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0. Introduction

So far as mere analogies to the analytic functions or conformal mappings
were pursued in its earliest stage of the studies on quasiconformal mappings,
it only mattered whether the range of dilatations is bounded or not. With the
growth of the proper theory of quasiconformal mappings such as the extremal
quasiconformality due to Grotzsch, Lavrentieff’s mapping problem etc., the
dilatation as continuous point-function has inevitably entered into consideration.
The modern definition of quasiconformality which dispenses with the continuous
differentiability has undoubtedly brought a rich variety of consequences into the
global theory thereof to say nothing of the local one. The generalized quasicon-
formality, however, stated in terms of global nature, determines the dilatation-
quotient as an essentially bounded point-function only almost everywhere. One
seems to know very little about its behaviour, when the mappings converge,
e.g., in the topology of uniform convergence.

In 1959 Lehto, Virtanen and Viisild introduced the notion of maximal
dilatation at a point (cf. [4]), which turns out, by its very definition, upper semi-
continuous function. The present paper aims to develop their investigation on
the dilatation-like quantity which is well-determined everywhere and majorizes
the dilatation-quotient at almost every point: emphasis is laid on seeing how
they behave as functionals.

§1 resumes notations, terminologies and known results designed and ar-
ranged so as to fit our present setting. In §2 we define minimal dilatation by
analogy with the Lehto-Virtanen-Viisild’s maximal dilatation and show that
it provides a good estimate for dilatation-quotient from below: the semi-con-
tinuity of those extreme dilatations is set up, which will play an important role
in solving some extremum problem elsewhere. §3 deals with semi-continuities
of the weighted average of those dilatations. In the course of refining the
lower semi-continuity of the Dirichlet’s functional we encounter in §4 a strong
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convergence of derivatives. The totality of quasiconformal disk-homeomor-
phisms forms a group, the operation being superposition of mappings: at the
unit element the convergence of the global maximal dilatation is stronger than
the mean square convergence of derivatives. The basic theorem on boundary
correspondence together with the existence theorem in the quasiconformal
mappings applies in quite a natural way to the study on such topology to produce
a new approximation theorem.

1. Preliminaries

Let Q be a closed Jordan region lying in C={=z: | 2| << oo} with four different
boundary points z,, 2,, 2, 2, specified: these four points shall be located in this
order on the positively oriented boundary curve 0Q. Such configuration is
termed quadrilateral (or topological rectangle) and is denoted by Q(z,, 2, 25, 2,).
An orientation-preserving topological mapping of the plane transforms quadri-
laterals into quadrilaterals.

Map the interior of the region Q conformally onto a rectangular domain
R={¢: 0<Re £{<1, 0<Im {<M}, in such a way that 2, 2,, 2, 2, correspond
to the vertices =0, 1, 14-iM, 1M respectively. The positive quantity 1/M
is named modulus of the quadrilateral Q(z,, 2,, 25, 2,) and is denoted customarily
by the symbol mod Q(z,, 2,, 25, 2,). Though two figures Q(z,, 2,, 25, 2,) and
Q(=,, 25, 2,, 2,) are identical as point-sets, they should be distinguished from one
another as quadrilaterals in general, because mod Q(z,, 2, 2,, 2;)=1/mod Q(z,,
2y, 23 %,): the abbreviation Q will be used only when no misunderstanding can
occur.

Throughout the following we shall make effective use of the two simple
facts, monotony and continuity of modulus:

(A) Monotony of modulus. Let v be a cross-cut of a quadrilateral
. . N N
Q(z,, 2, 23 2,) Whose end-points z;, 2; are located on the side z,, 2,, 2;, 2, res-

pectively. Then there holds
mod (2, 2,, 25, 2,) = mod Q(z,, 23, 25, 2,) + mod (2}, 2,, s, 24)
and in particular

mod Q(z,, 2,, 2, 2,) > mod Q(z,, 2, 25, 2,) -

(B) Continuity of modulus. Let the sequence of quadrilaterals {Q“(2{",

257, 2%, 20°)} 4oy ... tend to a quadrilateral Q(z,, 2, 24, 2,) in the sense that the

TN TN .
écart between the arcs 2", 2%, and =z, 2,4, (j=1, 2, 3,4; mod 4) converges

to zero as n—>co, Then we have

lim mod Q™(2{", 27, 2§¥, 2{”) = mod Q(z,, 2,, 25, 2,) .

n-roo

Let G be a bounded domain in C and let 7(z) denote an orientation-
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preserving topological mapping defined in G. Let Q be a quadrilateral com-

prised in G together with its boundary. The maximal dilatation of the home-

omorphism 7 in the domain G is defined as D;[G]=sup {mod T(Q)/mod Q}.
Qce

T is said quasionformal in G, if D;[G] is finite. Since our special interest centres
around the quasiconformal homeomorphisms between domains, we assume
henceforth that a finite constant K exists which dominates D;[G]. Such quasi-
conformal mapping will often be referred to as K-quasiconformal (or briefly K-
q.c.), when no ambiguity can result. If T is K-quasiconformal in G, its in-
verse mapping 7' is also K-q.c. in the domain T(G): the notation 7" will some-
times be replaced by S in the sequel only in the interest of typography.

Let us denote by J[G] the space of K-quasiconformal mappings of the
domain G onto other bounded domain G’ normalized by the condition w,=T(z,)
(2, G, w,=G’ being fixed) and endowed with the topology of normal conver-
gence in G. Suppose T,—T in I[G] as n—>oo. Every T,(n=1,2, ---) satis-
fies mod 7T',(Q2)<K mod Q for any quadrilateral QCG. Then mod T(Q)<K
mod Q by (B), hence the result known as the lower semi-continuity of the
maximal dilatation in a domain:

Proposition 1. If a sequence {T,},_,,,.. of I[G] converges to a T < I[G],
we have

D[G] < lim inf D7, [G].

In this paper do shall stand for the area-element regardless of the variable
employed. By the way we summarize below some convenient notations and
terminologies which will be frequently referred to later: in the statements (C)
through (G) w=17(z) denotes a K-q.c. homeomorphism belonging to I[G].

(C) T(=) possesses the locally square-summable derivatives p,(2)=07/dz,
q7(2)=0T/0%z at almost every point of G.

(D) T(2) is totally differentiable almost everywhere in G: the estimate

| pr(2)| +19r(2)| < K(| pr(2) | —1gr(2)])

holds at all points where 7(2) is totally differentiable.

(E) The Jacobian |ps(2)|*—|qr(2)|? is positive almost everywhere in G
and T(2) transforms every set of 2-dimensional measure zero into another such.

(F) A point 2,&G shall be named to be non-singnlar, if T(2) is totally
differentiable at 2, and further | p(2,)|°— | ¢7(2;)|*50: the set of points at which
T(2) ceases to be non-singular must necessarily be of 2-dimensional measure
Zero.

(G) The Beltrami coefficient A, (2)=¢r(2)/pr(2) for T(z) can only be
determined at non-singular points, which is linked with the classical dilatation-

quotient O7(2) by Qz(z) = [1+ | kr(2) | 1/[1— | hr(2)] .
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2. Maximal and minimal dilatation at point

Let a point 2 and >0 be arbitrary. We denote by N*(2) and by N *(2)
the a-neighbourhood and the deleted a-neighbourhood of z respectively: N°(z)
f{g: [E—2| <a}, J\.f"(z)z{g‘: 0<|t—z|<a}. Forall 2&G we set D3(2)=
D;[N*(z)N G].

Theorem 1. D%(z)is

1°  a lower semi-continuous function in 2= G,

2° a monotone decreasing function in «,
3°  a lower semi-continuous functional in T € I[G].

Proof. 2° is trivial and 3° is nothing but a reproduction of Proposition 1.
Suppose, contrary to the assertion 1°, that G contain a point z where the lower
semi-continuity of D%(?) is violated: some sequence {2,},-,...CG tending to
% satisfies lim D%(2,)<D%(2). There is some constant ¢ and some index 7,

depending on ¢ such that
(1) D%(z,) < ¢ < D%z) (n>n,).

The inequalities (1) persist in its right half in the existence of some quadrilateral
Qc N?*(2)N G such that mod 7(Q)/mod Q<¢. N®(z,)N G will comprise the Q
for all #» from some index #, on. If #>max (n,, n,), we have mod T(92)/mod
Q<c by the left half of (1). This is a contradiction. q.e.d.
Letting a—0, we obtain a point-function l_)T(z)=i1;f D%(z), the maximal
a>0
dilatation at 2, which Lehto-Virtanen-Viisila [4] first introduced with its basic

properties:

Theorem 2. The estimate

(2) Or(2) < Dr(z)

is valid at every non-singular point z for T. The relation (2) holds with equality
if T is continuously differentiable in a neighbourhood of z.

The existence proofs for the usual minimization problem of maximal
dilatation rest on Proposition 1. We will present here a somewhat different
type of statement analogous to Proposition 1:

Theorem 3. sup D (2) is a lower semi-continuous functional in T of I[G].

Proof. Let a, o’ be any positive number such that «<<a’. Then obviously
sup D%(2) < sup D¥(2).
= zeq
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Let ¢ be any constant such that sup D%(z)<<c: we have mod7(2)/mod Q<¢
ze@

for every quadrilateral Q whose dimaeter is smaller than «. Since the local
quasiconformality implies the global one, the estimate mod 7(Q)/mod Q<c
holds for every QC N*(2): so D%(2)<c and sup D%(2)<c. Thus we have shown
ze!
that sup D%(z)=sup D¥().
ze L= _ _ _
Next we shall see sup Dy (2)=sup D7(2). Suppose that sup DT(z)<sug
ze z2e@ ze ze
D%(2) for some . Then there would be a constant ¢ satisfying sup Di(z)<e<
z2e

sup D%(2) for all a@. The left half of these inequalities implies that for any z& G

there is an o satisfying D%(2)<(c, while the right half implies the presence of
some ¥'EG satisfying D%(%’)>c for any a. This is a contradiction. Hence
sup DT(z)Zsug D%(2). We have trivially sup DT(z)Ssug D7%(2), and the asser-
ze ze 2@ zZe

tion is verified. Since D%(2) is a lower semi-continuous on I[G] (Theorem 1),
sup Dy(2)=sup D7(2) is also a lower semi-continuous functional on I[G].
z2e@ zeq

q.e.d.
Let B denote a square henceforth: but the symbol does not necessarily
indicate the same figure at each occurrence.

Theorem 4. sup mod T(B) = D;[G]  for every T of 9I[G].
BC@

Proof. Let ¢ be an arbitrary constant greater than sup mod7'(B). Taking
BCE

a non-singular point 3, G for T at will, we consider a square B=B(z,, 2,23, 2,)
C G with one vertex at 2, and subject to the requirement 2 arg (2,—=z,)=arg ks
(21). Given any £>0, there is a >0 such that | Az| <& implies | T(z,+Az)—
T(z)—pr(2)Az—qr(2,)A%| <E&| Az|. If we specify B so as to be |z,—=,| =35,
we see on account of (A)

d T(B (lpT(zl)l+[qT(zl)l)lAzl_28|Az|
¢ 2 mod TB)> 1 o) —lar(=)])| Ax 26| As]

o 122 +19r(z) —26
| Pr(z)| — 1 4r(z) | + 28

Letting é—0, we have Q(2,)<c¢. Hence

(3) ess sup 0r(2) < sup mod T(B).

Next let ¢’ be any constant dominating ess sup Q(2). Then, since Q(2)<¢’
ze@

a.e. in G, every QCG satisfies mod 7(Q)/mod Q<¢. Therefore
(4) D[G] < ess sup Q().
z2e@
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Clearly sup mod T(B)<D;[G], so follows the desired identity from (3) and
(4). q.e.d.

Theorem 4 permits us to adopt squares in place of curvilinear quadrilaterals
in the definition of the maximal dilatation, which will, in conjunction with
Theorem 2, be suggestive of another local concept:

DeriNiTION 1. Let T€ J[G] and 2&G.  Take any point { of N *2)NG.
Let 7 be a positive number smaller than \/ 2 min (|{—=2|, a—|[{—=]) and let

B=B(¢; r; 0) CN*(=)NG a square centred at ¢ with a side of length 7 and of
argument 6. We set
D%(x) = inf [inf {max mod T(B(¢; ; O)}],
¢ "t e
D () = lim D%(2)
a>0
and term the latter of them minimal dilatation of T at 2.

ExampLE 1. The extremal quasiconformal mapping T of closed Riemann
surfaces of genus >2: In terms of local coordinate z we have Dz(z)=Dr(z)=
const. without exception even at the zeros of the analytic quadratic differential
associated with 7.

ExampLE 2. The extremal quasiconformal mappings 7T of Strebel’s
chimney-shaped domain with prescribed boundary correspondence: Let G=
{2: Im 2<0} U {z: |Re 2| <1} be the domain in the Gaussian z-plane and let
T(2) a quasiconformal homeomorphism of G onto itself with the boundary con-
dition 7(z)==z on {z: Im 2=0, |Re 2| >1} and T(z)=[(K+1)z—(K—1)z]/2
on {z: Im 2>0, |Re 2| =1}. In this family of quasiconformal automorphisms
of G, the mapping

T(2) [(K+1)2—(K—1)2]/2 in {z: Im 2>0, |Re 2| <1}
)=
[(K'+1)z—(K'—1)£]/2 in Im 2<0
is extremal quasiconformal for any constant K’ such that 1/K<K’'<K. But
Dy (2)=Dz(z)=const. if and only if K'=K.
Let a point 2, be of G. Suppose that lim sup D%(2)>D%(2,). Then there
z-?z1 R
would be a constant ¢ such that lim sup D7(2)>¢>D4(2,): N*(2,) must contain

some point {, such that mod T(B(L; r; 6))<c for some r whatever 6 may be.

On the other hand if 2, is sufficiently close to z,, N *(z,) comprises the squares
B(f;r;0) (0<6<2r) and yet we must have D7(z,) >c¢. Itisimpossible in view
of Definition 1. Hence we have proved lim sup D7(2) <D7(z)).

z—)zl

Let {T,} .-, ... be a sequence of I[G] convergent to T I[G]. Let ¥G
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be arbitrary and let ¢ any constant such that D7 (2')>¢ (n=1,2,---). Take a

point zEN *(2’) at will which shall be fixed for a moment. If r denote any
constant smaller than v/ 2 min (|2—=2’|, a—|2—2’|), we have modT,(B(z;r;
0.))>¢ for some 0,, (n=1, 2, --*): {0,} 4=, .,... clusteres at some 6. It follows from
(B) that modT(B(z; r; 0))>c, whence D7(2’)>c¢. Thus lim sup D7,(2)<D7().

We summarize the above results in
Theorem 5. D7(2)is
1°  an upper semi-continuous function in z€ G,

2°  a monotone increasing function in o,
3°  an upper semi-continuous functional in T = I[G].

Just corresponding to Theorem 2 we shall have

Theorem 6. The estimate

(5) 01(2) = D1(3)

is valid at every non-singular point z for T. The relation (5) holds with equality
if T is continuously differentiable in a neighbourhood of z.

Proof. Consider a non-singular point 2, for 7T together with N AN
Describe a square B=DB(z,, 2,, 2, 2,) comprised in N®(z,) with one vertex at z,,

whose side-vector z,, 2, points to the direction [arg £,(2,)]/2. By Definition
1 and (B) we see
(6) D%(z,) < max {mod T(B), 1/mod T(B)} .

For any €>0 there is some §, such that |Az| <3, implies | T(z,+Az2)—T(=,)—
pr(2)Az—qr(2,)A%] <&|Az|. Therefore, if the side of B is smaller than §, in
length, we have

|PT(zl)| - l qT(z1)l _28 < HlOd T(B) < IPT(zl)I + IqT(zl)I +28
| pr(2) |+ 1 gr(2:) | +2¢ | pr(2)| — | gr(=)| —2¢

in view of (A), (B). Substituting these into (6) and letting a—0 after €0
we complete the proof of the first assertion.

Suppose that T is continuously differentiable in G and that G contain a
non-singular point 2z, for T satisfying O4(2,)>Ds(2,). Then there would be
a constant ¢ such that

(7) Q1(2) > ¢ > Dr(z) .

1) M. Mohri collaborated in studying the minimal dilatation.
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T(2) is totally differntiable uniformly on a closed subregion G, of G containing
2,: hence for any €>0 there is some § >0 such that | T(2')— T(2)—p+(2) (z'—=)
—qr(%) (¥ —=2)| <€|¥’—=| whenever the points z,2’€G, fulfill |2'—z|<83.
The right half of (7) requires that the N ®(2,) comprises at least one square B=
B(t; r; 0)=DB(z1, 21, 24, 25) such that mod T(B)<c¢: we may assume that the
arg(z3—=2{)=40 attains the max mod T(B({; r; 8)). We have then

[}

@ | pr(20)| — | gr(21) | +-2€| 2— =] (<B)

Therefore

| pr(=)| +1gr(=D)| -, 268(K+1)
| pr(21)| — | gr(21)| | pr(21)| — | g7(29)]

Letting &0, we arrive at Or(2,) < ¢ by (B), which contradicts (7). q.e.d.

The maximal and minimal dilatation at a point are named generically extreme
dilatation at the point.

3. Integral mean of dilatations

This section begins by recalling a few locutions as well as introductory
propositions in the mass distribution theory.

A mass distribution on the domain G should be interpreted as the completely
additive real-valued set-function defined on all the Borel subsets of G.

M[G]: the class of uniformly bounded non-negative mass distributions
pon G

M[G]: the class of uniformly bounded non-negative mass distributions
#/ with continuous density on G

A sequence {u,} 4=y s.... of H[G] is termed convergent towards a p& M[G]
if and only if !ll_’m” wa(€)=p(e) for every Borel subset e of G which is regular with

respect to p.
Lemma 1. (Vallée-Poussin [8], p. 42). If ¢(2) is a continuous function
on G and a sequence {j1,} =, .. of M[G] tends to p as n—oco, we have

tim | g(e)dunx) = | dE@)du).

n>o

Lemma 2. (Schwartz [6], t. II, pp. 21-22). Let G, be an arbitrary closed
subregion of the domain G. Given any p< M[G), there exists uns M'[G] such that

tim | w()dui(z) = | w@duta)
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Jor every function \(2) of class C= with a support comprised in G.

The extreme dilatation introduced in the preceding section has an advantage
of enjoying the semi-continuity as point-functions unlike the more familiar
dilatation-quotient, our knowledge about which seems no more than the bounded
measurability.

Theorem 7. The extreme dilatation Dy(z) (resp. D(z)) is an upper
semi-continuous (res p. alower semi-continuous) function in 2.

Proof. Upper semi-continuity of the maximal dilatation was shown in
Lehto-Virtanen-Viisild [4]: we have only to prove the lower semi-continuity of

D(2).
Suppose G contain a point 2, such that lim inf D,(2)<Dz(z,): a constant ¢
I"ll

exists satisfying lim inf D7(2)<c<Dz(z,). The right half of these inequalities
l‘?!l
asserts the presence of some such « that D7(z,)>¢, while from the left half it

follows that the N *(2,) contain a 2 satisfying Dr(2)<c. Let o’>0 be smaller

than min (|2—=z,|, a—|2—=z,|): then D%(2)<c, so N“'(z) contain a point ¢
such that max modT(B(¢; r; 6))<c for some r<+/ 2 min (|{—=|, a’—|E—=]).
(‘]

But the squares B({;r;0) (0<0<2r) lie in N®(z,), which is a contradic-
tion. q.e.d.

DeFiNiTION 2. We set for T 9[G], p= HM[G]

o[T; u; G] = S}g—é’%ldu(zx o[T; u; G] = S}—;ﬁ%du(z)

and analogously

o[T; 3 G] = §GQ—;gT)—;§—1du<z) -

Theorem 7 yields immediately the two corollaries:

Corollary 1. a[T; p; G] (resp. a[T'; p; G)) is an upper semi-continuous (resp.
a lower semi-continuous) functional in p= M[G].

Proof. Let p,—p (n—>c0) on JM[G]. On account of the upper semi-
continuity of_DT(z) in G there exists a bounded continuous function ¢,(z)
majorizing [D(z)°+1]/2D4(2) in G. From Lemma 1 it follows that

lim sup a[T; sy; G] < lim | gn(e)dpu®) = | gule)d®).

Since [Dr(z)*+1]/2D1(2) can be expressed as the monotone decreasing limit of
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such ¢,,(2) (m=1,2, --+), we have
lim sup a[T’; pa; G] < a[T; p; G] .
q.e.d.

Corollary 2. Let G, be an arbitrary compact subregion of G. For any
€ M[G,) there exists a sequence {u}},mr,.. of SH[G], such that
a[T; p; G] = lim_)sup a[T; pn; G,
a[T; p; G] < lim inf o[T; ph; G].
Proof. Take a continuous function ¢(z) majorizing the upper semi-
continuous function [D(2)*4-1]/2D4(2) on G. Given any &,>0 tending to zero
as n— oo, there are functions +r,(2) of class C= with a support G4C G (G} being

a domain comprising G,) such that | ¢(2)—r,(2)| <&,/3 (n=1, 2, -++) uniformly
on G, Lemma 2 assures the existence of u,e M'[G{] such that

[ dute) = [r@antla)] < &3, (=12, ),

whence
|| s@due)—{ s@)ni=)) < e
Therefore for any index n we have
alT; pt sG] < | 9()dui(z) < | 9)du@) + &
Letting 7 tend to infinity we get
(8) lim sup [T s G] < | H)dn().

Since ¢(z) is taken as close to [Dy(2)*+1]/2D,(z) as one pleases, the left
hand side in (8) cannot be larger than a[T; p; G]. q.e.d.

Let us write A,=1{z: |2|<<1}: the set-function m(e)=$ dw belongs to

M[A,] if e is a Borel subset of A,. The space J[A,] with which we deal
henceforth shall consist of the normalized K-quasiconformal homeomorphisms
T(z) between A, and A, such that T(1)=1, T(})=:, T(—1)=—1: L7[A,]
denotes the space of all linear differential 7=p(2)dz+¢(2)d2 of summable square
in A, with the inner product (7, TZ)=S [5:(2)P(2)+4:(2)g(2)1d 0 (2) (T;=p,()
Az S

dz+q,(z)dze L?[A,]; j=1, 2) and the norm |[7||=+/(7, 7). T€4[A,] implies
dT e L?[A,), since ||dT|° = a[S; 0; A,] < n(K*+1)/2K by (G).
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Lemma 3. If {T,}.- .. convergesto T in I[A,], then {T;},,,,. also
converges to T~ in I[A,)

Proof. Set 2=T"'(w) for an arbitrary wE A,,. If we write w,=T,(2), we
see |w,—w|—0. The equicontinuity of {T3%},-, ... yields | T (w)— T2 (w)|
=| T3 (ws)—Ta'(w)| >0 (n—>co). Therefore lim T7'=T"". If this convergence

were not uniform, there would be some sequence {w,},-,... on A, such that
| To(wa)— T~ *(w,)| =c for some constant ¢>>0. But it is a contradiction, since
{T2"} s-1.,... contains a subsequence {7'}4, ... convergent uniformly on A,,
which implies | T7 (ws,)— T (w,,) | =0 (k—>). q.e.d.

Next suppose a sequence of J[G] converges: then the behaviour of their
derivatives naturally comes into question. The first step in such direction
was perhaps be made by a theorem included in Ahlfors [1]:

Proposition 2. When a sequence {T,},,... converges to T in the sapce
9[A,] in its intrinsic topology, {pr}n-s,.. (resp. {1z} n-1,..) converges to pr
(resp. qr) weakly in the space L*[A,].

This proposition provides us with the clearest and firmest background for
semi-continuity of the Dirichlet integral in its mapping-theoretic version:

Theorem 8. For any ' M [A,], a[T; n'; A,] is a lower semi-continuous
Junctional on J[A,].

Proof. Let li_{n T,=T in 9[G] and let o(2)=dp'(2)/dw(z) be the density
of the smooth mass distribution p’. On setting 7,=+/c(S,(w))[ps,(w)dw+

gs (w)dw], T=+/c(S(w)) [ps(w)dw-+qs(w)dw], we see by Lemma 3 and Proposi-
tion 2 that {r,},.,, .. converges weakly to 7 in L?[A,]. Hence we have lim inf

[lTall* > lI7||* (cf. Riesz-Nagy [5], p. 200), which was to be proved by virtue
of (G).

4. Strong convergence in the space of quasiconformal disk-
homeomorphisms

In the final section we are concerned with different kinds of topologies in
a fixed family of quasiconformal homeomorphisms of a disk. Henceforth we
denote the variables in C by 2, w, Z, W and write Hz={Z: Im Z>0} ; though
the space 9[A,] is mainly treated, we need auxiliarily also the space J[H;] of
the K-quasiconformal automorphisms of H, which leaves 0, 1, oo fixed. The
passage to limit are all referred to the index z» which grows indefinitely, unless
otherwise mentioned.

Besides the original topology with which 9[A.] is endowed intrincically
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there are some other topologies, which may be stronger and expressed in terms
of the convergence of derivatives or of Beltrami coefficient in addition to the
uniform convergence of mapping itself. Since it is known that the weak con-
vergence in the conclusion of Proposition 2 cannot be replaced by the strong
one, what is then the condition for those derivatives to converge strongly? One
of the answers reads

Theorem 9. Let {T,},-, ... convergeto T in I[A,] in the uniform topology.
Then {pr}n-1s,.. 11} n=1,,... cOnverges to the respective derivative pr, qr of the
limit mapping T in the topology of L*[A,] if and only if

tim (117, 4+ llgr, 1) = 127+ llgzll
or equivalently
}lrf a[Sy; o; Ay] = a[S; 0; A,] .
Proof. Since
0< | pr—p7, | +lgr—gr,|I°
= [ prll*+llgrl*+ 11 pz,[I*+lgr,|"—2Re {(pr,, pr)+(qr,, 41} >

it follows from Proposition 2 that

(9) lim inf (|p7,|I*+lgz,|I*) = [Ip7l*+llgrll* -
If lgm" (lpr—pr |I*+1lgr—4z,|[?)=0, not only the limit subsists in (9) but
also the equality holds there, and vice versa. q.e.d.

DerINITION 3. If a sequence {7}, ... of [A,] converges to T€ I[A,]
with the additional condition that the derivative pr,, ¢r, (=1, 2, --+) tends to

the respective derivative pr, g7 of the limit mapping T in L*[A,], {Ts} nsys,..r
shall be said to converge to T in the S,-topology.

Theorem 10. In order that liin T,=T on T[A,] in the S,-topology it is

necessary and sufficient that the sequence {T,oT '},_, ... converges to the identity
on J[A,] in the same topology.

Proof. Assume that T,,—T on J[A,] in the S,-topology. Then P,=T,o
T-'—id. (Lemma 3). Substitution pp, =(prpr,—9737,)/(| pr!1*—97|%), ¢p,=
(Prqr,—Pr,g7)(1 pr1*— g2 %) gives [|pp,—1l[*+llge, I’ <3(K*+1)(Ilpr—pr,II*

+llgr—gr,|1*)/2K—0. Verification of the converse will follow the similar line
of argument. q.e.d.

Restricted to our purpose at hand, i.e., the convergence problem of the
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. normalized K-quasiconformal automorphisms, it suffices to consdier only a
neighbourhood of the identity owing to Lemma 3, Theorem 10 and Proposition
2.

DeriNITION 4. Let a sequence {7} ,.,,,.. of the normalized K-quasicon-
formal automorphisms of the domain G converge normally to the identity. If
further the essential upper bound of |k7 | in G tends to zero, we shall say that
T, (n=1, 2, ---) is convergent on G in the S,-topology.

Theorem 11. In the space I[A,] of K-quasiconformal automorphisms the
S,-topology is not weaker than the S,-topology.

Proof. If T,—id. on 9[A,] in the S,-topology, we have

14-ess sup |2z, ()]
ze
7 < |pr 1P +llgr |I* < 7+

—
1—ess sup |z (2)]

Hence |[pr |I*+lgr,|I*— = = | pual*+lg:all’, s0 |Ipr,—piall*+I1gr,—qiall*— 0
by Theorem 9. q.e.d.

A deep result due to Beurling and Ahlfors enables us to reduce the investi-
gation on S,-topology of J[A,] to that on boundary correspondence in I[Hz].
Let J1 be a collection of real-valued monotone increasing continuous function
v=v(X) defined for —oo <X < oo such that }_i)rgv(X): oo,

DeFiNITION 5. For any v J1 we set

v(X4t)—rv(X)

PPl = 1)’

where the supremum is referred to all X, ¢ varying over the whole real
axis (—oo, o0).

Suppose the upper half plane Im Z>0 be mapped by means of a T€ I[H ]
K-quasiconformally onto the upper half plane Im W>0; such T induces a
boundary correspondence T(X) =»eJl. p[T(X)] is known to be bounded.

Proposition 3. (Beurling-Ahlfors [3]). If a sequence {T,} uer ... of I[Hz]
converges to the the identity in the S,-topology, then lgm p[Tw(X)]=1. Conversely,

given a sequence {v(X)} uzy ... of T1 such that plv,) tends to 1, there exists some
smooth non-singular mapping T, in I[Hz] (n=1,2,---) which satisfies T,(X)=
vu(X) and converges to the identity in the S,-topology.

Theorem 12. Suppose a non-smooth K-quasiconformal homeomorphism
T(2) is given, which sends the disk |z|<<1 onto the disk |w|<<1. Then there
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exists a sequence {T,(2)} yr ... with the following properties:

1° T,(2) maps |z|<<1 K’-quasiconformally onto |w|<1,

2° Tu(2) ts continuously differentiable and non-singular in |z|<<1,”

3° Tu(2)=T(z) on |z|=1 (n=1,2, ).

4°  {Tu(2)} ness,... converges to T(2) umiformly on |z|<1;

5° though we must be content with the constant K’ larger than K, K'—K
can be made as samll as we please.

Proof. We lose no generality if we assume 7(2) belongs to 9[A,]. Fix a
monotone-decreasing sequence {p,},-, ... tending to 1. Then there exists a
real sequence {v,(U)} ... of a real variable U satisfying the conditions: (i) for
every n, v,(U) is monotone-increasing function for —oo < U< o0 andvl_i’rga v,(U)

= = 00 (ii) whatever value the real variables U,# may assume, we have

v(U+1)—v,(U)
v (U)—v (U—t)

Pt < SUP < Pus

(iii) v4(0)=0, »,(1)=1, v,(c0)=0c0. According to Proposition 3 it is possible to
construct a mapping F,(W) explicitly which belongs to 9[Hy] and fulfills the
requirement F,(U)=v,(U) (Re W=U), | pr,| —Igr,| >0. On setting

i—F,,(i :Z)
()

we see that 3,(2)=0,0T(2) is in [A,]. Let %,,,(z) denote the complex-valued
function defined and smooth in G with a compact support containing A, such
that (i) |/, .(2)] < |hs,(2)| a.e. on A, and (ii) lim £, (2)=Fhs(2) in L7[A,].

O,(w) =

Existence of such functions is seen, e.g., by averaging ks (2) disk-wise. 'The
Beltrami equation (dw/[d2)/(dw[dz)="h,, () has the unique solution w=73, ()
in 9[A,] which is of class C* and non-singular (Ahlfors [2]). Let us examine
how an arbitrary quadrilateral QC A,, is distorted in modulus by the quasicon-
formal automorphism ®,, ,,(w)==, ,,o T *(w) of A,: the condition (i) implies

mod®, ,,(Q) _ mod =, ,,oT7(Q) mod T7%()

mod Q mod 77Y(2) mod Q
< mod 3,0 T7(Q) mod T7'(Q) _ mod 8,(Q) _ p [Ad]
= mod T7Y(Q) mod Q mod Q o

whence De, ,[A,]<De [A,]. Let ®, (W) be the quasiconformal automorphism
which is conformally equivalent to ©; 1, and belongs to [H ). If n,m increase,

2) non-singular at every point of the domain.
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the positive quantity p[®, ,,(U)]—1 becomes as close to zero as one pleases. For
any &€>0 it is possible to construct a smooth non-singular quasiconformal auto-
morphism v, (W) of 9[Hy], such that yr,,(U)=®,,,(U) and Dy, ,[Hy]1<E
if n,m>n,(€). The smooth non-singular quasiconformal automorphism

G
X ul(w) = m
"\ 14w

isof 9[A,] and satisfies Dy, ,[A,]<E. Therefore T,(2)=X, .02, (3) (n=1,
2,--+) is a desired sequence. q.e.d.
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