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(Received 1 April 2014; accepted 30 June 2014; published online 21 July 2014)

A classical molecular dynamics simulation was conducted for a system composed of fluid molecules
between two planar solid surfaces, and whose interactions are described by the 12-6 Lennard-Jones
form. This paper presents a general description of the pressure components and interfacial tension at
a fluid-solid interface obtained by the perturbative method on the basis of statistical thermodynamics,
proposes a method to consider the pressure components tangential to an interface which are affected
by interactions with solid atoms, and applies this method to the calculation system. The description of
the perturbative method is extended to subsystems, and the local pressure components and interfacial
tension at a liquid-solid interface are obtained and examined in one- and two-dimensions. The results
are compared with those obtained by two alternative methods: (a) an evaluation of the intermolecular
force acting on a plane, and (b) the conventional method based on the virial expression. The accuracy
of the numerical results is examined through the comparison of the results obtained by each method.
The calculated local pressure components and interfacial tension of the fluid at a liquid-solid interface
agreed well with the results of the two alternative methods at each local position in one dimension.
In two dimensions, the results showed a characteristic profile of the tangential pressure component
which depended on the direction tangential to the liquid-solid interface, which agreed with that ob-
tained by the evaluation of the intermolecular force acting on a plane in the present study. Such good
agreement suggests that the perturbative method on the basis of statistical thermodynamics used in
this study is valid to obtain the local pressure components and interfacial tension at a liquid-solid
interface. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890036]

I. INTRODUCTION

The physics and chemistry at a liquid-solid interface are
related to phenomena that occur over a wide size range. Such
phenomena have been intensely studied for many years from
macro- and nano-scopic points of view, and attract much at-
tention even today.1, 2 One of the most fundamental thermody-
namic quantities which has a dominant influence on the phe-
nomena at the liquid-solid interface is the interfacial tension,
and its importance for applications is widely recognized also
in the engineering fields which deal with interfacial phenom-
ena such as wetting, drying, and adhesion. However, com-
pared to the liquid-vapor interfacial tension on which many
studies have been conducted using molecular simulations, the
properties of the liquid-solid interface have not been suffi-
ciently elucidated, especially at the molecular scale. To ad-
dress this need, new approaches to calculate the liquid-solid
interfacial tension have been proposed.3, 4

The general description of liquid-solid interfacial tension
at the molecular scale is provided by statistical theory,5 in
which contributions of normal and tangential pressure com-
ponents affected by the liquid-solid interactions are consid-

a)Electronic mail: ku.fujiwara@screen.co.jp
b)Electronic mail: siba@mech.eng.osaka-u.ac.jp

ered. However, the calculation of the liquid-solid interfacial
tension at a planar solid surface has usually considered only
the pressure component normal to the solid surface; the tan-
gential components affected by the liquid-solid interactions
have generally been ignored because of the periodicity of the
arrangement of the solid atoms.3, 4, 6–8 However, from a more
accurate two-dimensional molecular perspective, there actu-
ally should exist tangential pressure components affected by
the solid atoms in the vicinity of the solid surfaces. Further-
more, for a surface rough at the nanometer-scale, the tangen-
tial components affected by the liquid-solid interactions play
a significant role and need to be considered.9

Perturbative methods to calculate pressure components
and interfacial tension, based on statistical thermodynamics,
include the volume-perturbation (VP) method10, 11 and the
recently developed test-area (TA) method.12 These methods
may be applied to vapor-liquid interfaces, and the results pro-
vide details not only for the overall liquid-vapor interface ten-
sion but also the local interface tension.13, 14 However, appli-
cation of these methods to the liquid-solid interface has been
limited to a few studies. In Ref. 15, the TA method was ap-
plied to obtain the liquid-solid interfacial tension for a system
composed of fluid molecules sandwiched between two flat
solid surfaces consisting of solid atoms, although the paper
gives no details about the method and the results are not fully

0021-9606/2014/141(3)/034707/11/$30.00 © 2014 AIP Publishing LLC141, 034707-1
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examined. In a 2012 paper, Míguez et al. extended the TA
methodology to the grand canonical ensemble and applied it
to a system of fluid molecules confined in a pore.16 The results
showed the consistency of the Irving-Kirkwood (IK) method
including only the normal pressure component affected by the
liquid-solid interaction because of the integrated form of the
fluid-solid interaction function. In those studies no results of
the local pressure components and interfacial tension at the
liquid-solid interface were presented, and the effects of the
tangential pressure components affected by the liquid-solid
interactions were not considered. The local normal pressure
component was addressed in recent results reported on the
contact angle of a droplet on a flat solid surface using the
virial expression, although the tangential components affected
by the fluid-solid interactions were ignored.8

Throughout the studies mentioned above, a perturbative
method to obtain the local pressure components and inter-
facial tension at a liquid-solid interface has not been estab-
lished, and a general description of the method that includes
the effects of the tangential pressure components affected by
the solid atoms was not presented. It should be also noted that
the previous studies were focused on obtaining results in one
dimension (namely, perpendicular to the interfaces), and the
pressure components and interfacial tension at a liquid-solid
interface were not obtained in two dimensions.

In the present study, a classical molecular dynamics sim-
ulation is conducted for a system composed of fluid molecules
between two planar solid surfaces, and whose interactions are
described by the 12-6 Lennard-Jones form. The purpose is to
develop the perturbative method and establish a general de-
scription of the method to obtain the local pressure compo-
nents and interfacial tension of the fluid at a fluid-solid inter-
face which includes contributions of tangential pressure com-
ponents affected by interactions with solid atoms. This paper
proposes such a method and applies it to the liquid-solid inter-
facial system. The local pressure components and interfacial
tension at a liquid-solid interface are obtained and examined
in one- and two-dimensions. To increase the certainty of these
numerical results, they are compared with those obtained by
two alternative methods: the first method evaluates the inter-
molecular force acting on a plane, and the second is the con-
ventional method based on the virial expression. The accuracy
of the numerical results is discussed comprehensively through
the comparison of the results obtained by each method.

This article is structured as follows. In Sec. II, a general
description is given of the pressure components and interfa-
cial tension obtained by the perturbative method for a system
which interacts with an external field, and a method to con-
sider the tangential pressure components affected by the solid
atoms is proposed. The description is extended in Sec. III to
subsystems, and the local pressure components and interfa-
cial tension at a liquid-solid interface are obtained by the per-
turbative method. Two alternative methods to calculate these
quantities are also presented to compare and confirm the ac-
curacy of the local liquid-solid interfacial tension results. In
Sec. V, the results of the local pressure components and inter-
facial tension in one- and two-dimensions are presented, and
the validations are discussed. The conclusions of this study
are summarized in Sec. VI.

II. GENERAL DESCRIPTION OF THE PRESSURE
COMPONENTS AND INTERFACIAL TENSION AT A
FLUID-SOLID INTERFACE OBTAINED BY THE
PERTURBATIVE METHOD

As discussed above, while the perturbative method
based on the statistical thermodynamics to obtain local
pressure components of a liquid-vapor interface are well-
established,11–14 this is not the case for a fluid-solid inter-
face at which fluid molecules interact with solid atoms. The
derivation for the grand canonical ensemble is presented to
obtain the fluid-solid interfacial tension by the TA method.16

This is applied to the system composed of fluid molecules in
a pore, whose fluid-solid interactions were found in a prior
work16 to depend only on the normal direction of the solid
surface because of the integrated form of the fluid-solid in-
teraction function, and tangential components affected by the
fluid-solid interactions were not considered. In this section, a
general description of the perturbative method on the basis of
statistical thermodynamics to obtain the pressure components
and interfacial tension at a fluid-solid interface is presented
for a system in the canonical and grand canonical ensembles
which interacts with an external field.

A. Canonical ensemble

Consider a classical inhomogeneous system which con-
sists of N identical and spherical particles in a volume V inter-
acting with an external field. The state of the system is spec-
ified by the 3N coordinates and 3N momenta, and then the
Hamiltonian of the system H is written as17

H (rN, pN ) = K(pN ) + U (rN ) + �(rN ), (1)

where K is the kinetic energy of the particles, U is the po-
tential energy between particles in the system, and � is
the potential energy contributed from the external field. For
the canonical ensemble in which the system is described by
Eq. (1), the Helmholtz free energy F is expressed as

F = − 1

β
ln QNV T , (2)

where

QNV T = 1

�3NN !

∫
drN exp(−β(U (rN ) + �(rN ))) (3)

is the canonical partition function, and β = 1/(kBT) with
the Boltzmann constant kB and absolute temperature T.
The de Broglie thermal wavelength � is defined as �

= √
h2/(2πmkBT ) with the Planck constant h and mass of

the particle m. The ξ component of pressure acting on a
plane Aη which is perpendicular to the η coordinate, Pξη (ξ ,η
= x,y,z) and the interfacial tension γ are defined as the partial
derivatives of the Helmholtz free energy with respect to the
volume and interfacial area, respectively,

Pξη = −
(

∂F

∂V

)
L �=ξ

NT

, γ =
(

∂F

∂As

)
NV T

, (4)

where V is defined as V = LxLyLz(Lx = Ly = Lz), and As in-
dicates the interfacial area in the system. Describing the par-
tition function of the initial and perturbed state as QNVT,0 and
QNVT,1 respectively, it follows from Eq. (3) that11, 12
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QNV T,1

QNV T,0

=
∫

drN
1 exp

(−β
(
U

(
rN

1

) + �
(
rN

1

)))
/(�3NN !)∫

drN
0 exp

(−β
(
U

(
rN

0

) + �
(
rN

0

)))
/(�3NN !)

,

=
∫

dr∗NV N
1 exp(−β(U0 + �0)) exp(−β
(U + �))/(�3NN !)∫

dr∗NV N
0 exp(−β(U0 + �0))/(�3NN !)

,

=
〈(

1 + 
V

V0

)N

exp (−β
(U + �))

〉
0

. (5)

In the above equation, 
V = V1 − V0, 
U = U1 − U0, 
�

= �1 − �0, the subscripts 0 and 1 indicate values of the initial
and perturbed states, respectively, r∗ is a coordinate scaled
with the size of the system, and 〈 〉 represents the time average.
Then the free energy difference from F0 at the initial state to
F1 at the perturbed state, 
F( = F1 − F0) is expressed from
Eqs. (2) and (5) as


F = − 1

β
ln

(
QNV T,1

QNV T,0

)
,

= − 1

β
ln

〈(
1 + 
V

V0

)N

exp (−β
(U + �))

〉
0

. (6)

Assuming the free energy difference from the initial state to
the perturbed state by infinitesimal variation of the volume
(
V = V1 − V0) and of the area (
As = As, 1 − As, 0), the
substitution of Eqs. (6) into (4) gives

Pξη = −
(

∂F

∂V

)
L �=ξ

NT

= 1

β
LξAη,0

ln

〈 (
1 + 
V

V0

)N

× exp (−β
(U + �))

〉
0

(7)

and

γ =
(

∂F

∂As

)
NV T

= − 1

β
As

ln 〈exp (−β
(U + �))〉0 ,

(8)
where 
Lξ = Lξ , 1 − Lξ , 0. It is to be remarked that in Eq. (7)

F is evaluated at Aη, 0, and the system needs to be a cube in
the case of ξ �= η.

B. Grand canonical ensemble

For a system of constant chemical potential μ, V, and T,
the grand canonical potential is defined as

�μV T = − 1

β
ln �μV T , (9)

where, the grand canonical partition function �μVT is

�μV T =
+∞∑
N=0

exp(Nβμ)

�3NN !

∫
drN exp

(−β
(
U (rN ) + �(rN )

))
.

(10)
The pressure components and the interfacial tension are de-
fined as the partial derivatives of the grand potential with re-
spect to the volume and interfacial area, respectively,

Pξη = −
(

∂�

∂V

)
μL �=ξ

T

, γ =
(

∂�

∂As

)
μV T

. (11)

Then, the ratio of the grand canonical partition function of the perturbed state �μVT,1 to �μVT,0 at the initial state is given by

�μV T,1

�μV T,0

=

+∞∑
N=0

exp(Nβμ)
�3NN!

∫
drN

1 exp
(−β

(
U

(
rN

1

) + �
(
rN

1

)))
+∞∑
N=0

exp(Nβμ)
�3NN!

∫
drN

0 exp
(−β

(
U

(
rN

0

) + �
(
rN

0

))) ,

=

+∞∑
N=0

exp(Nβμ)
�3NN!

∫
dr∗NV N

1 exp(−β(U0 + �0)) exp(−β
(U + �))

+∞∑
N=0

exp(Nβμ)
�3NN!

∫
dr∗NV N

0 exp(−β(U0 + �0))
,

=
〈(

1 + 
V

V0

)N

exp (−β
(U + �))

〉
0

. (12)
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This expression enables 
�μVT (=�μVT,1 – �μVT,0) to be expressed as the same form of 
F of the canonical ensemble


�μV T = − 1

β
ln

(
�μV T,1

�μV T,0

)
,

= − 1

β
ln

〈(
1 + 
V

V0

)N

exp (−β
(U + �))

〉
0

. (13)

Thus, the final equations become

Pξη = −
(

∂�

∂V

)
μL �=ξ

T

= 1

β
LξAη,0

ln

〈 (
1 + 
V

V0

)N

× exp (−β
(U + �))

〉
0

(14)

and

γ =
(

∂�

∂As

)
μV T

= − 1

β
As

ln 〈exp (−β
(U + �))〉0 .

(15)
Equations (7), (8), (14) and (15) suggest that in an equilibrium
state, the pressure components and the interfacial tension can
be evaluated by the same expressions whether the system is
defined as the canonical ensemble or grand canonical ensem-
ble. This fact plays a significant role in extending this method
to obtain the quantities in subsystems as shown for the vapor-
liquid system in Ref. 13.

The procedures to evaluate 
U in Eqs. (7), (8), (14)
and (15), are presented in detail for a vapor-liquid system in
Refs. 11 and 12. For instance, Pzz is given by the perturba-
tion of the system from the initial state of V0 = Lx,0Ly,0Lz,0
to the final state of V1 = Lx,1Ly,1Lz,1, where Lz, 1 = Lz, 0(1
+ λ), keeping the Lx, 1 and Ly, 1 constant: Lx, 1 = Lx, 0 and
Ly, 1 = Ly, 0. Here, perturbation parameter λ is the infinites-
imal quantity, but it actually expresses a small finite quan-
tity in simulations. In order to obtain the interfacial tension
γ , it is not necessary to change the volume: the alterna-
tive method uses a constant volume through the perturba-
tion such that Lz, 1 = Lz, 0/(1 + λ), Lx,1 = Lx,0

√
(1 + λ), and

Ly,1 = Ly,0

√
(1 + λ), where z is the direction normal to the

interface, while x and y are the tangential directions. It should
be noted that the pressure components and interfacial tension
are defined as the partial derivatives expressed in Eqs. (4) and
(11), which can be evaluated in simulations by the forward,
backward, and central difference methods.12

Special attention is required to deal with 
� in Eqs. (7),
(8), (14) and (15), due to the fact that the volume of the sys-
tem is defined as the region of fluid particles. This means the
distance between fluid particles and solid atoms should be ex-
tended or shortened, depending on the relative positions of the
fluid particles to the solid atoms in the x and y directions (i.e.,
the tangential directions to the solid surface). The transforma-
tion of positions of the fluid particles in the system through
the volume perturbation in the x and y directions imposes the

conditions

xf s,1 = xf s,0(1 + λ) for xf,0 > xs,0,

xf s,1 = xf s,0(1 − λ) for xf,0 < xs,0,
(16)

and

yf s,1 = yf s,0(1 + λ) for yf,0 > ys,0,

yf s,1 = yf s,0(1 − λ) for yf,0 < ys,0,
(17)

where xfs and yfs, respectively, represent the x and y com-
ponents of the distance between the fluid particles and solid
atoms. The subscripts f and s indicate the values for the fluid
particles and the solid atoms, respectively. In the case of the
constant volume, it follows that

xf s,1 = xf s,0

√
1 + λ for xf,0 > xs,0,

xf s,1 = xf s,0

√
1 − λ for xf,0 < xs,0,

(18)

and

yf s,1 = yf s,0

√
1 + λ for yf,0 > ys,0,

yf s,1 = yf s,0

√
1 − λ for yf,0 < ys,0.

(19)

The z component normal to the solid surface can be treated
in the same manner as the usual transformation,12 since the
relative positions of the fluid particles to the solid atoms are
the same in the direction normal to an interface.

III. METHODOLOGY TO OBTAIN THE LOCAL
PRESSURE COMPONENTS AND INTERFACIAL
TENSION

In this section, we describe the perturbative method used
to obtain pressure components and interfacial tension in sub-
systems for a system which interacts with an external field.
Two alternative methods are also presented to compare the
results of the local interfacial tension calculation: the first
method evaluates the intermolecular force acting on a plane,
and the second is the conventional virial expression based on
the Irving and Kirkwood definition.

A. Perturbative method

In order to obtain the pressure components and interfa-
cial tension in subsystems, it is reasonable to use Eqs. (14) and
(15) which are derived in the μVT ensemble. This requires the
assumption that the system is in equilibrium, keeping μ, V,
and T constant in each subsystem. Under this assumption, the
thermodynamic properties in each subsystem can be evalu-
ated appropriately. For a system in a volume V which consists

 16 February 2024 04:26:11
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of subsystems with volumes Vk(Vk = dxk × dyk × dzk, dxk
= dyk = dzk, and V = �kVk), the local pressure components
Pξη,V

k
(ξ ,η = x,y,z) and interfacial tension γV

k
are described on

the basis of Eqs. (14) and (15) as

Pξη(x, y, z)
(x,y,z)∈V

k

≡ Pξη,V
k
= 1

β
(dξk)Aη,V
k

ln

〈(
1 + 
Vk

Vk

)N
V
k

× exp
(−β


(
UV

k
+ �V

k

))〉
(20)

and

γ (x, y, z)
(x,y,z)∈V

k

≡γV
k
=− 1

β
As,V
k

ln
〈
exp

(−β

(
UV

k
+�V

k

))〉
,

(21)

where 
(dξ k) = λ × dξ k, 
As,V
k
= λAs,V

k
, and the subscript

Vk indicates that the quantity is defined in Vk. It should be
noted that in Eq. (20) the pressure components at the volume
Vk are obtained by considering only the interactions through
the area Aη,V

k
which is perpendicular to the η coordinate.

These equations are the same forms as those derived by us-
ing Eqs. (7) and (8) in the canonical ensemble, which sug-

gests that the pressure components and interfacial tension are
formally obtained in subsystems based on Eqs. (20) and (21),
respectively, in the canonical ensemble simulation if the sys-
tem is in equilibrium.

B. Evaluation of the force acting on a plane

Todd and co-workers18 have presented a method to con-
sider contributions of the interactions between the particles
to the pressure components by evaluating the intermolecular
forces acting on a plane, and this method is used as one of
the methods to calculate the pressure components.19 This ap-
proach can be extended to formalism applicable to subsys-
tems. Consider a plane in the volume Vk:Aη,V

k
, which is per-

pendicular to the axis η, and through which the ith particle
and jth particle may interact. For a region in the vicinity of
the fluid-solid interface, in which a substrate is located below
fluid molecules, it follows that the contributions of the inter-
actions to the pressure components of the fluid exerted on the
plane are straightforwardly calculated by the evaluation of the
intermolecular forces, and the pressure components are given
by

Pξη(x, y, z)
(x,y,z)∈V

k

≡ Pξη,V
k
= 1

Vk

〈∑
i∈V

k

piξpiη

mi

〉
+ 1

2Aη,V
k

〈 ∑
(i �=j ),r

ij
∩A

η,V
k

fijξ

[
�(ηi − η)�(η − ηj ) − �(ηj − η)�(η − ηi)

]〉

+ 1

Aη,V
k

〈 ∑
(i,j ),r

ij
∩A

η,V
k

f ′
ijξ

[
�(ηi − η)�(η − ηj ) + �(ηj − η)�(η − ηi)

]〉
, (22)

where Vk = (dηk)Aη,V
k
, rij = ri − rj, mi is the mass of ith

particle, piξ and piη are the ξ and η components of the mo-
mentum of the ith particle in the volume Vk, respectively, fijξ
represents the ξ component of the intermolecular force acting
on the ith fluid particle due to the jth fluid particle, f ′

ijξ is the ξ

component of the intermolecular force acting on the ith fluid
particle due to the jth solid atoms, and � is the Heaviside step
function. In Eq. (22), the third term is obtained considering
only the forces acting on the ith fluid particles,19 and the sec-
ond part in the third term, f ′

ijξ�(ηj − η)�(η − ηi) is needed
to include effects of the components of the fluid-solid inter-
action force which are tangential to the fluid-solid interface.
Then, the local interfacial tension at the volume Vk is defined
in the present study as

γV
k
= dzk

(
Pzz,V

k
−

Pxx,V
k
+ Pyy,V

k

2

)
, (23)

for the system in which z is the component normal to the in-
terface, and x and y are the tangential components.

C. Irving and Kirkwood definition

The normal and tangential pressure components, PN (z)
= Pzz(z) and PT(z) = (Pxx(z) + Pyy(z))/2, which depend only
on the direction normal to the interface in a planar system,
are expressed by the conventional virial equations which are
based on the Irving and Kirkwood definition.19 For a region
in the vicinity of the fluid-solid interface, in which a substrate
is located below fluid molecules,

PN (z) = ρ(z)kBT − 1

2A

〈∑
i �=j

|zij |
rij

∂u(rij )

∂rij

× �

(
z − zi

zij

)
�

(
zj − z

zij

)〉

+ 1

A

〈∑
i,j

f ′
ijz�(zi − z)�(z − zj )

〉
, (24)

PT (z) = ρ(z)kBT − 1

4A

〈∑
i �=j

x2
ij + y2

ij

rij

∂u(rij )

∂rij

1

|zij |

�

(
z − zi

zij

)
�

(
zj − z

zij

)〉
, (25)
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where ρ is the density, A is the interfacial area, and u and

rij =
√

x2
ij + y2

ij + z2
ij are the potential energy and distance

between the particles, respectively. In Eqs. (24) and (25), the
first and second terms on the right hand side are the respec-
tive contributions of the fluid molecules’ kinetic part and the
intermolecular forces between fluid molecules. In Eq. (24),
the third term on the right hand side is the contribution of
the intermolecular forces acting on fluid molecules due to the
solid atoms. A number of published studies obtain the pres-
sure components by using these equations.3, 16, 19 The local in-
terfacial tension for the planar system is defined in the present
study as

γV
k
= γdz

k
= dzk

(
PN (z) − PT (z)

)
. (26)

IV. SYSTEM AND NUMERICAL DETAILS

In the present study, a classical molecular dynamics sim-
ulation is conducted for the system in which 4050 fluid
molecules are confined between two planar solid surfaces.
The system is in vapor-liquid equilibrium which includes
three interfaces (vapor-solid, vapor-liquid, and liquid-solid)
which are parallel to the solid surfaces (xy plane) perpendicu-
larly located along the z axis. The Hamiltonian of the system
is described as

H (r, p) =
N

f∑
i

|pi |2
2mi

+ 1

2

N
f∑

i �=j

uff (rij ) + uext , (27)

where Nf is the number of the fluid molecules, uff(rij) is the
potential energy between the fluid molecules which depends
on the distance between the molecules, rij = |ri − rj|, and

uext = �
N

f

i=1�
N

s

j=1uf s(rij ) with the number of the solid atoms
Ns and the potential energy between the fluid molecules and
the solid atoms ufs. All the interactions between molecules
or atoms are assumed to obey the 12-6 Lennard-Jones (LJ)
potential, of the form,

u(rij ) = 4ε

⎡
⎣(

σ

rij

)12

−
(

σ

rij

)6
⎤
⎦ . (28)

The fluid molecules are assumed to be argon (Ar), and
reduced units are used as given in Table I by using the
Boltzmann constant, kB, and the LJ parameters of the fluid
molecules, mf, σ ff, and εff in the present study. The cutoff

TABLE I. Reduced units and their values.

Quantity Unit Value

Mass mf 6.634 × 10−26 kg

Distance σ ff 3.405 × 10−10 m

Energy εff 1.670 × 10−21 J

Temperature εff/kB 120.9 K

Time σ
ff

√
m

f
/ε

ff
2.146 × 10−12 s

Interfacial tension ε
ff

/σ 2
ff 1.440 × 10−2 Nm-1

Pressure ε
ff

/σ 3
ff 4.230 × 107 Nm-2

Density m
f
σ−3

ff 1.680 × 103 kgm-3

distance of the LJ potential is 5.0. The solid substrates are
assumed to be platinum (Pt), with Lennard-Jones interaction
parameters of σ ss = 0.746 and εss = 65.39.20 The fluid-solid
interaction is also described by the LJ potential with σ fs = (σ ff
+ σ ss)/2 = 0.873 and εfs, in which εfs is varied as a ratio to the
εff in the present study. The volume of the system is defined
as V = Lx × Ly × Lz, where Lx = 15.4, Ly = 15.4, and Lz
= 44.1. Periodic boundary conditions are applied in the x and
y directions which are tangential to the interfaces. The veloc-
ity Verlet algorithm is applied to integrate the equations of
motion. Each solid part consists of 3 layers of the solid atoms
where the outermost layer is fixed and the temperature of the
middle layer is controlled by the Langevin method,21, 22 at a
constant value T∗ = 0.8. Artificial forces are not added to the
third layer, and the atoms in the third layer can move freely
around the center of oscillation by the interactions with other
atoms. The simulation consists of 2028 solid atoms arrayed
in a fcc lattice structure with the (111) surface in contact with
the fluid molecules.

The temperature of the fluid molecules is kept constant
by the velocity scaling control for 500 000 steps with a time
interval of 
t = 9.3 × 10−4, followed by 2 000 000 steps of
the relaxation calculation conducted to equilibrate the system
without the velocity scaling control. The density, pressure,
and interfacial tension are obtained as the time averaged val-
ues for at least 2 000 000 steps.

V. RESULTS AND DISCUSSIONS

A. One dimension

Figures 1(a) and 1(b) present typical results obtained by
the perturbative method on the basis of Eq. (20). The figures
show the normal and tangential components of the reduced
pressure and the reduced density of fluid molecules in the z
direction near the lower substrate for λ = 5.0 × 10−10, and for
εfs = 0.25 (Fig. 1(a)) and εfs = 0.50 (Fig. 1(b)). The partial
derivatives as expressed in Eqs. (4) and (11) were evaluated
by the central difference method. The results were obtained
by averaging the pressure and density values after 5 000 000
time steps. For the pressure results, the figures show error bars
calculated using five averaged results of 1 000 000 time steps.
The system is divided into subsystems with the height of
0.088 in the z direction, in which the pressure components and
density of fluid molecules are calculated. As shown in Fig. 1,
the normal pressure component P ∗

N (= P ∗
zz) is constant in the

z direction, ensuring that the system is in equilibrium, while
the tangential pressure component P ∗

T (= (P ∗
xx + P ∗

yy)/2) fluc-
tuates in the vicinity of the liquid-solid interface and is almost
constant in the bulk of the liquid. The error bars obtained by
the 5 simulation runs indicate that the results are obtained
with considerable accuracy in the present study. Comparing
Figs. 1(a) and 1(b), it is evident that the fluctuation of PT in
the vicinity of the liquid-solid interface becomes pronounced
with the increase of εfs.

Figure 2 shows effects of the perturbation parameter λ

on the reduced local liquid-solid interfacial tension γ ∗
V

k
ob-

tained on the basis of Eq. (21) by the forward difference for εfs
= 0.25. The figure shows γ ∗

V
k

as a function of z∗, and is nor-
malized to the corresponding values for the case of λ = 5.0
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FIG. 1. Normal and tangential components of the reduced pressure P∗ and
the reduced density of fluid molecules ρ∗ in the z direction, obtained on
the basis of Eq. (20) in the vicinity of the liquid-solid interface for λ = 5.0
× 10−10, and for (a) εfs = 0.25 and (b) εfs = 0.50. The circles and squares
correspond to the results of the normal and tangential components of the
pressure, respectively. The triangles are the results of the density of the fluid
molecules. The results of the pressure components and density are calculated
as the averaged values of 5 000 000 time steps.

× 10−10. As shown in Fig. 2, with increasing λ, the value
of the local interfacial tension differs markedly from that in
the case of λ = 5.0 × 10−10, especially in the bulk of the
liquid; this is due to the quite small values of the local inter-
facial tension in the bulk. This result suggests that the use of
the forward difference alone is not sufficient to obtain accu-
rate local interfacial tension when the value of λ is relatively
large (>5.0 × 10−6), as in the present study. Therefore, us-

FIG. 2. Effects of the perturbation parameter λ on the reduced local liquid-
solid interfacial tension γ ∗

V
k

obtained on the basis of Eq. (21) by the forward

difference for εfs = 0.25. Values of γ ∗
V

k
are normalized to the value in the

case of λ = 5.0 × 10−10, γ ∗
V

k
|
λ=5×10−10 . The circles, squares, triangles, and

crosses are the results for λ = 5.0 × 10−5, 5.0 × 10−6, 5.0 × 10−7, and
5.0 × 10−8, respectively. Each result is calculated as the averaged value of
2 000 000 time steps.

FIG. 3. Effects of the forward and backward difference methods on calcu-
lating the reduced local liquid-solid interfacial tension γ ∗

V
k

obtained on the

basis of Eq. (21) for λ = 5.0 × 10−10 and εfs = 0.25. Each value is nor-
malized to that obtained by the central difference, γ ∗

V
k
|
Central diff erence

. The

circles and squares indicate the results of using the forward and backward dif-
ference methods, respectively. Each result is calculated as the averaged value
of 2 000 000 time steps.

ing smaller values of λ or switching to the central difference
method is strongly recommended. The value of λ = 5.0 ×
10−10 is adopted as the standard in the following calculations.

Figure 3 shows effects of using forward and backward
differences on the calculated local liquid-solid interfacial ten-
sion for λ = 5.0 × 10−10 and εfs = 0.25, in which each value
is normalized to the value obtained by the central difference.
Relatively high peaks are observed in the bulk of the liquid,
but the profile is symmetric about the value of the central dif-
ference (γ ∗

V
k
= 1.0), which means that the result obtained by

the central difference is the most reliable compared with the
other approaches. However, from the fact that the maximum
error was found to be at most 5% in this study, it can also be
said that the forward and backward differences are suitable
when such a small value of λ is chosen (λ = 5.0 × 10−10), if
high accuracy is not required for the calculation of the local
liquid-solid interfacial tension.

Figure 4 gives the results of the reduced local liquid-
solid interfacial tensions in one dimension calculated by the

FIG. 4. Reduced local liquid-solid interfacial tension γ ∗
V

k
calculated by the

perturbative method (Eq. (21)), the evaluation of the intermolecular force act-
ing on a plane (Eq. (23)), and the virial expression based on the Irving and
Kirkwood definition (Eq. (26)) for εfs = 0.25. The values of the perturbative
method are calculated by the central difference method. The circles, squares,
and triangles indicate the results obtained by the perturbative method, the
evaluation of the intermolecular force acting on a plane, and Irving and Kirk-
wood definition, respectively. Each result is calculated as the averaged value
of 5 000 000 time steps.
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FIG. 5. Reduced local liquid-solid interfacial tensions γ ∗
V

k
calculated on the

basis of Eqs. (23) and (26) for εfs = 0.25. The results are normalized to that
obtained by the perturbative method (Eq. (21)), γ ∗

V
k
|
Perturbative method

. The

circles and squares indicate the results obtained by the evaluation of the in-
termolecular force acting on a plane (Eq. (23)) and Irving and Kirkwood def-
inition (Eq. (26)), respectively. Each result is obtained as the averaged value
of 2 000 000 time steps.

perturbative method (Eq. (21)), the evaluation of the in-
termolecular force acting on a plane (Eq. (23)), and the
virial expression based on the Irving and Kirkwood definition
(Eq. (26)) for εfs = 0.25. These results are shown normalized
to the values obtained by the perturbative method in Fig. 5.
According to Fig. 4, all the results have good agreement at
each local position, and confirm that the local liquid-solid in-
terfacial tension obtained by the perturbative method in this
study is valid in one dimension. A detailed comparison of the
results as shown in Fig. 5 reveals that the values of the local
interfacial tension at each position agree well, but differences
are observed in the bulk of the liquid where the values of the
local interfacial tension are quite small as shown in Fig. 4. In
Fig. 5, effects of the tangential pressure components affected
by the solid atoms can be evaluated by the result of Irving and
Kirkwood definition obtained based on Eq. (26) in which no
contributions of the tangential pressure components affected
by the fluid-solid interactions are considered. The results of
the local liquid-solid interfacial tensions obtained by the per-
turbative method and the force acting on a plane confirm that

the tangential pressure component affected by the solid atoms
almost vanishes in one dimension, as indicated in the previous
works.3, 19

B. Two dimensions

The perturbative method based on Eqs. (20) and (21) was
applied to the calculation system to obtain the pressure com-
ponents and interfacial tension at a liquid-solid interface in
two dimensions. The system is divided into subsystems with
the area Ak( = dxk × dzk = 0.088 × 0.088) in the xz plane,
and results are obtained as the averaged values of 5 000 000
time steps. Figure 6 shows reduced density distributions of
the fluid molecules in the vicinity of the liquid-solid inter-
face; Fig. 6(a) shows the result for εfs = 0.25 and Fig. 6(b)
for εfs = 0.50. In Fig. 6, the x∗ positions of the first layer of
the solid atoms facing the fluid molecules are 0.0, 0.592, and
1.184. The results indicate that the density distribution of the
fluid molecules fluctuates in the vicinity of the liquid-solid in-
terface and is affected by the positions of the solid atoms in
two dimensions.

Figure 7 presents two-dimensional contour plots of the
local tangential component of the reduced pressure of the
fluid, obtained based on Eq. (20) using the central difference
method for λ = 5.0 × 10−10, and for εfs = 0.25 (Fig. 7(a))
and εfs = 0.50 (Fig. 7(b)). The tangential pressure compo-
nent in the xz plane fluctuates at the liquid-solid interface
and becomes pronounced with the increase of εfs, display-
ing the same tendency as that obtained in one dimension.
Three-dimensional contour plots of the local tangential pres-
sure component are shown in Fig. 8 for λ = 5.0 × 10−10, and
for εfs = 0.25 (Fig. 8(a)) and εfs = 0.50 (Fig. 8(b)). The lat-
ter shows that the peaks of the tangential pressure component
fluctuate in the x direction due to the effects of the solid atoms,
while the effect is weak in the case of εfs = 0.25 as shown in
Fig. 8(a). Figure 9 gives the results of the reduced local inter-
facial tension in the vicinity of the liquid-solid interface in the
xz plane; results were obtained on the basis of Eq. (21) for λ

= 5.0 × 10−10, and for εfs = 0.25 (Fig. 9(a)) and εfs = 0.50
(Fig. 9(b)). The profiles of the local interfacial tension are the

FIG. 6. Reduced density distributions of fluid molecules in the vicinity of the liquid-solid interface, for (a) εfs = 0.25 and (b) εfs = 0.50. Each result was
obtained as the averaged value of 5 000 000 time steps and shown on each area Ak(= dxk × dzk = 0.088 × 0.088).
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FIG. 7. Two-dimensional contour plots of the reduced local tangential pressure component P ∗
T in the vicinity of the liquid-solid interface in the xz plane,

obtained on the basis of Eq. (20) for λ = 5.0 × 10−10, and for (a) εfs = 0.25 and (b) εfs = 0.50. Each result is obtained as the averaged value of 5 000 000 time
steps.

FIG. 8. Three-dimensional contour plots of the reduced local tangential pressure component P ∗
T in the vicinity of the liquid-solid interface in the xz plane,

obtained on the basis of Eq. (20) for λ = 5.0 × 10−10, and for (a) εfs = 0.25 and (b) εfs = 0.50. Each result is the averaged value of 5 000 000 time steps.

FIG. 9. Two-dimensional contour plots of the reduced local interfacial tension γ ∗
V

k
in the vicinity of the liquid-solid interface in the xz plane, obtained on the

basis of Eq. (21) for λ = 5.0 × 10−10, and for (a) εfs = 0.25 and (b) εfs = 0.50. Each result is the averaged value of 5 000 000 time steps.
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FIG. 10. Three-dimensional contour plot of the reduced local interfacial tension γ ∗
V

k
in the vicinity of the liquid-solid interface in the xz plane, obtained on the

basis of Eq. (23) for λ = 5.0 × 10−10 and εfs = 0.25. The result is normalized to the value obtained by the perturbative method, γ ∗
V

k
|
Perturbative method

. The

result is the averaged value of 5 000 000 time steps.

same as those obtained in one dimension, which ensures the
validation of the method in two dimensions.

Figure 10 gives the three-dimensional contour plot of the
reduced local liquid-solid interfacial tension in the xz plane
obtained by the evaluation of the intermolecular force act-
ing on a plane, using Eq. (23) with λ = 5.0 × 10−10 and εfs
= 0.25. The result is normalized to the value obtained by the
perturbative method. According to the result, the difference
between the two methods becomes relatively pronounced to-
ward the bulk part of the fluid, but the error is under 2% in the
calculation region. The results suggest that the perturbative
method is valid for the calculation of the local liquid-solid in-
terfacial tension in this study, even if the values are evaluated
in two dimensions.

VI. CONCLUSION

A classical molecular dynamics simulation was con-
ducted for a system composed of fluid molecules between two
planar solid surfaces, and whose interactions are described by
the 12-6 Lennard-Jones form. This paper presents a general
description of the pressure components and interfacial tension
at a fluid-solid interface obtained by the perturbative method
on the basis of statistical thermodynamics, proposes a method
to consider the pressure components tangential to an interface
which are affected by interactions with solid atoms, and ap-
plies this method to the calculation system. The description of
the perturbative method is extended to subsystems, and the lo-
cal pressure components and interfacial tension of the fluid at
a liquid-solid interface are obtained and examined in one- and

two-dimensions, and the results are compared with those ob-
tained by two alternative methods: (a) an evaluation of the in-
termolecular force acting on a plane, and (b) the conventional
method based on the virial expression. A general description
of the method to evaluate the intermolecular force acting on a
plane which is applicable to subsystems is also presented.

In one dimension, the local interfacial tension was ob-
tained with various perturbation parameters, and the results
revealed that quite a small value (on the order of 1.0 × 10−10)
is required to obtain relatively accurate values of the local in-
terfacial tension using the forward difference method in the
present study. The calculated local interfacial tension agreed
well with the results of the two alternative methods at each
local position. In two dimensions, the results showed a char-
acteristic profile of the tangential pressure component which
depended on the direction tangential to the liquid-solid inter-
face, which agreed with that obtained by the evaluation of the
force acting on a plane in the present study. Such good agree-
ment suggests that the perturbative method used in this study
is valid to obtain the local pressure components and interfacial
tension at a liquid-solid interface.
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