

| Title        | On Milnor moves and Alexander polynomials of knots       |  |  |  |
|--------------|----------------------------------------------------------|--|--|--|
| Author(s)    | Ishikawa, Tsuneo; Kobayashi, Kazuaki; Shibuya,<br>Tetsuo |  |  |  |
| Citation     | Osaka Journal of Mathematics. 2003, 40(4), p.<br>845-855 |  |  |  |
| Version Type | VoR                                                      |  |  |  |
| URL          | https://doi.org/10.18910/9358                            |  |  |  |
| rights       |                                                          |  |  |  |
| Note         |                                                          |  |  |  |

# Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Ishikawa, T., Kobayashi K. and Shibuya, T. Osaka J. Math. 40 (2003), 845–855

## ON MILNOR MOVES AND ALEXANDER POLYNOMIALS OF KNOTS

TSUNEO ISHIKAWA, KAZUAKI KOBAYASHI and TETSUO SHIBUYA

(Received April 11, 2002)

#### 1. Introduction

Recently, several local moves of knots and links were defined and studied actively in many papers, for example [2], [5], [7], and [8].

In this paper, we define a new local move on knot diagram called a Milnor move of order *n* or simply an  $M_n$ -move. Namely, let *k* be an oriented knot in an oriented 3-space  $R^3$  and let  $B^3$  be a 3-ball in  $R^3$  such that  $k \cap B^3$  is the tangle illustrated in Fig. 1. The transformation from Fig. 1(a) to 1(b) is called an  $M_n^+$ -move and that from Fig. 1(b) to 1(a) is called an  $M_n^-$ -move. Furthermore an  $M_n$ -move means either an  $M_n^+$ -move or an  $M_n^-$ -move. For two knots k, k' in  $R^3$ , k is said to be  $M_n$ -equivalent to k' or k and k' are said to be  $M_n$ -equivalent if k can be transformed into k' by a finite sequence of  $M_n$ -moves, [5].

In [6], Milnor introduced the Milnor link. Namely a link L is called the Milnor link if L is transformed into a trivial link by an  $M_2$ -move. Now we generalize this move to an  $M_n$ -move for any positive integer  $n (\geq 2)$ .

Almost local moves known up to the present change the knot cobordism, [1]. But we will see that an  $M_n$ -move does not change the knot cobordism for any integer  $n (\geq 2)$ , see Proposition.

In Section 2, we study a relation between the Alexander polynomials of  $M_n$ -equivalent knots and a property of  $M_n$ -equivalence of knots and prove Theorems 1 and 2.

A relation of Alexander polynomials of cobordant knots was known in [1]. The result we obtain in Theorem 1 is more concrete than that of [1] for cobordant knots which are  $M_n$ -equivalent. Theorems 1 and 2 give a classification of cobordant knots by an  $M_n$ -move.

For a knot k,  $\Delta_k(t)$  means the Alexander polynomial of k.

**Theorem 1.** For two knots k, k' and an integer  $n \ge 2$ , if k is  $M_n$ -equivalent to k', then

$$\prod_{i=1}^{u} \{(1-t)^n - (-t)^{p_i}\}\{(1-t)^n - (-t)^{q_i}\}\Delta_k(t)$$

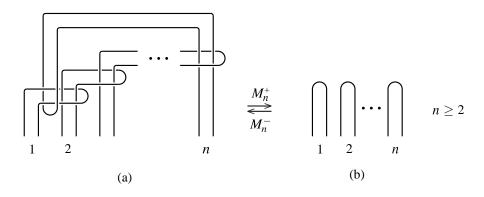



Fig. 1.

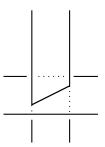



Fig. 2.

$$= \pm t^{s} \prod_{j=1}^{v} \{(1-t)^{n} - (-t)^{r_{j}}\} \{(1-t)^{n} - (-t)^{s_{j}}\} \Delta_{k'}(t)$$

for some integers s, u, v,  $p_i$ ,  $q_i$ ,  $r_j$  and  $s_j$ ,  $0 \le p_i$ ,  $q_i$ ,  $r_j$ ,  $s_j \le n$ ,  $p_i + q_i = r_j + s_j = n$ .

**Theorem 2.** For two knots k, k' and an integer  $n \ge 2$ , let k be  $M_n$ -equivalent to k'. Then k is not  $M_m$ -equivalent to k' for any integer  $m (\neq n) \ge 2$ .

A knot k is a ribbon knot if k bounds a singular disk with only so-called ribbon singularities, Fig. 2. Moreover it is easily seen that k is a ribbon knot if and only if k ( $\subset R^3[0]$ ) bounds a non-singular locally flat disk which does not have minimal points in the half space  $R_+^4 = \{(x, y, z, t) \in R^4 \mid t \ge 0\}$  of  $R^4$ , where  $R^3[a] = \{(x, y, z, t) \in R^4 \mid t = a\}$ . (If k bounds a non-singular locally flat disk in  $R_+^4$ , k is called a slice knot.)

If k can be transformed into a trivial knot by a finite sequence of  $M_n^+$ -moves, we see that k is a ribbon knot, Proposition, and so we can use Theorem 1 to classify rib-

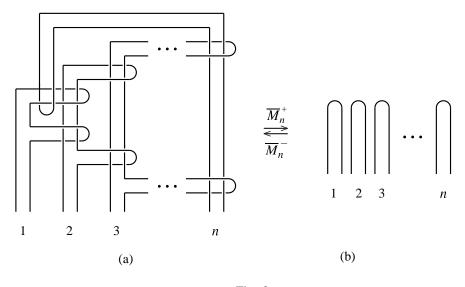



Fig. 3.

bon knots by  $M_n$ - moves. Indeed, we will classify almost all prime ribbon knots up to 10 crossing points by Theorem 1 in Section 3.

## 2. Properties of $M_n$ -moves

In this section, we study some properties of  $M_n$ -moves and prove Theorems. We prepare Lemmas 1 and 2 to prove Theorem 1.

To calculate the Alexander polynomial of  $M_n$ -equivalent knots, let us define a local move, called  $\bar{M}_n^{\pm}$  -moves. The tangle transformation from Fig. 3(a) to 3(b) is called an  $\bar{M}_n^+$ -move and that of Fig. 3(b) to 3(a) is called an  $\bar{M}_n^-$ -move.

**Lemma 1.** (1) An  $M_n^+$  (or  $M_n^-$ )-move can be realized by an  $\bar{M}_n^+$  (resp.  $\bar{M}_n^-$ )-move.

(2) An  $\bar{M}_n^+$  (or  $\bar{M}_n^-$ )-move can be realized by an  $M_n^+$  (resp.  $M_n^-$ )-move.

Proof. (1) By the deformations illustrated in Fig. 4, we obtain (1).

(2) We easily see (2) by the definitions of these moves.

**Lemma 2.** For two knots k, k' and an integer  $n \ge 2$ , if k can be transformed into k' by an  $M_n^+$ -move, then

$$\Delta_k(t) = \pm t^r \{ (1-t)^n - (-t)^p \} \{ (1-t)^n - (-t)^q \} \Delta_{k'}(t)$$

for some integers p, q and  $r, 0 \le p, q \le n, p+q=n$ .

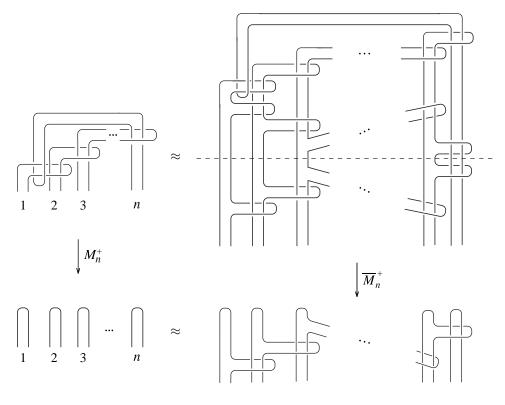
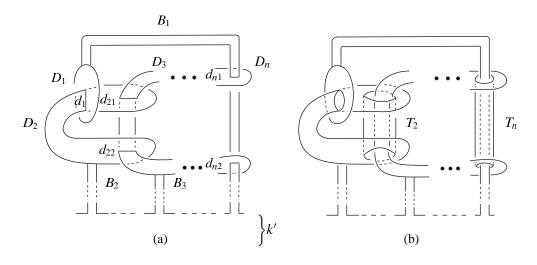
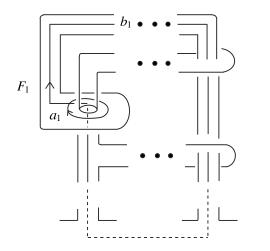



Fig. 4.


Proof. Suppose that k can be transformed into k' by an  $M_n^+$ -move, hence by an  $\overline{M}_n^+$ -move by Lemma 1. Namely k can be ambient isotopic to the band sum of k' and an n-component trivial link  $\mathcal{L}_n$ , by n bands, say  $B_1, \ldots, B_n$ , and let us span n disks  $D_1, \ldots, D_n$  with singularities, say  $d_1, d_{21}, d_{22}, \ldots, d_{n1}, d_{n2}$  of ribbon type to  $\mathcal{L}_n$ , where  $d_1 = D_1 \cap D_2$ ,  $d_{i1} \cup d_{i2} = D_i \cap D_{i+1}$  for  $2 \le i \le n-1$  and  $d_{n1} \cup d_{n2} = D_n \cap B_1$ , Fig. 5(a).

Performing an orientation preserving cut along  $d_1$  and attach a tube  $T_i$  along a subdisk of  $D_{i+1}$  or  $B_1$  for  $2 \le i \le n$ , Fig. 5(b). Hence we obtain an orientable surface  $F_1 \cup \cdots \cup F_n$ , where  $F_1$  is obtained from  $D_1 \cup B_1$  by an orientation preserving cut along  $d_1$  and  $F_i = (D_i - N(d_{i1} \cup d_{i2} : D_i)) \cup T_i \cup B_i$  for  $2 \le i \le n$ , where N(x : X) means the regular neighborhood of x in X.


Let F' be an orientable surface of k'. If the singularity of  $F' \cap F_i$  is not empty, it consists of arcs of ribbon type of  $F' \cap B_i$ . Performing the orientation preserving cut along these arcs for each i, we obtain an orientable surface F of k.

To calculate  $\Delta_k(t)$  of k, we take a set of basis of the first homology  $H_1(F)$  of F including  $a_i$ ,  $b_i$  illustrated in Fig. 6. Let M be a Seifert matrix of k and hence  $\Delta_k(t)$  is the following, where  $a_i^+$ ,  $b_j^+$  mean the lift of  $a_i$ ,  $b_j$  respectively over the positive

# side of $F_i$ .







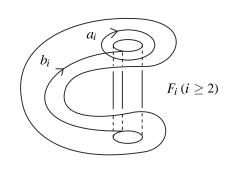



Fig. 6.

,

where  $\delta_i = 0$ ,  $\epsilon_i = 1$  or  $\delta_i = 1$ ,  $\epsilon_i = -1$ . Let us denote  $p = \delta_1 + \cdots + \delta_n$  and q = n - p. Then  $\epsilon_1 \cdots \epsilon_n = (-1)^p$  and  $(-1)^n \epsilon_1 \cdots \epsilon_n = (-1)^q$ . Therefore

$$\Delta_{k}(t) = \{(-1)^{n-1}(t-1)^{n} + (-t)^{p}\}\{(-1)^{n-1}(t-1)^{n} + (-t)^{q}\}\Delta_{k'}(t)$$
  
=  $\{(1-t)^{n} - (-t)^{p}\}\{(1-t)^{n} - (-t)^{q}\}\Delta_{k'}(t).$ 

Let k, k' be those of Lemma 2. Then k' can be transformed into k by an  $M_n^-$ -move. Hence we easily obtain Theorem 1 by Lemmas 1 and 2.

Now, we apply Lemma 2 for n = 2, 3 and 4.

**Corollary 1.** Suppose that a knot K can be transformed into a trivial knot by a finite sequence of  $M_n^+$ -moves.

(1) If 
$$n = 2$$
,  $\Delta_K(t) = \pm t^r \prod_{i,j} (t-2)^{m_i} (2t-1)^{m_i} (t^2-t+1)^{2n_j}$ .  
(2) If  $n = 3$ ,  $\Delta_K(t) = \pm t^r \prod_{i,j} (t^2-3t+3)^{m_i} (3t^2-3t+1)^{m_i} \times (t^3-3t^2+2t-1)^{n_j} (t^3-2t^2+3t-1)^{n_j}$ .  
(3) If  $n = 4$ ,  $\Delta_K(t) = \pm t^r \prod_{i,j,k} (t^3-4t^2+6t-4)^{m_i} (4t^3-6t^2+4t-1)^{m_i} \times (t^4-4t^3+6t^2-3t+1)^{n_j} (t^4-3t^3+6t^2-4t+1)^{n_j} \times (t^4-4t^3+5t^2-4t+1)^{2l_k}$ .

Proof. We apply to Lemma 2 in the following cases respectively. If n = 2, we consider the case that  $p_i = 0$ ,  $q_i = 2$  and  $p_i = q_i = 1$ . If n = 3, we do the cases that  $p_i = 0$ ,  $q_i = 3$  and  $p_i = 1$ ,  $q_i = 2$ . If n = 4, we do the cases that  $p_i = 0$ ,  $q_i = 4$  and  $p_i = 1$ ,  $q_i = 3$  and  $p_i = q_i = 2$ .

ON MILNOR MOVES AND ALEXANDER POLYNOMIALS

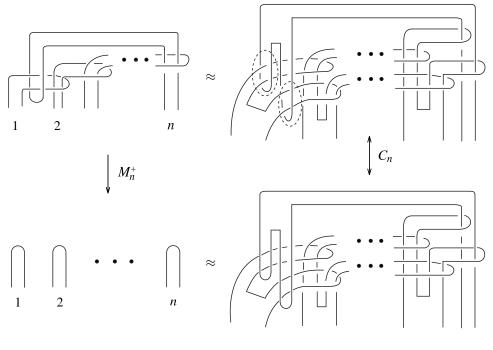



Fig. 7.

Let  $\nabla_K(z)$  be the Conway polynomial of K. It is well-known that  $\nabla_K(t - t^{-1}) = \Delta_K(t^2)$ . Therefore we easily obtain the following.

**Corollary 2.** (1) If K can be transformed into a trivial knot by a finite sequence of  $M_2^+$ -moves,  $\nabla_K(z) = \prod_{i,j} (1-2z^2)^{m_i} (1+z^2)^{2n_j}$ . (2) If K can be transformed into a trivial knot by a finite sequence of  $M_3^+$ -moves,  $\nabla_K(z) = \prod_{i,j} (1+3z^4)^{m_i} (1-z^4-z^6)^{n_j}$ .

K. Habiro introduced a local move, called the  $C_n$ -move, [2], [7]. We see that an  $M_n$ -move can be realized by a finite sequence of  $C_n$ -moves as illustated in Fig. 7, which is also obtained by the result of [2]. But the converse is false by Example 1.

EXAMPLE 1. For any integer  $n \ge 2$ , there is a knot  $k_n$  which is  $C_n$ -equivalent to a trivial knot  $\mathcal{O}$  (namely  $k_n$  can be transformed into  $\mathcal{O}$  by a finite sequence of  $C_n$ -moves) but not  $M_n$ -equivalent to  $\mathcal{O}$ . For example, let  $k_n$  be the knot illustrated in Fig. 8. Then we easily see that  $k_n$  is  $C_n$ -equivalent to  $\mathcal{O}$ . Suppose that  $k_n$  is  $M_n$ -equivalent to  $\mathcal{O}$ . Then we obtain that  $\Delta_{k_n}(-1) = \pm (2^n - 1)^{2m}$  for an integer m by putting t = -1 in Theorem 1. On the other hand, we obtain that  $\Delta_{k_n}(t) =$  $(t - 1)^{2(n-1)} \pm t^{n-1}$  by calculating the determinant of Seifert matrix of  $k_n$ . Hence

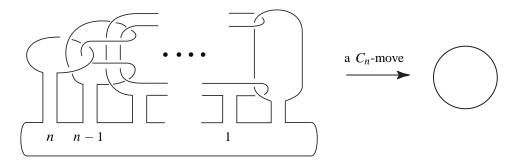



Fig. 8.

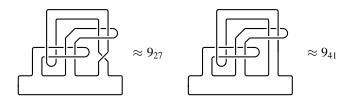



Fig. 9.

 $\Delta_{k_n}(-1) = 2^{2(n-1)} \pm (-1)^{n-1} \neq \pm (2^n - 1)^{2m}$ , which is a contradiction.

EXAMPLE 2. By the projections of ribbon knots in [4], we easily see that  $6_1$ ,  $8_{20}$ ,  $9_{46}$  and  $10_{140}$  are  $M_2$ -equivalent to a trivial knot  $\mathcal{O}$ . Since the knots in Fig. 9 are ambient isotopic to  $9_{27}$  and  $9_{41}$  respectively,  $9_{27}$  and  $9_{41}$  are  $M_3$ -equivalent to  $\mathcal{O}$ .

Next let us prove Theorem 2.

Proof of Theorem 2. Suppose that there is an integer  $m (\neq n) \geq 2$  such that k is  $M_m$ -equivalent to k'. Then we obtain that

$$\prod_{i=1}^{u} \{(1-t)^{n} - (-t)^{p_{i}}\}\{(1-t)^{n} - (-t)^{q_{i}}\}\Delta_{k}(t)$$
  
=  $\pm t^{s} \prod_{j=1}^{v} \{(1-t)^{n} - (-t)^{r_{j}}\}\{(1-t)^{n} - (-t)^{s_{j}}\}\Delta_{k'}(t)$ 

and

$$\prod_{i=1}^{U} \{(1-t)^m - (-t)^{P_i}\}\{(1-t)^m - (-t)^{Q_i}\}\Delta_k(t)$$
  
=  $\pm t^S \prod_{j=1}^{V} \{(1-t)^m - (-t)^{R_j}\}\{(1-t)^m - (-t)^{S_j}\}\Delta_{k'}(t)$ 

for some integers s, u, v,  $p_i$ ,  $q_i$ ,  $r_j$  and  $s_j$ ,  $0 \le p_i$ ,  $q_i$ ,  $r_j$ ,  $s_j \le n$ ,  $p_i + q_i = r_j + s_j = n$ and S, U, V,  $P_i$ ,  $Q_i$ ,  $R_j$  and  $S_j$ ,  $0 \le P_i$ ,  $Q_i$ ,  $R_j$ ,  $S_j \le m$ ,  $P_i + Q_i = R_j + S_j = m$  by Theorem 1. By putting t = -1, we obtain that  $(2^n - 1)^{2u}\alpha = \pm (2^n - 1)^{2v}\beta$ ,  $(2^m - 1)^{2U}\alpha = \pm (2^m - 1)^{2V}\beta$ , where  $\alpha = \Delta_k(-1)$  and  $\beta = \Delta_{k'}(-1)$ . Therefore we obtain that  $(2^n - 1)^p = (2^m - 1)^q$  for some integers p, q.

But we may show that it is a contradiction in the following. We suppose that there exist *m*, *n*, *p*, *q* with  $n > m \ge 2$  such that  $(2^n - 1)^p = (2^m - 1)^q$ . Let p = as and q = bt, where  $a, b \in \{2^i\}_{i=0}^{\infty}$  and integers *s*, *t* are odd. After replacing (p, q) by (q, p), we can assume that  $a \ge b$  and  $c = a/b \in \{2^i\}_{i=0}^{\infty}$ . Then we have  $(2^n - 1)^{cs} = (2^m - 1)^t$ . Since *s*, *t* are odd and  $2^n > 2^m \ge 4$ , we have  $(-1)^c \equiv (-1)^{cs} \equiv (-1)^t \equiv -1 \pmod{4}$ . Thus c = 1, so  $(2^n - 1)^s = (2^m - 1)^t$ . Let  $A = 2^m - 1$ . Then we have

(1) 
$$A^t = (2^m - 1)^t = (2^n - 1)^s \equiv (-1)^s \equiv -1 \pmod{2^n}.$$

Squaring the above, we have

$$A^{2t} \equiv 1 \pmod{2^n}.$$

Now, since  $(A, 2^n) = 1$ , by Euler's Theorem (cf. [3, p. 33]) we have

$$A^{\phi(2^n)} \equiv 1 \pmod{2^n},$$

where  $\phi(2^n)$  is Euler's phi function (the number of positive integers prime to  $2^n$  and  $\leq 2^n$ ). Since  $\phi(2^n) = 2^{n-1}$  and  $(2t, 2^{n-1}) = 2$ , (2) and (3) imply  $A^2 \equiv 1 \pmod{2^n}$ . Since  $n \geq 3$ , this equation has 4 solutions  $A \equiv \pm 1$ ,  $2^{n-1} \pm 1 \pmod{2^n}$ . But, by (1) it has only  $A \equiv -1 \pmod{2^n}$ , so  $2^m \equiv 0 \pmod{2^n}$ . Hence  $m \geq n$ . This is a contradiction.

#### 3. A classification of ribbon knots by $M_n$ -moves

For two knots  $k(\subset R^3[a])$  and  $k'(\subset R^3[b])$  for a < b, if there is a non-singular locally flat annulus  $\mathcal{A}$  in  $R^3[a, b]$  with  $\mathcal{A} \cap R^3[a] = k$  and  $\mathcal{A} \cap R^3[b] = -k'$ , we say that k is cobordant to k', [1]. Hence if k is cobordant to a trivial knot  $\mathcal{O}$ , k is a slice knot and moreover if  $\mathcal{A}$  does not have minimal points, k is a ribbon knot.

**Proposition.** For two knots k, k' and an integer  $n \ge 2$ , if k is  $M_n$ -equivalent to k', then k is cobordant to k'.

Proof. Since k is  $M_n$ -equivalent to k', there are knots  $k_0(=k), k_1, \ldots, k_p(=k')$  such that  $k_i$  can be transformed into  $k_{i+1}$  by an  $M_n^+$ -move or an  $M_n^-$ -move. Suppose that  $k_i$  is contained in  $R^3[2i]$  for  $i = 0, 1, \ldots, p$ .

If we perform a hyperbolic transformation, Fig. 10, to  $k_i$  (or  $k_{i+1}$ ) in  $R^3[2i + 1]$  and obtain  $k_{i+1}$  (resp.  $k_i$ ) and a trivial knot split from  $k_{i+1}$  (resp.  $k_i$ ).

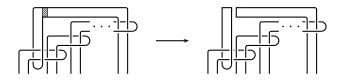



Fig. 10.

Performing the above discussion to each *i*, we obtain a non-singular locally flat annulus  $\mathcal{A}$  in  $\mathbb{R}^3[0, 2p]$  with  $\partial \mathcal{A} = k \cup (-k')$ , namely *k* is cobordant to *k'*.

Hence if k can be transformed into a trivial knot by a finite sequence of  $M_n$  (or  $M_n^+$ )-moves, k is a slice (resp. a ribbon) knot. Therefore if k is not a slice knot, k is not  $M_n$ -equivalent to a trivial knot  $\mathcal{O}$ .

In this section, we consider the following by using Theorem 1: Are the prime ribbon knots up to 10 crossing points  $M_n$ -equivalent to  $\mathcal{O}$  for some integer  $n \ (\geq 2)$ ?

By Example 2, we already see that  $6_1$ ,  $8_{20}$ ,  $9_{46}$  and  $10_{140}$  are  $M_2$ -equivalent to  $\mathcal{O}$  and that  $9_{27}$  and  $9_{41}$  are  $M_3$ -equivalent to  $\mathcal{O}$ .

| ribbon          | Alexander polynomial                                      | M <sub>2</sub> | M <sub>3</sub> | M <sub>n</sub> |
|-----------------|-----------------------------------------------------------|----------------|----------------|----------------|
| knot            |                                                           |                |                | $(n \ge 4)$    |
| 61              | $2t^2 - 5t + 2$                                           | Y              | Ν              | N              |
| 88              | $2t^4 - 6t^3 + 9t^2 - 6t + 2$                             | Ν              | Ν              | Ν              |
| 89              | $t^6 - 3t^5 + 5t^4 - 7t^3 + 5t^2 - 3t + 1$                | Ν              | Ν              | Ν              |
| 820             | $(t^2 - t + 1)^2$                                         | Y              | Ν              | Ν              |
| 9 <sub>27</sub> | $t^6 - 5t^5 + 11t^4 - 15t^3 + 11t^2 - 5t + 1$             | Ν              | Y              | Ν              |
| 9 <sub>41</sub> | $3t^4 - 12t^3 + 19t^2 - 12t + 3$                          | Ν              | Y              | Ν              |
| 9 <sub>46</sub> | $2t^2 - 5t + 2$                                           | Y              | Ν              | Ν              |
| 103             | $6t^2 - 13t + 6$                                          | Ν              | Ν              | Ν              |
| 1022            | $2t^6 - 6t^5 + 10t^4 - 13t^3 + 10t^2 - 6t + 2$            | Ν              | Ν              | Ν              |
| 1035            | $2t^4 - 12t^3 + 21t^2 - 12t + 2$                          | Ν              | Ν              | Ν              |
| 1042            | $t^6 - 7t^5 + 19t^4 - 27t^3 + 19t^2 - 7t + 1$             | Ν              | Ν              | Ν              |
| 1048            | $t^8 - 3t^7 + 6t^6 - 9t^5 + 11t^4 - 9t^3 + 6t^2 - 3t + 1$ | Ν              | Ν              | Ν              |
| 1075            | $t^6 - 7t^5 + 19t^4 - 27t^3 + 19t^2 - 7t + 1$             | Ν              | Ν              | Ν              |
| 1087            | $(t^2 - t + 1)^2(-2t^2 + 5t - 2)$                         | ?              | Ν              | Ν              |
| 1099            | $(t^2 - t + 1)^4$                                         | ?              | Ν              | Ν              |
| 10123           | $(t^4 - 3t^3 + 3t^2 - 3t + 1)^2$                          | Ν              | Ν              | Ν              |
| 10129           | $2t^4 - 6t^3 + 9t^2 - 6t + 2$                             | Ν              | Ν              | Ν              |
| 10137           | $(t^2 - 3t + 1)^2$                                        | Ν              | Ν              | Ν              |
| 10140           | $(t^2 - t + 1)^2$                                         | Y              | Ν              | Ν              |
| 10153           | $t^6 - t^5 - t^4 + 3t^3 - t^2 - t + 1$                    | Ν              | Ν              | Ν              |
| 10155           | $t^6 - 3t^5 + 5t^4 - 7t^3 + 5t^2 - 3t + 1$                | Ν              | Ν              | Ν              |

Here Y and N mean "yes" and "no" respectively.

**Question.** Are  $10_{87}$  and  $10_{99}$   $M_2$ -equivalent to O?

### References

- R.H. Fox and J.W. Milnor: Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257–267.
- [2] K. Habiro: Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1–83.
- [3] K. Ireland and M. Rosen: A Classical Introduction to Modern Number Theory, GTM 84 2nd ed., Springer-Verlag, 1972.
- [4] A. Kawauchi ed.: A survey of knot theory, Birkhauser Verlarg, Basel-Boston-Berlin, 1996.
- [5] K. Kobayashi: *Ribbon link and separate ribbon link*, (In Japanese), Hakone Seminar Notes, (2000), 7–28.
- [6] J.W. Milnor: *Isotopy of links*, Lefshetz symposium, Princeton Math. Ser. **12** (1957), 280–306, Princeton Univ. Press.
- [7] Y. Ohyama and T. Tsukamoto: On Habiro's C<sub>n</sub>-moves and Vassiliev invariants of order n, J. of Knot theory and its Ramif. 8 (1999), 15–26.
- [8] T. Shibuya and A. Yasuhara: *Classification of links up to self pass-move*, J. Math. Soc. Japan **55** (2003), 939–946.

T. Ishikawa Department of Mathematics Facalty of Engineering Osaka Institute of Technology Osaka 535-8585, Japan e-mail: ishikawa@ge.oit.ac.jp

K. Kobayashi Department of Mathematics College of Arts and Sciences Tokyo Woman's Christian University Suginami, Tokyo 167-8585, Japan e-mail: kazuaki@twcu.ac.jp

T. Shibuya Department of Mathematics Facalty of Engineering Osaka Institute of Technology Osaka 535-8585, Japan e-mail: shibuya@ge.oit.ac.jp