Osaka University Knowledge Archive

Title	On semi-continuity of dilatational functionals
Author(s)	Shibata, Keiichi
Citation	Osaka Journal of Mathematics. 1975, 12(1), p. $53-67$
Version Type	VoR
URL	https://doi.org/10.18910/9383
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/
Osaka University

ON SEMI-CONTINUITY OF DILATATIONAL FUNCTIONALS

Dedicated to Professor Yukinari Toki on his sixtieth birthday

Keitchi SHIBATA

(Received April 16, 1974)
(Revised May 29, 1974)

0. Introduction

So far as mere analogies to the analytic functions or conformal mappings were pursued in its earliest stage of the studies on quasiconformal mappings, it only mattered whether the range of dilatations is bounded or not. With the growth of the proper theory of quasiconformal mappings such as the extremal quasiconformality due to Grötzsch, Lavrentieff's mapping problem etc., the dilatation as continuous point-function has inevitably entered into consideration. The modern definition of quasiconformality which dispenses with the continuous differentiability has undoubtedly brought a rich variety of consequences into the global theory thereof to say nothing of the local one. The generalized quasiconformality, however, stated in terms of global nature, determines the dilatationquotient as an essentially bounded point-function only almost everywhere. One seems to know very little about its behaviour, when the mappings converge, e.g., in the topology of uniform convergence.

In 1959 Lehto, Virtanen and Vaisala introduced the notion of maximal dilatation at a point (cf. [4]), which turns out, by its very definition, upper semicontinuous function. The present paper aims to develop their investigation on the dilatation-like quantity which is well-determined everywhere and majorizes the dilatation-quotient at almost every point: emphasis is laid on seeing how they behave as functionals.
§1 resumes notations, terminologies and known results designed and arranged so as to fit our present setting. In $\S 2$ we define minimal dilatation by analogy with the Lehto-Virtanen-Vaisala's maximal dilatation and show that it provides a good estimate for dilatation-quotient from below: the semi-continuity of those extreme dilatations is set up, which will play an important role in solving some extremum problem elsewhere. §3 deals with semi-continuities of the weighted average of those dilatations. In the course of refining the lower semi-continuity of the Dirichlet's functional we encounter in §4 a strong
convergence of derivatives. The totality of quasiconformal disk-homeomorphisms forms a group, the operation being superposition of mappings: at the unit element the convergence of the global maximal dilatation is stronger than the mean square convergence of derivatives. The basic theorem on boundary correspondence together with the existence theorem in the quasiconformal mappings applies in quite a natural way to the study on such topology to produce a new approximation theorem.

1. Preliminaries

Let Ω be a closed Jordan region lying in $\boldsymbol{C}=\{z:|z|<\infty\}$ with four different boundary points $z_{1}, z_{2}, z_{3}, z_{4}$ specified: these four points shall be located in this order on the positively oriented boundary curve $\partial \Omega$. Such configuration is termed quadrilateral (or topological rectangle) and is denoted by $\Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$. An orientation-preserving topological mapping of the plane transforms quadrilaterals into quadrilaterals.

Map the interior of the region Ω conformally onto a rectangular domain $R=\{\zeta: 0<\operatorname{Re} \zeta<1,0<\operatorname{Im} \zeta<M\}$, in such a way that $z_{1}, z_{2}, z_{3}, z_{4}$ correspond to the vertices $\zeta=0,1,1+i M, i M$ respectively. The positive quantity $1 / M$ is named modulus of the quadrilateral $\Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ and is denoted customarily by the symbol $\bmod \Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$. Though two figures $\Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ and $\Omega\left(z_{2}, z_{3}, z_{4}, z_{1}\right)$ are identical as point-sets, they should be distinguished from one another as quadrilaterals in general, because $\bmod \Omega\left(z_{2}, z_{3}, z_{4}, z_{1}\right)=1 / \bmod \Omega\left(z_{1}\right.$, z_{2}, z_{3}, z_{4}): the abbreviation Ω will be used only when no misunderstanding can occur.

Throughout the following we shall make effective use of the two simple facts, monotony and continuity of modulus:
(A) Monotony of modulus. Let γ be a cross-cut of a quadrilateral $\Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ whose end-points $z_{2}^{\prime}, z_{3}^{\prime}$ are located on the side $\overparen{z_{1}, z_{2}}, \overparen{z_{3}, z_{4}}$ respectively. Then there holds
$\bmod \Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \geq \bmod \Omega\left(z_{1}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}\right)+\bmod \Omega\left(z_{2}^{\prime}, z_{2}, z_{3}, z_{3}^{\prime}\right)$ and in particular

$$
\bmod \Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)>\bmod \Omega\left(z_{1}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}\right)
$$

(B) Continuity of modulus. Let the sequence of quadrilaterals $\left\{\Omega^{(n)}\left(z_{1}^{(n)}\right.\right.$, $\left.\left.z_{2}^{(n)}, z_{3}^{(n)}, z_{4}^{(n)}\right)\right\}_{n=1,2, \ldots}$ tend to a quadrilateral $\Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ in the sense that the écart between the arcs $\widehat{z_{j}^{(n)}, z_{j+1}^{(n)}}$ and $\widetilde{z_{j}, z_{j+1}}(j=1,2,3,4 ; \bmod 4)$ converges to zero as $n \rightarrow \infty$. Then we have

$$
\lim _{n \rightarrow \infty} \bmod \Omega^{(n)}\left(z_{1}^{(n)}, z_{2}^{(n)}, z_{3}^{(n)}, z_{4}^{(n)}\right)=\bmod \Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)
$$

Let G be a bounded domain in C and let $T(z)$ denote an orientation-
preserving topological mapping defined in G. Let Ω be a quadrilateral comprised in G together with its boundary. The maximal dilatation of the homeomorphism T in the domain G is defined as $\bar{D}_{T}[G]=\sup _{\Omega \subset \theta}\{\bmod T(\Omega) / \bmod \Omega\}$. T is said quasionformal in G, if $\bar{D}_{T}[G]$ is finite. Since our special interest centres around the quasiconformal homeomorphisms between domains, we assume henceforth that a finite constant K exists which dominates $\bar{D}_{T}[G]$. Such quasiconformal mapping will often be referred to as K-quasiconformal (or briefly K q.c.), when no ambiguity can result. If T is K-quasiconformal in G, its inverse mapping T^{-1} is also K-q.c. in the domain $T(G)$: the notation T^{-1} will sometimes be replaced by S in the sequel only in the interest of typography.

Let us denote by $\mathscr{I}[G]$ the space of K-quasiconformal mappings of the domain G onto other bounded domain G^{\prime} normalized by the condition $w_{0}=T\left(z_{0}\right)$ ($z_{0} \in G, w_{0} \in G^{\prime}$ being fixed) and endowed with the topology of normal convergence in G. Suppose $T_{n} \rightarrow T$ in $\mathscr{I}[G]$ as $n \rightarrow \infty$. Every $T_{n}(n=1,2, \cdots)$ satisfies $\bmod T_{n}(\Omega) \leq K \bmod \Omega$ for any quadrilateral $\Omega \subset G$. Then $\bmod T(\Omega) \leq K$ $\bmod \Omega$ by (B), hence the result known as the lower semi-continuity of the maximal dilatation in a domain:

Proposition 1. If a sequence $\left\{T_{n}\right\}_{n=1,2, \ldots}$ of $\mathscr{I}[G]$ converges to a $T \in \mathscr{I}[G]$, we have

$$
\bar{D}_{T}[G] \leq \liminf _{n \rightarrow \infty} \bar{D}_{T_{n}}[G]
$$

In this paper $d \omega$ shall stand for the area-element regardless of the variable employed. By the way we summarize below some convenient notations and terminologies which will be frequently referred to later: in the statements (C) through (G) $w=T(z)$ denotes a K-q.c. homeomorphism belonging to $\mathscr{I}[G]$.
(C) $T(z)$ possesses the locally square-summable derivatives $p_{T}(z)=\partial T / \partial z$, $q_{T}(z)=\partial T / \partial z$ at almost every point of G.
(D) $T(z)$ is totally differentiable almost everywhere in G : the estimate

$$
\left|p_{T}(z)\right|+\left|q_{T}(z)\right| \leq K\left(\left|p_{T}(z)\right|-\left|q_{T}(z)\right|\right)
$$

holds at all points where $T(z)$ is totally differentiable.
(E) The Jacobian $\left|p_{T}(z)\right|^{2}-\left|q_{T}(z)\right|^{2}$ is positive almost everywhere in G and $T(z)$ transforms every set of 2-dimensional measure zero into another such.
(F) A point $z_{1} \in G$ shall be named to be non-singnlar, if $T(z)$ is totally differentiable at z_{1} and further $\left|p_{T}\left(z_{1}\right)\right|^{2}-\left|q_{T}\left(z_{1}\right)\right|^{2} \neq 0$: the set of points at which $T(z)$ ceases to be non-singular must necessarily be of 2 -dimensional measure zero.
(G) The Beltrami coefficient $h_{T}(z)=q_{T}(z) / p_{T}(z)$ for $T(z)$ can only be determined at non-singular points, which is linked with the classical dilatationquotient $Q_{T}(z)$ by $Q_{T}(z)=\left[1+\left|h_{T}(z)\right|\right] /\left[1-\left|h_{T}(z)\right|\right]$.

2. Maximal and minimal dilatation at point

Let a point z and $\alpha>0$ be arbitrary. We denote by $N^{\omega}(z)$ and by $\dot{N}^{\omega}(z)$ the α-neighbourhood and the deleted α-neighbourhood of z respectively: $N^{\omega}(z)$ $=\{\zeta:|\zeta-z|<\alpha\}, \dot{N}^{a}(z)=\{\zeta: 0<|\zeta-z|<\alpha\}$. For all $z \in G$ we set $\bar{D}_{T}^{a}(z)=$ $\bar{D}_{T}\left[N^{a}(z) \cap G\right]$.

Theorem 1. $\bar{D}_{T}^{a}(z)$ is
1° a lower semi-continuous function in $z \in G$,
2° a monotone decreasing function in α,
3° a lower semi-continuous functional in $T \in \mathscr{I}[G]$.
Proof. 2° is trivial and 3° is nothing but a reproduction of Proposition 1. Suppose, contrary to the assertion 1°, that G contain a point z where the lower semi-continuity of $\bar{D}_{T}^{\alpha}(z)$ is violated: some sequence $\left\{z_{n}\right\}_{n=1,2, \ldots} \subset G$ tending to z satisfies $\lim _{n \rightarrow \infty} \bar{D}_{T}^{\alpha}\left(z_{n}\right)<\bar{D}_{T}^{a}(z)$. There is some constant c and some index n_{1} depending on c such that

$$
\begin{equation*}
\bar{D}_{T}^{a}\left(z_{n}\right)<c<\bar{D}_{T}^{a}(z) \quad\left(n \geq n_{1}\right) \tag{1}
\end{equation*}
$$

The inequalities (1) persist in its right half in the existence of some quadrilateral $\Omega \subset N^{a}(z) \cap G$ such that $\bmod T(\Omega) / \bmod \Omega<c . \quad N^{a}\left(z_{n}\right) \cap G$ will comprise the Ω for all n from some index n_{2} on. If $n \geq \max \left(n_{1}, n_{2}\right)$, we have $\bmod T(\Omega) / \bmod$ $\Omega<c$ by the left half of (1). This is a contradiction. q.e.d.

Letting $\alpha \rightarrow 0$, we obtain a point-function $\bar{D}_{T}(z)=\inf _{a>0} \bar{D}_{T}^{\alpha}(z)$, the maximal dilatation at z, which Lehto-Virtanen-Vaisasla [4] first introduced with its basic properties:

Theorem 2. The estimate

$$
\begin{equation*}
Q_{T}(z) \leq \bar{D}_{T}(z) \tag{2}
\end{equation*}
$$

is valid at every non-singular point z for T. The relation (2) holds with equality if T is continuously differentiable in a neighbourhood of z.

The existence proofs for the usual minimization problem of maximal dilatation rest on Proposition 1. We will present here a somewhat different type of statement analogous to Proposition 1:

Theorem 3. $\sup _{z \in G} \bar{D}_{T}(z)$ is a lower semi-continuous functional in T of $\mathbb{I}[G]$.
Proof. Let α, α^{\prime} be any positive number such that $\alpha<\alpha^{\prime}$. Then obviously $\sup _{z \in G} \bar{D}_{T}^{\alpha}(z) \leq \sup _{z \in G} \bar{D}_{T}^{\alpha^{\prime}}(z)$.

Let c be any constant such that $\sup _{z \in \mathcal{F}} \bar{D}_{T}^{\alpha}(z)<c$: we have $\bmod T(\Omega) / \bmod \Omega<c$ for every quadrilateral Ω whose dimaeter is smaller than α. Since the local quasiconformality implies the global one, the estimate $\bmod T(\Omega) / \bmod \Omega<c$ holds for every $\Omega \subset N^{\alpha^{\prime}}(z)$: so $\bar{D}_{T}^{\alpha^{\prime}}(z) \leq c$ and $\sup _{z \in \mathcal{G}} \bar{D}_{T}^{\alpha^{\prime}}(z) \leq c$. Thus we have shown that $\sup _{z \in \Theta} \bar{D}_{T}^{a}(z)=\sup _{z \in \vec{F}} \bar{D}_{T}^{\alpha}(z)$.

Next we shall see $\sup _{z \in G} \bar{D}_{T}(z)=\sup _{z \in G} \bar{D}_{T}^{a}(z)$. Suppose that $\sup _{z \in G} \bar{D}_{T}(z)<\sup _{z \in G}$ $\bar{D}_{T}^{\alpha}(z)$ for some α. Then there would be a constant c satisfying $\sup _{z \in G} \bar{D}_{T}(z)<c<$ $\sup _{z \in G} \bar{D}_{T}^{\alpha}(z)$ for all α. The left half of these inequalities implies that for any $z \in G$ there is an α satisfying $\bar{D}_{T}^{\alpha}(z)<c$, while the right half implies the presence of some $z^{\prime} \in G$ satisfying $\bar{D}_{T}^{\alpha}\left(z^{\prime}\right)>c$ for any α. This is a contradiction. Hence $\sup _{z \in \mathscr{G}} \bar{D}_{T}(z) \geq \sup _{z \in \mathscr{F}} \bar{D}_{T}^{a}(z)$. We have trivially $\sup _{z \in G} \bar{D}_{T}(z) \leq \sup _{z \in G} \bar{D}_{T}^{\alpha}(z)$, and the assertion is verified. Since $\bar{D}_{T}^{\alpha}(z)$ is a lower semi-continuous on $\mathscr{I}[G]$ (Theorem 1), $\sup _{z \in G} \bar{D}_{T}(z)=\sup _{z \in G} \bar{D}_{T}^{\alpha}(z)$ is also a lower semi-continuous functional on $\mathscr{I}[G]$. q.e.d.

Let B denote a square henceforth: but the symbol does not necessarily indicate the same figure at each occurrence.

Theorem 4. $\sup _{B \subset G} \bmod T(B)=\bar{D}_{T}[G] \quad$ for every T of $\mathscr{I}[G]$.
Proof. Let c be an arbitrary constant greater than $\sup _{B \subset G} \bmod T(B)$. Taking a non-singular point $z_{1} \in G$ for T at will, we consider a square $B=B\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ $\subset G$ with one vertex at z_{1} and subject to the requirement $2 \arg \left(z_{2}-z_{1}\right)=\arg h_{T}$ $\left(z_{1}\right)$. Given any $\varepsilon>0$, there is a $\delta>0$ such that $|\Delta z|<\delta$ implies $\mid T\left(z_{1}+\Delta z\right)$ -$T\left(z_{1}\right)-p_{T}\left(z_{1}\right) \Delta z-q_{T}\left(z_{1}\right) \Delta z|<\varepsilon| \Delta z \mid$. If we specify B so as to be $\left|z_{2}-z_{1}\right|=\delta$, we see on account of (A)

$$
\begin{aligned}
c & >\bmod T(B)>\frac{\left(\left|p_{T}\left(z_{1}\right)\right|+\left|q_{T}\left(z_{1}\right)\right|\right)|\Delta z|-2 \varepsilon|\Delta z|}{\left(\left|p_{T}\left(z_{1}\right)\right|-\left|q_{T}\left(z_{1}\right)\right|\right)|\Delta z|+2 \varepsilon|\Delta z|} \\
& >\frac{\left|p_{T}\left(z_{1}\right)\right|+\left|q_{T}\left(z_{1}\right)\right|-2 \varepsilon}{\left|p_{T}\left(z_{1}\right)\right|-\left|q_{T}\left(z_{1}\right)\right|+2 \varepsilon} .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$, we have $Q_{T}\left(z_{1}\right) \leq c$. Hence

$$
\begin{equation*}
\underset{z \in G}{\mathrm{ess} \sup } Q_{T}(z) \leq \sup _{B \subset G} \bmod T(B) \tag{3}
\end{equation*}
$$

Next let c^{\prime} be any constant dominating ess sup $Q_{z \in G}(z)$. Then, since $Q(z)<c^{\prime}$ a.e. in G, every $\Omega \subset G$ satisfies $\bmod T(\Omega) / \bmod \Omega<c^{\prime}$. Therefore

$$
\begin{equation*}
\bar{D}_{T}[G] \leq \underset{z \in G}{\operatorname{ess} \sup } Q_{T}(z) \tag{4}
\end{equation*}
$$

Clearly $\sup _{B \subset G} \bmod T(B) \leq \bar{D}_{T}[G]$, so follows the desired identity from (3) and (4). q.e.d.

Theorem 4 permits us to adopt squares in place of curvilinear quadrilaterals in the definition of the maximal dilatation, which will, in conjunction with Theorem 2, be suggestive of another local concept:

Definition 1. Let $T \in \mathscr{I}[G]$ and $z \in G$. Take any point ζ of $\dot{N}^{a}(z) \cap G$. Let r be a positive number smaller than $\sqrt{2} \min (|\zeta-z|, \alpha-|\zeta-z|)$ and let $B=B(\zeta ; r ; \theta) \subset \dot{N}^{a}(z) \cap G$ a square centred at ζ with a side of length r and of argument θ. We set

$$
\begin{aligned}
\underline{D}_{T}^{\alpha}(z)= & \inf _{\zeta}\left[\inf \left\{\max _{\theta} \bmod T(B(\zeta ; r ; \theta))\right\}\right] \\
& \underline{D}_{T}(z)=\lim _{\alpha \rightarrow 0} \underline{D}_{T}^{\alpha}(z)
\end{aligned}
$$

and term the latter of them minimal dilatation of T at z.
Example 1. The extremal quasiconformal mapping T of closed Riemann surfaces of genus ≥ 2 : In terms of local coordinate z we have $\bar{D}_{T}(z)=\underline{D}_{T}(z)=$ const. without exception even at the zeros of the analytic quadratic differential associated with T.

Example 2. The extremal quasiconformal mappings T of Strebel's chimney-shaped domain with prescribed boundary correspondence: Let $G=$ $\{z: \operatorname{Im} z<0\} \cup\{z:|\operatorname{Re} z|<1\}$ be the domain in the Gaussian z-plane and let $T(z)$ a quasiconformal homeomorphism of G onto itself with the boundary condition $T(z)=z$ on $\{z: \operatorname{Im} z=0,|\operatorname{Re} z| \geq 1\}$ and $T(z)=[(K+1) z-(K-1) z] / 2$ on $\{z: \operatorname{Im} z \geq 0,|\operatorname{Re} z|=1\}$. In this family of quasiconformal automorphisms of G, the mapping

$$
T(z)=\left\{\begin{array}{l}
{[(K+1) z-(K-1) z] / 2 \text { in }\{z: \operatorname{Im} z \geq 0,|\operatorname{Re} z|<1\}} \\
{\left[\left(K^{\prime}+1\right) z-\left(K^{\prime}-1\right) z\right] / 2 \text { in } \operatorname{Im} z<0}
\end{array}\right.
$$

is extremal quasiconformal for any constant K^{\prime} such that $1 / K \leq K^{\prime} \leq K$. But $\bar{D}_{T}(z)=\underline{D}_{T}(z)=$ const. if and only if $K^{\prime}=K$.

Let a point z_{1} be of G. Suppose that $\lim _{z \rightarrow z_{1}} \sup _{T}^{\alpha}(z)>\underline{D}_{T}^{\alpha}\left(z_{1}\right)$. Then there would be a constant c such that $\lim _{z \rightarrow z_{1}} \sup _{T} \underline{D}_{T}^{\alpha}(z)>c>\underline{D}_{T}\left(z_{1}\right): \dot{N}^{a}\left(z_{1}\right)$ must contain some point ζ, such that $\bmod T(B(\zeta ; r ; \theta))<c$ for some r whatever θ may be. On the other hand if z_{2} is sufficiently close to $z_{1}, \dot{N}^{\omega}\left(z_{2}\right)$ comprises the squares $B(\zeta ; r ; \theta)(0 \leq \theta \leq 2 \pi)$ and yet we must have $\underline{D}_{T}^{a d}\left(z_{2}\right)>c$. It is impossible in view of Definition 1. Hence we have proved $\lim _{z \rightarrow z_{1}} \underline{D}_{T}^{\alpha}(z) \leq \underline{D}_{T}^{\alpha}\left(z_{1}\right)$.

Let $\left\{T_{n}\right\}_{n=1,2, \ldots}$ be a sequence of $\mathscr{I}[G]$ convergent to $T \in \mathscr{I}[G]$. Let $z^{\prime} \in G$
be arbitrary and let c any constant such that $\underline{D}_{T_{n}}^{\alpha}\left(z^{\prime}\right)>c(n=1,2, \cdots)$. Take a point $z \in \dot{N}^{a}\left(z^{\prime}\right)$ at will which shall be fixed for a moment. If r denote any constant smaller than $\sqrt{2} \min \left(\left|z-z^{\prime}\right|, \alpha-\left|z-z^{\prime}\right|\right)$, we have $\bmod T_{n}(B(z ; r$; $\left.\left.\theta_{n}\right)\right)>c$ for some $\theta_{n}(n=1,2, \cdots):\left\{\theta_{n}\right\}_{n=1,2, \ldots}$ clusteres at some θ. It follows from (B) that $\bmod T(B(z ; r ; \theta)) \geq c$, whence $\underline{D}_{T}^{\alpha}\left(z^{\prime}\right) \geq c$. Thus $\lim _{n \rightarrow \infty} \sup \underline{D}_{T_{n}}^{\alpha}(z) \leq \underline{D}_{T}^{\alpha}(z)$.

We summarize the above results in
Theorem 5. $\underline{D}_{T}^{\alpha}(z)$ is
1° an upper semi-continuous function in $z \in G$,
2° a monotone increasing function in α,
3° an upper semi-continuous functional in $T \in \mathscr{I}[G]$.
Just corresponding to Theorem 2 we shall have
Theorem 6 ${ }^{1)}$. The estimate

$$
\begin{equation*}
Q_{T}(z) \geq \underline{D}_{T}(z) \tag{5}
\end{equation*}
$$

is valid at every non-singular point z for T. The relation (5) holds with equality if T is continuously differentiable in a neighbourhood of z.

Proof. Consider a non-singular point z_{1} for T together with $\dot{N}^{\omega}\left(z_{1}\right)$, Describe a square $B=B\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ comprised in $N^{a}\left(z_{1}\right)$ with one vertex at z_{1}, whose side-vector ${\overrightarrow{z_{1}},}_{z_{2}}$ points to the direction $\left[\arg h_{T}\left(z_{1}\right)\right] / 2$. By Definition 1 and (B) we see

$$
\begin{equation*}
\underline{D}_{T}^{\alpha}\left(z_{1}\right) \leq \max \{\bmod T(B), 1 / \bmod T(B)\} \tag{6}
\end{equation*}
$$

For any $\varepsilon>0$ there is some δ_{1} such that $|\Delta z|<\delta_{1}$ implies $\mid T\left(z_{1}+\Delta z\right)-T\left(z_{1}\right)-$ $p_{T}\left(z_{1}\right) \Delta z-q_{T}\left(z_{1}\right) \Delta z|<\varepsilon| \Delta z \mid$. Therefore, if the side of B is smaller than δ_{1} in length, we have

$$
\frac{\left|p_{T}\left(z_{1}\right)\right|-\left|q_{T}\left(z_{1}\right)\right|-2 \varepsilon}{\left|p_{T}\left(z_{1}\right)\right|+\left|q_{T}\left(z_{1}\right)\right|+2 \varepsilon}<\bmod T(B)<\frac{\left|p_{T}\left(z_{1}\right)\right|+\left|q_{T}\left(z_{1}\right)\right|+2 \varepsilon}{\left|p_{T}\left(z_{1}\right)\right|-\left|q_{T}\left(z_{1}\right)\right|-2 \varepsilon}
$$

in view of (A), (B). Substituting these into (6) and letting $\alpha \rightarrow 0$ after $\varepsilon \rightarrow 0$ we complete the proof of the first assertion.

Suppose that T is continuously differentiable in G and that G contain a non-singular point z_{1} for T satisfying $Q_{T}\left(z_{1}\right)>\underline{D}_{T}\left(z_{1}\right)$. Then there would be a constant c such that

$$
\begin{equation*}
Q_{T}\left(z_{1}\right)>c>\underline{D}_{T}\left(z_{1}\right) . \tag{7}
\end{equation*}
$$

[^0]$T(z)$ is totally differntiable uniformly on a closed subregion G_{0} of G containing z_{1} : hence for any $\varepsilon>0$ there is some $\delta>0$ such that $\mid T\left(z^{\prime}\right)-T(z)-p_{T}(z)\left(z^{\prime}-z\right)$ $-q_{T}(z)\left(\overline{z^{\prime}-z}\right)|\leq \varepsilon| z^{\prime}-z \mid$ whenever the points $z, z^{\prime} \in \bar{G}_{0}$ fulfill $\left|z^{\prime}-z\right|<\delta$. The right half of (7) requires that the $\dot{N}^{\omega}\left(z_{1}\right)$ comprises at least one square $B=$ $B(\zeta ; r ; \theta)=B\left(z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}, z_{4}^{\prime}\right)$ such that $\bmod T(B)<c$: we may assume that the $\arg \left(z_{2}^{\prime}-z_{1}^{\prime}\right)=\theta$ attains the $\max _{\theta} \bmod T(B(\zeta ; r ; \theta))$. We have then
$$
\bmod T(B)>\frac{\left|p_{T}\left(z_{1}^{\prime}\right)\right|+\left|q_{T}\left(z_{1}^{\prime}\right)\right|-2 \varepsilon\left|z-z_{1}^{\prime}\right|}{\left|p_{T}\left(z_{1}^{\prime}\right)\right|-\left|q_{T}\left(z_{1}^{\prime}\right)\right|+2 \varepsilon\left|z-z_{1}^{\prime}\right|}, \quad(z \in B)
$$

Therefore

$$
\frac{\left|p_{T}\left(z_{1}^{\prime}\right)\right|+\left|q_{T}\left(z_{1}^{\prime}\right)\right|}{\left|p_{T}\left(z_{1}^{\prime}\right)\right|-\left|q_{T}\left(z_{1}^{\prime}\right)\right|}<c+\frac{2 \varepsilon \delta(K+1)}{\left|p_{T}\left(z_{1}^{\prime}\right)\right|-\left|q_{T}\left(z_{1}^{\prime}\right)\right|} .
$$

Letting $\varepsilon \rightarrow 0$, we arrive at $Q_{T}\left(z_{1}\right) \leq c$ by (B), which contradicts (7). q.e.d.
The maximal and minimal dilatation at a point are named generically extreme dilatation at the point.

3. Integral mean of dilatations

This section begins by recalling a few locutions as well as introductory propositions in the mass distribution theory.

A mass distribution on the domain G should be interpreted as the completely additive real-valued set-function defined on all the Borel subsets of G.
$\mathscr{M}[G]$: the class of uniformly bounded non-negative mass distributions μ on G
$\mathscr{M}^{\prime}[G]$: the class of uniformly bounded non-negative mass distributions μ^{\prime} with continuous density on G

A sequence $\left\{\mu_{n}\right\}_{n=1,2, \ldots}$ of $\mathscr{M}[G]$ is termed convergent towards a $\mu \in \mathscr{M}[G\rceil$ if and only if $\lim _{n \rightarrow \infty} \mu_{n}(e)=\mu(e)$ for every Borel subset e of G which is regular with respect to μ.

Lemma 1. (Vallee-Poussin [8], p. 42). If $\phi(z)$ is a continuous function on G and a sequence $\left\{\mu_{n}\right\}_{n=1,2, \ldots}$ of $\mathscr{M}[G]$ tends to μ as $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} \int_{G} \phi(z) d \mu_{n}(z)=\int_{G} \phi(z) d \mu(z)
$$

Lemma 2. (Schwartz [6], t. II, pp. 21-22). Let \bar{G}_{0} be an arbitrary closed subregion of the domain G. Given any $\mu \in \mathscr{M}[G]$, there exists $\mu_{n}^{\prime} \in \mathscr{M}^{\prime}[G]$ such that

$$
\lim _{n \rightarrow \infty} \int_{G} \psi(z) d \mu_{n}^{\prime}(z)=\int_{G} \psi(z) d \mu(z)
$$

for every function $\psi(z)$ of class C^{∞} with a support comprised in G.
The extreme dilatation introduced in the preceding section has an advantage of enjoying the semi-continuity as point-functions unlike the more familiar dilatation-quotient, our knowledge about which seems no more than the bounded measurability.

Theorem 7. The extreme dilatation $\bar{D}_{T}(z)$ (resp. $\underline{D}_{T}(z)$) is an upper semi-continuous (res p. alower semi-continuous) function in z.

Proof. Upper semi-continuity of the maximal dilatation was shown in Lehto-Virtanen-Varisälă [4]: we have only to prove the lower semi-continuity of $\underline{D}_{T}(z)$.

Suppose G contain a point z_{1} such that $\liminf _{z \rightarrow 1_{1}} \underline{D}_{T}(z)<\underline{D}_{T}\left(z_{1}\right)$: a constant c exists satisfying $\liminf _{z \rightarrow z_{1}} \underline{D}_{T}(z)<c<\underline{D}_{T}\left(z_{1}\right)$. The right half of these inequalities asserts the presence of some such α that $\underline{D}_{T}^{\infty}\left(z_{1}\right)>c$, while from the left half it follows that the $\dot{N}^{\infty}\left(z_{1}\right)$ contain a z satisfying $\underline{D}_{T}(z)<c$. Let $\alpha^{\prime}>0$ be smaller than $\min \left(\left|z-z_{1}\right|, \alpha-\left|z-z_{1}\right|\right)$: then $\underline{D}_{T}^{\alpha^{\prime}}(z)<c$, so $\dot{N}^{\alpha^{\prime}}(z)$ contain a point ζ such that $\max _{\theta} \bmod T(B(\zeta ; r ; \theta))<c$ for some $r<\sqrt{2} \min \left(|\zeta-z|, \alpha^{\prime}-|\zeta-z|\right)$. But the squares $B(\zeta ; r ; \theta)(0 \leq \theta \leq 2 \pi)$ lie in $N^{\omega}\left(z_{1}\right)$, which is a contradiction. q.e.d.

Definition 2. We set for $T \in \mathscr{I}[G], \mu \in \mathscr{M}[G]$

$$
a[T ; \mu ; G]=\int_{G} \frac{\bar{D}_{T}(z)^{2}+1}{2 \bar{D}_{T}(z)} d \mu(z), \underline{a}[T ; \mu ; G]=\int_{G} \frac{D_{T}(z)^{2}+1}{2 \underline{D}_{T}(z)} d \mu(z)
$$

and analogously

$$
a[T ; \mu ; G]=\int_{G} \frac{Q_{T}(z)^{2}+1}{2 Q_{T}(z)} d \mu(z)
$$

Theorem 7 yields immediately the two corollaries:
Corollary 1. $a[T ; \mu ; G](r e s p . \underline{a}[T ; \mu ; G])$ is an upper semi-continuous (resp. a lower semi-continuous) functional in $\mu \in \mathscr{M}[G]$.

Proof. Let $\mu_{n} \rightarrow \mu(n \rightarrow \infty)$ on $\mathscr{M}[G]$. On account of the upper semicontinuity of $\bar{D}_{T}(z)$ in G there exists a bounded continuous function $\phi_{m}(z)$ majorizing $\left[\bar{D}_{T}(z)^{2}+1\right] / 2 \bar{D}_{T}(z)$ in G. From Lemma 1 it follows that

$$
\lim _{n \rightarrow \infty} \sup a\left[T ; \mu_{n} ; G\right] \leq \lim _{n \rightarrow \infty} \int_{G} \phi_{m}(z) d \mu_{n}(z)=\int_{G} \phi_{m}(z) d \mu(z) .
$$

Since $\left[\bar{D}_{T}(z)^{2}+1\right] / 2 \bar{D}_{T}(z)$ can be expressed as the monotone decreasing limit of
such $\phi_{m}(z)(m=1,2, \cdots)$, we have

$$
\lim _{n \rightarrow \infty} \sup \left[T ; \mu_{n} ; G\right] \leq \bar{a}[T ; \mu ; G] .
$$

q.e.d.

Corollary 2. Let \bar{G}_{0} be an arbitrary compact subregion of G. For any $\mu \in \mathscr{M}\left[\bar{G}_{0}\right]$ there exists a sequence $\left\{\mu_{n}^{\prime}\right\}_{n=1,2, \ldots}$ of $\mathscr{M}^{\prime}[G]$, such that

$$
\begin{aligned}
& \bar{a}[T ; \mu ; G] \geq \lim _{n \rightarrow \infty} \sup a\left[T ; \mu_{n}^{\prime} ; G\right], \\
& a[T ; \mu ; G] \leq \liminf _{n \rightarrow \infty} a\left[T ; \mu_{n}^{\prime} ; G\right] .
\end{aligned}
$$

Proof. Take a continuous function $\phi(z)$ majorizing the upper semicontinuous function $\left[\bar{D}_{T}(z)^{2}+1\right] / 2 \bar{D}_{T}(z)$ on G. Given any $\varepsilon_{n}>0$ tending to zero as $n \rightarrow \infty$, there are functions $\psi_{n}(z)$ of class C^{∞} with a support $\bar{G}_{0}^{\prime} \subset G$ (G_{0}^{\prime} being a domain comprising $\left.\bar{G}_{0}\right)$ such that $\left|\phi(z)-\psi_{n}(z)\right|<\varepsilon_{n} / 3(n=1,2, \cdots)$ uniformly on \bar{G}_{0} Lemma 2 assures the existence of $\mu_{n}^{\prime} \in \mathscr{M}^{\prime}\left[\bar{G}_{0}^{\prime}\right]$ such that

$$
\left|\int_{\bar{G}_{0}^{\prime}} \psi_{n}(z) d \mu(z)-\int_{\bar{G}_{0}^{\prime}} \psi_{n}(z) d \mu_{n}^{\prime}(z)\right|<\varepsilon_{n} / 3, \quad(n=1,2, \cdots),
$$

whence

$$
\left|\int_{G} \phi(z) d \mu(z)-\int_{G} \phi(z) d \mu_{n}^{\prime}(z)\right|<\varepsilon_{n}
$$

Therefore for any index n we have

$$
\bar{a}\left[T ; \mu_{n}^{\prime} ; G\right] \leq \int_{G} \phi(z) d \mu_{n}^{\prime}(z)<\int_{G} \phi(z) d \mu(z)+\varepsilon_{n} .
$$

Letting n tend to infinity we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} a\left[T ; \mu_{n}^{\prime} ; G\right] \leq \int_{G} \phi(z) d \mu(z) \tag{8}
\end{equation*}
$$

Since $\phi(z)$ is taken as close to $\left[\bar{D}_{T}(z)^{2}+1\right] / 2 \bar{D}_{T}(z)$ as one pleases, the left hand side in (8) cannot be larger than $\bar{a}[T ; \mu ; G]$. q.e.d.

Let us write $\Delta_{z}=\{z:|z|<1\}$: the set-function $\omega(e)=\int_{e} d \omega$ belongs to $\mathscr{M}\left[\Delta_{z}\right]$ if e is a Borel subset of Δ_{z}. The space $\mathscr{I}\left[\Delta_{z}\right]$ with which we deal henceforth shall consist of the normalized K-quasiconformal homeomorphisms $T(z)$ between Δ_{z} and Δ_{w} such that $T(1)=1, T(i)=i, T(-1)=-1: \quad \mathcal{L}^{2}\left[\Delta_{z}\right]$ denotes the space of all linear differential $\tau=p(z) d z+q(z) d z$ of summable square in Δ_{z} with the inner product $\left(\tau_{1}, \tau_{2}\right)=\int_{\Delta_{z}}\left[p_{1}(z) \overline{p_{2}(z)}+q_{1}(z) \overline{q_{2}(z)}\right] d \omega(z)\left(\tau_{j}=p_{j}(z)\right.$ $\left.d z+q_{j}(z) d z \in \mathcal{L}^{2}\left[\Delta_{z}\right] ; j=1,2\right)$ and the norm $\|\tau\|=\sqrt{(\tau, \tau)} . \quad T \in \mathscr{I}\left[\Delta_{z}\right]$ implies $d T \in \mathcal{L}^{2}\left[\Delta_{z}\right]$, since $\|d T\|^{2}=a\left[S ; \omega ; \Delta_{w}\right] \leq \pi\left(K^{2}+1\right) / 2 K$ by (G).

Lemma 3. If $\left\{T_{n}\right\}_{n=1,2 \ldots}$ converges to T in $\mathscr{I}\left[\Delta_{z}\right]$, then $\left\{T_{n}^{-1}\right\}_{n=1,2, \ldots}$ also converges to T^{-1} in $\mathbb{I}\left[\Delta_{w}\right]$.

Proof. Set $z=T^{-1}(w)$ for an arbitrary $w \in \Delta_{w}$. If we write $w_{n}=T_{n}(z)$, we see $\left|w_{n}-w\right| \rightarrow 0$. The equicontinuity of $\left\{T_{n}^{-1}\right\}_{n=1,2, \ldots}$ yields $\left|T^{-1}(w)-T_{n}^{-1}(w)\right|$ $=\left|T_{n}^{-1}\left(w_{n}\right)-T_{n}^{-1}(w)\right| \rightarrow 0(n \rightarrow \infty)$. Therefore $\lim _{n \rightarrow \infty} T_{n}^{-1}=T^{-1}$. If this convergence were not uniform, there would be some sequence $\left\{w_{n}\right\}_{n=1,2, \ldots}$ on Δ_{w} such that $\left|T_{n}^{-1}\left(w_{n}\right)-T^{-1}\left(w_{n}\right)\right| \geq c$ for some constant $c>0$. But it is a contradiction, since $\left\{T_{n}^{-1}\right\}_{n=1,2, \ldots}$ contains a subsequence $\left\{T_{n_{k}}^{-1}\right\}_{k=1,2, \ldots}$ convergent uniformly on Δ_{w}, which implies $\left|T_{n_{k}}^{-1}\left(w_{n_{k}}\right)-T^{-1}\left(w_{n_{k}}\right)\right| \rightarrow 0 \quad(k \rightarrow \infty)$. q.e.d.

Next suppose a sequence of $\mathscr{I}[G]$ converges: then the behaviour of their derivatives naturally comes into question. The first step in such direction was perhaps be made by a theorem included in Ahlfors [1]:

Proposition 2. When a sequence $\left\{T_{n}\right\}_{n=1,2, \ldots}$ converges to T in the sapce $\mathscr{I}\left[\Delta_{z}\right]$ in its intrinsic topology, $\left\{p_{T_{n}}\right\}_{n=1,2, \ldots}$ (resp. $\left\{q_{T_{n}}\right\}_{n=1,2, \ldots}$) converges to p_{T} $\left(\right.$ resp. $\left.q_{T}\right)$ weakly in the space $\mathcal{L}^{2}\left[\Delta_{z}\right]$.

This proposition provides us with the clearest and firmest background for semi-continuity of the Dirichlet integral in its mapping-theoretic version:

Theorem 8. For any $\mu^{\prime} \in \mathscr{M}^{\prime}\left[\Delta_{z}\right], a\left[T ; \mu^{\prime} ; \Delta_{z}\right]$ is a lower semi-continuous functional on $\mathcal{I}\left[\Delta_{z}\right]$.

Proof. Let $\lim _{n \rightarrow \infty} T_{n}=T$ in $\mathscr{I}[G]$ and let $\sigma(z)=d \mu^{\prime}(z) / d \omega(z)$ be the density of the smooth mass distribution μ^{\prime}. On setting $\tau_{n}=\sqrt{\sigma\left(S_{n}(w)\right)}\left[p_{s_{n}}(w) d w+\right.$ $\left.q_{S_{n}}(w) d \bar{w}\right], \tau=\sqrt{\sigma(S(w))}\left[p_{s}(w) d w+q_{s}(w) d \bar{w}\right]$, we see by Lemma 3 and Proposition 2 that $\left\{\tau_{n}\right\}_{n=1,2, \ldots}$ converges weakly to τ in $\mathcal{L}^{2}\left[\Delta_{w}\right]$. Hence we have $\lim _{n \rightarrow \infty} \inf$ $\left\|\tau_{n}\right\|^{2} \geq\|\tau\|^{2} \quad$ (cf. Riesz-Nagy [5], p. 200), which was to be proved by virtue of (G).

4. Strong convergence in the space of quasiconformal diskhomeomorphisms

In the final section we are concerned with different kinds of topologies in a fixed family of quasiconformal homeomorphisms of a disk. Henceforth we denote the variables in \boldsymbol{C} by z, w, Z, W and write $H_{z}=\{Z: \operatorname{Im} Z>0\}$; though the space $\mathscr{I}\left[\Delta_{z}\right]$ is mainly treated, we need auxiliarily also the space $\mathscr{I}\left[H_{Z}\right]$ of the K-quasiconformal automorphisms of H_{Z} which leaves $0,1, \infty$ fixed. The passage to limit are all referred to the index n which grows indefinitely, unless otherwise mentioned.

Besides the original topology with which $\mathscr{I}\left[\Delta_{z}\right]$ is endowed intrincically
there are some other topologies, which may be stronger and expressed in terms of the convergence of derivatives or of Beltrami coefficient in addition to the uniform convergence of mapping itself. Since it is known that the weak convergence in the conclusion of Proposition 2 cannot be replaced by the strong one, what is then the condition for those derivatives to converge strongly? One of the answers reads

Theorem 9. Let $\left\{T_{n}\right\}_{n=1,2, \ldots}$ converge to T in $\mathscr{L}\left[\Delta_{z}\right]$ in the uniform topology. Then $\left\{p_{T_{n}}\right\}_{n=1,2, \ldots},\left\{q_{T_{n}}\right\}_{n=1,2, \ldots}$ converges to the respective derivative p_{T}, q_{T} of the limit mapping T in the topology of $\mathcal{L}^{2}\left[\Delta_{z}\right]$ if and only if

$$
\lim _{n \rightarrow \infty}\left(\left\|p_{T_{n}}\right\|^{2}+\left\|q_{T_{n}}\right\|^{2}\right)=\left\|p_{T}\right\|^{2}+\left\|q_{T}\right\|^{2}
$$

or equivalently

$$
\lim _{n \rightarrow \infty} a\left[S_{n} ; \omega ; \Delta_{w}\right]=a\left[S ; \omega ; \Delta_{w}\right] .
$$

Proof. Since

$$
\begin{aligned}
0 & \leq\left\|p_{T}-p_{T_{n}}\right\|^{2}+\left\|q_{T}-q_{T_{n}}\right\|^{2} \\
& =\left\|p_{T}\right\|^{2}+\left\|q_{T}\right\|^{2}+\left\|p_{T_{n}}\right\|^{2}+\left\|q_{T_{n}}\right\|^{2}-2 \operatorname{Re}\left\{\left(p_{T_{n}}, p_{T}\right)+\left(q_{T_{n}}, q_{T}\right)\right\}
\end{aligned}
$$

it follows from Proposition 2 that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(\left\|p_{T_{n}}\right\|^{2}+\left\|q_{T_{n}}\right\|^{2}\right) \geq\left\|p_{T}\right\|^{2}+\left\|q_{T}\right\|^{2} \tag{9}
\end{equation*}
$$

If $\lim _{n \rightarrow \infty}\left(\left\|p_{T}-p_{T_{n}}\right\|^{2}+\left\|q_{T}-q_{T_{n}}\right\|^{2}\right)=0$, not only the limit subsists in (9) but also the equality holds there, and vice versa. q.e.d.

Definition 3. If a sequence $\left\{T_{n}\right\}_{n=1,2, \ldots}$ of $\mathscr{I}\left[\Delta_{z}\right]$ converges to $T \in \mathscr{I}\left[\Delta_{z}\right]$ with the additional condition that the derivative $p_{T_{n}}, q_{T_{n}}(n=1,2, \cdots)$ tends to the respective derivative p_{T}, q_{T} of the limit mapping T in $\mathcal{L}^{2}\left[\Delta_{z}\right],\left\{T_{n}\right\}_{n=1,2, \ldots}$ shall be said to converge to T in the S_{1}-topology.

Theorem 10. In order that $\lim _{n \rightarrow \infty} T_{n}=T$ on $T\left[\Delta_{z}\right]$ in the S_{1}-topology it is necessary and sufficient that the sequence $\left\{T_{n} \circ T^{-1}\right\}_{n=1,2, \ldots}$ converges to the identity on $\mathscr{I}\left[\Delta_{w}\right]$ in the same topology.

Proof. Assume that $T_{n} \rightarrow T$ on $\mathscr{I}\left[\Delta_{z}\right]$ in the S_{1}-topology. Then $P_{n}=T_{n}$ 。 $T^{-1} \rightarrow i d$. (Lemma 3). Substitution $p_{P_{n}}=\left(\bar{p}_{T} p_{T_{n}}-q_{T} \bar{q}_{T_{n}}\right) /\left(\left|p_{T}\right|^{2}-\left|q_{T}\right|^{2}\right), q_{P_{n}}=$ $\left(\bar{p}_{T} q_{T_{n}}-\bar{p}_{T_{n}} q_{T}\right) /\left(\left|p_{T}\right|^{2}-\left|q_{T}\right|^{2}\right)$ gives $\left\|p_{P_{n}}-1\right\|^{2}+\left\|q_{P_{n}}\right\|^{2} \leq 3\left(K^{2}+1\right)\left(\left\|p_{T}-p_{T_{n}}\right\|^{2}\right.$ $\left.+\left\|q_{T}-q_{T_{n}}\right\|^{2}\right) / 2 K \rightarrow 0$. Verification of the converse will follow the similar line of argument. q.e.d.

Restricted to our purpose at hand, i.e., the convergence problem of the
normalized K-quasiconformal automorphisms, it suffices to consdier only a neighbourhood of the identity owing to Lemma 3, Theorem 10 and Proposition 2.

Definition 4. Let a sequence $\left\{T_{n}\right\}_{n=1,2, \ldots}$ of the normalized K-quasiconformal automorphisms of the domain G converge normally to the identity. If further the essential upper bound of $\left|h_{T_{n}}\right|$ in G tends to zero, we shall say that $T_{n}(n=1,2, \cdots)$ is convergent on G in the S_{2}-topology.

Theorem 11. In the space $\mathcal{Z}\left[\Delta_{z}\right]$ of K-quasiconformal automorphisms the S_{2}-topology is not weaker than the S_{1}-topology.

Proof. If $T_{n} \rightarrow i d$. on $\mathscr{I}\left[\Delta_{z}\right]$ in the S_{2}-topology, we have

$$
\pi \leq\left\|p_{T_{n}}\right\|^{2}+\left\|q_{T_{n}}\right\|^{2} \leq \pi \cdot \frac{1+\underset{z \in G}{\operatorname{ess} \sup }\left|h_{T_{n}}(z)\right|}{1-\underset{z \in G}{\operatorname{ess} \sup }\left|h_{T_{n}}(z)\right|} \rightarrow \pi
$$

Hence $\left\|p_{T_{n}}\right\|^{2}+\left\|q_{T_{n}}\right\|^{2} \rightarrow \pi=\left\|p_{i d}\right\|^{2}+\left\|q_{i d}\right\|^{2}$, so $\left\|p_{T_{n}}-p_{i d}\right\|^{2}+\left\|q_{T_{n}}-q_{i d}\right\|^{2} \rightarrow 0$ by Theorem 9 . q.e.d.

A deep result due to Beurling and Ahlfors enables us to reduce the investigation on S_{2}-topology of $\mathscr{I}\left[\Delta_{z}\right]$ to that on boundary correspondence in $\mathscr{I}\left[H_{z}\right]$. Let Ω be a collection of real-valued monotone increasing continuous function $\nu=\nu(X)$ defined for $-\infty<X<\infty$ such that $\lim _{x \rightarrow \pm \infty} \nu(X)= \pm \infty$.

Definition 5. For any $\nu \in \mathscr{N}$ we set

$$
\rho[\nu]=\sup \frac{\nu(X+t)-\nu(X)}{\nu(X)-\nu(X-t)}
$$

where the supremum is referred to all X, t varying over the whole real axis $(-\infty, \infty)$.

Suppose the upper half plane $\operatorname{Im} Z>0$ be mapped by means of a $T \in \mathscr{I}\left[H_{Z}\right]$ K-quasiconformally onto the upper half plane $\operatorname{Im} W>0$; such T induces a boundary correspondence $T(X)=\nu \in \mathcal{I} . \quad \rho[T(X)]$ is known to be bounded.

Proposition 3. (Beurling-Ahlfors [3]). If a sequence $\left\{T_{n}\right\}_{n=1,2, \ldots}$ of $\mathscr{I}\left[H_{Z}\right]^{\prime}$ converges to the the identity in the S_{2}-topology, then $\lim _{n \rightarrow \infty} \rho\left[T_{n}(X)\right]=1$. Conversely,
 smooth non-singular mapping T_{n} in $\mathscr{I}\left[H_{Z}\right](n=1,2, \cdots)$ which satisfies $T_{n}(X)=$ $\nu_{n}(X)$ and converges to the identity in the S_{2}-topology.

Theorem 12. Suppose a non-smooth K-quasiconformal homeomorphism $T(z)$ is given, which sends the disk $|z|<1$ onto the disk $|w|<1$. Then there
exists a sequence $\left\{T_{n}(z)\right\}_{n=1,2, \ldots}$ with the following properties:
$1^{\circ} T_{n}(z)$ maps $|z|<1 \quad K^{\prime}$-quasiconformally onto $|w|<1$,
$2^{\circ} T_{n}(z)$ is continuously differentiable and non-singular in $|z|<1,{ }^{2)}$
$3^{\circ} \quad T_{n}(z)=T(z)$ on $|z|=1 \quad(n=1,2, \cdots)$.
$4^{\circ}\left\{T_{n}(z)\right\}_{n=1,2, \ldots}$ converges to $T(z)$ uniformly on $|z| \leq 1$;
5° though we must be content with the constant K^{\prime} larger than $K, K^{\prime}-K$ can be made as samll as we please.

Proof. We lose no generality if we assume $T(z)$ belongs to $\mathscr{I}\left[\Delta_{z}\right]$. Fix a monotone-decreasing sequence $\left\{\rho_{n}\right\}_{n=1,2, \ldots}$ tending to 1 . Then there exists a real sequence $\left\{\nu_{n}(U)\right\}_{n=1,2, \ldots}$ of a real variable U satisfying the conditions: (i) for every $n, \nu_{n}(U)$ is monotone-increasing function for $-\infty<U<\infty$ and $\lim _{v \rightarrow \pm \infty} \nu_{n}(U)$ $= \pm \infty$; (ii) whatever value the real variables U, t may assume, we have

$$
\rho_{n+1} \leq \sup \frac{\nu_{n}(U+t)-\nu_{n}(U)}{\nu_{n}(U)-\nu_{n}(U-t)} \leq \rho_{n} ;
$$

(iii) $\nu_{n}(0)=0, \nu_{n}(1)=1, \nu_{n}(\infty)=\infty$. According to Proposition 3 it is possible to construct a mapping $F_{n}(W)$ explicitly which belongs to $\mathscr{I}\left[H_{W}\right]$ and fulfills the requirement $F_{n}(U)=\nu_{n}(U) \quad(\operatorname{Re} W=U),\left|p_{F_{n}}\right|-\left|q_{F_{n}}\right|>0$. On setting

$$
\Theta_{n}(w)=\frac{i-F_{n}\left(i \frac{1-w}{1+w}\right)}{i+F_{n}\left(i \frac{1-w}{1+w}\right)},
$$

we see that $\Sigma_{n}(z)=\Theta_{n} \circ T(z)$ is in $\mathscr{I}\left[\Delta_{z}\right]$. Let $\tilde{h}_{n, m}(z)$ denote the complex-valued function defined and smooth in G with a compact support containing Δ_{z} such that (i) $\left|\widetilde{h}_{n, m}(z)\right| \leq\left|h_{\Sigma_{n}}(z)\right|$ a.e. on Δ_{z} and (ii) $\lim _{m \rightarrow \infty} \widetilde{h}_{n, m}(z)=h_{\Sigma_{n}}(z)$ in $\mathcal{L}^{2}\left[\Delta_{z}\right]$. Existence of such functions is seen, e.g., by averaging $h_{\Sigma_{n}}(z)$ disk-wise. The Beltrami equation $(\partial w / \partial z) /(\partial w / \partial z)=\widetilde{h}_{n, m}(z)$ has the unique solution $w=\Sigma_{n, m}(z)$ in $\mathscr{I}\left[\Delta_{z}\right]$ which is of class C^{1} and non-singular (Ahlfors [2]). Let us examine how an arbitrary quadrilateral $\Omega \subset \Delta_{w}$ is distorted in modulus by the quasiconformal automorphism $\Theta_{n, m}(w)=\Sigma_{n, m} \circ T^{-1}(w)$ of Δ_{w} : the condition (i) implies

$$
\begin{aligned}
& \frac{\bmod \Theta_{n, m}(\Omega)}{\bmod \Omega}=\frac{\bmod \Sigma_{n, m^{\circ}} T^{-1}(\Omega)}{\bmod T^{-1}(\Omega)} \cdot \frac{\bmod T^{-1}(\Omega)}{\bmod \Omega} \\
\leq & \frac{\bmod \Sigma_{n} \circ T^{-1}(\Omega)}{\bmod T^{-1}(\Omega)} \cdot \frac{\bmod T^{-1}(\Omega)}{\bmod \Omega}=\frac{\bmod \Theta_{n}(\Omega)}{\bmod \Omega} \leq D_{\Theta_{n}}\left[\Delta_{w}\right],
\end{aligned}
$$

whence $D_{\Theta_{n, m}}\left[\Delta_{w}\right] \leq D_{\Theta_{n}}\left[\Delta_{w}\right]$. Let $\Phi_{n, m}(W)$ be the quasiconformal automorphism which is conformally equivalent to $\Theta_{n, m}^{-1}$ and belongs to $\mathscr{I}\left[H_{W}\right]$. If n, m increase,

[^1]the positive quantity $\rho\left[\Phi_{n, m}(U)\right]-1$ becomes as close to zero as one pleases. For any $\varepsilon>0$ it is possible to construct a smooth non-singular quasiconformal automorphism $\psi_{n, m}(W)$ of $\mathscr{I}\left[H_{W}\right]$, such that $\psi_{n, m}(U)=\Phi_{n, m}(U)$ and $D_{\psi_{n, m}}\left[H_{W}\right]<\varepsilon$ if $n, m>n_{0}(\varepsilon)$. The smooth non-singular quasiconformal automorphism
$$
\chi_{n, n}(w)=\frac{i-\psi_{n, n}\left(i \frac{1-w}{1+w}\right)}{i+\psi_{n, n}\left(i \frac{1-w}{1+w}\right)}
$$
is of $\mathscr{I}\left[\Delta_{w}\right]$ and satisfies $D_{\chi_{n, n}}\left[\Delta_{w}\right]<\varepsilon$. Therefore $T_{n}(z)=\chi_{n, n} \circ \Sigma_{n, n}(z)(n=1$, $2, \cdots)$ is a desired sequence. q.e.d.

Osaka University

References

[1] Ahlfors, L.V.: On quasiconformal mappings, J. d'Analyse Math. 3 (1953/1954), 158, 207-208.
[2] Ahlfors, L. V.: Conformality with respect to Riemannian metrics, Ann. Acad. Sci. Fenn. A. I. 206 (1955), 1-22.
[3] Beurling, A. and L.V. Ahlfors: The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142.
[4] Lehto, O., K.I. Virtanen and J. Väisälä: Contributions to the distortion theory of quasiconformal mappings, Ann. Acad. Sci. Fenn. A. I. 273 (1959), 1-14.
[5] Riesz, F. and B.Sz.-Nagy: Functional Analysis, New York, 1955.
[6] Schwartz, L.: Théorie des Distributions, Paris, 1950/1951.
[7] Strebel, K.: Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises I, Comm. Math. Helv. 36 (1962), 306-323; II, ibid. 39 (1964), 77-89.
[8] Vallée-Poussin, Ch. J. de la: Le Potentiel Logarithmique, Louvain-Paris, 1949.

[^0]: 1) M. Mohri collaborated in studying the minimal dilatation.
[^1]: 2) non-singular at every point of the domain.
