

Title	Rigorous evaluation of genetic and epigenetic effects on clinical laboratory measurements using Japanese monozygotic twins
Author(s)	Taniguchi, Jumpei; Masuda, Tatsuo; Iwatani, Yoshinori et al.
Citation	Clinical Genetics. 2024, 105(2), p. 159-172
Version Type	AM
URL	https://hdl.handle.net/11094/93746
rights	© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

1 **Rigorous Evaluation of Genetic and Epigenetic effects on Clinical Laboratory**

2 **Measurements using Japanese Monozygotic Twins**

3

4 Jumpei Taniguchi ^a, Tatsuo Masuda ^b, Yoshinori Iwatani ^{a,c}, Kenichi Yamamoto ^{b,d,e}, Osaka

5 Twin Research Group ^{c,¶}, Norio Sakai ^{c,f}, Yukinori Okada ^{b,d,g,h}, Mikio Watanabe ^{a,c,*}

6

7 Institution:

8 ^a Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate

9 School of Medicine, Suita 565-0871, Japan

10 ^b Department of Statistical Genetics Osaka University Graduate School of Medicine, Suita

11 565-0871, Japan

12 ^c Center for Twin Research, Osaka University Graduate School of Medicine, Suita 565-0871,

13 Japan

14 ^d Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC),

15 Osaka University, Suita 565-0871, Japan

16 ^e Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871,

17 Japan

18 ^f Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Osaka

19 University Graduate School of Medicine, Suita 565-0871, Japan

20

21 ^g Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences,

22 Kanagawa 230-0045, Japan

23 ^h Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo,

24 Tokyo 113-0033, Japan

25

26 Running head: GENETIC AND EPIGENETIC FACTORS OF LABORATORY TESTS

27 *Address Correspondence to: Mikio Watanabe, Department of Clinical Laboratory and

28 Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita,

29 Osaka, 565-0871, JAPAN

30 Phone & Fax: +81-6-6879-2592, E-mail: nabe@sahs.med.osaka-u.ac.jp

31 [¶]The members of the Osaka Twin Research Group: Norio Sakai, Masanori Takahashi, Teiji

32 Nishio, Kei Kamide, Shinji Kihara, Hiroko Watanabe, Mikio Watanabe, and Dousatsu

33 Sakata, Center for Twin Research, Osaka University Graduate School of Medicine

34

35 **ETHIC APPROVAL AND CONSENT TO PARTICIPATE:** Written informed consent

36 was obtained from all twins, and the Ethics Committee of Osaka University approved the

37 study protocol (Nos. 696 and 10209).

38 **Author Contribution:** All authors confirm that they have contributed to the intellectual
39 content of this paper and have met the following four requirements: (a) significant
40 contribution to the conception and design, acquisition of data, or analysis and interpretation
41 of data; (b) drafting or revising the article for intellectual content; (c) final approval of the
42 published article; and (d) agreement to be accountable for all aspects of the article, thus
43 ensuring that questions related to the accuracy or integrity of any part of the article are
44 appropriately investigated and resolved.

45 **Research Funding:** This work was supported by JSPS KAKENHI under grant number
46 A19H040480 and by university grants from the Japanese Ministry of Education, Culture,
47 Sports, Science, and Technology.

48 **Acknowledgments:**

49 The authors are thankful to Beckman Coulter, Inc. (Tokyo, JAPAN) for their collaborative
50 work.

51 **Conflicts of Interests:** Upon manuscript submission, all authors completed the author
52 disclosure form. Disclosures and/or potential conflicts of interest are presented.

53 **Data availability:** Data are not shared due to patient confidentiality and ethical restrictions.

55 ABSTRACT

56 The investigation of environmental effects on clinical measurements using individual samples
57 is challenging because their genetic and environmental factors are different. However, using
58 monozygotic twins (MZ) makes it possible to investigate the influence of environmental
59 factors as they have the same genetic factors within pairs because the difference in the
60 clinical traits within the MZ mostly reflect the influence of environmental factors. We
61 hypothesized that the within-pair differences in the traits that are strongly affected by genetic
62 factors become larger after genetic risk score (GRS) correction. Using 278 Japanese MZ
63 pairs, we compared the change in within-pair differences in each of the 45 normalized
64 clinical measurements before and after GRS correction, and we also attempted to correct for
65 the effects of genetic factors to identify Cytosine-phosphodiester-Guanine (CpG) sites in
66 DNA sequences with epigenetic effects that are regulated by genetic factors. Five traits were
67 classified into the high heritability group, which was strongly affected by genetic factors.
68 CpG sites could be classified into three groups: regulated only by environmental factors,
69 regulated by environmental factors masked by genetic factors, and regulated only by genetic
70 factors. Our method has the potential to identify trait-related methylation sites that have not
71 yet been discovered.

72

73 Keywords: Monozygotic twin, genetic factor, epigenetic factor, environmental factor,

74 laboratory test

75 **Introduction**

76 Clinical laboratory measurements are important intermediate phenotypes of complex
77 diseases. Clarification of the association between phenotypes, genetic factors, and
78 environmental factors and clinical laboratory traits can reveal the cause of diseases and
79 develop methods for the prediction and prevention of diseases. Recent genome-wide
80 association studies (GWASs) have shown various associations between traits including
81 metabolic traits (1) and genetic factors, and have enabled the prediction of the genetic effects
82 on each trait by calculating the genetic risk score (GRS), which expresses the power of
83 genetic effect as the sum of the effect size of risk alleles related to each trait (2). Previous
84 studies, in which a GWAS of 58 quantitative traits in 162,255 Japanese individuals identified
85 1,407 trait-associated loci, proposed a prediction model of clinical traits (3, 4). However, the
86 environmental factors were not considered in the prediction model. Therefore, the effects of
87 environmental factors on the GRS calculated in these studies are not yet clear.

88 It is difficult to investigate environmental effects on phenotypes using individual
89 samples because their genetic and environmental factors differ. However, using monozygotic
90 twins (MZ) makes it possible to investigate the influence of environmental factors because
91 they have the same genetic factors within pairs. The advantage of our twin study is that we
92 examined the differences in clinical traits, which corrected evidential genetic factors, within
93 the MZ pair and clarified the influence of environmental factors more strictly. In this study,

94 as shown in Figure 1A, we hypothesized that the traits that are strongly affected by genetic
95 factors indicate similar values before GRS correction, and their within-pair differences
96 become larger after GRS correction. However, when the within-pair differences in traits are
97 weakly affected by genetic factors, there are only small differences between before and after
98 GRS correction. This hypothesis is more practical than classic twin methods such as ACE
99 model because it takes in correction evidential genetic factors. Based on this hypothesis,
100 we attempted to verify the validity of the genetic prediction model by applying it to our
101 genetic data of MZ pairs.

102 Two approaches were used to verify the prediction models. First, we compared
103 within-pair intraclass correlation (ICC) between before and after GRS correction. When the
104 clinical trait is strongly affected by genetic factors, each clinical laboratory measurement in a
105 pair shows similar values, and the within-pair ICC is closer to 1.0. However, the ICC is be
106 closer to zero when the trait is strongly affected by environmental factors. Second, we
107 compared the changes in within-pair differences in each normalized clinical measurement
108 before and after GRS correction. We defined a smaller change between before and after GRS
109 correction as indicating a stronger influence of genetic factors.

110 Studies examining the effects of non-genetic environmental factors often focus on
111 DNA methylation. However, as some instances of DNA methylation are regulated by genetic
112 factors (5), it is necessary to consider the influence of genetic factors to clarify the

113 relationship between DNA methylation and environmental factors. In our additional study,
114 we attempted to correct for the effects of genetic factors using GRS to identify Cytosine-
115 phosphodiester-Guanine (CpG) sites that are regulated by genetic factors.

116

117 **Subjects and Methods**

118

119 **Subjects**

120 A total of 278 Japanese MZ pairs (72 men and 206 women pairs) were recruited
121 from a registry established by the Center for Twin Research, Osaka University
122 (Supplementary Table 1 and Supplementary Table2) (6). Blood samples were collected at
123 9:00 am from each subject after a 12-h fast. Clinical examination was performed as shown in
124 Supplementary Table 3, and the twins completed health-related questionnaires. Excluding
125 criteria in each analysis were presented in Supplemental Table 4. Twins were examined on
126 the same day. Genomic DNA was isolated from peripheral blood mononuclear cells using a
127 commercial kit (QIAamp DNA Mini Kit; QIAGEN, Hilden, Germany). The zygosity of the
128 twin pair was confirmed by perfectly matching 15 short tandem repeat (STR) loci using the
129 PowerPlex 16 System (Promega, Madison, WI, USA).

130

131

132 **Phenotypes**

133 We targeted 45 traits that were measured by Beckman Coulter, Inc., according to the
134 method used in the International Federation of Clinical Chemistry and Laboratory Medicine
135 (IFCC) project (7). The measured values of each quantitative trait were adjusted for age, sex,
136 top ten principal components of genetic ancestry, and any necessary trait-specific covariates
137 in a linear regression model, as performed in previous studies (3, 4). If traits had a log-normal
138 distribution, a common log-transformation was conducted before the regression. We then
139 normalized the residuals by applying an appropriate trait-specific transformation (Z-score or
140 rank-based inverse normal transformation). In some traits, Smoking status is added in
141 covariates, because smoking is known as affecting the atherosclerosis from endothelial
142 dysfunction to acute clinical events. (Supplementary Table 4)

143

144

145 **Genotyping and imputation**

146 Single nucleotide polymorphism (SNP) genotyping was performed using Illumina
147 Infinium HumanOmni5-Quad v1-0 Bead Chips (Illumina, San Diego, CA) and Illumina
148 Infinium HumanOmni v1-1 BeadChips (Illumina). Sample exclusion was performed under
149 the following conditions: (i) sample call rate < 0.98, (ii) closely related individuals identified

150 by identity-by-descent analysis, and (iii) non-East Asian outliers identified by principal
151 component analysis of the studied samples and three major reference populations (African,
152 European, and East Asian) in the International Haplotype Map (HapMap) Project. Variants
153 were then applied to standard quality-control criteria and were excluded through the
154 following criteria: (i) SNP call rate < 0.98, (ii) minor allele frequency < 1%, and (iii) Hardy-
155 Weinberg equilibrium P value < 1.0×10^{-7} . Genotype prephasing was performed using
156 SHAPEIT2 software, and imputation was performed using minimac3 and the 1000 Genomes
157 Project Phase1 (version 3) East Asian reference haplotypes. For the X chromosome,
158 prephasing and imputation were performed separately for the women and men. In total, 268
159 samples and 27,428,601 variants were retained after editing.

160

161 **Methylation levels of CpG islands**

162 Analysis of methylation levels was performed using the Infinium
163 HumanMethylation450 Bead Kit (Illumina) and Infinium MethylationEPIC Kit (Illumina),
164 according to the manufacturer's standard protocol, which considered 485,577 highly
165 informative CpG sites at a single-nucleotide resolution for each sample. The experiment was
166 performed with 0.5 μ g of high-quality genomic DNA. There were two bead types for each
167 CpG site per locus on the chip. The raw data were analyzed using Genome Studio software
168 (Illumina), and the fluorescence intensity ratios between the two bead types were calculated.

169 The ratio of 0 was regarded as total methylation. These raw data were corrected to normalize
170 the differences in detection ranges between the two probes of the Infinium assay using a
171 peak-based correction method. Normalized data were filtered to exclude invalid probes such
172 as null probes and those with low reliability.

173

174 **GRS**

175 GRS indicates the magnitude of the influence of genetic factors on traits. The GRS
176 was added as a covariate when normalized standardization was performed to correct the
177 influence of genetic factors. The SNPs used to calculate GRS were those that were significant
178 in previous GWAS results (7). GRS was calculated using the following equation:

$$179 \quad \text{GRS} = \sum_{k=1}^n (N_{snpk} \beta_{snpk})$$

180 where n is the number of trait-associated SNPs; N_{snpk} is the number of k th SNP risk alleles
181 (0, 1, or 2); and β_{snpk} is the weight of k th SNP, which was calculated by linear regression
182 analysis of GWAS.

183

184 **ICC**

185 We used ICC to evaluate the correlation of clinical laboratory measurements within
186 pairs (8). With twin data, it is difficult to use the standard Pearson's correlation coefficient

187 because the classification of either member of the pair as X or Y is arbitrary. ICC was

188 calculated using the following equation:

$$189 \quad \text{ICC} = \frac{MS_{between} - MS_{within}}{MS_{between} + MS_{within}}$$

190 where $MS_{between}$ is the mean-square estimate of the between-pair variance, and MS_{within}

191 is the mean-square estimate of within-pair variance. The maximum ICC value was 1.0, and

192 the ICC was closer to 1.0 when the correlation was stronger.

193

194 **The effect size for clinical measurement (ESC) and the effect size for environmental
195 factors (ESE)**

196 To identify CpG sites controlled by genetic factors, we defined and compared ESC

197 and ESE (Supplementary Figure 1). The ESC indicates the relationship between the

198 methylation levels of each CpG site and normalized clinical measurements as the effect size

199 of the multiple regression analysis. The ESE indicates the effect size of multiple regression

200 analysis between the methylation levels at CpG sites and the differences between the GRS

201 and normalized clinical measurements as a purely environmental factor. By comparing these

202 two scores, we classified CpG sites into three groups: regulated only by environmental

203 factors, regulated by environmental factors masked by genetic factors, and regulated only by

204 genetic factors.

205 We observed ten traits with extremely low mean P values. We considered most of
206 them to be false positives, which is difficult to study in detail. We excluded traits with mean
207 P-values $<1.0 \times 10^{-8}$ from subsequent studies of the results.

208

209 **Statistical analysis**

210 The association analysis between methylation at CpG sites and phenotype was
211 performed using the ‘CpGassoc’ package and R statistic software (<https://cran.r-project.org/web/packages/CpGassoc/index.html>). Bonferroni correction was used to reduce
212 the number of false-positive results (type I error). We set the threshold of the P-value for
213 determining significance to $<1.0 \times 10^{-7}$ and the threshold for determining suggestive to <1.0
214 $\times 10^{-5}$.

216

217

218 **Results**

219

220 **Changes in ICC before and after GRS correction**

221 We calculated the within-pair ICC of each normalized clinical measurement and the
222 differences between ICCs before and after GRS correction for each clinical trait (Table 1 and

223 Figure 1B). Based on the difference in within-pair ICC before and after GRS correction
224 (Figure 1B), clinical traits could be classified into three groups: high, moderate, and low
225 heritability, as shown in Figure 1B. Five blood biochemical test values (alkaline phosphatase
226 [ALP], uric acid [UA], high-density lipoprotein cholesterol [HDL], high-density lipoprotein
227 cholesterol [LDL], and total cholesterol [T. chol]) were classified into the high-heritability
228 group, which was strongly affected by genetic factors. In addition, we calculated the averages
229 of 100 differences between within-pair ICC before and after random correction that replaced
230 the GRS used when calculating the Z-score of traits with a normally distributed random
231 number for each clinical trait (Figure 1C). Differences in ICC after random correction were
232 gathered at 0, suggesting that the correction of GRS is effective in correcting the influence of
233 genetic factors.

234

235 **Changes in within-pair difference before and after GRS correction**

236 The average changes in within-pair differences in each normalized clinical
237 measurement before and after the GRS correction are shown in Table 2 and Figure 1D.
238 According to the within-pair differences before and after GRS correction, we classified the
239 clinical traits into three groups: high-, moderate-, and low-heritability groups, as shown in
240 Figure 1D. The five blood biochemical test values (ALP, UA, HDL, LDL, and T. chol) were
241 classified into the high-heritability group using the ICC method.

242

243 **Identification of CpG sites regulated by genetic factors**

244 Table 3 presents the CpG sites showing suggestive effects for both ESC and ESE,
245 indicating that these CpG sites were highly associated with traits in both ESC and ESE. This
246 means that these CpG sites are regulated only by environmental factors and may reflect the
247 effects of purely environmental factors because they are still suggestive when corrected for
248 the effects of genetic factors, and some of these CpG sites (indicated by asterisks) have a
249 common effect on two or three traits. T. chol and LDL were commonly associated with CpG
250 sites in RG9MTD1 (cg22315683, cg01537928, cg20574900, and cg24445570), and Hb and
251 Ht were commonly associated with CpG on ADCY7 (cg23580000). Systolic blood pressure
252 (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were commonly
253 associated with CpG sites on SDHAF1 (cg26643967).

254 Table 4 presents the CpG sites showing suggestive effects for ESC, but not for ESE,
255 indicating that these CpG sites were associated with the trait in ESC analysis only. These
256 CpG sites are regulated by genetic factors and not environmental factors. The ratio of P-value
257 in ESC/ESE was large for some CpG sites, such as CpG on MEGF6 (cg20277126), which
258 has been shown to be associated with Hb, and for CpG on SLC29A4 (cg02632809), which is
259 a common gene in mean corpuscular hemoglobin (MCH) and mean corpuscular volume
260 (MCV).

261 Table 5 presents the CpG sites showing a suggestive effect for ESE but not for ESC,
262 indicating that these CpG sites were associated with the trait in the ESE analysis only. These
263 CpG sites were associated with environmental factors hidden by genetic factors, because their
264 statistical significance became strong when corrected for the effects of genetic factors. Large
265 increases in P-values were observed for several CpG sites on A2BP (cg00514665) and
266 A2BP1 (cg03986562) in MCV, GTF2H4; VARS2 (cg16914989) in UA; and TRPM8
267 (cg08343899) in ALP.

268

269

270 **Discussion**

271 In this study, we identified five clinical traits (ALP, UA, HDL, LDL, and T. chol)
272 that were strongly affected by genetic factors.

273

274 **ALP**

275 ALP was the most inherited trait in the present study. Consistent with this, ALP also
276 showed high heritability in a previous GWAS using a non-twin Japanese population (4).

277 Strong associations of serum ALP and SNPs located in ABO and FUT1 genes were observed
278 as genetic factors in previous GWAS targeting Japanese, Chinese, and European populations
279 (9). In addition, the association between serum ALP levels and the ABO blood type has been
280 reported in a biological study (10, 11). Therefore, we suggest that serum ALP levels are
281 strongly regulated by genetic factors, which is consistent with our results.

282

283 **UA**

284 UA exhibited high heritability in our twin study and a previous GWAS using non-
285 twin Japanese individuals (4). The heritability of UA ranged 39–63% in previous family
286 studies (12, 13) and 46–80% in classical twin studies (14, 15). These results indicate that high
287 heritability was observed in serum UA levels, and this high heritability was confirmed.

288

289 **Metabolic traits**

290 Most metabolic traits were affected by genetic factors compared to other traits in our
291 twin study. HDL, LDL, and T. chol were categorized as high-heritability traits, and
292 triglyceride (TG) and blood sugar (BS) were categorized as moderate-heritability traits in our
293 two methods. However, in a Japanese non-twin GWAS (4), the heritability of metabolic
294 traits, except HDL, was not higher than that in our twin study. Their heritability has been
295 reported in several studies: 16–74% for HDL, 47–100% for LDL, 35–72% for T.chol, and
296 19–81% for TG in twin and family studies (16), and 40–69% for HDL, 40–66% for LDL,
297 43% for T.chol, and 19–58% for TG in non-twin studies (17-19). These results indicate that
298 heritability varies widely between studies; however, overall, the heritability of HDL, LDL, T.
299 chol, and TG is considered high. In a study comparing the ICC between two types of MZ,
300 some having grown up separately and others having grown up together, no difference was
301 found in the ICC of HDL between the two MZ groups. In the case of T. chol and TG, the ICC
302 of MZ who grew up together was higher than that of MZ who grew up separately (16). These
303 results indicate that the serum levels of T. chol and TG may be affected by the growth
304 environment and that MZ who grew up together present similar T. chol and TG levels.
305 Therefore, T. chol and TG may show higher heritability in MZ who grew up together than in
306 general individuals. The similarity of the environment of the MZ in their growing up is

307 considered to be the reason for the discrepancy between our twin study and a previous non-
308 twin study (4).

309

310 **Other traits**

311 All other traits were categorized as moderate- or low-heritability traits in our twin
312 study, and most results were consistent with those of previous reports. For example, in the
313 category of blood pressure, we targeted SBP, DBP, and MAP, and the genetic effects of SBP
314 and MAP were categorized into the moderate-heritability class in our twin study. The
315 heritability of SBP, DBP, and MAP has been calculated in numerous studies: 18–45% for
316 SBP, 24–43% for DBP, and 33–34% for MAP (20–22), suggesting that these traits have
317 considerable associations with genetic factors, and our results in the twin study are similar.
318 However, some traits in our study were not consistent with those reported in previous studies.
319 Although we classified RBC and MCH as low heritability traits and MCV as moderate-
320 heritability traits, their heritability is at the top of all traits in a Japanese non-twin study (4).
321 Strong effects of genetic factors on RBC, MCV, and MCH have been reported in several
322 GWAS (23, 24). In addition, high heritability of RBC, MCV, and MCH was also observed in
323 other twin studies using the traditional ACE method (25). Although the reasons for the
324 discrepancy between our study and others are still unclear, the differences in the number of
325 samples may be the cause.

326

327 **Association between GRS and CpG sites**

328 The CpG sites observed in G9MTD1, ADCY7, and SDHAF1 exhibited no
329 significant change in the relationship between methylation levels and traits before and after
330 GRS correction, suggesting that methylation levels are regulated by environmental factors.
331 RG9MTD1, which has been observed to be associated with T. chol and LDL, encodes the
332 protein TRMT10C and is involved in the 5' processing of mitochondrial tRNA. It is essential
333 for transcriptional processing, RNA modification, translation, and mitochondrial respiration
334 and has been reported to be associated with mitochondrial metabolic diseases. No direct
335 association between RG9MTD1 and T. chol or LDL levels has been reported. However,
336 previous studies have suggested that mitochondrial dysfunction affects blood cholesterol (26)
337 and that the regulation of TRMT10C expression may be related to blood cholesterol.
338 ADCY7, which has been observed to be associated with Hb and Ht, encodes a membrane-
339 bound adenylate cyclase that catalyzes the formation of cAMP from adenosine triphosphate
340 (ATP). Although no association between this gene and Hb or Ht has been reported, numerous
341 studies have shown an association between adenylate cyclase cAMP system activation and
342 erythrocyte deformability (27, 28). SDHAF1, which has been observed to be associated with
343 blood pressure, is related to the synthesis of succinate dehydrogenase (SDH) in the
344 mitochondria, and no direct association with blood pressure has been reported. Mitochondrial

345 dysfunction has been reported to occur in several cardiovascular diseases, including
346 atherosclerosis (29), may affect blood pressure. None of the genes have been reported to be
347 directly associated with any trait, but previous studies have suggested that each gene may be
348 associated with a trait, albeit not directly. MEGF6, which has been observed to be associated
349 with Hb, is also known as EGFL3, and the protein EGFL3 encoded by this gene belongs to
350 the epidermal growth factor EGF group. It induces a wide range of biological functions, such
351 as proliferation, differentiation, apoptosis, adhesion, and migration, and has been reported to
352 be associated with colorectal cancer, osteoporosis, and angiogenesis (30-32), but not with Hb.

353 We observed two regions, MEGF6 and SLC29A4, in which genetic factors may
354 have masked the association between environmental factors and traits. ENT4, encoded by
355 SLC29A4, is a member of the ENT family and plays an important role in the transport of
356 nucleosides and their analogs. Although no association with blood pressure has been reported
357 in humans, an association with blood pressure has been reported in mice (33). ENT4 is also
358 highly expressed in the brain and is known to transport monoamine neurotransmitters (34).
359 ENT4 transports adenosine and that adenosine lowers blood pressure (35, 36), which is
360 consistent with the results observed in this study. Although we could not confirm the
361 association between MEGF6 and Hb, an association between SLC29A4 and blood pressure
362 has been reported and is consistent with the results observed in the present study. We

363 confirmed the association between the gene and the trait, which was not detectable before
364 correction using GRS.

365 The regions that may have been false-positives due to genetic factors were A2BP1,
366 GTF2H4, VARS2, and TRPM8. A2BP1, which has been associated with MCV, is a gene
367 encoding RBFOX1. Mutations in RBFOX1 are associated with decreased SBP, and RBFOX1
368 has been reported to be expressed in organs and tissues, including brain tissue, atrial
369 appendages, left ventricle of the heart, and skeletal muscle tissue, which may be related to
370 blood pressure (37). Neither GTF2H4 nor VARS2, which are associated with UA, were
371 found to be associated with UA. VARS2 has been reported to be in linkage disequilibrium
372 with HIST1H2BF-HIST1H4E, which has been reported to be a susceptibility gene for gout
373 through GWAS (38), and may behave like a trait related to gout-related traits such as UA. In
374 TRPM8, no association with ALP has been reported. However, as TRPM8 has been reported to
375 be highly expressed in odontoblasts (39) and ALP is used as an expression marker for
376 odontoblasts (40, 41), an association between TRPM8 and ALP is likely. We found previous
377 studies that have suggested trait associations in these genes. Most of these studies have
378 reported associations with genomic variants in the corresponding gene regions, and we were
379 unable to confirm the association with methylation. Therefore, we were unable to confirm
380 whether the association between methylation and traits was a false positive due to genetic
381 factors, as was hypothesized in this study.

382

383 **Conclusion**

384 As a new application of twin studies, we first verified a prediction model of
385 laboratory measurements established using a Japanese non-twin GWAS. The prediction
386 model was verified, specifically for ALP, UA, and HDL, which were strongly affected by
387 genetic factors. Additionally, we observed several methylation sites that may be related to
388 these traits. It is likely that susceptible genes interact with each other to affect methylation
389 levels. There is a limitation in our study. Missing heritability in GWAS is well known and
390 this limitation in GWAS may underestimate genetic factors estimated by GRS. However,
391 even considering this limitation, our method has the potential to identify trait-related
392 methylation sites that have not yet been observed.

393

394

395

396

397 **References**

- 398 1. Sarah E Graham, Shoa L Clarke, Kuan-Han H Wu, Stavroula Kanoni, Greg J M Zajac,
399 Shweta Ramdas, *et al.* The power of genetic diversity in genome-wide association
400 studies of lipids. *Nature*. 2021 Dec;600(7890):675-679. doi: 10.1038/s41586-021-
401 04064-3.
- 402 2. Low SK, Takahashi A, Ebana Y, Ozaki K, Christophersen IE, Ellinor PT, *et al.* Identification of six new genetic loci associated with atrial fibrillation in the Japanese
403 population. *Nat Genet* 2017 Jun;49 6:953-8 as doi: 10.1038/ng.3842.
- 404 3. Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, *et al.* Genome-
405 wide association study identifies 112 new loci for body mass index in the Japanese
406 population. *Nat Genet* 2017 Oct;49 10:1458-67 as doi: 10.1038/ng.3951.
- 407 4. Kanai M, Akiyama M, Takahashi A, Matoba N, Momozawa Y, Ikeda M, *et al.* Genetic
408 analysis of quantitative traits in the Japanese population links cell types to complex
409 human diseases. *Nat Genet* 2018 Mar;50 3:390-400 as doi: 10.1038/s41588-018-0047-
410 6.
- 411 5. Watanabe M, Takenaka Y, Honda C, Iwatani Y, Osaka Twin Research G. Genotype-
412 Based Epigenetic Differences in Monozygotic Twins Discordant for Positive
413 Antithyroglobulin Autoantibodies. *Thyroid* 2018 Jan;28 1:110-23 as doi:
414 10.1089/thy.2017.0273.
- 415

- 416 6. Honda C, Watanabe M, Tomizawa R, Osaka Twin Research G, Sakai N. Update on
417 Osaka University Twin Registry: An Overview of Multidisciplinary Research
418 Resources and Biobank at Osaka University Center for Twin Research. *Twin Res Hum
419 Genet* 2019 Dec;22 6:597-601 as doi: 10.1017/thg.2019.70.
- 420 7. Ichihara K. Statistical considerations for harmonization of the global multicenter study
421 on reference values. *Clin Chim Acta* 2014 May 15;432:108-18 as doi:
422 10.1016/j.cca.2014.01.025.
- 423 8. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. *Psychol
424 Bull* 1979 Mar;86 2:420-8 as doi: 10.1037//0033-2909.86.2.420.
- 425 9. Chambers JC, Zhang W, Sehmi J, Li X, Wass MN, Van der Harst P, *et al.* Genome-
426 wide association study identifies loci influencing concentrations of liver enzymes in
427 plasma. *Nat Genet* 2011 Oct 16;43 11:1131-8 as doi: 10.1038/ng.970.
- 428 10. Domar U, Hirano K, Stigbrand T. Serum levels of human alkaline phosphatase
429 isozymes in relation to blood groups. *Clin Chim Acta* 1991 Dec 16;203 2-3:305-13 as
430 doi: 10.1016/0009-8981(91)90303-t.
- 431 11. Matsushita M, Irino T, Stigbrand T, Nakajima T, Komoda T. Changes in intestinal
432 alkaline phosphatase isoforms in healthy subjects bearing the blood group secretor and
433 non-secretor. *Clin Chim Acta* 1998 Sep 14;277 1:13-24 as doi: 10.1016/s0009-
434 8981(98)00102-8.

- 435 12. Major TJ, Topless RK, Dalbeth N, Merriman TR. Evaluation of the diet wide
436 contribution to serum urate levels: meta-analysis of population based cohorts. BMJ
437 2018 Oct 10;363:k3951 as doi: 10.1136/bmj.k3951.
- 438 13. Voruganti VS, Kent JW, Jr., Debnath S, Cole SA, Haack K, Goring HH, *et al.* Genome-
439 wide association analysis confirms and extends the association of SLC2A9 with serum
440 uric acid levels to Mexican Americans. Front Genet 2013;4:279 as doi:
441 10.3389/fgene.2013.00279.
- 442 14. Ji F, Ning F, Duan H, Kaprio J, Zhang D, Zhang D, *et al.* Genetic and environmental
443 influences on cardiovascular disease risk factors: a study of Chinese twin children and
444 adolescents. Twin Res Hum Genet 2014 Apr;17 2:72-9 as doi: 10.1017/thg.2014.5.
- 445 15. Wang W, Zhang D, Xu C, Wu Y, Duan H, Li S, Tan Q. Heritability and Genome-Wide
446 Association Analyses of Serum Uric Acid in Middle and Old-Aged Chinese Twins.
447 Front Endocrinol (Lausanne) 2018;9:75 as doi: 10.3389/fendo.2018.00075.
- 448 16. Heller DA, de Faire U, Pedersen NL, Dahlen G, McClearn GE. Genetic and
449 environmental influences on serum lipid levels in twins. N Engl J Med 1993 Apr 22;328
450 16:1150-6 as doi: 10.1056/NEJM199304223281603.
- 451 17. Kathiresan S, Manning AK, Demissie S, D'Agostino RB, Surti A, Guiducci C, *et al.* A
452 genome-wide association study for blood lipid phenotypes in the Framingham Heart

- 453 Study. BMC Med Genet 2007 Sep 19;8 Suppl 1:S17 as doi: 10.1186/1471-2350-8-S1-
454 S17.
- 455 18. Shirali M, Pong-Wong R, Navarro P, Knott S, Hayward C, Vitart V, *et al.* Regional
456 heritability mapping method helps explain missing heritability of blood lipid traits in
457 isolated populations. Heredity (Edinb) 2016 Mar;116 3:333-8 as doi:
458 10.1038/hdy.2015.107.
- 459 19. Weiss LA, Pan L, Abney M, Ober C. The sex-specific genetic architecture of
460 quantitative traits in humans. Nat Genet 2006 Feb;38 2:218-22 as doi: 10.1038/ng1726.
- 461 20. Gu D, Rice T, Wang S, Yang W, Gu C, Chen CS, *et al.* Heritability of blood pressure
462 responses to dietary sodium and potassium intake in a Chinese population.
463 Hypertension 2007 Jul;50 1:116-22 as doi:
464 10.1161/HYPERTENSIONAHA.107.088310.
- 465 21. Kim Y, Lee Y, Lee S, Kim NH, Lim J, Kim YJ, *et al.* On the Estimation of Heritability
466 with Family-Based and Population-Based Samples. Biomed Res Int 2015;2015:671349
467 as doi: 10.1155/2015/671349.
- 468 22. Mitchell BD, Kammerer CM, Blangero J, Mahaney MC, Rainwater DL, Dyke B, *et al.*
469 Genetic and environmental contributions to cardiovascular risk factors in Mexican
470 Americans. The San Antonio Family Heart Study. Circulation 1996 Nov 1;94 9:2159-
471 70 as doi: 10.1161/01.cir.94.9.2159.

- 472 23. Lin JP, O'Donnell CJ, Jin L, Fox C, Yang Q, Cupples LA. Evidence for linkage of red
473 blood cell size and count: genome-wide scans in the Framingham Heart Study. Am J
474 Hematol 2007 Jul;82 7:605-10 as doi: 10.1002/ajh.20868.
- 475 24. Read RW, Schlauch KA, Elhanan G, Metcalf WJ, Slonim AD, Aweti R, *et al.* GWAS
476 and PheWAS of red blood cell components in a Northern Nevadan cohort. PLoS One
477 2019;14 6:e0218078 as doi: 10.1371/journal.pone.0218078.
- 478 25. Evans DM, Frazer IH, Martin NG. Genetic and environmental causes of variation in
479 basal levels of blood cells. Twin Res 1999 Dec;2 4:250-7 as doi:
480 10.1375/136905299320565735.
- 481 26. Flaquer A, Rospleszcz S, Reischl E, Zeilinger S, Prokisch H, Meitinger T, *et al.*
482 Mitochondrial GWA Analysis of Lipid Profile Identifies Genetic Variants to Be
483 Associated with HDL Cholesterol and Triglyceride Levels. PLoS One 2015;10
484 5:e0126294 as doi: 10.1371/journal.pone.0126294.
- 485 27. Murav'ev AV, Maimistova AA, Tikhomirova IA, Bulaeva SV, Mikhailov PV,
486 Murav'ev AA. [Role of protein kinases of human red cell membrane in deformability
487 and aggregation changes]. Fiziol Cheloveka 2012 Mar-Apr;38 2:94-100.
- 488 28. Muravyov AV, Tikhomirova IA, Maimistova AA, Bulaeva SV, Zamishlayev AV,
489 Batalova EA. Crosstalk between adenylyl cyclase signaling pathway and Ca²⁺

- 490 regulatory mechanism under red blood cell microrheological changes. Clin Hemorheol
491 Microcirc 2010;45 2-4:337-45 as doi: 10.3233/CH-2010-1317.
- 492 29. Takeuchi K, Yamamoto K, Ohishi M, Takeshita H, Hongyo K, Kawai T, *et al.*
493 Telmisartan modulates mitochondrial function in vascular smooth muscle cells.
494 Hypertens Res 2013 May;36 5:433-9 as doi: 10.1038/hr.2012.199.
- 495 30. Guo C, Tian X, Han F, Liu L, Gao J, Ma X. Copy Number Variation of Multiple Genes
496 in SAPHO Syndrome. J Rheumatol 2020 Sep 1;47 9:1323-9 as doi:
497 10.3899/jrheum.181393.
- 498 31. Hu H, Wang M, Wang H, Liu Z, Guan X, Yang R, *et al.* MEGF6 Promotes the
499 Epithelial-to-Mesenchymal Transition via the TGFbeta/SMAD Signaling Pathway in
500 Colorectal Cancer Metastasis. Cell Physiol Biochem 2018;46 5:1895-906 as doi:
501 10.1159/000489374.
- 502 32. Teerlink CC, Juryneec MJ, Hernandez R, Stevens J, Hughes DC, Brunker CP, *et al.* A
503 role for the MEGF6 gene in predisposition to osteoporosis. Ann Hum Genet 2021
504 Mar;85 2:58-72 as doi: 10.1111/ahg.12408.
- 505 33. Wei R, Gust SL, Tandio D, Maheux A, Nguyen KH, Wang J, *et al.* Deletion of murine
506 slc29a4 modifies vascular responses to adenosine and 5-hydroxytryptamine in a
507 sexually dimorphic manner. Physiol Rep 2020 Mar;8 5:e14395 as doi:
508 10.14814/phy2.14395.

- 509 34. Barnes K, Dobrzynski H, Foppolo S, Beal PR, Ismat F, Scullion ER, *et al.* Distribution
510 and functional characterization of equilibrative nucleoside transporter-4, a novel
511 cardiac adenosine transporter activated at acidic pH. Circ Res 2006 Sep 1;99 5:510-9
512 as doi: 10.1161/01.RES.0000238359.18495.42.
- 513 35. Jacob HJ, Alper RH, Brody MJ. Lability of arterial pressure after baroreceptor
514 denervation is not pressure dependent. Hypertension 1989 Nov;14 5:501-10 as doi:
515 10.1161/01.hyp.14.5.501.
- 516 36. Shen FM, Su DF. The effect of adenosine on blood pressure variability in sinoaortic
517 denervated rats is mediated by adenosine A2a-Receptor. J Cardiovasc Pharmacol 2000
518 Nov;36 5:681-6 as doi: 10.1097/00005344-200011000-00019.
- 519 37. He KY, Wang H, Cade BE, Nandakumar P, Giri A, Ware EB, *et al.* Rare variants in
520 fox-1 homolog A (RBFOX1) are associated with lower blood pressure. PLoS Genet
521 2017 Mar;13 3:e1006678 as doi: 10.1371/journal.pgen.1006678.
- 522 38. Nakayama A, Nakaoka H, Yamamoto K, Sakiyama M, Shaukat A, Toyoda Y, *et al.*
523 GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci
524 that include urate transporter genes. Ann Rheum Dis 2017 May;76 5:869-77 as doi:
525 10.1136/annrheumdis-2016-209632.

- 526 39. Tsumura M, Sobhan U, Sato M, Shimada M, Nishiyama A, Kawaguchi A, *et al.*
- 527 Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts. PLoS One
- 528 2013;8 12:e82233 as doi: 10.1371/journal.pone.0082233.
- 529 40. Egbuniwe O, Grover S, Duggal AK, Mavroudis A, Yazdi M, Renton T, *et al.* TRPA1
- 530 and TRPV4 activation in human odontoblasts stimulates ATP release. J Dent Res 2014
- 531 Sep;93 9:911-7 as doi: 10.1177/0022034514544507.
- 532 41. Tazawa K, Ikeda H, Kawashima N, Okiji T. Transient receptor potential melastatin
- 533 (TRPM) 8 is expressed in freshly isolated native human odontoblasts. Arch Oral Biol
- 534 2017 Mar;75:55-61 as doi: 10.1016/j.archoralbio.2016.12.007.
- 535
- 536

Table 1. ICC and its difference before and after correction

Category	Trait	Sample N	Excluded N	ICC	ICC-GRS	Difference(normal - GRS)	Difference(normal - random)	Heritability
Metabolic	TC	528	0	0.608	0.588	0.021	0.001	high
	HDL-C	528	0	0.715	0.697	0.018	0.001	high
	LDL-C	528	0	0.582	0.562	0.020	0.001	high
	TG	518	4	0.586	0.571	0.014	0.001	moderate
	BS(GLU)	480	11	0.583	0.572	0.012	0.001	moderate
	HbA1c	500	9	0.715	0.709	0.006	0.002	moderate
Protein	TP	520	4	0.570	0.571	-0.001	0.001	low
	Alb	522	3	0.500	0.498	0.002	0.002	low
	NAP	516	6	0.735	0.734	0.000	0.003	low
	A/G	522	3	0.724	0.725	-0.001	0.001	low
Kidney-related	BUN(UN)	528	0	0.474	0.472	0.002	0.001	low
	sCr(CRE)	528	0	0.666	0.663	0.003	0.001	low
	eGFR	528	0	0.510	0.510	0.000	0.000	low
	UA	528	0	0.599	0.569	0.029	0.001	high
Electrolyte	Na	522	3	0.439	0.437	0.002	0.002	low
	K	526	1	0.318	0.308	0.010	0.000	moderate
	Cl	526	1	0.506	0.506	0.000	0.002	low
	Ca	526	0	0.484	0.481	0.004	0.001	low
	P	528	0	0.500	0.496	0.005	0.002	low
Liver-related	Tbil	506	5	0.579	0.577	0.003	0.004	low
	AST	502	11	0.483	0.482	0.000	0.001	low
	ALT	500	12	0.438	0.434	0.004	0.001	low
	ALP	508	8	0.712	0.682	0.030	0.002	high
	GGT	474	18	0.641	0.641	0.001	0.002	low
Other-biochemical	CK	500	11	0.535	0.535	0.000	0.001	low
	LDH(LD)	514	5	0.716	0.712	0.004	0.002	low
	CRP	434	42	0.440	0.437	0.003	0.003	low
Hematological	WBC	520	2	0.564	0.560	0.003	0.001	low
	Neutro	514	5	0.467	0.461	0.007	0.001	moderate
	Eosin	506	8	0.496	0.496	0.000	0.003	low
	Baso	506	3	0.618	0.616	0.002	0.003	low
	Mono	522	1	0.615	0.618	-0.003	0.001	low
	Lym	518	2	0.595	0.590	0.005	0.002	low
	RBC	522	1	0.712	0.711	0.000	0.001	low
	Hb	522	1	0.582	0.581	0.000	0.001	low
	Ht	522	1	0.607	0.607	0.000	0.002	low
	MCV	522	1	0.676	0.669	0.006	0.002	moderate
	MCH	514	4	0.637	0.633	0.004	0.001	low
	MCHC	520	2	0.665	0.661	0.004	0.000	low
Blood-pressure	Plt	520	2	0.701	0.701	0.000	0.002	low
	SBP	482	1	0.447	0.440	0.007	0.002	moderate
	DBP	482	1	0.579	0.577	0.003	0.002	low
	MAP	482	1	0.542	0.536	0.006	0.001	moderate
	PP	480	2	0.327	0.3282	0.000	0.001	low

Table 2. Average of differences within-pair and its amount of change between before and after GRS correction

Category	Trait	Sample N	Excluded N	Difference	Heritability
Metabolic	TC	528	0	0.017	high
	HDL-C	528	0	0.018	high
	LDL-C	528	0	0.016	high
	TG	518	4	0.012	moderate
	BS(GLU)	480	11	0.010	moderate
	HbA1c	500	9	0.003	low
Protein	TP	520	4	0.001	low
	Alb	522	3	0.002	low
	NAP	516	6	0.001	low
	A/G	522	3	-0.001	low
Kidney-related	BUN(UN)	528	0	0.001	low
	sCr(CRE)	528	0	0.003	low
	eGFR	528	0	-0.002	low
	UA	528	0	0.023	high
Electrolyte	Na	522	3	0.001	low
	K	526	1	0.006	moderate
	Cl	526	1	0.000	low
	Ca	526	0	0.002	low
	P	528	0	0.002	low
Liver-related	Tbil	506	5	0.001	low
	AST	502	11	0.000	low
	ALT	500	12	0.003	low
	ALP	508	8	0.023	high
	GGT	474	18	0.001	low
Other-biochemical	CK	500	11	0.000	low
	LDH(LD)	514	5	0.005	moderate
	CRP	434	42	0.000	low
Hematological	WBC	520	2	0.003	low
	Neutro	514	5	0.008	moderate
	Eosin	506	8	0.000	low
	Baso	506	3	0.003	low
	Mono	522	1	-0.004	low
	Lym	518	2	0.002	low
	RBC	522	1	0.001	low
	Hb	522	1	0.000	low
	Ht	522	1	0.000	low
	MCV	522	1	0.005	moderate
	MCH	514	4	0.002	low
	MCHC	520	2	0.003	low
Blood-pressure	Plt	520	2	0.000	low
	SBP	482	1	0.005	moderate
	DBP	482	1	0.002	low
	MAP	482	1	0.005	moderate
BMI	PP	480	2	0.000	low
	BMI	494	1	0.001	low

Table 3. CpGs with relatively strong associations with the trait and showing suggestive effect both for ESC and ESE

Category	Trait	CpG_ID	Chr	Position	Gene	P_value
Metabolic	Tchol	cg22315683	3	101280662	RG9MTD1*	3.27E-07
	HDL	cg16187528	17	79609161	TSPAN10	1.41E-07
		cg10565662	8	2670187	NULL	1.21E-07
	LDL	cg20574900	3	101280596	RG9MTD1*	8.70E-07
		cg01537928	3	101280610	RG9MTD1*	8.27E-07
	TG	cg02032984	7	35490860	NULL	6.39E-08
Protein	GLU	cg02895278	8	26195897	PPP2R2A	2.78E-06
	HbA1c	cg11245990	11	68621969	NULL	2.09E-07
	TP	cg22176018	2	242867611	NULL	2.25E-11
Kidney-related		cg20888499	2	426252	NULL	4.98E-10
	UN	cg1689405	1	26370407	SLC30A2	9.99E-07
	CRE	cg15714227	5	2225482	NULL	3.06E-09
		cg22179059	6	29714945	LOC285830	2.83E-08
	UA	cg18823637	14	104789524	NULL	5.11E-07
Electrolyte		cg03590420	11	132662963	OPCML	2.31E-06
	Na	cg21755709	21	45149398	PDXK	2.39E-06
	K	cg26528484	2	103387474	TMEM182	2.80E-08
	Cl	cg01380194	11	72452482	ARAP1	1.66E-06
	Ca	cg23972915	14	104809218	NULL	6.52E-07
		cg13046524	20	48728642	UBE2V1;TMEM189-UBE2V1	1.29E-07
Liver-related	P	cg04923746	1	211666304	RD3;RD3	1.29E-07
	Tbil	cg20459037	17	9546550	WDR16	1.43E-06
	AST	cg05229454	17	80494379	FOXK2	2.00E-09
		cg24715928	15	61197517	RORA	4.49E-09
	ALT	ch.3.2133154F	3	107908987	IFT57	5.12E-08
		cg20954484	3	42727014	KBTBD5	3.85E-08
	ALP	cg13605646	20	57486019	GNAS	8.46E-08
		cg25210580	17	744036	NXN	1.47E-06
Other-biochemical	GGT	cg15347434	6	37592871	NULL	2.72E-08
		cg03851878	15	23887710	NULL	1.87E-08
	CK	cg13184225	1	201956029	RNPEP	3.86E-06
	LD	cg21984481	17	79567631	NPLOC4	3.51E-08
Hematological		cg21275932	21	46410877	NULL	7.94E-08
	CRP	cg19821297	19	12890029	NULL	3.78E-06
	RBC	cg06657096	9	140024858	NULL	1.60E-09
Hematological	Hb	cg23580000	16	50322156	ADCY7*	4.57E-11
		cg06741653	12	4351720	NULL	7.50E-11
		cg06897661	16	50322074	ADCY7*	2.50E-10
	Ht	cg23580000	16	50322156	ADCY7*	4.74E-10
	MCV	cg15004787	5	72802430	NULL	8.99E-10
		cg16285566	13	33682212	STARD13	9.35E-08
	MCH	cg00791764	4	53727839	RASL11B	2.59E-07
		cg08505111	5	98541783	NULL	4.53E-07
	MCHC	cg11891431	5	178209272	NULL	1.48E-08
		cg01375719	3	184298977	EPHB3	3.87E-08
Blood-pressure	Plt	cg17656426	19	2137788	AP3D1	2.17E-08
		cg21175585	13	30095759	SLC7A1	7.13E-09
	SBP	cg26643967	19	36485282	SDHAF1*	1.62E-07
		cg19389372	19	36485356	SDHAF1*	6.50E-07
		cg23895963	12	117471115	NULL	5.05E-07
DBP	DBP	cg06638515	6	33169581	RXRB;SLC39A7	4.29E-08
		cg09027985	17	46973122	ATP5G1;ATP5G1	4.40E-08
	MAP	cg20361540	12	123380447	VPS37B	4.51E-07
		cg26643967	19	36485282	SDHAF1*	1.83E-07
PP	PP	cg16190718	6	31939106	DOM3Z;STK19	2.35E-07
	BMI	cg21075784	19	54637076	NULL	1.42E-06

Table4, Top5 CpGs showing suggestive or significant effect for ESC but not for ESE, with the largest amount of P-values change between two values.

Category	Trait	CpG_ID	Chr	Position	Gene	P(Measured)	P(Measured-GRS)	P(Measured-GRS)/P(Measured)
Metabolic	Tchol	cg11026954	2	132250549	FAM128A;LOC150776	3.32E-05	7.87E-06	2.37E-01
		cg08122652	3	122281939	PARP9	1.21E-05	4.00E-06	3.30E-01
		cg07791427	12	54402704	HOXC8	1.18E-05	4.32E-06	3.68E-01
	HDL	cg11341011	17	2632132		2.57E-04	5.77E-06	2.24E-02
		cg23470729	5	140725964	PCDHGA2;PCDHGA3;PCDHGA1	3.83E-05	1.49E-06	3.89E-02
		cg08045301	16	71887487	ATXN1L	1.86E-04	7.95E-06	4.28E-02
		cg08850438	16	89609646	SPG7	1.61E-04	7.79E-06	4.84E-02
	LDL	cg17547577	3	21265890		1.31E-04	8.25E-06	6.28E-02
		cg16283010	3	101280485	RG9MTD1	1.53E-05	5.66E-06	3.70E-01
	GLU	cg08247887	10	44394566		1.06E-05	2.02E-06	1.90E-01
Protein	TP	cg25809722*	12	133121162	FBRSL1	2.91E-07	8.90E-08	3.06E-01
		cg01616956*	2	232393196	NMUR1	1.61E-07	6.07E-08	3.76E-01
Kidney-related	UN	cg09277709	19	46224285	FBXO46	1.74E-05	4.93E-06	2.82E-01
		cg21868798	1	199481399		2.57E-05	7.63E-06	2.96E-01
		cg15409616	14	106936446		2.48E-05	8.17E-06	3.29E-01
		cg11134777	7	1522211	INTS1	1.27E-05	4.26E-06	3.35E-01
		cg17438457	1	53094893		1.28E-05	4.50E-06	3.51E-01
	CRE	cg10724867	7	27218867	HOXA10	2.09E-05	1.20E-06	5.77E-02
		cg03534008	9	45763353		7.16E-05	6.00E-06	8.39E-02
		cg24360241	2	233370823		2.58E-05	2.57E-06	9.93E-02
		cg21287054	19	54928012	TTYH1	1.38E-05	1.42E-06	1.03E-01
		cg17453840	15	83317526	CPEB1	4.08E-05	4.64E-06	1.14E-01
	UA	cg22636722	17	78865263	RPTOR	3.04E-05	1.90E-06	6.26E-02
		cg06001976	X	3790470		2.69E-05	3.04E-06	1.13E-01
		cg02401352	15	89354338	ACAN	2.36E-05	7.00E-06	2.97E-01
		cg09874643	2	239362030		1.55E-05	6.05E-06	3.89E-01
Liver-related	Tbil	cg05409752	6	28599165		7.90E-05	1.98E-06	2.51E-02
		cg12501004	12	117287232	RNFT2	4.14E-05	3.72E-06	8.99E-02
		cg01909160	1	3162066	PRDM16	4.97E-05	4.82E-06	9.70E-02
		cg10209474	16	9181903		3.37E-05	6.88E-06	2.05E-01
		cg09380555	13	53277872	LECT1	2.14E-05	5.46E-06	2.55E-01
	ALT	cg12252008	15	72448319		4.75E-05	7.51E-06	1.58E-01
		cg15811719	21	39047824	KCNJ6	1.21E-05	3.95E-06	3.25E-01
	ALP	cg05798111	16	68560845		7.77E-05	7.02E-06	9.03E-02
		cg06657028	6	30080495	TRIM31	2.36E-05	2.25E-06	9.52E-02
		cg16262034	5	628091	CEP72	3.27E-05	3.20E-06	9.77E-02
		cg25601713	10	92720690		3.46E-05	8.32E-06	2.41E-01
		cg22691639	1	81794767		2.70E-05	8.79E-06	3.25E-01
Other-biochemical	GGT	cg02844892	6	31370412	MICA	2.95E-04	8.63E-06	2.93E-02
		cg27137258	16	2892782	TMPRSS8	2.70E-05	8.49E-07	3.14E-02
		cg04753836	14	65308247		4.98E-05	1.97E-06	3.97E-02
		cg21185936	6	29716247	LOC285830	7.86E-05	5.59E-06	7.11E-02
		cg11693285	10	131927345		5.58E-05	4.78E-06	8.56E-02
	CK	cg07777347	3	194361833	LSG1	8.12E-05	5.73E-06	7.05E-02
		cg08479073	1	207038584	IL20	6.51E-05	7.28E-06	1.12E-01
		cg23797887	11	18477753	LDHAL6A	4.41E-05	7.19E-06	1.63E-01
		cg11277090	17	72848048	GRIN2C	1.23E-05	2.72E-06	2.22E-01
		cg24553547	17	19247920	MIR1180;B9D1	1.38E-05	4.78E-06	3.46E-01
Hematological	CRP	cg09115646	10	2978687		1.50E-05	4.25E-06	2.84E-01
		cg06734816*	6	116422381	NT5DC1	4.55E-07	2.07E-08	4.56E-02
		cg03356760*	6	37665051	MDGA1	1.10E-06	5.79E-08	5.25E-02
		cg08318587*	2	216484453		1.29E-06	7.41E-08	5.75E-02
		cg24528447*	5	92918517	NR2F1	1.52E-06	8.77E-08	5.77E-02
	Hb	cg15988010*	4	166033722	TMEM192	8.04E-07	6.46E-08	8.03E-02
		cg20277126*	1	3507151	MEGF6	1.32E-07	3.43E-08	2.60E-01
		cg18500431*	7	1709489		4.56E-07	5.07E-08	1.11E-01
		cg06665941*	21	34602869	IFNAR2	4.66E-07	5.44E-08	1.17E-01
		cg17157516*	1	35332203	DLGAP3	4.25E-07	5.73E-08	1.35E-01
MCV	MCH	cg02538199*	9	37034277	PAX5	3.90E-07	5.35E-08	1.37E-01
		cg27660165*	1	156784036	SH2D2A	3.91E-07	5.61E-08	1.43E-01
		cg21028156	X	2743660		2.30E-04	4.17E-06	1.81E-02
		cg01820213	14	104645063	KIF26A	1.28E-04	2.93E-06	2.29E-02
		cg2493509	10	102498399		3.73E-05	1.53E-06	4.11E-02
	MCHC	cg02632809	7	5336811	SLC29A4	8.72E-05	7.12E-06	8.16E-02
		cg14345882	6	26364793	BTN3A2	2.16E-05	1.85E-06	8.56E-02
		cg14548802	9	137675380	COL5A1	3.54E-05	7.61E-07	2.15E-02
		cg07361759	1	32688314	Clorf91;EIF3I	3.91E-04	9.31E-06	2.38E-02
		cg13791713	21	40720916	HMGN1	6.48E-05	1.70E-06	2.63E-02
Plt	MCHC	cg02632809	7	5336811	SLC29A4	3.90E-05	1.06E-06	2.72E-02
		cg10263003	2	235766844		4.41E-05	1.56E-06	3.54E-02
		cg00731395	7	5265623	WIP12	2.83E-05	2.37E-06	8.37E-02
		cg21124940	19	4090224		8.32E-05	9.54E-06	1.15E-01
		cg15427520	11	35252384	CD44	1.90E-05	2.65E-06	1.40E-01
	Plt	cg21685427	20	42187356	SGK2	6.02E-05	8.54E-06	1.42E-01
		cg18565023	17	32503	DOC2B	6.45E-05	9.69E-06	1.50E-01
		cg21180703	9	90273181	DAPK1	4.61E-05	1.61E-06	3.50E-02
		cg04121415	3	38325566		4.00E-05	1.48E-06	3.71E-02
		cg16734017	1	3385914	ARHGEF16	1.22E-04	6.26E-06	5.14E-02
Blood-pressure	MAP	cg07909498	4	79627477		3.76E-05	2.16E-06	5.74E-02
		cg22125220	1	3748957	KIAA0562	7.53E-05	4.56E-06	6.06E-02
		cg10223982	19	4302995	TMIGD2	1.97E-05	5.62E-06	2.86E-01
BMI	BMI	cg23780110	2	26045244	ASXL2	1.94E-05	7.67E-06	3.95E-01
		cg23059452	9	86983432	SLC28A3	3.87E-05	4.77E-06	1.23E-01
		cg26175729	7	150726136	ABCB8	2.82E-05	7.21E-06	2.55E-01

Table5. Top5 CpGs showing suggestive or significant effect for ESE but not for ESC, with the largest amount of P-values change between two values.

Category	Trait	CpG_ID	Chr	Position	Gene	P(Measured)	P(Measured-GRS)	P(Measured-GRS)/P(Measured)
Metabolic	HDL	cg11651932	8	1327546		1.45E-06	2.29E-04	158
		cg11115976	17	80997086	B3GNTL1	1.83E-07	1.70E-05	92
		cg00443543	17	1645410	SERPINF2	7.35E-06	7.90E-05	11
	LDL	cg25019526	6	236559		1.90E-06	3.08E-04	162
		cg01672042	16	49623820	ZNF423	8.86E-07	2.21E-05	25
	TG	cg12657416	9	139607421	FAM69B	5.19E-06	6.31E-05	12
		cg20486551	13	29329226		1.66E-06	1.84E-05	11
	HbA1c	cg22325292	17	80708367	FN3K	1.43E-06	1.93E-05	14
		cg00809820	17	80708513	TBCD;FN3K	1.40E-06	1.64E-05	12
Kidney-related	UA	cg16914989	6	30881764	GTF2H4;VARS2	9.76E-06	8.33E-04	85
		cg15393936	10	15354631	FAM171A1	1.17E-06	5.48E-05	47
Liver-related	Tbil	cg01579172	8	122068905		6.17E-06	2.70E-04	44
		cg08343899	2	234847554	TRPM8	1.98E-06	1.18E-04	59
		cg06241101	17	77895684		1.45E-06	5.64E-05	39
		cg12848457	10	52566320		8.05E-06	2.51E-04	31
		cg00853940	2	234847683	TRPM8	9.79E-06	3.00E-04	31
		cg13224161	6	33141279	COL11A2	1.40E-06	3.05E-05	22
	GGT	cg10189962	2	175192878		8.78E-06	9.67E-05	11
		cg11458473	7	1424047		8.45E-06	9.05E-05	11
Other-biochemical	LD	cg07387044	8	145170347	KIAA1875	7.55E-07	1.08E-05	14
		cg17965690*	19	10736049	SLC44A2;SLC44A2	1.59E-08	2.11E-07	13
Hematological	MCV	cg00514665*	16	7703812	A2BP	1.01E-08	1.78E-06	177
		cg03986562	16	7703893	A2BP1	6.05E-07	6.41E-05	106
		cg08368788	7	94537033	PPP1R9A	8.19E-06	1.97E-04	24
		cg10395519	6	151412304	MTHFD1L	1.26E-06	3.01E-05	24
	MCH	cg02717117	2	55458694	C2orf63;RPS27A	1.62E-06	3.30E-05	20
		cg07686394	11	69448444		4.70E-06	3.43E-04	73
	Plt	cg19084794	8	96086565		2.40E-06	9.45E-05	39
		cg23036452	1	203644735	ATP2B4	8.73E-06	2.81E-04	32
		cg05693864	5	844184	ZDHHC11	7.88E-07	2.01E-05	25
		cg20944315	1	200839460		2.98E-06	6.95E-05	23

Figure Legends

Figure 1

GRS correction was used to evaluate the genetic and environmental effects on each trait. (A)

Schematic representation of the procedure for evaluating the effects of genetic and environmental factors using within-pair differences before and after GRS correction. (B)

Distribution of ICC differences for each trait between before and after GRS correction. (C)

Distribution of GRS-corrected and random-corrected superimposed in each trait. (D)

Distribution of average within-pair differences in each trait between before and after GRS correction.