

Title	On Milnor moves and Alexander polynomials of knots
Author(s)	Ishikawa, Tsuneo; Kobayashi, Kazuaki; Shibuya, Tetsuo
Citation	Osaka Journal of Mathematics. 2003, 40(4), p. 845-855
Version Type	VoR
URL	https://doi.org/10.18910/9358
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Ishikawa, T., Kobayashi K. and Shibuya, T.
 Osaka J. Math.
40 (2003), 845–855

ON MILNOR MOVES AND ALEXANDER POLYNOMIALS OF KNOTS

TSUNEO ISHIKAWA, KAZUAKI KOBAYASHI and TETSUO SHIBUYA

(Received April 11, 2002)

1. Introduction

Recently, several local moves of knots and links were defined and studied actively in many papers, for example [2], [5], [7], and [8].

In this paper, we define a new local move on knot diagram called a Milnor move of order n or simply an M_n -move. Namely, let k be an oriented knot in an oriented 3-space R^3 and let B^3 be a 3-ball in R^3 such that $k \cap B^3$ is the tangle illustrated in Fig. 1. The transformation from Fig. 1(a) to 1(b) is called an M_n^+ -move and that from Fig. 1(b) to 1(a) is called an M_n^- -move. Furthermore an M_n -move means either an M_n^+ -move or an M_n^- -move. For two knots k , k' in R^3 , k is said to be M_n -equivalent to k' or k and k' are said to be M_n -equivalent if k can be transformed into k' by a finite sequence of M_n -moves, [5].

In [6], Milnor introduced the Milnor link. Namely a link L is called the Milnor link if L is transformed into a trivial link by an M_2 -move. Now we generalize this move to an M_n -move for any positive integer n (≥ 2).

Almost local moves known up to the present change the knot cobordism, [1]. But we will see that an M_n -move does not change the knot cobordism for any integer n (≥ 2), see Proposition.

In Section 2, we study a relation between the Alexander polynomials of M_n -equivalent knots and a property of M_n -equivalence of knots and prove Theorems 1 and 2.

A relation of Alexander polynomials of cobordant knots was known in [1]. The result we obtain in Theorem 1 is more concrete than that of [1] for cobordant knots which are M_n -equivalent. Theorems 1 and 2 give a classification of cobordant knots by an M_n -move.

For a knot k , $\Delta_k(t)$ means the Alexander polynomial of k .

Theorem 1. *For two knots k , k' and an integer $n \geq 2$, if k is M_n -equivalent to k' , then*

$$\prod_{i=1}^u \{(1-t)^n - (-t)^{p_i}\} \{(1-t)^n - (-t)^{q_i}\} \Delta_k(t)$$

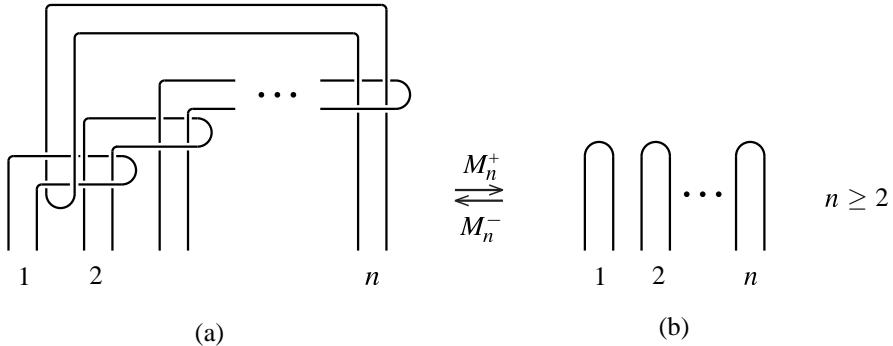


Fig. 1.

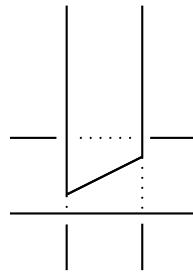


Fig. 2.

$$= \pm t^s \prod_{j=1}^v \{(1-t)^n - (-t)^{r_j}\} \{(1-t)^n - (-t)^{s_j}\} \Delta_{k'}(t)$$

for some integers s, u, v, p_i, q_i, r_j and s_j , $0 \leq p_i, q_i, r_j, s_j \leq n$, $p_i + q_i = r_j + s_j = n$.

Theorem 2. For two knots k, k' and an integer $n \geq 2$, let k be M_n -equivalent to k' . Then k is not M_m -equivalent to k' for any integer $m (\neq n) \geq 2$.

A knot k is a ribbon knot if k bounds a singular disk with only so-called ribbon singularities, Fig. 2. Moreover it is easily seen that k is a ribbon knot if and only if k ($\subset R^3[0]$) bounds a non-singular locally flat disk which does not have minimal points in the half space $R_+^4 = \{(x, y, z, t) \in R^4 \mid t \geq 0\}$ of R^4 , where $R^3[a] = \{(x, y, z, t) \in R^4 \mid t = a\}$. (If k bounds a non-singular locally flat disk in R_+^4 , k is called a slice knot.)

If k can be transformed into a trivial knot by a finite sequence of M_n^+ -moves, we see that k is a ribbon knot, Proposition, and so we can use Theorem 1 to classify ribbon knots.

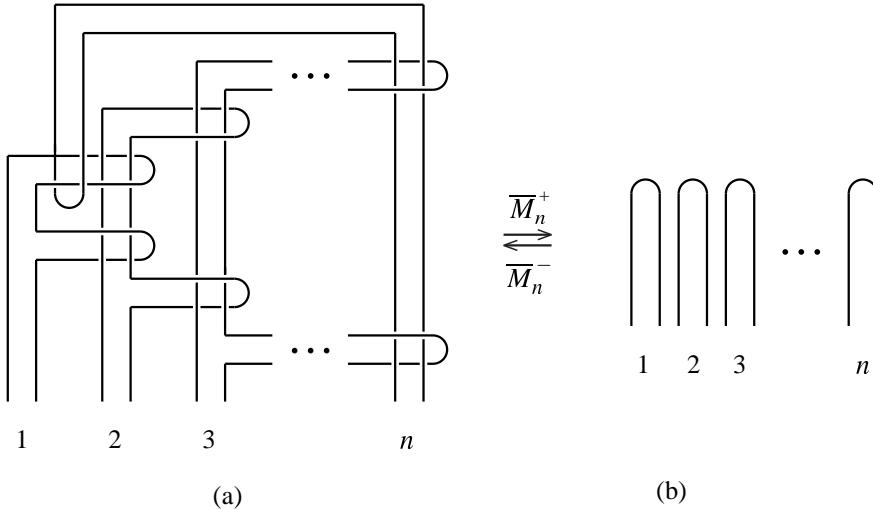


Fig. 3.

bon knots by M_n -moves. Indeed, we will classify almost all prime ribbon knots up to 10 crossing points by Theorem 1 in Section 3.

2. Properties of M_n -moves

In this section, we study some properties of M_n -moves and prove Theorems. We prepare Lemmas 1 and 2 to prove Theorem 1.

To calculate the Alexander polynomial of M_n -equivalent knots, let us define a local move, called \bar{M}_n^\pm -moves. The tangle transformation from Fig. 3(a) to 3(b) is called an \bar{M}_n^+ -move and that of Fig. 3(b) to 3(a) is called an \bar{M}_n^- -move.

Lemma 1. (1) An M_n^+ (or M_n^-)-move can be realized by an \bar{M}_n^+ (resp. \bar{M}_n^-)-move.

(2) An \bar{M}_n^+ (or \bar{M}_n^-)-move can be realized by an M_n^+ (resp. M_n^-)-move.

Proof. (1) By the deformations illustrated in Fig. 4, we obtain (1).
 (2) We easily see (2) by the definitions of these moves. \square

Lemma 2. For two knots k, k' and an integer $n (\geq 2)$, if k can be transformed into k' by an M_n^+ -move, then

$$\Delta_k(t) = \pm t^r \{(1-t)^n - (-t)^p\} \{(1-t)^n - (-t)^q\} \Delta_{k'}(t)$$

for some integers p, q and r , $0 \leq p, q \leq n$, $p+q=n$.

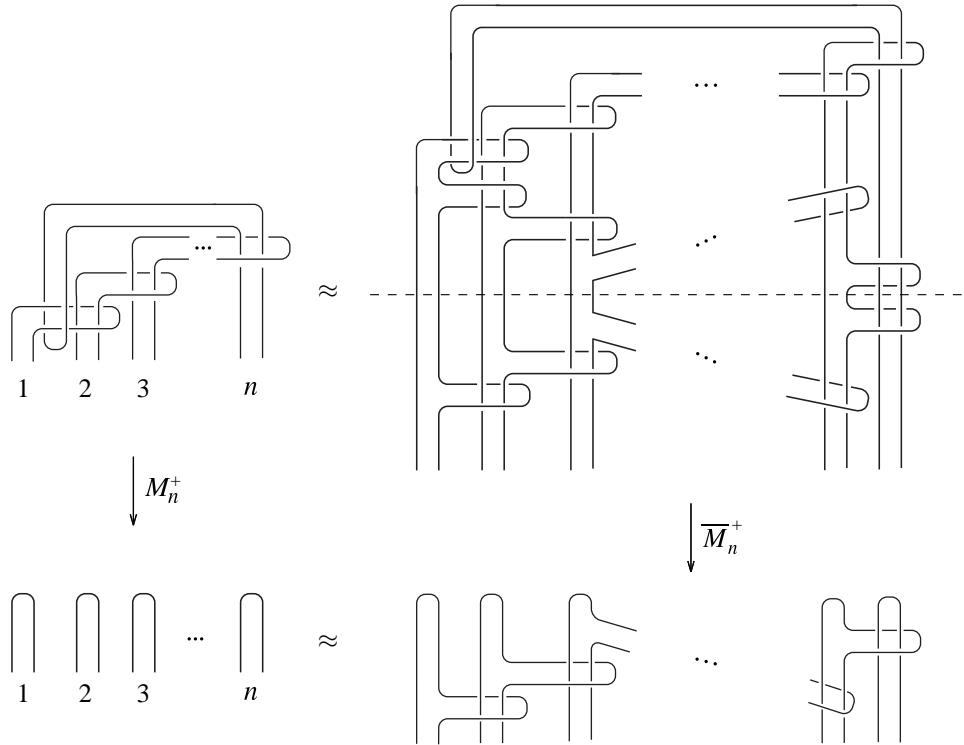


Fig. 4.

Proof. Suppose that k can be transformed into k' by an M_n^+ -move, hence by an \bar{M}_n^+ -move by Lemma 1. Namely k can be ambient isotopic to the band sum of k' and an n -component trivial link \mathcal{L}_n , by n bands, say B_1, \dots, B_n , and let us span n disks D_1, \dots, D_n with singularities, say $d_1, d_{21}, d_{22}, \dots, d_{n1}, d_{n2}$ of ribbon type to \mathcal{L}_n , where $d_1 = D_1 \cap D_2$, $d_{i1} \cup d_{i2} = D_i \cap D_{i+1}$ for $2 \leq i \leq n-1$ and $d_{n1} \cup d_{n2} = D_n \cap B_1$, Fig. 5(a).

Performing an orientation preserving cut along d_1 and attach a tube T_i along a subdisk of D_{i+1} or B_1 for $2 \leq i \leq n$, Fig. 5(b). Hence we obtain an orientable surface $F_1 \cup \dots \cup F_n$, where F_1 is obtained from $D_1 \cup B_1$ by an orientation preserving cut along d_1 and $F_i = (D_i - N(d_{i1} \cup d_{i2} : D_i)) \cup T_i \cup B_i$ for $2 \leq i \leq n$, where $N(x : X)$ means the regular neighborhood of x in X .

Let F' be an orientable surface of k' . If the singularity of $F' \cap F_i$ is not empty, it consists of arcs of ribbon type of $F' \cap B_i$. Performing the orientation preserving cut along these arcs for each i , we obtain an orientable surface F of k .

To calculate $\Delta_k(t)$ of k , we take a set of basis of the first homology $H_1(F)$ of F including a_i, b_i illustrated in Fig. 6. Let M be a Seifert matrix of k and hence $\Delta_k(t)$ is the following, where a_i^+, b_j^+ mean the lift of a_i, b_j respectively over the positive

side of F_i .

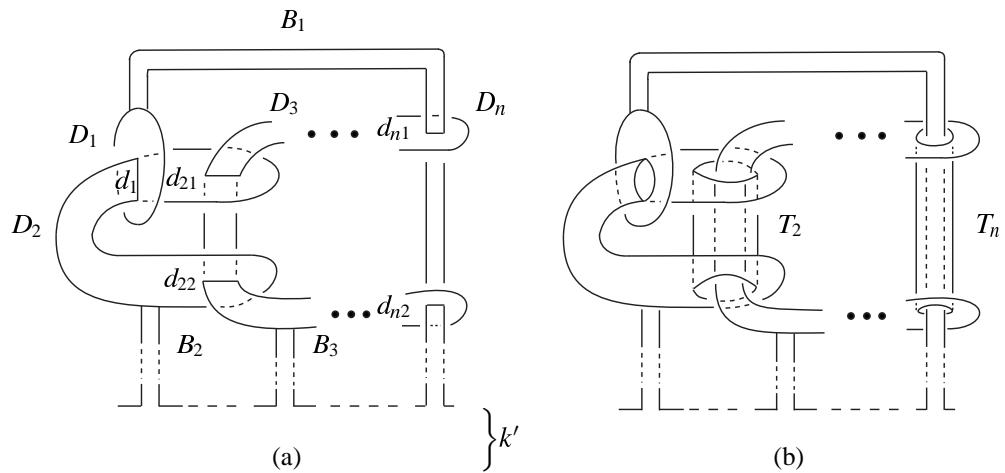


Fig. 5.

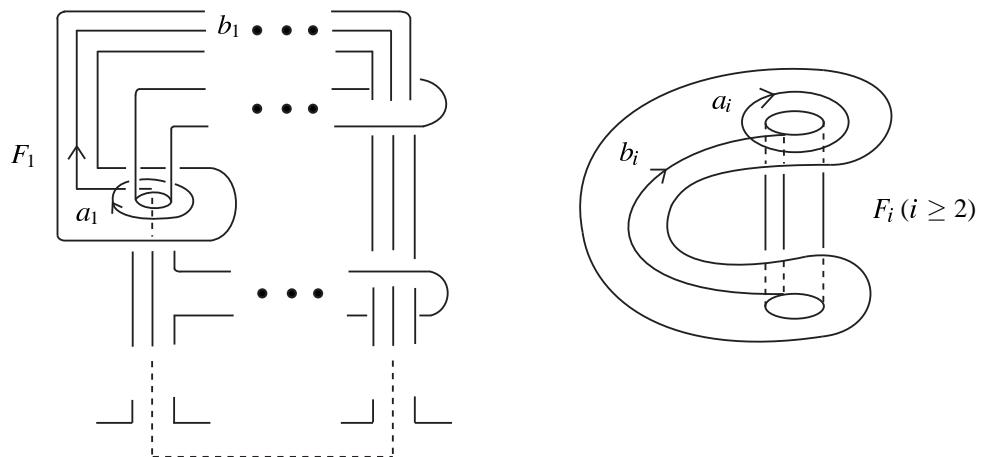


Fig. 6.

$$\Delta_k(t) = |M - tM'|$$

$$\begin{aligned}
& a_1^+ \quad \cdots \quad a_{n-1}^+ \quad a_n^+ \quad b_1^+ \quad b_2^+ \quad \cdots \quad b_n^+ \\
& \begin{array}{c|ccccc|c|c} a_1 & & & & & & \epsilon_1 t^{\delta_1} & t-1 \\ \vdots & & & & & & \ddots & \ddots \\ a_{n-1} & 0 & & & & & 0 & 0 \\ a_n & & & & & & t-1 & \epsilon_n t^{\delta_n} \end{array} \\
= & \begin{array}{c|ccccc|c|c} b_1 & -\epsilon_1 t^{1-\delta_1} & & & & & & \\ b_2 & t-1 & \ddots & 0 & & & & \\ \vdots & & \ddots & \ddots & & & * & * \\ b_n & 0 & t-1 & -\epsilon_n t^{1-\delta_n} & & & & \end{array} \\
& \begin{array}{c|c|c} 0 & * & \Delta_{k'}(t) \end{array}
\end{aligned}$$

where $\delta_i = 0$, $\epsilon_i = 1$ or $\delta_i = 1$, $\epsilon_i = -1$. Let us denote $p = \delta_1 + \cdots + \delta_n$ and $q = n - p$. Then $\epsilon_1 \cdots \epsilon_n = (-1)^p$ and $(-1)^n \epsilon_1 \cdots \epsilon_n = (-1)^q$. Therefore

$$\begin{aligned}
\Delta_k(t) &= \{(-1)^{n-1}(t-1)^n + (-t)^p\} \{(-1)^{n-1}(t-1)^n + (-t)^q\} \Delta_{k'}(t) \\
&= \{(1-t)^n - (-t)^p\} \{(1-t)^n - (-t)^q\} \Delta_{k'}(t).
\end{aligned}$$

□

Let k , k' be those of Lemma 2. Then k' can be transformed into k by an M_n^- -move. Hence we easily obtain Theorem 1 by Lemmas 1 and 2.

Now, we apply Lemma 2 for $n = 2, 3$ and 4.

Corollary 1. *Suppose that a knot K can be transformed into a trivial knot by a finite sequence of M_n^+ -moves.*

- (1) If $n = 2$, $\Delta_K(t) = \pm t^r \prod_{i,j} (t-2)^{m_i} (2t-1)^{m_i} (t^2-t+1)^{2n_j}$.
- (2) If $n = 3$, $\Delta_K(t) = \pm t^r \prod_{i,j} (t^2-3t+3)^{m_i} (3t^2-3t+1)^{m_i} \times (t^3-3t^2+2t-1)^{n_j} (t^3-2t^2+3t-1)^{n_j}$.
- (3) If $n = 4$, $\Delta_K(t) = \pm t^r \prod_{i,j,k} (t^3-4t^2+6t-4)^{m_i} (4t^3-6t^2+4t-1)^{m_i} \times (t^4-4t^3+6t^2-3t+1)^{n_j} (t^4-3t^3+6t^2-4t+1)^{n_j} \times (t^4-4t^3+5t^2-4t+1)^{2l_k}$.

Proof. We apply to Lemma 2 in the following cases respectively. If $n = 2$, we consider the case that $p_i = 0$, $q_i = 2$ and $p_i = q_i = 1$. If $n = 3$, we do the cases that $p_i = 0$, $q_i = 3$ and $p_i = 1$, $q_i = 2$. If $n = 4$, we do the cases that $p_i = 0$, $q_i = 4$ and $p_i = 1$, $q_i = 3$ and $p_i = q_i = 2$. □

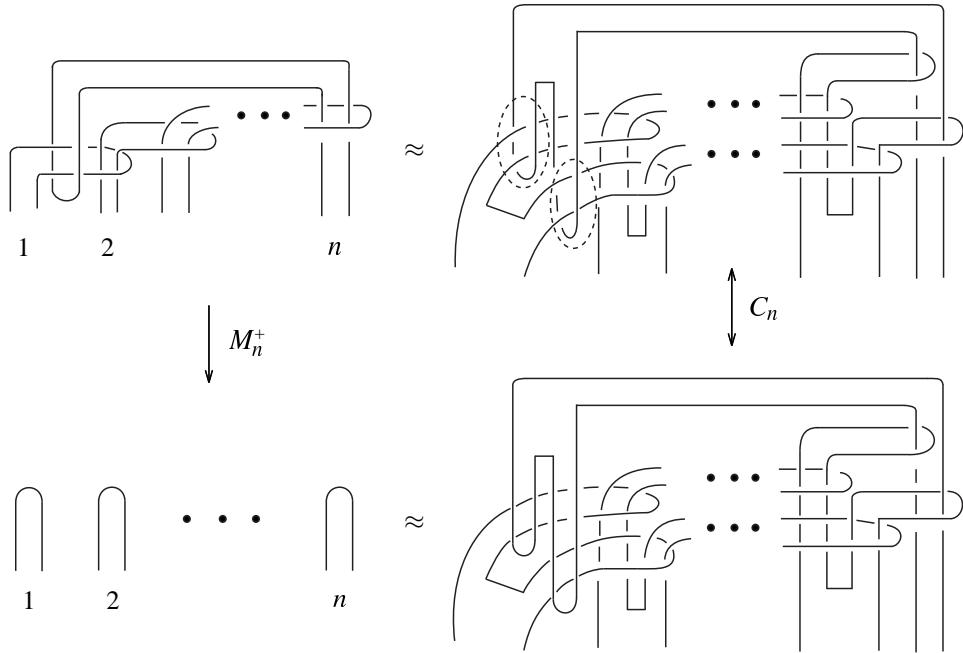


Fig. 7.

Let $\nabla_K(z)$ be the Conway polynomial of K . It is well-known that $\nabla_K(t - t^{-1}) = \Delta_K(t^2)$. Therefore we easily obtain the following.

Corollary 2. (1) If K can be transformed into a trivial knot by a finite sequence of M_2^+ -moves, $\nabla_K(z) = \prod_{i,j} (1 - 2z^2)^{m_i} (1 + z^2)^{2n_j}$.
 (2) If K can be transformed into a trivial knot by a finite sequence of M_3^+ -moves, $\nabla_K(z) = \prod_{i,j} (1 + 3z^4)^{m_i} (1 - z^4 - z^6)^{n_j}$.

K. Habiro introduced a local move, called the C_n -move, [2], [7]. We see that an M_n -move can be realized by a finite sequence of C_n -moves as illustrated in Fig. 7, which is also obtained by the result of [2]. But the converse is false by Example 1.

EXAMPLE 1. For any integer $n \geq 2$, there is a knot k_n which is C_n -equivalent to a trivial knot \mathcal{O} (namely k_n can be transformed into \mathcal{O} by a finite sequence of C_n -moves) but not M_n -equivalent to \mathcal{O} . For example, let k_n be the knot illustrated in Fig. 8. Then we easily see that k_n is C_n -equivalent to \mathcal{O} . Suppose that k_n is M_n -equivalent to \mathcal{O} . Then we obtain that $\Delta_{k_n}(-1) = \pm(2^n - 1)^{2m}$ for an integer m by putting $t = -1$ in Theorem 1. On the other hand, we obtain that $\Delta_{k_n}(t) = (t - 1)^{2(n-1)} \pm t^{n-1}$ by calculating the determinant of Seifert matrix of k_n . Hence

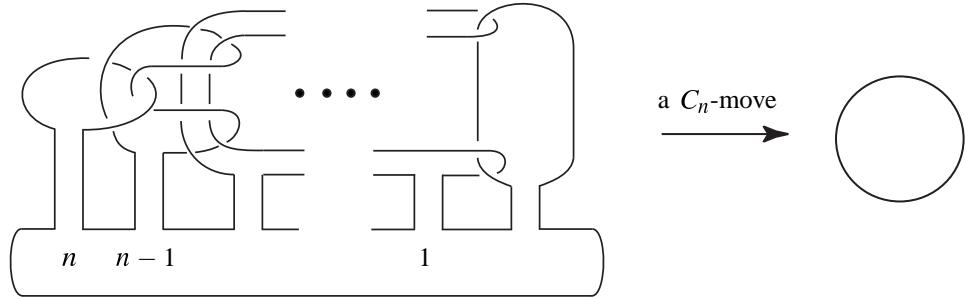


Fig. 8.

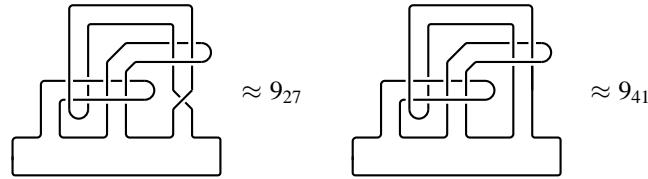


Fig. 9.

$$\Delta_{k_n}(-1) = 2^{2(n-1)} \pm (-1)^{n-1} \neq \pm(2^n - 1)^{2m}, \text{ which is a contradiction.}$$

EXAMPLE 2. By the projections of ribbon knots in [4], we easily see that 6_1 , 8_{20} , 9_{46} and 10_{140} are M_2 -equivalent to a trivial knot \mathcal{O} . Since the knots in Fig. 9 are ambient isotopic to 9_{27} and 9_{41} respectively, 9_{27} and 9_{41} are M_3 -equivalent to \mathcal{O} .

Next let us prove Theorem 2.

Proof of Theorem 2. Suppose that there is an integer $m (\neq n) \geq 2$ such that k is M_m -equivalent to k' . Then we obtain that

$$\begin{aligned} & \prod_{i=1}^u \{(1-t)^n - (-t)^{p_i}\} \{(1-t)^n - (-t)^{q_i}\} \Delta_k(t) \\ &= \pm t^s \prod_{j=1}^v \{(1-t)^m - (-t)^{r_j}\} \{(1-t)^m - (-t)^{s_j}\} \Delta_{k'}(t) \end{aligned}$$

and

$$\begin{aligned} & \prod_{i=1}^U \{(1-t)^m - (-t)^{P_i}\} \{(1-t)^m - (-t)^{Q_i}\} \Delta_k(t) \\ &= \pm t^S \prod_{j=1}^V \{(1-t)^m - (-t)^{R_j}\} \{(1-t)^m - (-t)^{S_j}\} \Delta_{k'}(t) \end{aligned}$$

for some integers s, u, v, p_i, q_i, r_j and s_j , $0 \leq p_i, q_i, r_j, s_j \leq n$, $p_i + q_i = r_j + s_j = n$ and S, U, V, P_i, Q_i, R_j and S_j , $0 \leq P_i, Q_i, R_j, S_j \leq m$, $P_i + Q_i = R_j + S_j = m$ by Theorem 1. By putting $t = -1$, we obtain that $(2^n - 1)^{2u}\alpha = \pm(2^n - 1)^{2v}\beta$, $(2^m - 1)^{2U}\alpha = \pm(2^m - 1)^{2V}\beta$, where $\alpha = \Delta_k(-1)$ and $\beta = \Delta_{k'}(-1)$. Therefore we obtain that $(2^n - 1)^p = (2^m - 1)^q$ for some integers p, q .

But we may show that it is a contradiction in the following. We suppose that there exist m, n, p, q with $n > m \geq 2$ such that $(2^n - 1)^p = (2^m - 1)^q$. Let $p = as$ and $q = bt$, where $a, b \in \{2^i\}_{i=0}^{\infty}$ and integers s, t are odd. After replacing (p, q) by (q, p) , we can assume that $a \geq b$ and $c = a/b \in \{2^i\}_{i=0}^{\infty}$. Then we have $(2^n - 1)^{cs} = (2^m - 1)^t$. Since s, t are odd and $2^n > 2^m \geq 4$, we have $(-1)^c \equiv (-1)^{cs} \equiv (-1)^t \equiv -1 \pmod{4}$. Thus $c = 1$, so $(2^n - 1)^s = (2^m - 1)^t$. Let $A = 2^m - 1$. Then we have

$$(1) \quad A^t = (2^m - 1)^t = (2^n - 1)^s \equiv (-1)^s \equiv -1 \pmod{2^n}.$$

Squaring the above, we have

$$(2) \quad A^{2t} \equiv 1 \pmod{2^n}.$$

Now, since $(A, 2^n) = 1$, by Euler's Theorem (cf. [3, p. 33]) we have

$$(3) \quad A^{\phi(2^n)} \equiv 1 \pmod{2^n},$$

where $\phi(2^n)$ is Euler's phi function (the number of positive integers prime to 2^n and $\leq 2^n$). Since $\phi(2^n) = 2^{n-1}$ and $(2t, 2^{n-1}) = 2$, (2) and (3) imply $A^2 \equiv 1 \pmod{2^n}$. Since $n \geq 3$, this equation has 4 solutions $A \equiv \pm 1, 2^{n-1} \pm 1 \pmod{2^n}$. But, by (1) it has only $A \equiv -1 \pmod{2^n}$, so $2^m \equiv 0 \pmod{2^n}$. Hence $m \geq n$. This is a contradiction. \square

3. A classification of ribbon knots by M_n -moves

For two knots $k(\subset R^3[a])$ and $k'(\subset R^3[b])$ for $a < b$, if there is a non-singular locally flat annulus \mathcal{A} in $R^3[a, b]$ with $\mathcal{A} \cap R^3[a] = k$ and $\mathcal{A} \cap R^3[b] = -k'$, we say that k is cobordant to k' , [1]. Hence if k is cobordant to a trivial knot \mathcal{O} , k is a slice knot and moreover if \mathcal{A} does not have minimal points, k is a ribbon knot.

Proposition. *For two knots k, k' and an integer $n(\geq 2)$, if k is M_n -equivalent to k' , then k is cobordant to k' .*

Proof. Since k is M_n -equivalent to k' , there are knots $k_0 (= k), k_1, \dots, k_p (= k')$ such that k_i can be transformed into k_{i+1} by an M_n^+ -move or an M_n^- -move. Suppose that k_i is contained in $R^3[2i]$ for $i = 0, 1, \dots, p$.

If we perform a hyperbolic transformation, Fig. 10, to k_i (or k_{i+1}) in $R^3[2i+1]$ and obtain k_{i+1} (resp. k_i) and a trivial knot split from k_{i+1} (resp. k_i).

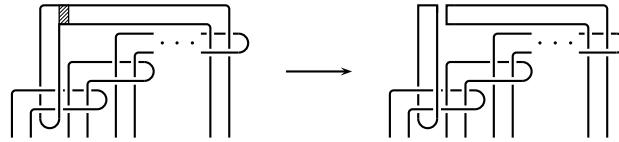


Fig. 10.

Performing the above discussion to each i , we obtain a non-singular locally flat annulus \mathcal{A} in $R^3[0, 2p]$ with $\partial\mathcal{A} = k \cup (-k')$, namely k is cobordant to k' . \square

Hence if k can be transformed into a trivial knot by a finite sequence of M_n (or M_n^+)-moves, k is a slice (resp. a ribbon) knot. Therefore if k is not a slice knot, k is not M_n -equivalent to a trivial knot \mathcal{O} .

In this section, we consider the following by using Theorem 1: Are the prime ribbon knots up to 10 crossing points M_n -equivalent to \mathcal{O} for some integer n (≥ 2)?

By Example 2, we already see that 6_1 , 8_{20} , 9_{46} and 10_{140} are M_2 -equivalent to \mathcal{O} and that 9_{27} and 9_{41} are M_3 -equivalent to \mathcal{O} .

ribbon knot	Alexander polynomial	M_2	M_3	M_n ($n \geq 4$)
6_1	$2t^2 - 5t + 2$	Y	N	N
8_8	$2t^4 - 6t^3 + 9t^2 - 6t + 2$	N	N	N
8_9	$t^6 - 3t^5 + 5t^4 - 7t^3 + 5t^2 - 3t + 1$	N	N	N
8_{20}	$(t^2 - t + 1)^2$	Y	N	N
9_{27}	$t^6 - 5t^5 + 11t^4 - 15t^3 + 11t^2 - 5t + 1$	N	Y	N
9_{41}	$3t^4 - 12t^3 + 19t^2 - 12t + 3$	N	Y	N
9_{46}	$2t^2 - 5t + 2$	Y	N	N
10_3	$6t^2 - 13t + 6$	N	N	N
10_{22}	$2t^6 - 6t^5 + 10t^4 - 13t^3 + 10t^2 - 6t + 2$	N	N	N
10_{35}	$2t^4 - 12t^3 + 21t^2 - 12t + 2$	N	N	N
10_{42}	$t^6 - 7t^5 + 19t^4 - 27t^3 + 19t^2 - 7t + 1$	N	N	N
10_{48}	$t^8 - 3t^7 + 6t^6 - 9t^5 + 11t^4 - 9t^3 + 6t^2 - 3t + 1$	N	N	N
10_{75}	$t^6 - 7t^5 + 19t^4 - 27t^3 + 19t^2 - 7t + 1$	N	N	N
10_{87}	$(t^2 - t + 1)^2(-2t^2 + 5t - 2)$?	N	N
10_{99}	$(t^2 - t + 1)^4$?	N	N
10_{123}	$(t^4 - 3t^3 + 3t^2 - 3t + 1)^2$	N	N	N
10_{129}	$2t^4 - 6t^3 + 9t^2 - 6t + 2$	N	N	N
10_{137}	$(t^2 - 3t + 1)^2$	N	N	N
10_{140}	$(t^2 - t + 1)^2$	Y	N	N
10_{153}	$t^6 - t^5 - t^4 + 3t^3 - t^2 - t + 1$	N	N	N
10_{155}	$t^6 - 3t^5 + 5t^4 - 7t^3 + 5t^2 - 3t + 1$	N	N	N

Here Y and N mean “yes” and “no” respectively.

Question. Are 10_{87} and 10_{99} M_2 -equivalent to \mathcal{O} ?

References

- [1] R.H. Fox and J.W. Milnor: *Singularities of 2-spheres in 4-space and cobordism of knots*, Osaka J. Math. **3** (1966), 257–267.
- [2] K. Habiro: *Claspers and finite type invariants of links*, Geom. Topol. **4** (2000), 1–83.
- [3] K. Ireland and M. Rosen: A Classical Introduction to Modern Number Theory, GTM 84 2nd ed., Springer-Verlag, 1972.
- [4] A. Kawauchi ed.: A survey of knot theory, Birkhauser Verlag, Basel-Boston-Berlin, 1996.
- [5] K. Kobayashi: *Ribbon link and separate ribbon link*, (In Japanese), Hakone Seminar Notes, (2000), 7–28.
- [6] J.W. Milnor: *Isotopy of links*, Lefshetz symposium, Princeton Math. Ser. **12** (1957), 280–306, Princeton Univ. Press.
- [7] Y. Ohyama and T. Tsukamoto: *On Habiro’s C_n -moves and Vassiliev invariants of order n* , J. of Knot theory and its Ramif. **8** (1999), 15–26.
- [8] T. Shibuya and A. Yasuhara: *Classification of links up to self pass-move*, J. Math. Soc. Japan **55** (2003), 939–946.

T. Ishikawa
 Department of Mathematics
 Faculty of Engineering
 Osaka Institute of Technology
 Osaka 535-8585, Japan
 e-mail: ishikawa@ge.oit.ac.jp

K. Kobayashi
 Department of Mathematics
 College of Arts and Sciences
 Tokyo Woman’s Christian University
 Suginami, Tokyo 167-8585, Japan
 e-mail: kazuaki@twcu.ac.jp

T. Shibuya
 Department of Mathematics
 Faculty of Engineering
 Osaka Institute of Technology
 Osaka 535-8585, Japan
 e-mail: shibuya@ge.oit.ac.jp