|

) <

The University of Osaka
Institutional Knowledge Archive

. The 3-canonical system on 3-folds of general
Title type

Author(s) |Zhou, Yiqun

Osaka Journal of Mathematics. 2011, 48(1), bp.

Citation 91-98

Version Type|VoR

URL https://doi.org/10.18910/9368

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Zhou, Y.
Osaka J. Math.
48 (2011), 91-98

THE 3-CANONICAL SYSTEM ON 3-FOLDS OF GENERAL TYPE

YIQUN ZHOU

(Received January 13, 2009, revised September 16, 2009)

Abstract

Let X be a projective minimal Gorenstein 3-fold of general typ¢hw-factorial
terminal singularities. We classify minimal GorensteirfoBis of general type ac-
cording to the birationality of 3-canonical system #n

1. Introduction

Let X be a projective variety o€, andKy is the canonical divisor oX. One may
define them-canonical mappy, corresponding to the complete linear systgpnKy|. To
study the behavior ofy,, especially the birationality o$,, has been one of the most
important topics of birational geometry. When din< 2, the behavior of,, has been
thoroughly studied. However, when dikn> 3, many problems still remain open.

Let X be a projective minimal Gorenstein 3-fold of general typehv@-factorial
terminal singularities. When ditr{ = 3, we know that whemm is big enough,¢m
must be birational, hence it is important to find the univetewer bound N for all
3-folds such thatp, is birational for allm > N. The known best result is as follows:
Chen, Chen and Zhang [5] proved that> 5 is enough; Chen and Zhang [6] proved
that if X cannot be fibred by a unique family of irreducible curves obmgetric genus
2, thenm > 4 is enough; Zhu [12] proved the generic finitenesspef Also in [6],
Chen and Zhang proposed an open problem(see [6, 6.4 (2)i):psssible to charac-
terize the birationality ofp3? We have several examples to illustrate the importance of
this problem.

ExampPLE 1.1 ([6, Example 6.2]). Kobayashi (see [9, Proposition 3]s con-
structed a family of canonically polarized smooth threg$ot satisfying the equality

4 10
K{ = 3PV — =
where py(Y) = 7, 10, 13,..., Chen and Zhang proved that all examplxes above have

non-birational 4-canonical maps, thus they have nonibimat 3-canonical maps.
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ExAMPLE 1.2. LetSbe a surface of typek(g, pg(9) = (2,3). LetC be a smooth
curve of genus> 2. TakeX = Sx C. Since¢; is generically finite, ding1(X) = 3.
When g(C) is big enough,py(X) is big enough, hence, is birational by [6, 4.2]. But
¢3 is obviously not birational.

This paper makes an effort to answer this open problem, the thaorem is as
follows. Notice that the Example 1.1 corresponds to ¢he 2 situation, and the Ex-
ample 1.2 corresponds to tltk= 1 situation.

Theorem 1.1. Let X be a projective minimal GorensteBifold of general type
with Q-factorial terminal singularities. Denote & dim ¢1(X). If ¢3 on X is not bi-
rational, then X must be one of the following types
(1) pg(X) =7,

(2) pg(X) = 8, while:

(1) d =3, X contains a surface which has a family of curves of geus

(2) d =2, X contains a surface which has a family of curves of genlu

(3) d =1, X contains a surface S such that either S has a family of cuo¥es

genus= 3 or S satisfies gS) =1, Ké) <9, where % is the minimal model of S.

2. The key technical results

2.1. Brief review on curves.

FACT 2.1. LetC be a smooth curve of genuas 2. AssumeD is a divisor onC
with deg(@D) > 3. Then the rational map corresponding|tc + D| gives a birational
morphism onto its image.

2.2. Brief review of relevant results on surfaces. Let S be a smooth minimal
surface of general type, according to [2], one has

FACT 2.2. For allm > 5, ¢, is a biratinal morphism onto its image.
FACT 2.3. Form = 4, ¢n is birational if and only if K2, py(S) # (1, 2).
FACT 2.4. Form = 3, ¢, is birational if and only if Kg, pPg(9) # (1, 2) and (2, 3).

FACT 2.5. Form = 2, if K2 > 10, thengy, is birational if and only ifS cannot
be fibred by a family of irreducible curves of geometric gedus

2.3. General method. Let X be a projective minimal Gorenstein 3-fold of gen-

eral type withQ-factorial terminal singularities. Under the assumptiay(X) > 2, we
study the canonical mag, which is a rational map. Take the modificatian X’ — X,

according to Hironaka, such that
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(i) X’ is smooth.
(i) The movable part of Kx | is basepoint free.
(i) 7*(Kx) is linearly equivalent to a divisor with normal crossingoport.
Denote byg the compositiong; o 7. Sog: X' — W' € PPX)~1 is a morphism.

f . o . .
Let X' — B > W’ be the Stein factorization of. We get a commutative diagram
as below:

[

We may write K{ ~ 7*(Kx) + E; ~ M1 + Z1, where M is the movable part of
|[K%], Z1 is the fixed part, andE, is a sum of distinct exceptional divisors. We may
write 7*(Kx) ~ M1 4+ E;, whereE; = Z; — E; is an effective divisor.

If dim ¢1(X) = 2, we see that a general fib&of f is a smooth projective curve
C of genus> 2. We say thatX is canonically fibred by curves of gengs= g(C).

If dim ¢1(X) = 1, we see that a general fib&of f is a smooth projective sur-
face of general type. We say that is canonically fibred by surfaces with invariants
(cf(S)), py(9), where S is the minimal model ofS. We may writeM; = a; S, where
ap > pg(X) —1.

A generic irreducible elemer® of |M;|, means either a general member |bf;|
when dimg1(X) > 2 or, otherwise, a general fiber df.

REMARK 2.1. Throughout the paped; ~ D, (resp.=gq, or D; = D) means
that divisorsD; and D, are linearly equivalent (respD; andrD, are linearly equiva-
lent for some positive integar, or D; and D, are numerically equivalent).

Lemma 2.1 (Chen [6, Theorem 3.6]).Let X be a minimal projective-fold of
general type withQ-factorial terminal singularities and assumey(X) > 2. Keep the
same notation as above. Pick a generic irreducible elemeitf §V;|. Supposgon
the smooth surface,$here is a movable linear systej@| and denote by C a generic
irreducible element ofG|. Set& := (7*(Kx) - C)x, and

1 dimgy(X) = 2,
P= a; otherwise.
Assume there is a rational numbgr> 0, such thatr*(Kx)|s— BC is numerically

equivalent to an effectiv@®-divisor. Denotea := (m—1—1/p — 1/B)&, setag =
[a], then
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(1) Assume there is a positive integer m such that the linearesygKs +
[(m—2)7*(Kx)|s]| seperates different generic irreducible elements|®f, then ¢n,
is birational if one of the following conditions is satisfied

. o> 2;

i. ag>2and C is non-hyperelliptic

iii. « >0, C is non-hyperelliptic and C is an even divisor of S.
(2) &€ > (29(C) — 2 + ap)/m if one of the following conditions is satisfied

v. o>1;

V. «>0,and C is an even divisor.

3. Proof of the main theorem

We now study the birationality ops. Setd = dim ¢1(X).
3.1. The cased = 3.

Proposition 3.1. Let X be a projective minimal Gorenste®dfold of general type
with Q-factorial terminal singularities. Assumeg(X) > 8, and d = 3. Theng¢;z is
birational unless X contains a surface which has a family wives of genus< 2.

Proof. According to our general method, a generic irredacd#dementS of |M;|
is a smooth projective surface of general type. It is sufficte verify the birationality
for ¢s|s by virtue of the Matsuki—Tankeev principle [3, 2.1]. We calesi the sub-
system|Kx + 7*(Kx) + § C [3K%|. By the Kawamata-Viehweg vanishing theorem
[8], we have the surjective map

HO(X', Ky + 7*(Kx) + S) = H%(S, Ks+ L)

whereL = 7*(Kx)|s is a nef and big divisor ors. If |L| gives a birational map, then
so does|Ks+ L|. Otherwise,|L| gives a generically finite map of degree2. Noting
that h%(S, L) > py(X)—1> 7, we havelL? > 2(h%(S, L) —2) > 10. If |[Ks+ L| doesn't
give a birational map, then according to Reider’s resul,[i10ere is a free pencil of
curves onS with a generic irreducible elemei@, such thatL - C = 1 or 2. On the
other hand,L - C > 2 since|L| gives a generically finite map o@ andC is a curve
of genus> 2. Therefore we havé - C = 2. Moreover, by the Riemann—Roch fomular
and Clifford’s theorem, we have’(C, L|c) = 2. By

(3.1) HOS, L —C)— HYS L) = HOC, L|c),
we have

h%(S, L — C) + h%(C, L|c) = h%(S, L),
ho(S, L) <h%S, L -C) +2.
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We can replacé in (3.1) by L —nC and haven sequences relatively. B2 = 0 we
have L —C)|c = L|c. Sinceh®(S, L) > py(X)—1, we haven®(S, L) < h%(S, L —nC)+
2n when pg(X) > 2n+1. So there exists an effective divisBrsuch that. =¢ nC+E.

SetF = C + (1/n)E, so L =q¢ nF. Since py(X) > 8, we can choos@ = 3, so
degF|lc = (1—-1/n)L-C > 1.

By the Kawamata—Viehweg vanishing theorem, we have theviatlg surjective map

HO(Ks—i- [L - %ED — HOC, Ke + [(n— F]lc).

Let M3 be the movable part oKy + 7*(Kx) + S|, N be the movable part ofKs +
[L—(1/n)E —C]|, thenM3|s > N by [3, Lemma 2.7].
So we have

8 2
3L-C =3r"(Kx)ls-C = degKc + 2F|c) = 29(C) — 2+ 5 = 29(C) + 3,

then we can derive thag(C) < 2.
Therefore,¢s is birational if X does not contain a surface which has a family of
curves of genus 2. O

3.2. The cased = 2.

Proposition 3.2. Let X be a projective minimal Gorenste®dfold of general type
with Q-factorial terminal singularities. Assumeg(X) > 6, and d = 2. Then¢s is
birational unless X contains a surface which has a family wives of genus< 3.

Proof. LetS be a generic element ¢M;|. So §|s = aC, wherea > py(X) — 2,
andC is a general fiber off and is a smooth curve. Denote= 7*(Kx)|s > S|s. By
the Kawamata—Viehweg vanishing theorem, we have the foligwgurjective map

HO(X', Kx + 7*(Kx) + S) — HY(S, Ks+ [L7).

We may writeL =aC+ E”, soL — C —(1/a)E” is nef and big. By the Kawamata—
Viehweg vanishing theorem, we have the following surjextimap

1
HO(S, Ks+ [L - EE”-D — H%C, K¢ + D)

where D := [L — C — (1/a)E"]|c. If deg/ D] = (1 — (1/a))L - C > 3, then|K¢ +
[L7|c — C| gives a birational map by Fact 2.1. By the Matsuki—Tankeengiple, we
can derive thaiKy + 7*(Kx) + S| gives a birational map, and the birationality of
¢3 follows.
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We now prove that (+ 1/a)L -C > 2.

Let G = My|s, G is composed of a pencil an@ = aC. In Lemma 2, we may
takep=1,8=2 andé =L-C, «a = (m—25%. By [3], ¢4 is generically finite,
this means hat|47*(Kx)|| maps a generaC onto a curve. Thus #*(Kx)|s-C > 2,
and¢ > 1/2.

Let m=7, we have ih—4)¢ > 1. By Lemma 2 > (29(C) — 2 + «p)/m, follows
& > (29(C) — 2)/2.5. Wheng(C) > 4, we have¢ > 3. Hence (1- 1/a)¢ > 2, since
a> pg(X)—-2=4.

Therefore, ifX does not contain a surface which has a family of curves of gens|,
thengs is birational. O

3.3. The cased = 1.

Lemma 3.1 ([6, Lemma 3.7]). Keep the same notation as Bubsection 2.&nd
with p as inLemma 2.1 Assume d= 1, and gB) = 0. Let S be a general fiber of
g: X' - W. Leto: S— & be the contraction onto the minimal model. Then

P o (Ksg)

7 (Kx)ls — o1

is pseudo-effective.

Proposition 3.3. Let X be a projective minimal Gorenste®dfold of general type
with Q-factorial terminal singularities. Assumey(X) > 6, and d = 1. Theng¢s is
birational unless X contains a surface S which has a familwies of genus< 3
or which satisfies g(S) =1, Kf% <9, where g is the minimal model of S.

Proof. LetS be a general fiber of. Then S is a smooth projective surface of
general type. We hav®l; = aS§ with a > py(X) — 1. DenoteL = 7*(Kx)|s. Let
o:S— & be the contraction onto the minimal model. Dendéte= =,(S). Notice
that Ky - F’2 is an even integer [5, 2.1] andy - F’2 > 0.

CASE 1. The caseKx-F?2 > 0.

Notice thatKx = aF’ + E’, where E’ is an effective divisor. We havé? =
KZF' > aKxF2 > 2(pg(X) — 1) > 10. By Reider’s result, i Kx + L| doesn't give
a birational map, there exists a free pencil of curvesSwith a generic irreducible
elementC, such thatL - C < 2. By Lemma 3.1 and [5, Claim 3.3], we always have

* p *
K — K -C >0,
(7 (ls - 50 ke)) - =
then we can derive

p
p+1

U*(KSJ)-C <2,

SO

0*(Kg)-C <2, sincg > pg(X)—1>5.
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Let C be the image ofC undero, then we haveKg, - C < 2.

If C>=0, thenKg,-C = 29(C)—2 < 2, sog(C) < 2, which meansS has a family
of curves of genus 2.

If C?> 0, by the Hodge index theorem, we can derive tigt-C? < (Kg,-C)? < 4.
But K§ > L? > 10, which is a contradiction.

CASE 2. The caseKx - F2 = 0.

One always has*(Kx)|s ~ 0*(Kg) by [5, Claim 3.3]. Notice that

1 / 1 *
N*(Kx)—s—aEl =Q (1—5)7'[ (Kx)

Applying the vanishing theorem, one has the surjective map:

HO(X’, Ky + ’7271*(KX) — ;—LlE;D — HO(S, Ks+ Kz- g)n*(Kx)—‘

Since
Ks+ [(2 — g)n*(Kx)—‘

by Fact 2.5,|Ks+o*(Kg) + [(1—1/a)7*(Kx)]|s| doesn't give a birational map only
if Ké <9 or S has a family of curves of genus 2.

When py(S) > 2, there exists a family of curves with its general memBéc |L|.
By the Kawamata—Viehweg vanishing theorem, we have

SICHE

where dedd > (1—1/a)L - C'. If |[Kc 4+ D] doesn't give a birational map, we have
(1-1/a)L-C' <2, thenL-C' = 0*(Kg)-C' = Kg -0,(C") = 2. By py(S) > 2, we
have K& > 2py(S) —4 > 0.

If K§ <1, we have ¢.(C'))? < KZ < 1. Therefore, by the Riemann—Roch fomu-
lar, we have 20,(0.(C")) — 2) = (Kg, + 0(C)) - 0.(C") < 2, by which we conclude
9(C) = pa(0+(C) = 2.

If K§ > 2, we have two cases. When(C')?> <1, it is easy to deriveg(C') < 2.
When 0,(C')*> > 2, by the Hodge index theorem, we have<4KZ - 0.(C')* <
(Kg - 0+(C")? < 4. The equality holds, s&g, = o(C’) and Ké = 2. Therefore by
the Riemann—Roch formula, we can conclude thet’) < 3. []

J

S

> Kg+ U*(KS)) + ’7(1— g)ﬂ*(Kx)—‘

S

= |Kcr + DY,
o

By Proposition 3.1, Proposition 3.2 and Proposition 3.3, @@ summarize that
the main theorem is proved.
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