M with degree p*\ Let G be the subgroup of Aut B
generated by σ. Then we have A'=BG. Since xf is a primitive element of
Q(B) over Q(A') for 0 < i < r , it is easily seen that B is divisorially unramified
over A'. By the similar device to the proof of Proposition 3.12, we get
Cl (A')cχZldZ. Q.E.D.

All rings appeared in the above Propositions are generated by monomials.
The coordinate ring of the following surface is not generated by monomials:

Proposition 3.15. Let n be a positive integer and s be a non-negative in-
teger with 0<$<n. Then the divisor class group of a surface S: Zp =XP Yp — Y
is isomorphic to Zjpn~sZ.

Proof. Let x, y be independent variables over k. Then it is easily seen
that the affine coordinate ring of the surface S is given by A': =k[xpn,ypn, xpsyp"
—y]. Set A: =k[x,y] and let D be the higher derivation of rank m: =ρn—l on
Q(A) over k defined by D(x)=x-\-t, D(y)=y+yp"tps\ Then it is easily checked
that the assumptions in Theorem 1.6 are satisfied. Define the homomorphism



P-RADICAL DESCENT OF HIGHER ECPONENT 747

of Zjpn~sZ into XA by Θ (the residue class of i)=(Ω(y)lyY. Then θ is well-

defined and injective. We shall show that θ is surjective. Suppose that

D(f)lf(ΞA[t: m] (f<=A—{0})> then there exists an element g(T) of A[T] such

that Ω(f)lf=g(t). Since the degree with respect to x of the coefficient of V in

D(f) is not more than that of/ for 0< j<nι, we have g(t)^k[y] [t:m]. Write

/ = <Φ)+<h(y)x-\ Vah{y)xh,

Λv(y)eA|>] (0<v<h) and

From Ω(f)=fg(t)y we get

Comparing the coefficients of Λ;̂  on both sides, we have Ώ(βh(y))—ah(y)g(t) D e~

cause x, y and J1 are algebraically independent over k. By Lemma 3.17, there

exists an integer / such that g(t)={D{y)ly)\ Hence θ is surjective and C l ^ ! ' ) ^

Zlpn~sZ. Q.E.D.

REMARK 3.16. Let Q be the prime ideal in P{Af) generated by ypn and

xρ
syp*-.ym Then cl(S) generates Cl(A'). The q-th symbolic power S(q) of Q

is a principal ideal generated by ypn"s where q: —pn~s.

Lemma 3.17. Let A=k[y] be α one-dimensionαlpolynomial ring over k. Let

n be a positive integer and s be a non-negative integer with 0<s<n. Let D be the

higher derivation of rank m: =pn—1 on Q(A) over k defined by D(y)=yJ

Γy
pntps. If

D(f)lf(f(=A—{0}) is in A[t:m], there exists an integer i such that D(f)/f=

(D(y)lyy

Proof. Set A': =k[ypn~s], then we have Ar=A Π Kf where K' is the field of

Z)-constants. Notice that £P: =yA is the only prime ideal in P(A) such that

Dq{A)(Z$ (q: =ps). Then we have e(3>)=pn~s and s(2>)=l. Hence we get the

following exact sequence by Theorem 2.6.

0 ^ Ker (j) - XA\X'A X ZIp^Z -> 0 .

Notice that η (the residue class of (D(y)ly)3)=the residue class of j. Further

more Ker(J)»Cl(J ' )=0 and X'A= {1}. So we have the desired result.

Q.E.D.
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