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1. Introduction and Main Theorem

Throughout this article, we work in the C™ category. Let R be the N-dimen-
sional Euclidean space with the standard orientation and f: M™ — R” an immersion
of an m,-dimensional closed connected (possibly non-orientable) manifold, where 1 <
my < N. We let my denote the codimension of f ; mg = N —m;. Let P(N,m3) be
the set of oriented mo-planes (lines if my = 1) in RYN. We will give a formula on the
geometric intersection number # f~1(f(M)Nx) of the immersed manifold and an m-
plane z in RY in terms of algebraic intersection theory and “chamber-wall” structure
on P(N,ms).

To the author’s knowledge, the word “chamber”is used to indicate regions sepa-
rated from a whole space by a codimension 1 subspace, for example, as “Weyl cham-
ber” in Lie algebra theory (for more recent usage, see [2]). The word “wall”is used for
the separating subspace. Following the history, in this paper, we use the two words in
the same meanings as above.

The set P(N, my) admits a structure of an (mg + 1)m4-dimensional C*° oriented
manifold. In fact, it is homeomorphic to the total space of the orthogonal complement
vector bundle to the tautological bundle over the corresponding real oriented Grassman-
nian manifold G(N, my).

In the space P(N,mg), a subset consisting of mgo-planes tangent to the immersed
manifold forms “walls” which decompose the space into some “chambers”. By giving
orientation to the walls, one may associate an number to each chamber by algebraic
intersection theory. We will introduce a canonical orientation to the walls and will
show that the number associated to a chamber in this way is equal to the geometric
intersection number #f~1(f(M) N ) of the immersed manifold and an my-plane z
belonging to the chamber.

In the next section, from the immersion f, we will construct an ((mg+1)m; —1)-

1991 Mathematics Subject Classification. Primary 53A07; Secondary 57N35, 53A99.
Partially supported by JSPS Research Fellowships for Young Scientists.



674 Y. YAMADA

dimensional closed manifold E(L;*(p;)) and a map Wy: E(Ls*(p1)) — P(N,m2).
This map W; will be constructed such that the image ImW} consists of all mo-planes
which have at least one non-transverse intersection point with the immersed manifold
f(M). Thus the complement P(N, m2)\ImW} consists of mo-planes which have only
transverse intersection points with f(Af). Since the codimension of Wy is 1, the wall
ImW; decomposes P(NN,ms) into some chambers.

In the process of the construction of E(Ls*(p1)), it is canonically oriented. By
the orientation, we can regard the map Wy as an ((mg + 1)my — 1)-cycle in the space
P (N s mg).

For a point z € P(N, mz)\ImW/, which is an ma-plane in RV, we will associate
an (non-negative) integer to a chamber of P(NN,m2) \ InW; containing the point z by
algebraic intersection number theory. (To the author’s knowledge, such an association
was first developed in [1 p.277].) For this, in Section 3, we will construct a cohomology
class Q, in H(m2+Dmi=1( P(N my)\ {z};Z), which measures a linking number of
a given ((mg + 1)m; — 1)-cycle around the point z. In fact, the number Q,(Wy) is
essentially equal to the algebraic intersection number of Wy and an oriented arc az,,
from zo to z, intersecting with ImW; transversely, where 2o € P(N,m3) is a base
point taken sufficiently near to an end of the space P(N,my) :

QI(Wf) = Int(Wf, azoz).

The cohomology class €2, is the Poincare dual of the semi-open arc lim G0z This
To—en

association depends on neither the arc a;,, nor the point zg even if mg = N — 1, in
which case P(N,N — 1) = S¥-1 x R has two ends.

Theorem 1.1. Let f: M — RN be an immersion and Wy the map constructed
from the immersion f (For the definition of Wy, see Section 2). We regard Wy as an
((mg + 1)my — 1)-cycle in P(N, m3). Let x be a point in the complement of Wy in
P(N, m3). Then

(A) #Y{F(M) N x}) is finite,
and
(B) #IH{F(M) Na}) = Qa(Wy).

We call the number #f~1({f(M) N z}) the geometric intersection number of the
immersed manifold f(M) and the mo-plane z.

In Section 4, we will develop a method of counting geometric intersection numbers
in terms of cohomology. The proof of Theorem 1.1 will be given in Section 5 and 6.
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Throughout this paper, we assume that the total space of a fiber bundle is oriented
so that the local orientation of the base space followed by that of a fiber gives the
orientation of the total space.

2. A Decomposition of P(N,m3)

In this secion, from a given immersion f: M — RY, we construct an
((mg + 1)m; — 1)-dimensional closed oriented manifold E(L;*(p1)) and a map Wy:
E(L¢*(p1)) — P(N, m2), which is also regarded as a cycle.

First we introduce a canonical double fibration. For 0 < n; < ny < N, we let
P(N;mni,n2) denote the set defined as follows:

P(N;ny,n2) ={(z,X) € P(N,n1) x P(N,n2) |z C X }.

This set admits a structure of an orientable C'™° manifold whose dimension is (n; +
1)(N —n1) + (n2 — n1)(N — ng). It is homeomorphic to the total space of a certain
vector bundle over a corresponding real flag manifold.

Each of the first projection p; and the second projection ps is a fibration:

p1: P(N;ni,n2) — P(N,n1) and po: P(N;ni,ng) — P(N,ng)
(z,X) — =, (z,X) - X

The fiber of p; is homeomorphic to the oriented Grassmannian manifold G(N —nq,no—
n1), on the other hand, the fiber of p, is homeomorphic to the space P(ng,ny).

REMARK 2.1. In the case n; = ng, the space P(N;ni,nz) is a disconnected
double covering of P(N;n;). The one component is the diagonal A and the other is
the anti-diagonal A = {(z, —)}. The latter space A has an opposite orientation from
the one induced from the former A by a homeomorphism (p1]|a)~! o p1/a.

REMARK 2.2. We define an orientation of the space P(N;n,n2) as a manifold
by the bundle structure of p;.

Next, from the immersion f: M — RY, we define a map L;: S(TM) — P(N,1).
Here S(T'M) is defined as follows:

S(TM) = (TM \ {the zero section}) / ~,

where v; ~ v9 < v = Avg for some A > 0.

We define an orientation of S(T'M) by a local orientation of U (in M) followed by that
of the fiber over U. Thus S(T'M) is an oriented manifold even if M is non-orientable,
because if we change the local orientation of M, the orientation of the fiber over the
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local base is also changed. The dimension of the manifold S(T'M) is (2m; — 1). Now
we define Ly as:

Ly: S(TM) — P(N,1),
v (€ S(T,M)) +— A straight line whose vector is df (v)
and which passes through the point f(p).

REMARK 2.3. P(N,1) = TSN-1,
DEFINITION 2.4. Using the map L; and the double fibration p;,p; of

P(N;1,m3), we construct a manifold E(Ls*(p1)) and a map Wy by Diagram 1. Wy
is the composite ps o L;.

Wy
E(Ls"(p1)) N P(N;1,mg)
£
1 1 /D1 P2 "\,
S(TM)  —  P(N,1) P(N,ma)
5
Diagram 1

We define E(L;"(p1)) as the total space of the pull-back of the fibration p; over
S(TM) by Ly. It is a manifold, whose dimension is 2m; — 1 + (mg — 1)(N — mg)
= (mg+1)m; — 1t

E(Ls"(p1)) = { (v, (z, X)) € S(TM) x P(N;1,mz) | Ls(v) = = }.

The image ImW; consists of all ma-planes which have at least one non-transverse
intersection point with the immersed manifold f(M).

Lemma 2.6. The manifold E(L¢*(p1)) is closed and oriented.

Proof. Note that F(L;*(p1)) is a total space of a fiber bundle over S(T'M)
whose fiber is G(N — 1,my — 1). Both the basespace and the fiber are closed and
oriented manifolds. We have the lemma. OJ

By the orientation of E(L;*(p;)) induced from the bundle structure, we can regard
the map Wy as an ((mg + 1)my — 1)-cycle in the space P(N, m2).

Since the codimension of the map W is 1, the image of Wy decompose the space
P(N,mg) into some chambers.

3. Algebraic Intersection Theory in P(N,ms)
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In this section, for a point x € P(IN, mgy), we construct a cohomology class €2, in
H(m2+D)mi=1( P(N my)\ {z}; Z), which essentially measures a linking number of an
((mg 4 1)my — 1)-cycle around the point z. We also construct a map from the set of
chambers P(N, m2) \ ImW5 to the set of non-negative integers by using 2.

First, we consider the exact sequence in Diagram 2.

HTP=1(P(N,my); Z)
!
HTP Y (P(N,my) \ {z};Z) D Z[)]
16
HTP(P(N,m3), P(N,m3) \ {z};Z) = Z|og]
]
0

Diagram 2

where Top is (mg + 1)m;, the dimension of the space P(N,msy) as an oriented man-
ifold, § is the connecting homomorphism and o, is a generator corresponding to the
orientation of P(N,mz).

DEFINITION 3.1. We take a cohomology class €2, in the preimage 6~ (0;). In
the case N > 2 or my > 1, the space P(N,m3) is 1-connected ([3,p.35 and p.134]) and
HToP~1(P(N,my)) =0, thus § is an isomorphism and (2, is uniquely determined by
Q, = 6 1(0z). In the exceptional case N = 2 and my = 1, the space P(2,1) is iden-
tified with an oriented open annulus C \ {0} in C. Using this identification, we define
the cohomology class Q) directly as 2, (c) = “thie rotation number of ¢ around z”.

By the definition, if the point z is in P(N,m3) \ ImWy, the complement of the
image of Wy in P(N,mg), then the number Q. (W) is essentially equal to the alge-
braic intersection number of W; as a cycle and an oriented arc az,, from zp to z in
P(N,my) intersecting with ImW; transversely,

Qx(Wf) = Int(Wf, awom)v

where 2o € P(N, m2) is a point taken sufficiently near to an end of the space.
We have two lemmas.

Lemma 3.2. Ifthe point x is sufficiently near to an end of the space P(N, my), then
Q. (Wy) = 0. This holds even if ma = N — 1, in which case P(N,N — 1) =2 SN-1 x R
has two ends, i.e., it holds to whichever end the point x is taken near.
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Proof. The first half of the lemma follows from the compactness of the cycle
W;. To verify the second half, we will show that the cycle Wy is a boundary, ie.,
the class [Wy] vanishes in the homology Hy_1(P(N,N —1);Z) = Hy_1(SV"! x R;
Z) = Z. Since my = N — 1, the dimension m; of the manifold M is 1. Thus M
is S* and S(TM) = S;' US_! (disjoint union). Note that the two components S
and S_! have opposite orientations if we compare them by the projection over S*.
According to the disjoint union and by the construction of the manifold E(L*(p1))
(Definition 2.4), E(Ls*(p1)) also decomposes as-a disjoint union E; U E_ of two
mutually homeomorphic manifolds. The image of the restrictions Wy|g, and Wy|g_
in the space P(N, N — 1) coincide, but their signs as cycles are opposite, because of
the opposite orientations of S, and S_! and our assumption on the orientation of the
total space of a fiber bundle in Section 1 (see also Remark 2.1 in the case N = 2).
Thus [(Wy] = [Wele,] + [Wrle_] = [Wsle,] + (—[Ws|g,]) = 0 in the homology. We
have the lemma. 0

Lemma 3.3. If two points x, y are in a same chamber of P(N, m3) \ ImWy, the
numbers Q;(Wy) and Q,(Wy) agree, i.e., the following map is well-defined.

mo(P(N,m2) \ ImWy) - Z (z— Q,(Wy)).

This lemma is easy to see by the property of algebraic intersection numbers. We
omit the proof.

4. Counting geometric intersection numbers

In this secion, we develop a method to count geometric intersection numbers in
terms of cohomology.

By R?™:, we denote the 2m;-dimensional Euclidean space with a fixed oriented
coordinates (Y1,%2,"** ,Ymy>q1," " »dm, ). By “0” we denote the origin of R?™1.

Let o be a generator of H?™ (R2™ R2?™\{0};Z) = Z which is corresponding
to the orientation. We take a cohomology class wo in H?>™~1(R?™\{0}; Z) which
satisfies 0(wp) = 0o, where §: H?>™~1(R?™1\{0};Z) — H?™ (R*™ R?*™1\{0};
Z) is the connecting homomorphism. The class wy is uniquely determined by wp =
d71(00), because the homomorphism § is an isomorphism.

REMARK 4.1. They are the classes which contain the following cochains c,2™,
cw?™ 1 respectively: oy = [c,],wo = [cu].

(co) If a 2mj-chain fo in R?™ is represented by a 2m;-dimensional compact
oriented manifold C' and a smooth map f: C — R2?™: which is regular at f~1(0),
then ¢,(fc) = 9‘;;6 f71(0), the algebraic sum of the signed isolated points f~1(0).

alg

(co) If a (2my — 1)-cycle fc is represented by an (2m; — 1)-dimensional closed
oriented manifold C and a continuous map f: C — R?™1\{0}, then c,(fc) = deg(po



GEOMETRIC INTERSECTION NUMBERS 679

f), the degree of the composite map p o f: C — S2™~! where p is the natural
projection from R?™1\{0} to $?m1—1,
Under the identification TR™ = R™ x R™ = R*™ by S4s 52|y, - ym)

(Y1, *** yYmys @1, "+ »Qmy ), the zero vector “0”at the origin 0 in TR™* is correspond-
ing to the origin of R?™. Using the identification, we take cohomology classes og and
wg on TR™:

o5 € H*™ (TR™ , TR™\{0};Z), w;€ H*™ Y(TR™\{0};2).

They are generators corresponding to the orientation of the cohomologies and satisfy
the equality dwg = 0.

Let M™ be a closed connected manifold and f: M — R™! a smooth map. We
fix a Riemannian metric on M and regard S(TM) as a subset {v € TM|[v| =1} of
TM. By D(TM), we denote the corresponding disk bundle {v € TM||v| < 1} of
TM. Note that D(T'M) is a compact oriented 2m;-dimensional manifold, where the
orientation is induced from the bundle structure. We denote restrictions of df : TM —
TR™ to D(TM), S(TM) or to some other subsets of 7'M by the same notation df.

Lemma 4.2. Let f: M™' — R™! be a smooth map which is regular at the preim-
age f~1(0) of the origin. Then,

@.1 #£71(0) = df*((-1)™wg) - [S(TM)),

where the dot - means the evaluation.

Proof. By the compactness of M and regularity of the map f, the preimage
f71(0) consists of finite points {p; (1 < i < K)}. Taking a preimage f~!(B) of
a sufficiently small closed oriented mj-ball B around the origin 0 in R™!, we can
take closed mutually disjoint oriented m;-balls B; (1 < ¢ < K) in M each of which
satisfies the following two conditions:

(1) The differential df;: T, M — Tf)R™ is an orientation-preserving isomor-
phism at any points = € IntB;, and
(2) B;n f71(0) = {p:}.

According to the fact that S(T'M) is the boundary of D(TM), the cycle df:
S(TM) — TR™ is (—1)™ times the boundary of the 2m;-chain df: D(TM) —
TR™ (the change of the sign derives from the difference between the orientation of
S(TM) induced as the boundary and that induced from the bundle structures). Next,
the cycle [S(T'M)] is decomposed as a sum of (K + 1) cycles according to the decom-
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position of M as a union of the K balls B; and their exterior M \Int(UB;):

[S(TM)] = (=1)™9[D(TM)]
K
= (=1)™3[D(TM)amms(uBn] + (=1)™ D 9[D(TM)|5,],

i=1

where we wrote only the domain of each cycle (the corresponding map is the restriction
of df to each domain) and each D(T'M)|x is the restriction of the disk bundle D(T'M)
to the corresponding subset X of M. Thus the right-hand side of (4.1) becomes

K
4.2) df* (wg) - O[(D(TM) | anins(u,)] + D _ df* (w) - [(D(TM)|s,)].
i=1
By the definition of Bj;, the image df (O(D(T'M)|p\nt(uB,))) is disjoint from
ToR™ = {0} x R™. Thus the vanishing of the first term follows the characterization
of wy (= [cw]) in Remark 4.1.
Finally, we see that each term df* (wg) - O[(D(T'M)|g,)] of the summation in (4.2)
is equal to 1. Because of the regularity of the map f at p;, the definition of B; and
its orientation, the smooth map df : D(TM)|g, — TR™ is regular at the zero vector

6,,i at p; and preserves orientation. In fact, df is a perturbation of the isomorphism
(f,dfp,): Bi x Tp,M — R™ x R™ near the point 0p,. Thus

df* (wg) - O(D(TM)|p,)] = bdf* (wg) - [D(TM)|8,)]
= (df*6wg) - [D(TM)|,)]
= (df*og) - [D(TM)|8,)]
=1

The final line follows the characterization of oy (= [c,]) in Remark 4.1. We have the
lemma. O

5. Proof of Main Theorem

In this section, we give a proof of Theorem 1.1 except for a step of a calculation.

For the given point z in P(NN, m3), by changing an affine coordinate (y1,y2, - ,
yn) of RY if needed, we can assume that the mo-plane z is an oriented my-plane
defined by {(y1,,yn)|¥i = 0(i > mz)}. Let m: RN — R™ be the projection
defined by m3(y1, * ,YN) = (Yma+1,°** ,YN), and by fo, we denote the composition
ma o f: M — R™. Then the plane z is represented as mo~(0) and we have

.1) #H{ (M) Nz}) = #F71(0),

where 0 is the origin of R™!.
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Proof of (A). By the assumption of Theorem 1.1 that x € P(N,mg) \ ImWy,
the map f is regular at the preimage f, '(0), because the assumption means that the
plane x contains no tangent line or vector of the immersed manifold f(M). Thus the
preimage of the geometric intersection points f~1({f(M)Nz}) in M, which agrees to
f51(0), consists of isolated points. The finiteness follows from the compactness of M.

O

Proof of (B). First, using the diagram in Definition 2.4, we move the cohomol-
ogy class Q, to a cohomology on the space P(NN,1) by pulling-back and pushing-
forward the class. Let p;!: H(™2+Dm1—1(P(N:1,my), %;Z) — H*™~1(P(N, 1),*';
Z) be the push forward, in other words [Fiiber]N or [, , where * and ' are appro-
priate subspaces. Here, a fiber of p; is the oriented Grassmannian manifold G(N —
1,mg — 1), thus the map p,! decreases the degree of the cohomology by its dimension
my (m2 - 1).

Let P(x,1) denote a subset p;(p2~1(z)) = {l € P(N,1)|l C z} in the space
P(N,1). It is a 2(my—1)-dimensional submanifold. The cohomology class p;!p2* (),
whose support is contained in the complement P(N, 1)\ P(z, 1), is the linking dual of
P(z,1) in P(N,1):

(5.2) p1!p2* () € H*™~1(P(N, 1)\ P(z,1); Z).

By the assumption of Theorem 1.1 and the construction of the map Wy, the image of
the map Ly: S(TM) — P(N,1) is contained in P(N, 1)\ P(z,1), and we can define
a number p;'p2*(Q;)(Ly) by regarding the map L as a (2m; — 1)-cycle. We have

Qe (W) = Qq(pao Ly)
= P2*(Qz)(f4f)
p1!p2* () (Ly)
Lg*(p1lp2" () - [S(TM)],

(5.3)

where the dot - in the final line means the evaluation.
Now, it is sufficient to verify

(5.4) Ls*(palp2* () - [S(TM)] = dfy™((—1)™ wg) - [S(TM)),

where wy € H?™1~1(TR™\{0};Z) is the cohomology class defined in the last sec-
tion. But, to show this, we have to define some maps and represent the maps Ly, f» by
them. Thus we postpone this final step to the next section.

By (5.1), (5.3), Lemma 4.2 and (5.4), which is proved in the next section, we have
the theorem. O
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6. Calculation on L and df,

In this section, we show (5.4) in the last section.

First, we define some maps. We use the fixed coordinate (y1,¥2,- - ,yn) of RY
such that z is an mq-plane defined by {(y1,---,yn)|y: = 0(¢ > m2) }. For a given
point ¥y = (y1,--- ,yn) in RY and a non-zero vector ¢ = (q1,- - ,qn), @ straight line
whose vector is ¢ and which passes through the point y is uniquely determined. We
denote by [, , this line. We have

lyq =ly g in P(N,1) <= there exist A\, p € R with A >0

6.1
©.1) such that ¢/ = A\g and ' — y = ugq.

Thus we have a quotient map

(6.2) ¥: RN x (RM\{0}) = P(N,1)  ((y,9) — lyq),

where we define the equivalence relation (y',q') ~ (y,q) by the right-hand side
of (6.1).

Recall that mo: RY — R™: is the projection m2(v1,- - ,YN) = (Ymat1,""* > YN)-
Here, we use a projection my x m2: RY x (RV\{0}) — R™ x R™. Note that

(6.3) 1/’_1(13(1‘, 1)) = (W2 X 77'2)_1(07 0)’
where P(z,1) is the subset defined in the last section.

It is easy to represent the maps Ly: S(TM) — P(N,1) \ P(z,1) and df; =
d(mgo f): S(TM) — TR™\{0} by the maps ) and my X m:

Lg(v) = ¢(df (v)),

dfz(v) = (w2 X m3)(df (v)),

where we regard S(TM) as a subset in TM and df (v) (v € S(TM)) as an element
in RN x (RM\{0}) under the identification TRY = RY x To,RY = RN x R" by
the fixed coordinates, see Diagram 3. Note that df (v) is a non-zero vector everywhere,
because f is an immersion.

6.4)

S(TM)
Ly v/ Ldf N\ dfa
P(N,1) RY x (RM\{0}) — R™ xR™
U U U

P(z,1) «— ¥ Y(P(z,1) — {(0,0)}
= (71'2 X 7l'2)—1(0, 0)

Diagram 3
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Now, we verify that (5.4). By the construction, the left-hand side p;!p2* ()
(L) was the linking number of the (2m; — 1)-cycle Ly and the submanifold P(z, 1).
By (6.4), it is equal to the linking number of the map df as a cycle and the sub-
set ¥~ 1(P(x,1)) in RN x (RV\{0}). By (6.3), it is equal to the linking number of
(g x m2) o df around the origin (0,0) in R™ x R™, which is equal to the right-hand
side of (5.4) up to sign. The correct sign is checked by some concrete examples (unit
spheres, for example). |
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