

Title	Rigorous evaluation of genetic and epigenetic effects on clinical laboratory measurements using Japanese monozygotic twins
Author(s)	Taniguchi, Jumpei; Masuda, Tatsuo; Iwatani, Yoshinori et al.
Citation	Clinical Genetics. 2024, 105(2), p. 159-172
Version Type	АМ
URL	https://hdl.handle.net/11094/93746
rights	© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

1	Rigorous Evaluation of Genetic and Epigenetic effects on Clinical Laboratory
2	Measurements using Japanese Monozygotic Twins
3	
4	Jumpei Taniguchi ^a , Tatsuo Masuda ^b , Yoshinori Iwatani ^{a,c} , Kenichi Yamamoto ^{b,d,e} , Osaka
5	Twin Research Group ^{c,¶} , Norio Sakai ^{c,f} , Yukinori Okada ^{b,d,g,h} , Mikio Watanabe ^{a,c,*}
6	
7	Institution:
8	^a Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate
9	School of Medicine, Suita 565-0871, Japan
10	^b Department of Statistical Genetics Osaka University Graduate School of Medicine, Suita
11	565-0871, Japan
12	^c Center for Twin Research, Osaka University Graduate School of Medicine, Suita 565-0871,
13	Japan
14	^d Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC),
15	Osaka University, Suita 565-0871, Japan
16	^e Department of Pediatrics, Osaka University Graduate School of Medicine, Suita 565-0871,
17	Japan
18	^f Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Osaka
19	University Graduate School of Medicine, Suita 565-0871, Japan

21	^g Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences,
22	Kanagawa 230-0045, Japan
23	^h Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo,
24	Tokyo 113-0033, Japan
25	
26	Running head: GENETIC AND EPIGENETIC FACTORS OF LABORATORY TESTS
27	*Address Correspondence to: Mikio Watanabe, Department of Clinical Laboratory and
28	Biomedical Sciences, Osaka University Graduate School of Medicine, Yamadaoka 1-7, Suita,
29	Osaka, 565-0871, JAPAN
30	Phone & Fax: +81-6-6879-2592, E-mail: nabe@sahs.med.osaka-u.ac.jp
31	[¶] The members of the Osaka Twin Research Group: Norio Sakai, Masanori Takahashi, Teiji
32	Nishio, Kei Kamide, Shinji Kihara, Hiroko Watanabe, Mikio Watanabe, and Dousatsu
33	Sakata, Center for Twin Research, Osaka University Graduate School of Medicine
34	
35	ETHIC APPROVAL AND CONSENT TO PARTICIPATE: Written informed consent
36	was obtained from all twins, and the Ethics Committee of Osaka University approved the
37	study protocol (Nos. 696 and 10209).

 $\mathbf{2}$

38	Author Contribution: All authors confirm that they have contributed to the intellectual
39	content of this paper and have met the following four requirements: (a) significant
40	contribution to the conception and design, acquisition of data, or analysis and interpretation
41	of data; (b) drafting or revising the article for intellectual content; (c) final approval of the
42	published article; and (d) agreement to be accountable for all aspects of the article, thus
43	ensuring that questions related to the accuracy or integrity of any part of the article are
44	appropriately investigated and resolved.
45	Research Funding: This work was supported by JSPS KAKENHI under grant number
46	A19H040480 and by university grants from the Japanese Ministry of Education, Culture,
47	Sports, Science, and Technology.
48	Acknowledgments:
49	The authors are thankful to Beckman Coulter, Inc. (Tokyo, JAPAN) for their collaborative
50	work.
51	Conflicts of Interests: Upon manuscript submission, all authors completed the author
52	disclosure form. Disclosures and/or potential conflicts of interest are presented.
53	Data availability: Data are not shared due to patient confidentiality and ethical restrictions.
54	

55 ABSTRACT

56 The investigation of environmental effects on clinical measurements using individual samples 57 is challenging because their genetic and environmental factors are different. However, using 58 monozygotic twins (MZ) makes it possible to investigate the influence of environmental factors as they have the same genetic factors within pairs because the difference in the 59 clinical traits within the MZ mostly reflect the influence of environmental factors. We 60 hypothesized that the within-pair differences in the traits that are strongly affected by genetic 61 62 factors become larger after genetic risk score (GRS) correction. Using 278 Japanese MZ pairs, we compared the change in within-pair differences in each of the 45 normalized 63 clinical measurements before and after GRS correction, and we also attempted to correct for 64 65 the effects of genetic factors to identify Cytosine-phosphodiester-Guanine (CpG) sites in 66 DNA sequences with epigenetic effects that are regulated by genetic factors. Five traits were 67 classified into the high heritability group, which was strongly affected by genetic factors. 68 CpG sites could be classified into three groups: regulated only by environmental factors, regulated by environmental factors masked by genetic factors, and regulated only by genetic 69 70 factors. Our method has the potential to identify trait-related methylation sites that have not 71 yet been discovered.

- 73 Keywords: Monozygotic twin, genetic factor, epigenetic factor, environmental factor,
- 74 laboratory test

75 Introduction

76	Clinical laboratory measurements are important intermediate phenotypes of complex
77	diseases. Clarification of the association between phenotypes, genetic factors, and
78	environmental factors and clinical laboratory traits can reveal the cause of diseases and
79	develop methods for the prediction and prevention of diseases. Recent genome-wide
80	association studies (GWASs) have shown various associations between traits including
81	metabolic traits (1) and genetic factors, and have enabled the prediction of the genetic effects
82	on each trait by calculating the genetic risk score (GRS), which expresses the power of
83	genetic effect as the sum of the effect size of risk alleles related to each trait (2). Previous
84	studies, in which a GWAS of 58 quantitative traits in 162,255 Japanese individuals identified
85	1,407 trait-associated loci, proposed a prediction model of clinical traits (3, 4). However, the
86	environmental factors were not considered in the prediction model. Therefore, the effects of
87	environmental factors on the GRS calculated in these studies are not yet clear.
88	It is difficult to investigate environmental effects on phenotypes using individual
89	samples because their genetic and environmental factors differ. However, using monozygotic
90	twins (MZ) makes it possible to investigate the influence of environmental factors because
91	they have the same genetic factors within pairs. The advantage of our twin study is that we
92	examined the differences in clinical traits, which corrected evidential genetic factors, within
93	the MZ pair and clarified the influence of environmental factors more strictly. In this study,

94	as shown in Figure 1A, we hypothesized that the traits that are strongly affected by genetic
95	factors indicate similar values before GRS correction, and their within-pair differences
96	become larger after GRS correction. However, when the within-pair differences in traits are
97	weakly affected by genetic factors, there are only small differences between before and after
98	GRS correction. This hypothesis is more practical than classic twin methods such as ACE
99	model because it takes in correction evidential genetic factors. Based on this hypothesis,
100	we attempted to verify the validity of the genetic prediction model by applying it to our
101	genetic data of MZ pairs.
102	Two approaches were used to verify the prediction models. First, we compared
103	within-pair intraclass correlation (ICC) between before and after GRS correction. When the
104	clinical trait is strongly affected by genetic factors, each clinical laboratory measurement in a
105	pair shows similar values, and the within-pair ICC is closer to 1.0. However, the ICC is be
106	closer to zero when the trait is strongly affected by environmental factors. Second, we
107	compared the changes in within-pair differences in each normalized clinical measurement
108	before and after GRS correction. We defined a smaller change between before and after GRS
109	correction as indicating a stronger influence of genetic factors.
110	Studies examining the effects of non-genetic environmental factors often focus on
111	DNA methylation. However, as some instances of DNA methylation are regulated by genetic
112	factors (5), it is necessary to consider the influence of genetic factors to clarify the

 $\overline{7}$

113	relationship between DNA methylation and environmental factors. In our additional study,
114	we attempted to correct for the effects of genetic factors using GRS to identify Cytosine-
115	phosphodiester-Guanine (CpG) sites that are regulated by genetic factors.
116	
117	Subjects and Methods
118	
119	Subjects
120	A total of 278 Japanese MZ pairs (72 men and 206 women pairs) were recruited
121	from a registry established by the Center for Twin Research, Osaka University
122	(Supplementary Table 1 and Supplementary Table2) (6). Blood samples were collected at
123	9:00 am from each subject after a 12-h fast. Clinical examination was performed as shown in
124	Supplementary Table 3, and the twins completed health-related questionnaires. Excluding
125	criteria in each analysis were presented in Supplemental Table 4. Twins were examined on
126	the same day. Genomic DNA was isolated from peripheral blood mononuclear cells using a
127	commercial kit (QIAamp DNA Mini Kit; QIAGEN, Hilden, Germany). The zygosity of the
128	twin pair was confirmed by perfectly matching 15 short tandem repeat (STR) loci using the
129	PowerPlex 16 System (Promega, Madison, WI, USA).

132 Phenotypes

133	We targeted 45 traits that were measured by Beckman Coulter, Inc., according to the
134	method used in the International Federation of Clinical Chemistry and Laboratory Medicine
135	(IFCC) project (7). The measured values of each quantitative trait were adjusted for age, sex,
136	top ten principal components of genetic ancestry, and any necessary trait-specific covariates
137	in a linear regression model, as performed in previous studies (3, 4). If traits had a log-normal
138	distribution, a common log-transformation was conducted before the regression. We then
139	normalized the residuals by applying an appropriate trait-specific transformation (Z-score or
140	rank-based inverse normal transformation). In some traits, Smoking status is added in
141	covariates, because smoking is known as affecting the atherosclerosis from endothelial
142	dysfunction to acute clinical events. (Supplementary Table 4)
143	
144	
145	Genotyping and imputation
146	Single nucleotide polymorphism (SNP) genotyping was performed using Illumina
147	Infinium HumanOmni5-Quad v1-0 Bead Chips (Illumina, San Diego, CA) and Illumina
148	Infinium HumanOmni v1-1 BeadChips (Illumina). Sample exclusion was performed under
149	the following conditions: (i) sample call rate < 0.98, (ii) closely related individuals identified

150	by identity-by-descent analysis, and (iii) non-East Asian outliers identified by principal
151	component analysis of the studied samples and three major reference populations (African,
152	European, and East Asian) in the International Haplotype Map (HapMap) Project. Variants
153	were then applied to standard quality-control criteria and were excluded through the
154	following criteria: (i) SNP call rate < 0.98, (ii) minor allele frequency < 1%, and (iii) Hardy-
155	Weinberg equilibrium P value $< 1.0 \times 10^{-7}$. Genotype prephasing was performed using
156	SHAPEIT2 software, and imputation was performed using minimac3 and the 1000 Genomes
157	Project Phase1 (version 3) East Asian reference haplotypes. For the X chromosome,
158	prephasing and imputation were performed separately for the women and men. In total, 268
159	samples and 27,428,601 variants were retained after editing.
160	
161	Methylation levels of CpG islands
162	Analysis of methylation levels was performed using the Infinium
163	HumanMethylation450 Bead Kit (Illumina) and Infinium MethylationEPIC Kit (Illumina),
164	according to the manufacture's standard protocol, which considered 485,577 highly
165	informative CpG sites at a single-nucleotide resolution for each sample. The experiment was
166	performed with 0.5 μ g of high-quality genomic DNA. There were two bead types for each
167	CpG site per locus on the chip. The raw data were analyzed using Genome Studio software
168	(Illumina), and the fluorescence intensity ratios between the two bead types were calculated.

169	The ratio of 0 was regarded as total methylation. These raw data were corrected to normalize
170	the differences in detection ranges between the two probes of the Infinium assay using a
171	peak-based correction method. Normalized data were filtered to exclude invalid probes such
172	as null probes and those with low reliability.
173	
174	GRS
175	GRS indicates the magnitude of the influence of genetic factors on traits. The GRS
176	was added as a covariate when normalized standardization was performed to correct the
177	influence of genetic factors. The SNPs used to calculate GRS were those that were significant
178	in previous GWAS results (7). GRS was calculated using the following equation:
179	$GRS = \sum_{k=1}^{n} (N_{snpk} \beta_{snpk})$
180	where n is the number of trait-associated SNPs; N_{snpk} is the number of kth SNP risk alleles
181	(0, 1, or 2); and β_{snpk} is the weight of kth SNP, which was calculated by linear regression

182 analysis of GWAS.

183

184 ICC

185 We used ICC to evaluate the correlation of clinical laboratory measurements within186 pairs (8). With twin data, it is difficult to use the standard Pearson's correlation coefficient

187 because the classification of either member of the pair as X or Y is arbitrary. ICC was

188 calculated using the following equation:

189
$$ICC = \frac{MS_{between} - MS_{within}}{MS_{between} + MS_{within}}$$

190 where $MS_{between}$ is the mean-square estimate of the between-pair variance, and MS_{within}

191 is the mean-square estimate of within-pair variance. The maximum ICC value was 1.0, and

192 the ICC was closer to 1.0 when the correlation was stronger.

193

194 The effect size for clinical measurement (ESC) and the effect size for environmental

195 factors (ESE)

196 To identify CpG sites controlled by genetic factors, we defined and compared ESC 197 and ESE (Supplementary Figure 1). The ESC indicates the relationship between the 198 methylation levels of each CpG site and normalized clinical measurements as the effect size 199 of the multiple regression analysis. The ESE indicates the effect size of multiple regression 200 analysis between the methylation levels at CpG sites and the differences between the GRS and normalized clinical measurements as a purely environmental factor. By comparing these 201 two scores, we classified CpG sites into three groups: regulated only by environmental 202 203 factors, regulated by environmental factors masked by genetic factors, and regulated only by genetic factors. 204

205	We observed ten traits with extremely low mean P values. We considered most of
206	them to be false positives, which is difficult to study in detail. We excluded traits with mean
207	P-values $< 1.0 \times 10^{-8}$ from subsequent studies of the results.
208	
209	Statistical analysis
210	The association analysis between methylation at CpG sites and phenotype was
211	performed using the 'CpGassoc' package and R statistic software (https://cran.r-
212	project.org/web/packages/CpGassoc/index.html). Bonferroni correction was used to reduce
213	the number of false-positive results (type I error). We set the threshold of the P-value for
214	determining significance to $<1.0 \times 10^{-7}$ and the threshold for determining suggestive to <1.0
215	× 10 ⁻⁵ .
216	
217	
218	Results
219	
220	Changes in ICC before and after GRS correction
221	We calculated the within-pair ICC of each normalized clinical measurement and the
222	differences between ICCs before and after GRS correction for each clinical trait (Table 1 and 13

223	Figure 1B). Based on the difference in within-pair ICC before and after GRS correction
224	(Figure 1B), clinical traits could be classified into three groups: high, moderate, and low
225	heritability, as shown in Figure 1B. Five blood biochemical test values (alkaline phosphatase
226	[ALP], uric acid [UA], high-density lipoprotein cholesterol [HDL], high-density lipoprotein
227	cholesterol [LDL], and total cholesterol [T. chol]) were classified into the high-heritability
228	group, which was strongly affected by genetic factors. In addition, we calculated the averages
229	of 100 differences between within-pair ICC before and after random correction that replaced
230	the GRS used when calculating the Z-score of traits with a normally distributed random
231	number for each clinical trait (Figure 1C). Differences in ICC after random correction were
232	gathered at 0, suggesting that the correction of GRS is effective in correcting the influence of
233	genetic factors.
234	
235	Changes in within-pair difference before and after GRS correction
236	The average changes in within-pair differences in each normalized clinical
237	measurement before and after the GRS correction are shown in Table 2 and Figure 1D.
238	According to the within-pair differences before and after GRS correction, we classified the
239	clinical traits into three groups: high-, moderate-, and low-heritability groups, as shown in
240	Figure 1D. The five blood biochemical test values (ALP, UA, HDL, LDL, and T. chol) were
241	classified into the high-heritability group using the ICC method.

243	Identification of CpG sites regulated by genetic factors
244	Table 3 presents the CpG sites showing suggestive effects for both ESC and ESE,
245	indicating that these CpG sites were highly associated with traits in both ESC and ESE. This
246	means that these CpG sites are regulated only by environmental factors and may reflect the
247	effects of purely environmental factors because they are still suggestive when corrected for
248	the effects of genetic factors, and some of these CpG sites (indicated by asterisks) have a
249	common effect on two or three traits. T. chol and LDL were commonly associated with CpG
250	sites in RG9MTD1 (cg22315683, cg01537928, cg20574900, and cg24445570), and Hb and
251	Ht were commonly associated with CpG on ADCY7 (cg23580000). Systolic blood pressure
252	(SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were commonly
253	associated with CpG sites on SDHAF1 (cg26643967).
254	Table 4 presents the CpG sites showing suggestive effects for ESC, but not for ESE,
255	indicating that these CpG sites were associated with the trait in ESC analysis only. These
256	CpG sites are regulated by genetic factors and not environmental factors. The ratio of P-value
257	in ESC/ESE was large for some CpG sites, such as CpG on MEGF6 (cg20277126), which
258	has been shown to be associated with Hb, and for CpG on SLC29A4 (cg02632809), which is
259	a common gene in mean corpuscular hemoglobin (MCH) and mean corpuscular volume
260	(MCV).

261	Table 5 presents the CpG sites showing a suggestive effect for ESE but not for ESC,
262	indicating that these CpG sites were associated with the trait in the ESE analysis only. These
263	CpG sites were associated with environmental factors hidden by genetic factors, because their
264	statistical significance became strong when corrected for the effects of genetic factors. Large
265	increases in P-values were observed for several CpG sites on A2BP (cg00514665) and
266	A2BP1 (cg03986562) in MCV, GTF2H4; VARS2 (cg16914989) in UA; and TRPM8
267	(cg08343899) in ALP.
268	

270 Discussion

271	In this study, we identified five clinical traits (ALP, UA, HDL, LDL, and T. chol)
272	that were strongly affected by genetic factors.
273	
274	ALP
275	ALP was the most inherited trait in the present study. Consistent with this, ALP also
276	showed high heritability in a previous GWAS using a non-twin Japanese population (4).
277	Strong associations of serum ALP and SNPs located in ABO and FUT1 genes were observed
278	as genetic factors in previous GWAS targeting Japanese, Chinese, and European populations
279	(9). In addition, the association between serum ALP levels and the ABO blood type has been
280	reported in a biological study (10, 11). Therefore, we suggest that serum ALP levels are
281	strongly regulated by genetic factors, which is consistent with our results.
282	
283	UA
284	UA exhibited high heritability in our twin study and a previous GWAS using non-
285	twin Japanese individuals (4). The heritability of UA ranged 39-63% in previous family
286	studies (12, 13) and 46–80% in classical twin studies (14, 15). These results indicate that high
287	heritability was observed in serum UA levels, and this high heritability was confirmed.
288	

289 Metabolic traits

290	Most metabolic traits were affected by genetic factors compared to other traits in our
291	twin study. HDL, LDL, and T. chol were categorized as high-heritability traits, and
292	triglyceride (TG) and blood sugar (BS) were categorized as moderate-heritability traits in our
293	two methods. However, in a Japanese non-twin GWAS (4), the heritability of metabolic
294	traits, except HDL, was not higher than that in our twin study. Their heritability has been
295	reported in several studies: 16-74% for HDL, 47-100% for LDL, 35-72% for T.chol, and
296	19-81% for TG in twin and family studies (16), and 40-69% for HDL, 40-66% for LDL,
297	43% for T.chol, and 19–58% for TG in non-twin studies (17-19). These results indicate that
298	heritability varies widely between studies; however, overall, the heritability of HDL, LDL, T.
299	chol, and TG is considered high. In a study comparing the ICC between two types of MZ,
300	some having grown up separately and others having grown up together, no difference was
301	found in the ICC of HDL between the two MZ groups. In the case of T. chol and TG, the ICC
302	of MZ who grew up together was higher than that of MZ who grew up separately (16). These
303	results indicate that the serum levels of T. chol and TG may be affected by the growth
304	environment and that MZ who grew up together present similar T. chol and TG levels.
305	Therefore, T. chol and TG may show higher heritability in MZ who grew up together than in
306	general individuals. The similarity of the environment of the MZ in their growing up is

307 considered to be the reason for the discrepancy between our twin study and a previous non-308 twin study (4).

309

310 Other traits

311 All other traits were categorized as moderate- or low-heritability traits in our twin 312 study, and most results were consistent with those of previous reports. For example, in the 313 category of blood pressure, we targeted SBP, DBP, and MAP, and the genetic effects of SBP 314 and MAP were categorized into the moderate-heritability class in our twin study. The 315 heritability of SBP, DBP, and MAP has been calculated in numerous studies: 18-45% for 316 SBP, 24–43% for DBP, and 33–34% for MAP (20-22), suggesting that these traits have 317 considerable associations with genetic factors, and our results in the twin study are similar. 318 However, some traits in our study were not consistent with those reported in previous studies. 319 Although we classified RBC and MCH as low heritability traits and MCV as moderate-320 heritability traits, their heritability is at the top of all traits in a Japanese non-twin study (4). 321 Strong effects of genetic factors on RBC, MCV, and MCH have been reported in several GWAS (23, 24). In addition, high heritability of RBC, MCV, and MCH was also observed in 322 323 other twin studies using the traditional ACE method (25). Although the reasons for the discrepancy between our study and others are still unclear, the differences in the number of 324 325 samples may be the cause.

327	Association between GRS and CpG sites
328	The CpG sites observed in G9MTD1, ADCY7, and SDHAF1 exhibited no
329	significant change in the relationship between methylation levels and traits before and after
330	GRS correction, suggesting that methylation levels are regulated by environmental factors.
331	RG9MTD1, which has been observed to be associated with T. chol and LDL, encodes the
332	protein TRMT10C and is involved in the 5' processing of mitochondrial tRNA. It is essential
333	for transcriptional processing, RNA modification, translation, and mitochondrial respiration
334	and has been reported to be associated with mitochondrial metabolic diseases. No direct
335	association between RG9MTD1 and T. chol or LDL levels has been reported. However,
336	previous studies have suggested that mitochondrial dysfunction affects blood cholesterol (26)
337	and that the regulation of TRMT10C expression may be related to blood cholesterol.
338	ADCY7, which has been observed to be associated with Hb and Ht, encodes a membrane-
339	bound adenylate cyclase that catalyzes the formation of cAMP from adenosine triphosphate
340	(ATP). Although no association between this gene and Hb or Ht has been reported, numerous
341	studies have shown an association between adenylate cyclase cAMP system activation and
342	erythrocyte deformability (27, 28). SDHAF1, which has been observed to be associated with
343	blood pressure, is related to the synthesis of succinate dehydrogenase (SDH) in the
344	mitochondria, and no direct association with blood pressure has been reported. Mitochondrial

345	dysfunction has been reported to occur in several cardiovascular diseases, including
346	atherosclerosis (29), may affect blood pressure. None of the genes have been reported to be
347	directly associated with any trait, but previous studies have suggested that each gene may be
348	associated with a trait, albeit not directly. MEGF6, which has been observed to be associated
349	with Hb, is also known as EGFL3, and the protein EGFL3 encoded by this gene belongs to
350	the epidermal growth factor EGF group. It induces a wide range of biological functions, such
351	as proliferation, differentiation, apoptosis, adhesion, and migration, and has been reported to
352	be associated with colorectal cancer, osteoporosis, and angiogenesis (30-32), but not with Hb.
353	We observed two regions, MEGF6 and SLC29A4, in which genetic factors may
354	have masked the association between environmental factors and traits. ENT4, encoded by
355	SLC29A4, is a member of the ENT family and plays an important role in the transport of
356	nucleosides and their analogs. Although no association with blood pressure has been reported
357	in humans, an association with blood pressure has been reported in mice (33). ENT4 is also
358	highly expressed in the brain and is known to transport monoamine neurotransmitters (34).
359	ENT4 transports adenosine and that adenosine lowers blood pressure (35, 36), which is
360	consistent with the results observed in this study. Although we could not confirm the
361	association between MEGF6 and Hb, an association between SLC29A4 and blood pressure
362	has been reported and is consistent with the results observed in the present study. We

363 confirmed the association between the gene and the trait, which was not detectable before364 correction using GRS.

365	The regions that may have been false-positives due to genetic factors were A2BP1,
366	GTF2H4, VARS2, and TRPM8. A2BP1, which has been associated with MCV, is a gene
367	encoding RBFOX1. Mutations in RBFOX1 are associated with decreased SBP, and RBFOX1
368	has been reported to be expressed in organs and tissues, including brain tissue, atrial
369	appendages, left ventricle of the heart, and skeletal muscle tissue, which may be related to
370	blood pressure (37). Neither GTF2H4 nor VARS2, which are associated with UA, were
371	found to be associated with UA. VARS2 has been reported to be in linkage disequilibrium
372	with HIST1H2BF-HIST1H4E, which has been reported to be a susceptibility gene for gout
373	through GWAS (38), and may behave like a trait related to gout-related traits such as UA. In
374	RPM8, no association with ALP has been reported. However, as TRPM8 has been reported to
375	be highly expressed in odontoblasts (39) and ALP is used as an expression marker for
376	odontoblasts (40, 41), an association between TRPM8 and ALP is likely. We found previous
377	studies that have suggested trait associations in these genes. Most of these studies have
378	reported associations with genomic variants in the corresponding gene regions, and we were
379	unable to confirm the association with methylation. Therefore, we were unable to confirm
380	whether the association between methylation and traits was a false positive due to genetic
381	factors, as was hypothesized in this study.

383 Conclusion

384	As a new application of twin studies, we first verified a prediction model of
385	laboratory measurements established using a Japanese non-twin GWAS. The prediction
386	model was verified, specifically for ALP, UA, and HDL, which were strongly affected by
387	genetic factors. Additionally, we observed several methylation sites that may be related to
388	these traits. It is likely that susceptible genes interact with each other to affect methylation
389	levels. There is a limitation in our study. Missing heritability in GWAS is well known and
390	this limitation in GWAS may underestimate genetic factors estimated by GRS. However,
391	even considering this limitation, our method has the potential to identify trait-related
392	methylation sites that have not yet been observed.
393	
394	
395	

397 References

398	1.	Sarah E Graham, Shoa L Clarke, Kuan-Han H Wu, Stavroula Kanoni, Greg J M Zajac,
399		Shweta Ramdas, et al. The power of genetic diversity in genome-wide association
400		studies of lipids. Nature. 2021 Dec;600(7890):675-679. doi: 10.1038/s41586-021-
401		04064-3.
402	2.	Low SK, Takahashi A, Ebana Y, Ozaki K, Christophersen IE, Ellinor PT, et al.
403		Identification of six new genetic loci associated with atrial fibrillation in the Japanese
404		population. Nat Genet 2017 Jun;49 6:953-8 as doi: 10.1038/ng.3842.
405	3.	Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, et al. Genome-
406		wide association study identifies 112 new loci for body mass index in the Japanese
407		population. Nat Genet 2017 Oct;49 10:1458-67 as doi: 10.1038/ng.3951.
408	4.	Kanai M, Akiyama M, Takahashi A, Matoba N, Momozawa Y, Ikeda M, et al. Genetic
409		analysis of quantitative traits in the Japanese population links cell types to complex
410		human diseases. Nat Genet 2018 Mar;50 3:390-400 as doi: 10.1038/s41588-018-0047-
411		6.
412	5.	Watanabe M, Takenaka Y, Honda C, Iwatani Y, Osaka Twin Research G. Genotype-
413		Based Epigenetic Differences in Monozygotic Twins Discordant for Positive
414		Antithyroglobulin Autoantibodies. Thyroid 2018 Jan;28 1:110-23 as doi:
415		10.1089/thy.2017.0273.

416	6.	Honda C, Watanabe M, Tomizawa R, Osaka Twin Research G, Sakai N. Update on
417		Osaka University Twin Registry: An Overview of Multidisciplinary Research
418		Resources and Biobank at Osaka University Center for Twin Research. Twin Res Hum
419		Genet 2019 Dec;22 6:597-601 as doi: 10.1017/thg.2019.70.
420	7.	Ichihara K. Statistical considerations for harmonization of the global multicenter study
421		on reference values. Clin Chim Acta 2014 May 15;432:108-18 as doi:
422		10.1016/j.cca.2014.01.025.
423	8.	Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol
424		Bull 1979 Mar;86 2:420-8 as doi: 10.1037//0033-2909.86.2.420.
425	9.	Chambers JC, Zhang W, Sehmi J, Li X, Wass MN, Van der Harst P, et al. Genome-
426		wide association study identifies loci influencing concentrations of liver enzymes in
427		plasma. Nat Genet 2011 Oct 16;43 11:1131-8 as doi: 10.1038/ng.970.
428	10.	Domar U, Hirano K, Stigbrand T. Serum levels of human alkaline phosphatase
429		isozymes in relation to blood groups. Clin Chim Acta 1991 Dec 16;203 2-3:305-13 as
430		doi: 10.1016/0009-8981(91)90303-t.
431	11.	Matsushita M, Irino T, Stigbrand T, Nakajima T, Komoda T. Changes in intestinal
432		alkaline phosphatase isoforms in healthy subjects bearing the blood group secretor and
433		non-secretor. Clin Chim Acta 1998 Sep 14;277 1:13-24 as doi: 10.1016/s0009-
434		8981(98)00102-8.

435	12.	Major TJ, Topless RK, Dalbeth N, Merriman TR. Evaluation of the diet wide
436		contribution to serum urate levels: meta-analysis of population based cohorts. BMJ
437		2018 Oct 10;363:k3951 as doi: 10.1136/bmj.k3951.
438	13.	Voruganti VS, Kent JW, Jr., Debnath S, Cole SA, Haack K, Goring HH, et al. Genome-
439		wide association analysis confirms and extends the association of SLC2A9 with serum
440		uric acid levels to Mexican Americans. Front Genet 2013;4:279 as doi:
441		10.3389/fgene.2013.00279.
442	14.	Ji F, Ning F, Duan H, Kaprio J, Zhang D, Zhang D, et al. Genetic and environmental
443		influences on cardiovascular disease risk factors: a study of Chinese twin children and
444		adolescents. Twin Res Hum Genet 2014 Apr;17 2:72-9 as doi: 10.1017/thg.2014.5.
445	15.	Wang W, Zhang D, Xu C, Wu Y, Duan H, Li S, Tan Q. Heritability and Genome-Wide
446		Association Analyses of Serum Uric Acid in Middle and Old-Aged Chinese Twins.
447		Front Endocrinol (Lausanne) 2018;9:75 as doi: 10.3389/fendo.2018.00075.
448	16.	Heller DA, de Faire U, Pedersen NL, Dahlen G, McClearn GE. Genetic and
449		environmental influences on serum lipid levels in twins. N Engl J Med 1993 Apr 22;328
450		16:1150-6 as doi: 10.1056/NEJM199304223281603.
451	17.	Kathiresan S, Manning AK, Demissie S, D'Agostino RB, Surti A, Guiducci C, et al. A
452		genome-wide association study for blood lipid phenotypes in the Framingham Heart

- 453 Study. BMC Med Genet 2007 Sep 19;8 Suppl 1:S17 as doi: 10.1186/1471-2350-8-S1454 S17.
- 455 18. Shirali M, Pong-Wong R, Navarro P, Knott S, Hayward C, Vitart V, et al. Regional
- 456 heritability mapping method helps explain missing heritability of blood lipid traits in
 457 isolated populations. Heredity (Edinb) 2016 Mar;116 3:333-8 as doi:
 458 10.1038/hdy.2015.107.
- 459 19. Weiss LA, Pan L, Abney M, Ober C. The sex-specific genetic architecture of
- 460 quantitative traits in humans. Nat Genet 2006 Feb;38 2:218-22 as doi: 10.1038/ng1726.
- 461 20. Gu D, Rice T, Wang S, Yang W, Gu C, Chen CS, et al. Heritability of blood pressure
- 462 responses to dietary sodium and potassium intake in a Chinese population.
- **463** Hypertension 2007 Jul;50 1:116-22 as doi:
- **464** 10.1161/HYPERTENSIONAHA.107.088310.
- 465 21. Kim Y, Lee Y, Lee S, Kim NH, Lim J, Kim YJ, et al. On the Estimation of Heritability
- with Family-Based and Population-Based Samples. Biomed Res Int 2015;2015:671349
 as doi: 10.1155/2015/671349.
- 468 22. Mitchell BD, Kammerer CM, Blangero J, Mahaney MC, Rainwater DL, Dyke B, et al.
- 469 Genetic and environmental contributions to cardiovascular risk factors in Mexican
- 470 Americans. The San Antonio Family Heart Study. Circulation 1996 Nov 1;94 9:2159-
- 471 70 as doi: 10.1161/01.cir.94.9.2159.

- 472 23. Lin JP, O'Donnell CJ, Jin L, Fox C, Yang Q, Cupples LA. Evidence for linkage of red
 473 blood cell size and count: genome-wide scans in the Framingham Heart Study. Am J
- 474 Hematol 2007 Jul;82 7:605-10 as doi: 10.1002/ajh.20868.
- 475 24. Read RW, Schlauch KA, Elhanan G, Metcalf WJ, Slonim AD, Aweti R, et al. GWAS
- 476 and PheWAS of red blood cell components in a Northern Nevadan cohort. PLoS One
 477 2019;14 6:e0218078 as doi: 10.1371/journal.pone.0218078.
- 478 25. Evans DM, Frazer IH, Martin NG. Genetic and environmental causes of variation in
- 479 basal levels of blood cells. Twin Res 1999 Dec;2 4:250-7 as doi:
 480 10.1375/136905299320565735.
- 481 26. Flaquer A, Rospleszcz S, Reischl E, Zeilinger S, Prokisch H, Meitinger T, et al.
- 482 Mitochondrial GWA Analysis of Lipid Profile Identifies Genetic Variants to Be
- 483 Associated with HDL Cholesterol and Triglyceride Levels. PLoS One 2015;10
- 484 5:e0126294 as doi: 10.1371/journal.pone.0126294.
- 485 27. Murav'ev AV, Maimistova AA, Tikhomirova IA, Bulaeva SV, Mikhailov PV,
- 486 Murav'ev AA. [Role of protein kinases of human red cell membrane in deformability
- 487 and aggregation changes]. Fiziol Cheloveka 2012 Mar-Apr;38 2:94-100.
- 488 28. Muravyov AV, Tikhomirova IA, Maimistova AA, Bulaeva SV, Zamishlayev AV,
- 489 Batalova EA. Crosstalk between adenylyl cyclase signaling pathway and Ca2+

490		regulatory mechanism under red blood cell microrheological changes. Clin Hemorheol
491		Microcirc 2010;45 2-4:337-45 as doi: 10.3233/CH-2010-1317.
492	29.	Takeuchi K, Yamamoto K, Ohishi M, Takeshita H, Hongyo K, Kawai T, et al.
493		Telmisartan modulates mitochondrial function in vascular smooth muscle cells.
494		Hypertens Res 2013 May;36 5:433-9 as doi: 10.1038/hr.2012.199.
495	30.	Guo C, Tian X, Han F, Liu L, Gao J, Ma X. Copy Number Variation of Multiple Genes
496		in SAPHO Syndrome. J Rheumatol 2020 Sep 1;47 9:1323-9 as doi:
497		10.3899/jrheum.181393.
498	31.	Hu H, Wang M, Wang H, Liu Z, Guan X, Yang R, et al. MEGF6 Promotes the
499		Epithelial-to-Mesenchymal Transition via the TGFbeta/SMAD Signaling Pathway in
500		Colorectal Cancer Metastasis. Cell Physiol Biochem 2018;46 5:1895-906 as doi:
501		10.1159/000489374.
502	32.	Teerlink CC, Jurynec MJ, Hernandez R, Stevens J, Hughes DC, Brunker CP, et al. A
503		role for the MEGF6 gene in predisposition to osteoporosis. Ann Hum Genet 2021
504		Mar;85 2:58-72 as doi: 10.1111/ahg.12408.
505	33.	Wei R, Gust SL, Tandio D, Maheux A, Nguyen KH, Wang J, et al. Deletion of murine
506		slc29a4 modifies vascular responses to adenosine and 5-hydroxytryptamine in a
507		sexually dimorphic manner. Physiol Rep 2020 Mar;8 5:e14395 as doi:
508		10.14814/phy2.14395.

510		and functional characterization of equilibrative nucleoside transporter-4, a novel
511		cardiac adenosine transporter activated at acidic pH. Circ Res 2006 Sep 1;99 5:510-9
512		as doi: 10.1161/01.RES.0000238359.18495.42.
513	35.	Jacob HJ, Alper RH, Brody MJ. Lability of arterial pressure after baroreceptor
514		denervation is not pressure dependent. Hypertension 1989 Nov;14 5:501-10 as doi:
515		10.1161/01.hyp.14.5.501.
516	36.	Shen FM, Su DF. The effect of adenosine on blood pressure variability in sinoaortic
517		denervated rats is mediated by adenosine A2a-Receptor. J Cardiovasc Pharmacol 2000
518		Nov;36 5:681-6 as doi: 10.1097/00005344-200011000-00019.
519	37.	He KY, Wang H, Cade BE, Nandakumar P, Giri A, Ware EB, et al. Rare variants in
520		fox-1 homolog A (RBFOX1) are associated with lower blood pressure. PLoS Genet
521		2017 Mar;13 3:e1006678 as doi: 10.1371/journal.pgen.1006678.
522	38.	Nakayama A, Nakaoka H, Yamamoto K, Sakiyama M, Shaukat A, Toyoda Y, et al.
523		GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci
524		that include urate transporter genes. Ann Rheum Dis 2017 May;76 5:869-77 as doi:
525		10.1136/annrheumdis-2016-209632.

Barnes K, Dobrzynski H, Foppolo S, Beal PR, Ismat F, Scullion ER, et al. Distribution

509

34.

526	39.	Tsumura M, Sobhan U, Sato M, Shimada M, Nishiyama A, Kawaguchi A, et al.
527		Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts. PLoS One
528		2013;8 12:e82233 as doi: 10.1371/journal.pone.0082233.
529	40.	Egbuniwe O, Grover S, Duggal AK, Mavroudis A, Yazdi M, Renton T, et al. TRPA1
530		and TRPV4 activation in human odontoblasts stimulates ATP release. J Dent Res 2014
531		Sep;93 9:911-7 as doi: 10.1177/0022034514544507.

- 532 41. Tazawa K, Ikeda H, Kawashima N, Okiji T. Transient receptor potential melastatin
- 533 (TRPM) 8 is expressed in freshly isolated native human odontoblasts. Arch Oral Biol
- 534 2017 Mar;75:55-61 as doi: 10.1016/j.archoralbio.2016.12.007.

Category	Trait	Sample N	Excluded N	ICC	ICC-GRS	Difference(normal - GRS)	Difference(normal - random)	Heritability
Metabolic	TC	528	0	0.608	0.588	0.021	0.001	high
	HDL-C	528	0	0.715	0.697	0.018	0.001	high
	LDL-C	528	0	0.582	0.562	0.020	0.001	high
	TG	518	4	0.586	0.571	0.014	0.001	moderate
	BS(GLU)	480	11	0.583	0.572	0.012	0.001	moderate
	HbA1c	500	9	0.715	0.709	0.006	0.002	moderate
Protein	TP	520	4	0.570	0.571	-0.001	0.001	low
	Alb	522	3	0.500	0.498	0.002	0.002	low
	NAP	516	6	0.735	0.734	0.000	0.003	low
	A/G	522	3	0.724	0.725	-0.001	0.001	low
Kidney-related	BUN(UN)	528	0	0.474	0.472	0.002	0.001	low
	sCr(CRE)	528	0	0.666	0.663	0.003	0.001	low
	eGFR	528	0	0.510	0.510	0.000	0.000	low
	UA	528	0	0.599	0.569	0.029	0.001	high
Electrolyte	Na	522	3	0.439	0.437	0.002	0.002	low
	K	526	1	0.318	0.308	0.010	0.000	moderate
	Cl	526	1	0.506	0.506	0.000	0.002	low
	Ca	526	0	0.484	0.481	0.004	0.001	low
	Р	528	0	0.500	0.496	0.005	0.002	low
Liver-related	Tbil	506	5	0.579	0.577	0.003	0.004	low
	AST	502	11	0.483	0.482	0.000	0.001	low
	ALT	500	12	0.438	0.434	0.004	0.001	low
	ALP	508	8	0.712	0.682	0.030	0.002	high
	GGT	474	18	0.641	0.641	0.001	0.002	low
Other-biochemical	CK	500	11	0.535	0.535	0.000	0.001	low
	LDH(LD)	514	5	0.716	0.712	0.004	0.002	low
	CRP	434	42	0.440	0.437	0.003	0.003	low
Hematological	WBC	520	2	0.564	0.560	0.003	0.001	low
	Neutro	514	5	0.467	0.461	0.007	0.001	moderate
	Eosin	506	8	0.496	0.496	0.000	0.003	low
	Baso	506	3	0.618	0.616	0.002	0.003	low
	Mono	522	1	0.615	0.618	-0.003	0.001	low
	Lym	518	2	0.595	0.590	0.005	0.002	low
	RBC	522	1	0.712	0.711	0.000	0.001	low
	Hb	522	1	0.582	0.581	0.000	0.001	low
	Ht	522	1	0.607	0.607	0.000	0.002	low
	MCV	522	1	0.676	0.669	0.006	0.002	moderate
	MCH	514	4	0.637	0.633	0.004	0.001	low
	MCHC	520	2	0.665	0.661	0.004	0.000	low
	Plt	520	2	0.701	0.701	0.000	0.002	low
Blood-pressure	SBP	482	1	0.447	0.440	0.007	0.002	moderate
-	DBP	482	1	0.579	0.577	0.003	0.002	low
	MAP	482	1	0.542	0.536	0.006	0.001	moderate
	РР	480	2	0.327	0.3232	0.000	0.001	low

Table 1. ICC and its difference before and after correction

Category	Trait	Sample N	Excluded N	Difference	Heritability
Metabolic	TC	528	0	0.017	high
	HDL-C	528	0	0.018	high
	LDL-C	528	0	0.016	high
	TG	518	4	0.012	moderate
	BS(GLU)	480	11	0.010	moderate
	HbA1c	500	9	0.003	low
Protein	ТР	520	4	0.001	low
	Alb	522	3	0.002	low
	NAP	516	6	0.001	low
	A/G	522	3	-0.001	low
Kidney-related	BUN(UN)	528	0	0.001	low
5	sCr(CRE)	528	0	0.003	low
	eGFR	528	0	-0.002	low
	UA	528	0	0.023	high
Electrolvte	Na	522	3	0.001	low
5	К	526	1	0.006	moderate
	Cl	526	1	0.000	low
	Ca	526	0	0.002	low
	P	528	0	0.002	low
Liver-related	Tbil	506	5	0.001	low
	AST	502	11	0.000	low
	ALT	500	12	0.003	low
	ALP	508	8	0.023	high
	GGT	474	18	0.001	low
Other-biochemical	CK	500	11	0.000	low
	LDH(LD)	514	5	0.005	moderate
	CRP	434	42	0.000	low
Hematological	WBC	520	2	0.003	low
	Neutro	514	5	0.008	moderate
	Eosin	506	8	0.000	low
	Baso	506	3	0.003	low
	Mono	522	1	-0.004	low
	Lvm	518	2	0.002	low
	RBC	522	-	0.001	low
	Hb	522	1	0.000	low
	Ht	522	1	0.000	low
	MCV	522	1	0.005	moderate
	MCH	514	4	0.003	low
	MCHC	520		0.002	low
	Plt	520	2	0.000	low
Blood-pressure	SBP	187	1	0.000	moderate
Diood-pressure	DRP	187	1	0.003	low
	MAD	402	1	0.002	moderata
	DD	402	2	0.000	low
BMI	BMI	400	1	0.000	low
DIVII	D1411	777	1	0.001	IOW

Table 2. Average of differences within-pair and its amount of change between before and after GRS correction

-						_	
Category	Trait	CpG_ID	Chr		Position	Gene	P_value
Metabolic	Tchol	cg22315683		3	101280662	RG9MTD1*	3.27E-07
	HDL	cg16187528		17	79609161	TSPAN10	1.41E-07
		cg10565662		8	2670187	NULL	1.21E-07
	LDL	cg20574900		3	101280596	RG9MTD1*	8.70E-07
		cg01537928		3	101280610	RG9MTD1*	8.27E-07
	TG	cg02032984		7	35490860	NULL	6.39E-08
	GLU	cg02895278		8	26195897	PPP2R2A	2.78E-06
-	HbA1c	cg11245990		11	68621969	NULL	2.09E-07
Protein	TP	cg22176018		2	242867611	NULL	2.25E-11
		cg20888499		2	426252	NULL	4.98E-10
Kidney-related	UN	cg01689405		1	26370407	SLC30A2	9.99E-07
	CRE	cg15714227		5	2225482	NULL	3.06E-09
		cg22179059		6	29714945	LOC285830	2.83E-08
	UA	cg18823637		14	104789524	NULL	5.11E-07
		cg03590420		11	132662963	OPCML	2.31E-06
Electrolyte	Na	cg21755709		21	45149398	PDXK	2.39E-06
	K	cg26528484		2	103387474	TMEM182	2.80E-08
	Cl	cg01380194		11	72452482	ARAP1	1.66E-06
	Ca	cg23972915		14	104809218	NULL	6.52E-07
		cg13046524		20	48728642	UBE2V1;TMEM189-UBE2V1	1.29E-07
	Р	cg04923746		1	211666304	RD3;RD3	1.29E-07
Liver-related	Tbil	cg20459037		17	9546550	WDR16	1.43E-06
	AST	cg05229454		17	80494379	FOXK2	2.00E-09
		cg24715928		15	61197517	RORA	4.49E-09
	ALT	ch.3.2133154F		3	107908987	IFT 57	5.12E-08
		cg20954484		3	42727014	KBTBD5	3 85E-08
	ΔΙΡ	cg13605646		20	57486019	GNAS	8 46E-08
	71121	cg25210580		17	7440017	NYN	1.47E-06
	GGT	cg15347434		6	37502871	NULL	2 72E-08
	001	cg13347434		15	22887710	NULL	2.72E-08
Other hisshamiaal	CV	cg03851878		15	23887710	DNDED	2.94E.04
Other-biochermical		cg13184223		17	201930029		2.51E.09
	LD	cg21984481		17	/950/051	NFLOC4	5.51E-08
	CDD	10821207		10	12800020	NULL	2.79E.06
TT (1 1	DDC	cg19821297		19	12890029	NULL	3./8E-00
Hematological	KBC	cg06637096		9	140024838	NULL	1.60E-09
	Hb	cg23580000		16	50322156	ADCY /*	4.5/E-11
		cg06/41653		12	4351720	NULL	7.50E-11
		cg06897661		16	50322074	ADCY7*	2.50E-10
	Ht	cg23580000		16	50322156	ADCY7*	4.74E-10
	MCV	cg15004787		5	72802430	NULL	8.99E-10
		cg16285566		13	33682212	STARD13	9.35E-08
	MCH	cg00791764		4	53727839	RASL11B	2.59E-07
		cg08505111		5	98541783	NULL	4.53E-07
	MCHC	cg11891431		5	178209272	NULL	1.48E-08
		cg01375719		3	184298977	EPHB3	3.87E-08
	Plt	cg17656426		19	2137788	AP3D1	2.17E-08
		cg21175585		13	30095759	SLC7A1	7.13E-09
Blood-pressure	SBP	cg26643967		19	36485282	SDHAF1*	1.62E-07
		cg19389372		19	36485356	SDHAF1*	6.50E-07
		cg23895963		12	117471115	NULL	5.05E-07
	DBP	cg06638515		6	33169581	RXRB;SLC39A7	4.29E-08
	_	cg09027985		17	46973122	ATP5G1;ATP5G1	4.40E-08
	MAP	cg20361540	_	12	123380447	VPS37B	4.51E-07
		cg26643967		19	36485282	SDHAF1*	1.83E-07
	РР	cg16190718		6	31939106	DOM3Z;STK19	2.35E-07
BMI	BMI	cg21075784		19	54637076	NULL	1.42E-06
			-	04			

Table 3. CpGs with relatively strong associations with the trait and showing suggestive effect both for ESC and ESE

Table4. Top5 CpGs	s showir	ig suggetive or s	ignifica	ant effect for	ESC but not for ESE, with the larg	est amount of P-v	alues change between t	wo values.
Category	Trait	CpG _I D	Chr	Position	Gene	P(Measured) P(N	leasured-GRS)P(Meas	ured-GRS)/P(Measured)
Metabolic	Tchol	cg11026954	2	132250549	FAM128A;LOC150776	3.32E-05	7.87E-06	2.37E-01
		cg08122652	3	122281939	PARP9	1.21E-05	4.00E-06	3.30E-01
		cg07791427	12	54402704	HOXC8	1.18E-05	4.32E-06	3.68E-01
	HDL	cg11341011	17	2632132		2.57E-04	5.77E-06	2.24E-02
		cg23470729	5	140725964	PCDHGA2;PCDHGA3;PCDHGA1	3.83E-05	1.49E-06	3.89E-02
		cg08045301	16	71887487	ATXN1L	1.86E-04	7.95E-06	4.28E-02
		cg08850438	16	89609646	SPG7	1.61E-04	7.79E-06	4.84E-02
		cg17547577	3	21265890		1.31E-04	8.25E-06	6.28E-02
	LDL	cg16283010	3	101280485	RG9MTD1	1.53E-05	5.66E-06	3.70E-01
	GLU	cg08247887	10	44394566		1.06E-05	2.02E-06	1.90E-01
Protein	TΡ	cg25809722*	12	133121162	FBRSL1	2.91E-07	8.90E-08	3.06E-01
		cg01616956*	2	232393196	NMUR1	1.61E-07	6.07E-08	3.76E-01
Kidney-related	UN	cg09277709	19	46224285	FBXO46	1.74E-05	4.93E-06	2.82E-01
		cg21868798	1	199481399		2.57E-05	7.63E-06	2.96E-01
		cg15409616	14	106936446		2.48E-05	8.17E-06	3.29E-01
		cg11134777	7	1522211	NTS1	1.27E-05	4.26E-06	3.35E-01
		cg17438457	1	53094893		1.28E-05	4.50E-06	3.51E-01
	CRE	cg10724867	7	27218867	HOXA10	2.09E-05	1.20E-06	5.77E-02
		cg03534008	9	45763353		7.16E-05	6.00E-06	8.39E-02
		cg24360241	2	233370823		2.58E-05	2.57E-06	9.93E-02
		cg21287054	19	54928012	TTYH1	1.38E-05	1.42E-06	1.03E-01
		cg17453840	15	83317526	CPEB1	4.08E-05	4.64E-06	1.14E-01
	LIA	cg22636722	17	78865263	RPTOR	3.04E-05	1 90E-06	6.26E-02
		cg06001976	x	3790470		2.69E-05	3.04E-06	1 13F-01
		cg02401352		89354338	ACAN	2.36E-05	7.00E-06	2.97F_01
		Cg09874643	20	239362030		1.55E-05	6.05E-06	2.01 - 01 2.80F_01
liver-related	Thil	cg05409752	6	28599165		7.90E-05	1.98E-06	2.51 E_02
		cg12501004	12	117287222	RNET2	4 14F-05	3.72E-06	2.51.L-02 8 00 F-02
		CG12001004	1	2162066	PRDM16	4.14L-00 4.07F_05	4 82F_06	0.33.0-02
		cg10209100	1 G	0101000	. KOWIO	3 37E 05	- 02L-00	3.70.E-UZ
		CGU0200FFF	10	2101303	LECT1	2 1/1 05	5 ARE OR	2.05.0-01
		cg12252000	15	72//0210		4 75E 05	7 51E 06	2.00.E-UI
	ALT	cg12252008	15	72446319	KONIG	4.75E-05	7.51E-06	1.56.E-01
		cg15811/19	21	39047824	KCINJØ	1.21E-05	3.95E-06	5.25.E-01
	ALP	cg05/98111	10	20000405	TDIM21	7.77E-05	7.02E-06	9.03.E-02
		cg06657028	0	30080495	05070	2.36E-05	2.25E-06	9.52.E-02
		cg16262034	5	628091	CEP72	3.27E-05	3.20E-06	9.77.E-02
		cg25601713	10	92720690		3.46E-05	8.32E-06	2.41.E-01
	0.07	cg22691639	1	81794767		2.70E-05	8.79E-06	3.25.E-01
	GGT	cg02844892	6	31370412	MICA	2.95.E-04	8.63E-06	2.93.E-02
		cg2/13/258	16	2892782	IMPRSS8	2.70.E-05	8.49E-07	3.14 E-02
		cg04753836	14	65308247		4.98.E-05	1.97E-06	3.97.E-02
		cg21185936	6	29716247	LOC285830	7.86.E-05	5.59E-06	7.11.E-02
		cg11693285	10	131927345		5.58.E-05	4.78E-06	8.56.E-02
Other-biochemical	СК	cg07777347	3	194361833	LSG1	8.12.E-05	5.73E-06	7.05.E-02
		cg08479073	1	207038584	L20	6.51.E-05	7.28E-06	1.12.E-01
	LD	cg23797887	11	18477753	LDHAL6A	4.41.E-05	7.19E-06	1.63.E-01
		cg11277090	17	72848048	GRIN2C	1.23.E-05	2.72E-06	2.22.E-01
		cg24553547	17	19247920	MIR1180;B9D1	1.38.E-05	4.78E-06	3.46.E-01
	CRP	cg09115646	10	2978687		1.50.E-05	4.25E-06	2.84.E-01
Hematological	RBC	cg06734816*	6	116422381	NT5DC1	4.55.E-07	2.07E-08	4.56.E-02
		cg03356760*	6	37665051	MDGA1	1.10.E-06	5.79E-08	5.25.E-02
		cg08318587*	2	216484453		1.29.E-06	7.41E-08	5.75.E-02
		cg24528447*	5	92918517	NR2F1	1.52.E-06	8.77E-08	5.77.E-02
		cg15988010*	4	166033722	TMEM192	8.04.E-07	6.46E-08	8.03.E-02
	Hb	cg20277126*	1	3507151	MEGF6	1.32.E-07	3.43E-08	2.60.E-01
	Ht	cg18500431*	7	1709489		4.56.E-07	5.07E-08	1.11.E-01
		cg06665941*	21	34602869	FNAR2	4.66.E-07	5.44E-08	1.17.E-01
		cg17157516*	1	35332203	DLGAP3	4.25.E-07	5.73E-08	1.35.E-01
		cg02538199*	9	37034277	PAX5	3.90.E-07	5.35E-08	1.37.E-01
		cg27660165*	1	156784036	SH2D2A	3.91.E-07	5.61E-08	1.43.E-01
	MCV	cg21028156	Х	2743660		2.30.E-04	4.17E-06	1.81.E-02
		cg01820213	14	104645063	KIF26A	1.28.E-04	2.93E-06	2.29.E-02
		cg24923509	10	102498399		3.73.E-05	1.53E-06	4.11.E-02
		cg02632809	7	5336811	SLC29A4	8.72.E-05	7.12E-06	8.16.E-02
		cg14345882	6	26364793	BTN3A2	2.16.E-05	1.85E-06	8.56.E-02
	MCH	cg14548802	9	137675380	COL5A1	3.54 E-05	7.61E-07	2.15.E-02
		cg07361759	1	32688314	C1orf91;EIF3I	3.91.E-04	9.31E-06	2.38.E-02
		cg13791713	21	40720916	HMGN1	6.48.E-05	1.70E-06	2.63.E-02
		cg02632809	7	5336811	SLC29A4	3.90.E-05	1.06E-06	2.72.E-02
		cg10263003	2	235766844		4.41.E-05	1.56E-06	3.54.E-02
	MCHC	cg00731395	7	5265623	WIPI2	2.83.E-05	2.37E-06	8.37.E-02
		cg21124940	19	4090224		8.32.E-05	9.54E-06	1.15.E-01
		cg15427520	11	35252384	CD44	1.90.E-05	2.65E-06	1.40.E-01
		cg21685427	20	42187356	SGK2	6.02.E-05	8.54E-06	1.42.E-01
		cg18565023	17	32503	DOC2B	6.45.E-05	9.69E-06	1.50.E-01
	Plt	cg21180703	9	90273181	DAPK1	4.61.E-05	1.61E-06	3.50.E-02
	-	cg04121415	3	38325566		4.00.E-05	1.48E-06	3 71 F-02
		cg16734017	1	3385914	ARHGEF16	1.22.E-04	6.26E-06	5 14 F-02
		cg07909498	4	79627477		3.76F-05	2.16E-06	5.74 F-02
		cg22125220	1	3748957	KIAA0562	7.53E-05	4.56E-06	6 06 E_02
Blood-pressure	MAP	cg09027985*	17	46973122	ATP5G1	2.44F-07	5.90E-08	2 42 F_01
2.000 probbuie		cg10223982	10	4302005	TMIGD2	1.97E-05	5.62E-06	2.42.L-01 2.86 F 01
		0023780110		26045244	ASXL2	1 9/F-05	7.67E-06	2.00.L-UI 2.05 E 01
BMI	BM	cg23050452	ے م	20040244	SI C28A3	3.87E_05	4 77E-06	1 22 E 01
Cont	DIVI1	0026175720	7	150726120	ABCB8	2 925 05	7 21 5 06	1.23.L-UI 2.EE.E.01
		C870110178	1	100120130	00000	2.02E-U0	1.210-00	2.00.E-U1

Catagory	Troit		Chr	Desition	Cono	, with the larges		P(Massured CPS)/P(Massured)
Matabalia		og11651022	0 III	1227546	Gene			r(Weasured-GR3)/r(Weasured)
Metabolic	HDL	og11115076	17	20007096	R2CNTL 1	1.450-00	2.29L-04	138
		cg00443543	17	16/5/10	SERPINE2	7.35E-06	7.90E-05	52
		cg25010526	6	236550	SERTINEZ	1.90E-06	3.08E-03	162
	LDL	cg01672042	16	10623820	7NF/23	1.90E-00 8.86E-07	2 21E-05	25
	TG	cg01072042	9	139607421	EAM69B	5.19E-06	6 31E-05	12
	1 G	cg20486551	13	29329226	1710035	1.66E-06	1.84E-05	11
	HbA1c	cg20400001	17	80708367	EN3K	1.00E 00	1.94E 05	14
	110/120	cg00809820	17	80708513	TBCD·EN3K	1.40E-06	1.64E-05	12
Kidney-related	UA	cg16914989	6	30881764	GTF2H4;VARS2	9.76E-06	8.33.E-04	
		cg15393936	10	15354631	FAM171A1	1.17E-06	5.48E-05	47
Liver-related	Tbil	cg01579172	8	122068905		6.17E-06	2.70.E-04	44
	ALP	cg08343899	2	234847554	TRPM8	1.98E-06	1.18.E-04	59
		cg06241101	17	77895684		1.45E-06	5.64.E-05	39
		cg12848457	10	52566320		8.05E-06	2.51.E-04	31
		cg00853940	2	234847683	TRPM8	9.79E-06	3.00.E-04	31
		cg13224161	6	33141279	COL11A2	1.40E-06	3.05E-05	22
	GGT	cg10189962	2	175192878		8.78E-06	9.67E-05	11
		cg11458473	7	1424047		8.45E-06	9.05E-05	11
Other-biochemical	LD	cg07387044	8	145170347	KIAA1875	7.55E-07	1.08E-05	14
		cg17965690*	19	10736049	SLC44A2;SLC44A2	1.59E-08	2.11E-07	13
Hematological	MCV	cg00514665*	16	7703812	A2BP	1.01E-08	1.78E-06	177
		cg03986562	16	7703893	A2BP1	6.05E-07	6.41E-05	106
		cg08368788	7	94537033	PPP1R9A	8.19E-06	1.97.E-04	24
		cg10395519	6	151412304	MTHFD1L	1.26E-06	3.01.E-05	24
	MCH	cg02717117	2	55458694	C2orf63;RPS27A	1.62E-06	3.30E-05	20
	Plt	cg07686394	11	69448444		4.70E-06	3.43.E-04	73
		cg19084794	8	96086565		2.40E-06	9.45.E-05	39
		cg23036452	1	203644735	ATP2B4	8.73E-06	2.81.E-04	32
		cg05693864	5	844184	ZDHHC11	7.88E-07	2.01E-05	25
		cg20944315	1	200839460		2.98E-06	6.95E-05	23

Figure Legends

Figure 1

GRS correction was used to evaluate the genetic and environmental effects on each trait. (A) Schematic representation of the procedure for evaluating the effects of genetic and environmental factors using within-pair differences before and after GRS correction. (B) Distribution of ICC differences for each trait between before and after GRS correction. (C) Distribution of GRS-corrected and random-corrected superimposed in each trait. (D) Distribution of average within-pair differences in each trait between before and after GRS correction.