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Abstract

Let X be a projective minimal Gorenstein 3-fold of general type with Q-factorial
terminal singularities. We classify minimal Gorenstein 3-folds of general type ac-
cording to the birationality of 3-canonical system onX.

1. Introduction

Let X be a projective variety onC, andKX is the canonical divisor onX. One may
define them-canonical map�m corresponding to the complete linear systemjmKXj. To
study the behavior of�m, especially the birationality of�m, has been one of the most
important topics of birational geometry. When dimX � 2, the behavior of�m has been
thoroughly studied. However, when dimX � 3, many problems still remain open.

Let X be a projective minimal Gorenstein 3-fold of general type with Q-factorial
terminal singularities. When dimX D 3, we know that whenm is big enough,�m

must be birational, hence it is important to find the universal lower bound N for all
3-folds such that�m is birational for allm � N. The known best result is as follows:
Chen, Chen and Zhang [5] proved thatm � 5 is enough; Chen and Zhang [6] proved
that if X cannot be fibred by a unique family of irreducible curves of geometric genus
2, then m � 4 is enough; Zhu [12] proved the generic finiteness of�3. Also in [6],
Chen and Zhang proposed an open problem(see [6, 6.4 (2)]): isit possible to charac-
terize the birationality of�3? We have several examples to illustrate the importance of
this problem.

EXAMPLE 1.1 ([6, Example 6.2]). Kobayashi (see [9, Proposition 3.2]) has con-
structed a family of canonically polarized smooth threefolds Y satisfying the equality

K 3
Y D 4

3
pg(Y) � 10

3

where pg(Y) D 7, 10, 13,: : : , Chen and Zhang proved that all examplxes above have
non-birational 4-canonical maps, thus they have non-birational 3-canonical maps.
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EXAMPLE 1.2. LetS be a surface of type (K 2
S, pg(S))D (2, 3). LetC be a smooth

curve of genus� 2. Take X D S� C. Since�1 is generically finite, dim�1(X) D 3.
When g(C) is big enough,pg(X) is big enough, hence�4 is birational by [6, 4.2]. But�3 is obviously not birational.

This paper makes an effort to answer this open problem, the main theorem is as
follows. Notice that the Example 1.1 corresponds to thed D 2 situation, and the Ex-
ample 1.2 corresponds to thed D 1 situation.

Theorem 1.1. Let X be a projective minimal Gorenstein3-fold of general type
with Q-factorial terminal singularities. Denote dD dim�1(X). If �3 on X is not bi-
rational, then X must be one of the following types:
(1) pg(X) � 7;
(2) pg(X) � 8, while:

(1) d D 3, X contains a surface which has a family of curves of genus2;
(2) d D 2, X contains a surface which has a family of curves of genus� 3;
(3) d D 1, X contains a surface S such that either S has a family of curvesof
genus� 3 or S satisfies pg(S) D 1, K 2

S0
� 9, where S0 is the minimal model of S.

2. The key technical results

2.1. Brief review on curves.

FACT 2.1. Let C be a smooth curve of genus� 2. AssumeD is a divisor onC
with deg(D) � 3. Then the rational map corresponding tojKC C Dj gives a birational
morphism onto its image.

2.2. Brief review of relevant results on surfaces. Let S be a smooth minimal
surface of general type, according to [2], one has

FACT 2.2. For allm � 5, �m is a biratinal morphism onto its image.

FACT 2.3. FormD 4, �m is birational if and only if (K 2
S, pg(S)) ¤ (1, 2).

FACT 2.4. FormD 3, �m is birational if and only if (K 2
S, pg(S)) ¤ (1, 2) and (2, 3).

FACT 2.5. FormD 2, if K 2
S � 10, then�m is birational if and only ifS cannot

be fibred by a family of irreducible curves of geometric genus2.

2.3. General method. Let X be a projective minimal Gorenstein 3-fold of gen-
eral type withQ-factorial terminal singularities. Under the assumptionpg(X) � 2, we
study the canonical map�1 which is a rational map. Take the modification� W X0 ! X,
according to Hironaka, such that
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(i) X0 is smooth.
(ii) The movable part ofjKX0 j is basepoint free.
(iii) ��(KX) is linearly equivalent to a divisor with normal crossing support.

Denote byg the composition�1 Æ � . So g W X0 ! W0 � P pg(X)�1 is a morphism.

Let X0 f�! B
s�! W0 be the Stein factorization ofg. We get a commutative diagram

as below:

X0 f K
� K g K

B

sK
X �1

KW0.
We may writeK 0

X � ��(KX)C E� � M1 C Z1, where M1 is the movable part ofjK 0
Xj, Z1 is the fixed part, andE� is a sum of distinct exceptional divisors. We may

write ��(KX) � M1 C E0
1, where E0

1 D Z1 � E� is an effective divisor.
If dim �1(X) D 2, we see that a general fiberS of f is a smooth projective curve

C of genus� 2. We say thatX is canonically fibred by curves of genusg D g(C).
If dim �1(X) D 1, we see that a general fiberS of f is a smooth projective sur-

face of general type. We say thatX is canonically fibred by surfaces with invariants
(c2

1(S0), pg(S)), whereS0 is the minimal model ofS. We may writeM1 � a1S, where
a1 � pg(X) � 1.

A generic irreducible elementS of jM1j, means either a general member ofjM1j
when dim�1(X) � 2 or, otherwise, a general fiber off .

REMARK 2.1. Throughout the paperD1 � D2 (resp.DQ, or D1 � D2) means
that divisorsD1 and D2 are linearly equivalent (resp.r D1 and r D2 are linearly equiva-
lent for some positive integerr , or D1 and D2 are numerically equivalent).

Lemma 2.1 (Chen [6, Theorem 3.6]). Let X be a minimal projective3-fold of
general type withQ-factorial terminal singularities and assume pg(X) � 2. Keep the
same notation as above. Pick a generic irreducible element Sof jM1j. Suppose, on
the smooth surface S, there is a movable linear systemjGj and denote by C a generic
irreducible element ofjGj. Set� WD (��(KX) � C)X0 , and

p WD �
1 If dim�1(X) � 2,
a1 otherwise.

Assume there is a rational number� � 0, such that��(KX)jS��C is numerically
equivalent to an effectiveQ-divisor. Denote� WD (m � 1 � 1=p � 1=�)� , set �0 Dd�e, then
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(1) Assume there is a positive integer m such that the linear system jKS Cd(m � 2)��(KX)jSej seperates different generic irreducible elements ofjGj, then �m

is birational if one of the following conditions is satisfied:
i. � > 2;
ii. �0 � 2 and C is non-hyperelliptic;
iii. � > 0, C is non-hyperelliptic and C is an even divisor of S.

(2) � � (2g(C) � 2C �0)=m if one of the following conditions is satisfied:
iv. � > 1;
v. � > 0, and C is an even divisor.

3. Proof of the main theorem

We now study the birationality of�3. Set d D dim�1(X).

3.1. The cased D 3.

Proposition 3.1. Let X be a projective minimal Gorenstein3-fold of general type
with Q-factorial terminal singularities. Assume pg(X) � 8, and dD 3. Then �3 is
birational unless X contains a surface which has a family of curves of genus� 2.

Proof. According to our general method, a generic irreducible elementS of jM1j
is a smooth projective surface of general type. It is sufficient to verify the birationality
for �3jS by virtue of the Matsuki–Tankeev principle [3, 2.1]. We consider the sub-
systemjKX0 C ��(KX) C Sj � j3K 0

Xj. By the Kawamata–Viehweg vanishing theorem
[8], we have the surjective map

H0(X0, KX0 C ��(KX)C S) ! H0(S, KSC L)

where L D ��(KX)jS is a nef and big divisor onS. If jLj gives a birational map, then
so doesjKSC Lj. Otherwise,jLj gives a generically finite map of degree� 2. Noting
that h0(S, L) � pg(X)�1� 7, we haveL2 � 2(h0(S, L)�2)� 10. If jKSC Lj doesn’t
give a birational map, then according to Reider’s result [10], there is a free pencil of
curves onS with a generic irreducible elementC, such thatL � C D 1 or 2. On the
other hand,L � C � 2 sincejLj gives a generically finite map onC and C is a curve
of genus� 2. Therefore we haveL �C D 2. Moreover, by the Riemann–Roch fomular
and Clifford’s theorem, we haveh0(C, LjC) D 2. By

(3.1) H0(S, L � C) ! H0(S, L) ! H0(C, LjC),

we have

h0(S, L � C)C h0(C, LjC) � h0(S, L),

h0(S, L) � h0(S, L � C)C 2.
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We can replaceL in (3.1) by L�nC and haven sequences relatively. ByC2 D 0 we
have (L�C)jC D LjC. Sinceh0(S, L) � pg(X)�1, we haveh0(S, L) � h0(S, L�nC)C
2n when pg(X) > 2nC1. So there exists an effective divisorE such thatL DQ nCCE.

Set F D C C (1=n)E, so L DQ nF. Since pg(X) � 8, we can choosen D 3, so
degF jC D (1� 1=n)L � C > 1.

By the Kawamata–Viehweg vanishing theorem, we have the following surjective map

H0

�
KSC

�
L � 1

n
E

��! H0(C, KC C d(n� 1)FejC).

Let M3 be the movable part ofjKX0 C ��(KX)C Sj, N be the movable part ofjKSCdL � (1=n)E � Cej, then M3jS � N by [3, Lemma 2.7].
So we have

3L � C D 3��(KX)jS � C � deg(KC C 2F jC) � 2g(C) � 2C 8

3
D 2g(C)C 2

3
,

then we can derive thatg(C) � 2.
Therefore,�3 is birational if X does not contain a surface which has a family of

curves of genus 2.

3.2. The cased D 2.

Proposition 3.2. Let X be a projective minimal Gorenstein3-fold of general type
with Q-factorial terminal singularities. Assume pg(X) � 6, and dD 2. Then �3 is
birational unless X contains a surface which has a family of curves of genus� 3.

Proof. Let S be a generic element ofjM1j. So SjS � aC, wherea � pg(X) � 2,
and C is a general fiber off and is a smooth curve. DenoteL D ��(KX)jS> SjS. By
the Kawamata–Viehweg vanishing theorem, we have the following surjective map

H0(X0, KX0 C ��(KX)C S) ! H0(S, KSC dLe).
We may writeL � aCC E00, so L �C � (1=a)E00 is nef and big. By the Kawamata–
Viehweg vanishing theorem, we have the following surjective map

H0

�
S, KSC

�
L � 1

a
E00��! H0(C, KC C D)

where D WD dL � C � (1=a)E00ejC. If degbD
 D (1 � (1=a))L � C � 3, then jKC CdLejC �Cj gives a birational map by Fact 2.1. By the Matsuki–Tankeev principle, we
can derive thatjKX0 C ��(KX) C Sj gives a birational map, and the birationality of�3 follows.
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We now prove that (1� 1=a)L � C > 2.
Let G D M1jS, G is composed of a pencil andG � aC. In Lemma 2, we may

take p D 1, � D 2, and � D L � C, � D (m� 2.5)� . By [3], �4 is generically finite,
this means hatjb4��(KX)
j maps a generalC onto a curve. Thus 4��(KX)jS � C � 2,
and � � 1=2.

Let mD 7, we have (m� 4)� � 1. By Lemma 2,� � (2g(C)� 2C�0)=m, follows� � (2g(C) � 2)=2.5. Wheng(C) � 4, we have� � 3. Hence (1� 1=a)� > 2, since
a � pg(X) � 2� 4.

Therefore, ifX does not contain a surface which has a family of curves of genus� 3,
then�3 is birational.

3.3. The cased D 1.

Lemma 3.1 ([6, Lemma 3.7]). Keep the same notation as inSubsection 2.3and
with p as in Lemma 2.1. Assume dD 1, and g(B) D 0. Let S be a general fiber of
g W X0 ! W0. Let � W S! S0 be the contraction onto the minimal model. Then

��(KX)jS� p

pC 1
� �(KS0)

is pseudo-effective.

Proposition 3.3. Let X be a projective minimal Gorenstein3-fold of general type
with Q-factorial terminal singularities. Assume pg(X) � 6, and dD 1. Then �3 is
birational unless X contains a surface S which has a family ofcurves of genus� 3
or which satisfies pg(S) D 1, K 2

S0
� 9, where S0 is the minimal model of S.

Proof. Let S be a general fiber off . Then S is a smooth projective surface of
general type. We haveM1 � aS, with a � pg(X) � 1. DenoteL D ��(KX)jS. Let� W S! S0 be the contraction onto the minimal model. DenoteF 0 D ��(S). Notice
that KX � F 02 is an even integer [5, 2.1] andKX � F 02 � 0.

CASE 1. The caseKX � F 02 > 0.
Notice that KX � aF0 C E0, where E0 is an effective divisor. We haveL2 D

K 2
X F 0 � aKX F 02 � 2(pg(X) � 1) � 10. By Reider’s result, ifjKX C Lj doesn’t give

a birational map, there exists a free pencil of curves onS with a generic irreducible
elementC, such thatL � C � 2. By Lemma 3.1 and [5, Claim 3.3], we always have���(KX)jS� p

pC 1
� �(KS0)

� � C � 0,

then we can derive

p

pC 1
� �(KS0) � C � 2,

so

� �(KS0) � C � 2, sincep � pg(X) � 1� 5.
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Let NC be the image ofC under� , then we haveKS0 � NC � 2.
If NC2 D 0, thenKS0 � NC D 2g( NC)�2� 2, sog( NC) � 2, which meansS has a family

of curves of genus 2.
If NC2 > 0, by the Hodge index theorem, we can derive thatK 2

S0
� NC2 � (KS0 � NC)2 � 4.

But K 2
S0
� L2 > 10, which is a contradiction.

CASE 2. The caseKX � F 02 D 0.
One always has��(KX)jS � � �(KS0) by [5, Claim 3.3]. Notice that

��(KX) � S� 1

a
E0

1 DQ
�

1� 1

a

���(KX).

Applying the vanishing theorem, one has the surjective map:

H0

�
X0, KX0 C �

2��(KX) � 1

a
E0

1

��! H0

�
S, KSC

��
2� 1

a

���(KX)

�����
S

�
.

Since

KSC
��

2� 1

a

���(KX)

�����
S

� KSC � �(KS0)C
��

1� 1

a

���(KX)

�����
S

,

by Fact 2.5,jKSC � �(KS0)Cd(1� 1=a)��(KX)ejSj doesn’t give a birational map only
if K 2

S0
� 9 or S has a family of curves of genus 2.

When pg(S) � 2, there exists a family of curves with its general memberC0 � jLj.
By the Kawamata–Viehweg vanishing theorem, we have

����KSC C0 C ��
1� 1

a

�
L

�����
����
C0 D jKC0 C Dj,

where degD � (1� 1=a)L � C0. If jKC0 C Dj doesn’t give a birational map, we have
(1� 1=a)L � C0 � 2, then L � C0 D � �(KS0) � C0 D KS0 � ��(C0) � 2. By pg(S) � 2, we
have K 2

S0
� 2pg(S0) � 4� 0.

If K 2
S0
� 1, we have (��(C0))2 � K 2

S0
� 1. Therefore, by the Riemann–Roch fomu-

lar, we have 2(pa(��(C0)) � 2) D (KS0 C ��(C0)) � ��(C0) � 2, by which we conclude
g(C0) � pa(��(C0)) � 2.

If K 2
S0
� 2, we have two cases. When��(C0)2 � 1, it is easy to deriveg(C0) � 2.

When ��(C0)2 � 2, by the Hodge index theorem, we have 4� K 2
S0
� ��(C0)2 �

(KS0 � ��(C0))2 � 4. The equality holds, soKS0 � � (C0) and K 2
S0
D 2. Therefore by

the Riemann–Roch formula, we can conclude thatg(C0) � 3.

By Proposition 3.1, Proposition 3.2 and Proposition 3.3, wecan summarize that
the main theorem is proved.
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