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1. Introduction

Recently, several local moves of knots and links were definedand studied actively
in many papers, for example [2], [5], [7], and [8].

In this paper, we define a new local move on knot diagram calleda Milnor move
of order or simply an -move. Namely, let be an oriented knot in an ori-
ented 3-space 3 and let 3 be a 3-ball in 3 such that ∩ 3 is the tangle illus-
trated in Fig. 1. The transformation from Fig. 1(a) to 1(b) iscalled an +-move and
that from Fig. 1(b) to 1(a) is called an −-move. Furthermore an -move means
either an +-move or an −-move. For two knots , ′ in 3, is said to be

-equivalent to ′ or and ′ are said to be -equivalentif can be transformed
into ′ by a finite sequence of -moves, [5].

In [6], Milnor introduced the Milnor link. Namely a link is called the Milnor
link if is transformed into a trivial link by an 2-move. Now we generalize this
move to an -move for any positive integer (≥ 2).

Almost local moves known up to the present change the knot cobordism, [1]. But
we will see that an -move does not change the knot cobordism for any integer

(≥ 2), see Proposition.
In Section 2, we study a relation between the Alexander polynomials of

-equivalent knots and a property of -equivalence of knots and prove Theorems 1
and 2.

A relation of Alexander polynomials of cobordant knots was known in [1]. The
result we obtain in Theorem 1 is more concrete than that of [1]for cobordant knots
which are -equivalent. Theorems 1 and 2 give a classificationof cobordant knots
by an -move.

For a knot , ( ) means the Alexander polynomial of .

Theorem 1. For two knots , ′ and an integer ≥ 2, if is -equivalent to
′, then

∏

=1

{(1− ) − (− ) }{(1− ) − (− ) } ( )
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{(1− ) − (− ) }{(1− ) − (− ) } ′ ( )

for some integers , , , , , and , 0≤ , , , ≤ , + = + = .

Theorem 2. For two knots , ′ and an integer ≥ 2, let be -equivalent
to ′. Then is not -equivalent to′ for any integer ( 6= ) ≥ 2.

A knot is a ribbon knot if bounds a singular disk with only so-called ribbon
singularities, Fig. 2. Moreover it is easily seen that is a ribbon knot if and only if
(⊂ 3[0]) bounds a non-singular locally flat disk which does not have minimal points
in the half space 4

+ = {( ) ∈ 4 | ≥ 0} of 4, where 3[ ] = {( ) ∈
4 | = }. (If bounds a non-singular locally flat disk in4

+, is called a slice
knot.)

If can be transformed into a trivial knot by a finite sequence of +-moves, we
see that is a ribbon knot, Proposition, and so we can use Theorem 1 to classify rib-
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bon knots by - moves. Indeed, we will classify almost all prime ribbon knots up to
10 crossing points by Theorem 1 in Section 3.

2. Properties of Mn-moves

In this section, we study some properties of -moves and proveTheorems. We
prepare Lemmas 1 and 2 to prove Theorem 1.

To calculate the Alexander polynomial of -equivalent knots, let us define a
local move, called ¯± -moves. The tangle transformation from Fig. 3(a) to 3(b) is
called an ¯+-move and that of Fig. 3(b) to 3(a) is called an̄−-move.

Lemma 1. (1) An + (or −)-move can be realized by an̄ + (resp. ¯−)-
move.
(2) An ¯ + (or ¯−)-move can be realized by an + (resp. −)-move.

Proof. (1) By the deformations illustrated in Fig. 4, we obtain (1).
(2) We easily see (2) by the definitions of these moves.

Lemma 2. For two knots , ′ and an integer (≥ 2), if can be transformed
into ′ by an +-move, then

( ) = ± {(1− ) − (− ) }{(1− ) − (− ) } ′ ( )

for some integers , and , 0≤ , ≤ , + = .
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Proof. Suppose that can be transformed into′ by an +-move, hence by
an ¯+-move by Lemma 1. Namely can be ambient isotopic to the band sum of
′ and an -component trivial linkL , by bands, say 1 . . . , and let us span
disks 1 . . . with singularities, say 1, 21, 22 . . . 1, 2 of ribbon type to

L , where 1 = 1∩ 2, 1∪ 2 = ∩ +1 for 2 ≤ ≤ −1 and 1∪ 2 = ∩ 1,
Fig. 5(a).

Performing an orientation preserving cut along1 and attach a tube along a
subdisk of +1 or 1 for 2 ≤ ≤ , Fig. 5(b). Hence we obtain an orientable surface

1∪· · ·∪ , where 1 is obtained from 1∪ 1 by an orientation preserving cut along

1 and = ( − ( 1 ∪ 2 : )) ∪ ∪ for 2 ≤ ≤ , where ( : ) means
the regular neighborhood of in .

Let ′ be an orientable surface of′. If the singularity of ′ ∩ is not empty,
it consists of arcs of ribbon type of ′ ∩ . Performing the orientation preserving cut
along these arcs for each , we obtain an orientable surface of.

To calculate ( ) of , we take a set of basis of the first homology1( ) of
including , illustrated in Fig. 6. Let be a Seifert matrix of and hence ( )
is the following, where +, + mean the lift of , respectively over the positive
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( ) = | − ′|

=

+
1 · · · +

−1
+ +

1
+
2 · · · +

1 ǫ1
δ1 − 1

... 0
. . .

. . .
0

−1 0 . . . − 1
0

− 1 ǫ δ

1 −ǫ1
1−δ1 − 1

2 − 1 ... 0
...

. . .
. . .

* *

0 − 1 −ǫ 1−δ

0 * ′ ( )

whereδ = 0, ǫ = 1 or δ = 1, ǫ = −1. Let us denote =δ1 + · · · + δ and = − .
Then ǫ1 · · · ǫ = (−1) and (−1) ǫ1 · · · ǫ = (−1) . Therefore

( ) = {(−1) −1( − 1) + (− ) }{(−1) −1( − 1) + (− ) } ′ ( )

= {(1− ) − (− ) }{(1− ) − (− ) } ′ ( )

Let , ′ be those of Lemma 2. Then′ can be transformed into by an
−-move. Hence we easily obtain Theorem 1 by Lemmas 1 and 2.

Now, we apply Lemma 2 for = 2, 3 and 4.

Corollary 1. Suppose that a knot can be transformed into a trivial knot by a
finite sequence of +-moves.

(1) If = 2 ( ) = ± ∏
( − 2) (2 − 1) ( 2 − + 1)2

(2) If = 3 ( ) = ± ∏
( 2 − 3 + 3) (3 2 − 3 + 1)

×( 3 − 3 2 + 2 − 1) ( 3 − 2 2 + 3 − 1)
(3) If = 4 ( ) = ± ∏

( 3 − 4 2 + 6 − 4) (4 3 − 6 2 + 4 − 1)
×( 4 − 4 3 + 6 2 − 3 + 1) ( 4 − 3 3 + 6 2 − 4 + 1)
×( 4 − 4 3 + 5 2 − 4 + 1)2

Proof. We apply to Lemma 2 in the following cases respectively. If = 2, we
consider the case that = 0, = 2 and = = 1. If = 3, we do the cases that

= 0, = 3 and = 1, = 2. If = 4, we do the cases that = 0, = 4 and
= 1, = 3 and = = 2.
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Let ▽ ( ) be the Conway polynomial of . It is well-known that▽ ( − −1) =
( 2). Therefore we easily obtain the following.

Corollary 2. (1) If can be transformed into a trivial knot by a finite se-
quence of +

2 -moves, ▽ ( ) =
∏

(1− 2 2) (1 + 2)2 .
(2) If can be transformed into a trivial knot by a finite sequence of +

3 -moves,
▽ ( ) =

∏
(1 + 3 4) (1− 4 − 6) .

K. Habiro introduced a local move, called the -move, [2], [7]. We see that an
-move can be realized by a finite sequence of -moves as illustated in Fig. 7,

which is also obtained by the result of [2]. But the converse is false by Example 1.

EXAMPLE 1. For any integer ≥ 2, there is a knot which is -equivalent
to a trivial knot O (namely can be transformed intoO by a finite sequence of

-moves) but not -equivalent toO. For example, let be the knot illustrated
in Fig. 8. Then we easily see that is -equivalent toO. Suppose that is

-equivalent toO. Then we obtain that (−1) = ±(2 − 1)2 for an integer
by putting = −1 in Theorem 1. On the other hand, we obtain that ( ) =

( − 1)2( −1) ± −1 by calculating the determinant of Seifert matrix of . Hence
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a -move

Fig. 8.

≈ 927 ≈ 941

Fig. 9.

(−1) = 22( −1) ± (−1) −1 6= ±(2 − 1)2 , which is a contradiction.

EXAMPLE 2. By the projections of ribbon knots in [4], we easily see that 61, 820,
946 and 10140 are 2-equivalent to a trivial knotO. Since the knots in Fig. 9 are am-
bient isotopic to 927 and 941 respectively, 927 and 941 are 3-equivalent toO.

Next let us prove Theorem 2.

Proof of Theorem 2. Suppose that there is an integer (6= ) ≥ 2 such that
is -equivalent to ′. Then we obtain that

∏

=1

{(1− ) − (− ) }{(1− ) − (− ) } ( )

= ±
∏

=1

{(1− ) − (− ) }{(1− ) − (− ) } ′ ( )

and

∏

=1

{(1− ) − (− ) }{(1− ) − (− ) } ( )

= ±
∏

=1

{(1− ) − (− ) }{(1− ) − (− ) } ′ ( )
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for some integers , , , , , and , 0≤ , , , ≤ , + = + =
and , , , , , and , 0≤ , , , ≤ , + = + =

by Theorem 1. By putting =−1, we obtain that (2− 1)2 α = ±(2 − 1)2 β,
(2 − 1)2 α = ±(2 − 1)2 β, whereα = (−1) and β = ′ (−1). Therefore we
obtain that (2 − 1) = (2 − 1) for some integers , .

But we may show that it is a contradiction in the following. Wesuppose that there
exist , , , with > ≥ 2 such that (2− 1) = (2 − 1) . Let = and

= , where , ∈ {2 }∞=0 and integers , are odd. After replacing ( ) by ( ),
we can assume that≥ and = / ∈ {2 }∞=0. Then we have (2−1) = (2 −1) .
Since , are odd and 2> 2 ≥ 4, we have (−1) ≡ (−1) ≡ (−1) ≡ −1 (mod 4).
Thus = 1, so (2− 1) = (2 − 1) . Let = 2 − 1. Then we have

(1) = (2 − 1) = (2 − 1) ≡ (−1) ≡ −1 (mod 2 )

Squaring the above, we have

(2) 2 ≡ 1 (mod 2 )

Now, since ( 2 ) = 1, by Euler’s Theorem (cf. [3, p. 33]) we have

(3) φ(2 ) ≡ 1 (mod 2 )

whereφ(2 ) is Euler’s phi function (the number of positive integersprime to 2 and≤
2 ). Sinceφ(2 ) = 2 −1 and (2 2−1) = 2, (2) and (3) imply 2 ≡ 1 (mod 2 ). Since
≥ 3, this equation has 4 solutions ≡ ±1, 2 −1 ± 1 (mod 2 ). But, by (1) it has

only ≡ −1 (mod 2 ), so 2 ≡ 0 (mod 2 ). Hence ≥ . This is a contradiction.

3. A classification of ribbon knots by Mn-moves

For two knots (⊂ 3[ ]) and ′(⊂ 3[ ]) for < , if there is a non-singular
locally flat annulusA in 3[ ] with A ∩ 3[ ] = and A ∩ 3[ ] = − ′, we say
that is cobordant to ′, [1]. Hence if is cobordant to a trivial knotO, is a slice
knot and moreover ifA does not have minimal points, is a ribbon knot.

Proposition. For two knots , ′ and an integer (≥ 2), if is -equivalent
to ′, then is cobordant to ′.

Proof. Since is -equivalent to′, there are knots 0(= ), 1 . . . (= ′)
such that can be transformed into+1 by an +-move or an −-move. Suppose
that is contained in 3[2 ] for = 0, 1 . . . .

If we perform a hyperbolic transformation, Fig. 10, to (or+1) in 3[2 + 1]
and obtain +1 (resp. ) and a trivial knot split from +1 (resp. ).
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Fig. 10.

Performing the above discussion to each , we obtain a non-singular locally flat
annulusA in 3[0 2 ] with ∂A = ∪ (− ′), namely is cobordant to′.

Hence if can be transformed into a trivial knot by a finite sequence of (or
+)-moves, is a slice (resp. a ribbon) knot. Therefore if is nota slice knot, is

not -equivalent to a trivial knotO.
In this section, we consider the following by using Theorem 1: Are the prime rib-

bon knots up to 10 crossing points -equivalent toO for some integer (≥ 2)?
By Example 2, we already see that 61, 820, 946 and 10140 are 2-equivalent toO

and that 927 and 941 are 3-equivalent toO.

ribbon
knot

Alexander polynomial M2 M3 M
( ≥ 4)

61 2 2 − 5 + 2 Y N N
88 2 4 − 6 3 + 9 2 − 6 + 2 N N N
89

6 − 3 5 + 5 4 − 7 3 + 5 2 − 3 + 1 N N N
820 ( 2 − + 1)2 Y N N
927

6 − 5 5 + 11 4 − 15 3 + 11 2 − 5 + 1 N Y N
941 3 4 − 12 3 + 19 2 − 12 + 3 N Y N
946 2 2 − 5 + 2 Y N N
103 6 2 − 13 + 6 N N N
1022 2 6 − 6 5 + 10 4 − 13 3 + 10 2 − 6 + 2 N N N
1035 2 4 − 12 3 + 21 2 − 12 + 2 N N N
1042

6 − 7 5 + 19 4 − 27 3 + 19 2 − 7 + 1 N N N
1048

8 − 3 7 + 6 6 − 9 5 + 11 4 − 9 3 + 6 2 − 3 + 1 N N N
1075

6 − 7 5 + 19 4 − 27 3 + 19 2 − 7 + 1 N N N
1087 ( 2 − + 1)2(−2 2 + 5 − 2) ? N N
1099 ( 2 − + 1)4 ? N N
10123 ( 4 − 3 3 + 3 2 − 3 + 1)2 N N N
10129 2 4 − 6 3 + 9 2 − 6 + 2 N N N
10137 ( 2 − 3 + 1)2 N N N
10140 ( 2 − + 1)2 Y N N
10153

6 − 5 − 4 + 3 3 − 2 − + 1 N N N
10155

6 − 3 5 + 5 4 − 7 3 + 5 2 − 3 + 1 N N N
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Here Y and N mean “yes” and “no” respectively.

Question. Are 1087 and 1099 2-equivalent toO?
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