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In this paper we always assume that J? is a two-sided artinian ring with

identity. In [3] we have defined right almost QF rings and showed that those
rings coincided with rings satisfying (*)* in [2], which K. Oshiro [5] called
co-H rings. We shall show in Section 2 that right almost QF rings are nothing
but direct sums of serial rings and QF rings, provided /3=0. Further in Sec-
tion 5 we show that if J? is a two-sided almost QF ring and ^=el

J

Γe2

Jre^ then
R has the above structure, provided /4—0, where {et} is a complete set of mut-

ually orthogonal primitive idempotents. Moreover if 1=el-\-e2-\-ez-\-e^ we have
the same result except one case. We shall study, in Section 3, right almost
QF rings with homogeneous socles W*(£)) [7] and give certain conditions on
the nilpotency m of the radical of W£(0, under which WJJ(£)) is left almost
QF or serial. In particular if m^2n, W*(£)) is serial. We observe a special
type of almost QF rings such that every indecomposable projective is uniserial or
injeative in Section 4.

1. Almost QF rings

In this paper we always assume that R is a two-sided artinian ring with

identity and that every module M is a unitary right .R-module. By M we de-

note M/J(M), where J(M) is the Jacobson radical of M. We use the same
notations in [3]. We call R a right almost QF ring if R is right almost injective
as a right 72-module [3] and [4]. We can define similarly a left almost QF ring.
If R is a two-sided almost QF ring, we call it simply an almost QF ring. It is

clear that R is right almost QF if and only if every finitely generated projective

72-modlue is right almost injective. Hence the concept of almost QF rings is

preserved under Morita equivalence and we may assume that R is basic.
In this section we shall give some results which we use later. First we give

a property of any right almost QF rings.

Proposition 1. Assume that R is right almost QF. Let e±R be injective, £1%/'

be projective, i.e., e^J^e^R for all i<*(somek] and elJ
k+l
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Then if eaR is not infective, e^^^ejl, and hence \e1J
k+l/e1J

k+2\=lί where

_ Proof. Let xaR be a submodule in ejk+1 such that (xaR+eJk+2)leJk+2^
eaR (xaea=xa). Suppose that eaR is not injective. Then eaR<Σ.epR (isomorphi-

cally) for some p^a, which is injective by [3], Corollary to Theorem 1. Let

p: βaR-^XaRdeίR; p(ea)=xa, be the natural epimorphism. Since ^7? is injec-

tive, there exists p':epR^>e1R, which is an extension of p. Put y=ρ'(e^)\
(y=yep) and ea— epr\ r^R. We note that the elj

i are all waists for i<^k+l by

assumption. If y^elj
k+l, then xa~yr=yeprea~ϋ in e1j

k+1/eιjk+2

y a contradic-

tion. Accordingly yR=e1J
t for some t^k. However elj

t is projective, and
hence p' is a monomorphism. Consequently eλj

k+l contains isomorphically the
projective module eaR, and ejk+1 is local form [3], Corollary to Theorem 1.

Proposition 2. Let R be right almost QF. If R is either a local ring or

J2=Q, then R is serial or QF.

Prof. R is a QF ring in the first case from [3], Corollary to Theorem 1.
Assume J2— 0 and R is basic. If eR is injective for a primitive idempotent ey

then \eR\ ̂ 2 and eR is uniserial. Hence fR is injective and uniserial provided
//Φθ by [3], Corollary to Theorem 1. Hence R is right serial and so R is

serial by [5], Theorem 6.1.

Let kR (or Rg) be a simple module which appears in the factor modules of

composition series of eR (or Re), where g is a primitive idempotent. In this case

we say that g belongs to eR (or Re).

Lemma 1. Let R be basic and let {£,/?} t^s be a set of injective and projective
modules. Assume that every primitive idempotent belonging to βfR is equal to

some *μ(f )e {et} for each ef. Then 2,-^θ^-R is a direct summand of R as rings.

Proof. We note from the asumption that for each e$ Eϊ {#,•} there exists £p(; )

in {£,-} such that «y^»Soc(βp(y)Λ). Put E=^^s e{ and F=l—E=^k^pfk, where
the fk are primitive idempotents. Then ERF= 0 from the assumption. Let
θ: βiR-^fkR be a homomorphism. If 0Φ0, there exist a simple submodule S of
fkR and a submodule T of eγR such that Sdθ(e1R) and TIΘ-\Q)^S. We may
assume S^βjR for some e}- in {e{} by assumption. Accordingly S^Soc(ep(^R)
by the initial remark, and hence we obtain a non-zero homomorphism of fkR to

ep(j)R, since e^^R is injective. Therefore fk^ {e{} by asumption, a contradiction.

As a consequence 0=0, i.e., FRE=0 and R=ER®FR=ERE®FRF.

The following lemma is essential in this paper.

Lemma 2. Let R be artinίan and F a uniform R-modlue. Assume that

i): eR is injective, iί): ej is a local quasi-projective module and Hi): Soc2(F)/Soc(F)
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&8R®A2®A3(ί) , where e is a primitive idempotent and the A; are simple.
Then A^eR for all i.

Proof. Assume A2^eR. Then since Soc2(F)ISoc(F)^eR®eR<3) ,
Soc(F) is simple and ej2 is a waist by i) and ii), there exist xl9 x{ in Soc2(ί

1) such
that xJl^xΊR, x^^XiR^eR/eJ2. Now let p: x^-^eR/eJ2 be the isomorphism.
Then p(Soc(x1R))=eJ/eJ2^e1R, where eJ^e^RfD and D is a charateristic sub-
module of βiR by ii), where el is a primitive idempotent. Take any element α in
End^Soc (#!/?)). Then a gives an element dλ in End^^l?) via p. Then ^ is
induced by an element dγ in End^^jR). On the other hand, since D is charac-
teristic, e^/D^eJdeR and eR is injective, dl is extendible to d in EndΛ(^/ϊ).
Hence rf induces an element in ΈndR(eR/eJ2) (and in End/e(Λ:1J?) via p"1, cf. the
diagram).

D
n

P lμ

SocfaJR) » ςT/ς/2 < - ς/
n p n v n

Thus we have obtained a mapping θ by taking extension, which may depend on

a choice of d

θ: End(Soφ!.R))

Let ί: XγR-^-XiR be the given isomorphism. Then t induces dl in End(Soc(ί1))
= EndΛ(Soc(Λ;1/ϊ)) by taking restriction. Put t' = θ(d1)—t:x1R-+F. Then
t' (Soc (%«)) =0, and hence i'(^)cSoc(F). Then t(x1R)=(θ(d1)-tf) (^j

jip1/Z+Soc(l?l)=Λ:1/ϊ, a contradiction.

In this section we shall observe the ring R with following properties: 1)
R is a basic and right almost QF ring, 2): /2ΦO and/3=0.

Lemma 3. Assume that fR is injective andJ3=0. Then we have 1) : fj2 is

simple or zero and 2) : fR is unίserial iffJ2=0

Lemma 4. Let fR and J be as in Lemma 3 and assume that R is right al-
most QF. If fR contains properly a projectile submodule PΦO, then fR is uni-

seria and hence \ fR \ ̂  3.

Proof. Since //?D//DP=)Soc(/R), f j is local by [3], Corollary to Theo-

rem 1, and hence fR is uniserial for//3=0.
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Corollay. Assume that R is right almost QF and J*=Q. If \eR\ ̂ 3, i.e.

ζ/^φO, then eR is infective. Hence gR is injective or uniserial for any primitive

idempotent g.

Proof. If eR is not injective, eRdfR for some injective fR by [3], Coro-
llary to Theorem 1, a contradition to Lemma 4.

be an (injective) Λ-module. If *ι/M/Wβ#0^#0 and

cR, then we denote this situation by

a ea

ejt = (1 b c) or e^R = (eλ eb ec) .

Lemma 5. Let eλR be injective and e1J
2=$=Q (^ecR) in the above. Then

Proof. There exists xaR in e±] such that ^/?DSoc(^7?), xaR/Soc(e1R)=
eaR and xaR^eaRjA for some A. Hence we obtain the lemma.

Lemma 6. Let e±R be a non-unίserial and injective module expressed as

above. We assume that R is right almost QF and /3=0. Then eJR. is injective.
Further if eaR is uniserial, then ecR is not.

Proof. First we assume βφέ. Now eaR is an injective module with £« /2=f=0
by Proposition 1. We have the same for ebR. From Lemma 5 let

c c
eaR = (a cλ d) and ebR = (b c2 d') .

Since eaRf&ebR, d^pd'. Then ecR is not uniserial (even though eaR is uniserial
in this case), and hence ecR is injective by Corollary to Lemma 4. Next as-

sume a=b, i.e.

e,R = (ί \ c)
a

If eaR is not uniserial, ecR is injective by Lemma 5 and Proposition 1. Hence
assume that eaR is uniserial. If further ecR is uniserial, then we can derive a con-
tradiction by Lemma 2. Therefore if eaR is uniserial, then ecR is not uniserial

and hence ecR is injective by Corollary to Lemma 4.

Theorem 1. Let R be an aritnian ring with J3=Q. Then the following
are equivalent :

1) R is right almost QF.
2) R is left almost QF.
3) Ris a direct sum of serial rings and QF rings.
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Proof. Let -fo}^ be the complete set of mutually orthogonal primitive

idempotents. We shall prove the theorem inductively on t. If every eR is

uniserial, then R is right serial. Therefore R is serial by [5], Theorem 6.1.

Hence we asaume that there exists an injective but not uniserial module
a

βιR=(l \ c). We have shown in Lemma 6
b

(1) if eg belongs to eJR., then egR is injective, i.e., eaR, ebR and ecR are injective.
We shall show that if we replace e±R with eaRy ebR and ecR, then we obtain

(2) the same result as (1) for those eaR, ebR, ecR.

If eaR is not uniserial, wre obtain (2) for eaR. Suppose eaR is uniserial. Then

eaJ^ecR/B. Hence

(3) primitive idempotents (φ£«) belonging to eaR belongs to ecR if eaR is uni-

serial.

Since ecR is not uniserial by Lemma 6, from (3) we obtain again (2) for eaR.

Next consider ecR. If eaR is not uniserial, we obtain (2) for ecR from the above

(replace ^jR by eaR). Suppose eaR is uniserial, and ecR is not uniserial by

Lemma 6. Hence we obtain (2) for ecR. Thus we have shown (2). Now start-

ing from eJR, we get eaR, ebR and eft which belong to ejl. Next we take primi-

tive idempotents belonging to {eaR,ebR, •••,£,/?}. Continuing this procedure

and gathering all such primitive idempotents (use (1), (2) and (3)), we can find

finally a set faR, eaR, •••} satisfying the condition in Lemma 1. Hence R=

2t ̂ mΘ^jRΘΣy>wθβyΛ as rings. Now Σ^^Θ^ Λ is a QF ring. Thus we can
obtain the theorem by induction.

3. Right almost QF rings with homogeneous socles

In this section we shall study rings stated in the title. Let {£,•}/£„ be a

complete set of mutually orghogonal promitive idempotents with l='Σei and R

a basic ring.

Let Q be a local QF ring with / radical. Put Q=Q/Soc(Q) and /==

//Soc(£)). According to [7], Theorem 1 we denote a right almost QF ring R

with homogeneous socle by

k

(4)

QQ
JQ

JJ
T TJ J
T Γ

J J

T ...

Q-
Q-

-J

Q
Q

Q

T
J

T

QQ Q}
QQ Q

QQ Q
f\ f ) 7s)

T Γ ) Γ )

TT...TΠ

\

* ft
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We note from [1] that there is only one projective and injective module

£j/? (resp. Rek) in R.

Lemma 7. Assume k<n on R=Wn

k(Q). Then if R is left almost QF,

R is serial.

Proof. Let ei=eii be the matrix unit in jR. Then eί ](R)&ei+1R for i<n
and en](R)=(J JJJ J). Now assume k<n and R is left almost QF. Then
since ](R) es*&Res-ι for s^k, ](R) e1=(JJtt J)t is isomorphic to Req=(Q Q* J)*
for some^>>& from the remark before Lemma 7 and [5], Theorem 3.18 (see [3],
Corollary to Theorem 1), where ( )* is the transposed matrix of ( ). Hence
since el ](R) e^Q as left Q-modules, / is local and hence Q is serial (cf. Lemma

9 below). Then /«C?/Soc(0)=jί and JISoc(J)=J/^oc(Q)=J^Q/Soc2(Q)^

<2/Soc(<2) as right ^-modules. Put A=(Soc(Q) Soc(<2) Soc(<2) Soc(ζ>)
Soc(<2)) in eλR. Then en](R)^e1R/A from the above observation and hence

en ](R) is local. Therefore R is right serial, and hence R is serial by [5], Theo-
rem 6.1.

Lemma 8. Assume k=n on R=Wn

k(Q). Then R is left almost QF.

Proof. This is clear from (4)

Theorem 2. Let R and n be as in the begining. Assume that R is a right
almost QF ring with homogeneous socle and J(JR)W~1ΦO, ](R)m=0 (and hence R=
Wn

k(Q)andm^n). Then
1) if m ̂  2n, R is serial,
2) ifm=nr, r^3, R is left almost QF, and
3) if m=nr+k, r^2 and o<k<n, R is left almost QF if and only if R is

serial.

Proof. By assumption and [7], Theorem 1 R=Wϊ(Q) and we have e{](R)
^ei+1R for i<.n—1. By a direct computation of ](R)P we have

i) en](R)/en](R)2^e1R®'"®e1R (cf. Proposition 1).

ii) e1](R)tn=(Jt^ ).

1). Since m^2n, Q = eJ(R)2n = (J2 ) by ii). Hence /2=0 and so Q is
serial. Accordingly R is seiral from the proof of Lemma 7.

2) and 3). From i) we know

1 2 3 -

Further ^=0 if and only if e1](R)m=0. Hence Soc(£1(/?)»£nj? if m=nr and
Soc(e1R)^ef!R if m=nr+ky o<k<n. Therefore Rf&Wn(Q) if m=nr and R^

I if &Φo. As a consequence we obtain the theorem from Lemmas 7 and 8.
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Corollary. Assume n=2 and R is right almost QF. Then if

J(R)2»=0, R is left almost QF. // J(jR)2l"ΦQ, J(Λ)2"+1=0, R is QF or serial if
and only if R is left almost QF. Further ifJ(Rγ=Q} R is QF or serial.

Proof. If R is QF or serial, the corollary is clear by [5], Theorem 4.5.
Assume that R is not QF. Since n= 2, we can suppose that ^jR is injective and

e2R. Hence we obtain the corollary from Theorem 2.

4. Rings with

In the previous sections we have observed a ring which is a direct sum
of QF rings and serial rings. In this case
($-1) eR is injective or uniserialfor each primitive ίdempotent e.

We consider two more conditions. Let eR be injective but not uniserial.
Then we may assume that there exists an integer s such that ej*/eji+l is simple
for all /' (o^i^s— 1) and eJsleJs+1^Σj£k®fjR'> k^2y where the fj are primitive
idempotents. Here we consider the second condition
(#-2) thefjR is injective for allj.

Assume that R is a right almost QF ring with (#-!)• In the above we put
eJΊeJi+l^Si^\ Si is a primitive ideomptent. Since eR is not uniserial, gfR is
injective by (#-1). In particular ς/*"1^^,-! R/A for some A in an injective
&_!« and hence eJ'leJ»i~g,-JI(g,-J*+A)'*-gl-Jlg.-lJ*. Since | ej'/ej-1 \ ̂
2, (#-2) is satisfied from Propostion 1. From the above observation we know
that

Assume that R is right almost QF, the (#-1) is satisfied if and only if every
non-injective projective gR is contained in a uniserial injective eR and in this
case (jf -2) and (#-3) below are satisfied.

Taking some non-serial right serial rings, we can get rings with ($-1,2)
which are not right almost QF. Hence we consider the third condition. Here
we assume temporarily that R is an algebra over a field K with finite dimen-
sion. We further assume that R satisfies ($-1) as right as well as left J?-modules.
Let gR be not injective, and hence uniserial. Then Έ>(gR) is indecomposable.
Take Έ(gR)*=Homκ(E(gR), K). Then E(gR)* is indecomposable and projec-
tive. Therefore E(gR)?&E(gR)** is local. We consider this property for any
ring.
($-3) E(gR) is local for each primitive ίdempotent g.

Now we study rings with ($-1, 2, 3). We always assume that R is basic.

Lemma 9. Assume ς/V£/ί+1»«ιΛΘ«2^θ -θ*βΛ. Then eji+1/eji+2 is a
komomorphic image of ^/φ^ /0 ξ&es /.

Proof. We can express ej* as xJi+xJR.^ ----- \-xsR+eJi+1, where Xjej=Xj.
Hence eJi+1=x1e1J-] ----- [~xsesj+eji+2. Thus we obtain the lemma.
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Lemma 10. We assume that (#-3) is satisfied. Suppose that eR is injective
and eJ/eJ2^g1Rίg1J/g1J

2?&g2R) "^gs-iJIgs-^^ggR, where the g{ is a primitive
idempotent and g{R is not injective for all i. Then eRl)glR'D HgsR isomor-
phically.

Proof. We shall show eJ^gjR for all i by induction on ί. Assume
eJtf**StR if *^(soem k— 1). Then eJk/eJk+1^gk.1J/gk^1J

2^ίgkR by assumption.
Let eJk=xkR(xkgk=xk) and p: gkR~>^Jk(p(gk)^χk) the natural epimorphism.
Take a diagram

p
xkR /p'
n /

eR

Since eR is injective, we have p': E(gkR)—*eR which commutes the diagram.
E(ftΛ) being local from (#-3), p'(Έ(gkR))^xkR=p'(gkR) forgkR*Έ(gkR). Fur-
ther ej* is a waist for all t^k by induction hypothesis. Consequenctly
p'(Έ(gkR)) is projective. Therefore ρf is a monomorphism, and hence so is p.

Lemma 11. We assume that (#-1), (#-2) and (#-3) are satisfied and that eR
is injective and g1 belongs to eR. If g±R is not injective, then g^R is contained
ίsomorphically in an injective and unίserίal module eJR..

Proof. Since gι belongs to eR, we may suppose eJs/eJ3+1^gιR® for
somes. gJK. being not injective, j=t=o. If s=l, then \eJ/eJ2\=l by (#-2) and
giR^eJ from Lemma 10 and eR is uniserial by (#-1). Hence assume s>l.
From Lemma 9 there exists g2 such that eJ$-1/eJs&g2R(& and g2Jlg2j2^Sι^
Φ . If g2R is not uniserial, g2R is injetive by (#-1), and then g^ is injective
by (#-2), a contradiction (cf. the remark after (#-2)). Accordingly £2 ̂  is uni-

serial and hence g^^J^^giR Next assume that ̂ ^ 1S not injective. Then
^Λ satisfies the same condition as on ^jR, and hence similarly to the above we

can find g3R such that eJs-2/eJ3^^g3R®-" and g^JIg^J2^^®'"- Repeating
this process, we obtain finally an injetive and uniserial module eJR. such that

eJltiβ^&R f°r some ^(and gJIgtJF^gt-iR* -gJlg2j**>gιR) Hence *ι&
contains isomorphically ̂ /? from Lemma 10.

Proposition 3. (#-1), (#-2) d/zJ (#-3) αrc satisfied if and only if R is right
almost QF and every non-injective projective gR is contained in a uniserial and
injective eR.

Proof. We assume (#-1, 2, 3). First we shall show that R is right QF-3.
Let eR be not injective. Then Έ(gR) is local by (#-3), i.e., Έ(gR)^fR/A and
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fR is uniform from (#-1). Further fR/AngR and gR^B/A for some B (nA)
in fR. Therefore since gR is projective and fR is uniform, A=0 and fR=

Accordingly R is right QF-3. Let hR be injective and suppose
where h and kι are primitive ideompotents. Then form the last part

of the proof of Lemma 11 there exists a uniserial and injective module hiR such
that A1jR=(A1 A, A1 ) and h^R'DkJR. Hence hR&hJR.. Thus J? is right almost
QF by [3], Corollary to Theorem 1. The converse is clear from the remark
before Lemma 9.

5. J4 = 0

In this section we assume that R is an (basic) artinian ring with JΓ4=0.

Let 1=Σ^M e{ be as in §3. We studied almost QF rings with n—2 in Coro-
llary to Theorem 2. We study almost QF rings with n=3 or 4 in this section.

Lemma 12. Let R be two-sided almost QF. If R is not QF, then there
exists an injective and projective eR such that eR/Soc(eR) is again injective.

Proof. R is right almost QF* by [6], Theorem 3.7. Hence we obtain the
lemma from [2], Theorem 2.3.

Theorem 3. Let R be an (basic) artinian ring. Assume that /4=0 and
n^3, where {ei}i^n is a complete set of mutually orthogonal primitive idempotents.

Then the following are equivalent:

1) (#-1), (#-2) and (#-3) are satisfied as right as well as left R-modules.
2) R is a two-sided almost QF ring.
3) R is a direct sum of serial rings and QF rings.

Proof. l)->2). This is given by Proposition 3.
2)-»3). From Corollary to Theorem 2 and Theorem 1 we can suppose

n=3 and J^ΦO. First we note that if R is a direct sum of two rings, then R
is a direct sum of serial rings and QF rings from Propostion 2 and Corollary to
Theorem 2. We call this situation R splits. Let R be two-sided indecompos-
able and neither serial nor QF. Then we shall derive a contradiction for all

possible situations. If βiR'DeJK.I^e^Rj R is serial by Theorem 2. Thus we may

suppose from [3], Theorem 1

(5) βiRy e3R are injective and e1J^e2R.
First we assume that eλR is uniserial.

i) βiR is uniserial and ezj is local.
Then eij/βfj2 is uniserial for all /. Hence R is right serial, and R is serial by

[5], Theorem 6.1.
Thus we may assume

ii) βiR is uniserial, but e3J is not local, i.e.,
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a a'
= (3 ! : d)

b V

Then {a, b} C {1, 3} from Propostion 1. First we note that if a=b=3, then R
splits from Lemmas 1 and 9. Hence we can skip the case a=b=3.

1*121=2. i) *Λ=(12).
a = 1. Let e^Jfe^J2«*1? 0 . Then there exists x1 in e3/ such that xl *=

x1 and (#ιl?+£3/
2)/£3/

2^*/?. (We use this notation in the following arguments.)
Suppose that 1̂? is simple. Then x1R= Soc(e3R)de3J

2 for e3J
2^09 a contra-

diction. Hence x^R^βiR is injective, again a contradiction.

|*121 =3. ii) *12=(121).
a=\. Then we take XΛ in £312 such that Xaz>£3/

2 and e3J/Xa<=&eaR. Since

£3//^s«=5Soc(*l?)^*l? and *12 is injective, £2=£3, a contradiction.

iii) *12=(1 2 2). Then eJfaf&SocfaR). Hence *=*, a contradic-
tion.

iv) *Λ=(1 2 3).
tf=3. We obtain the same contradiction as in iii).
a=b=l. xaR^(e1RISoc2(e1R) or e^/SocfaR)). Hence (xaR+eJ2)J2=0.

Accordingly 0=(2Λ xaR+eίJ
2)J2=e3J

3, a contradiction to/'ΦQ.

|*121 =4. v) *Λ=(1 2 1 *). Then Λ=2.
α=l. Then Λ?α12 in «3jΓ is a homomorphic image of *12, and hence xaR?&

(*Λ/*/3 or */2/*/). If XaR^eiR/βiJ, xaRdSoc(e3R)c:e3J
2

ί a contradiction.
Hence we obtain a homomorphism-ψ : Soc2(Λ?al?)-^Soc2(Λ;Λl?)/Soc(Λ?Λl?)«^2^->

Soc(*/2). Since *12 is injective, we obtain an extension of <ψ>, which is a con-
tradiction to the structure of *1? and e3R.

vi) *R=(1 2 2 Λ?).
Then x~2 and *//*/2^Soc(*12). Hence *=£2, a contradiction.

vii) *12=(1 2 3 Λ?). Since {a, b} C {1, 3}, x= 1 or 3, and d3=x.

vii-i) #=landrf=2. Thenα=l.

α) b= 1. Let £3//£3/
2«#ιϊ?θ£ί 1?Θ . Since d=2, we may assume Λ^jR^

Λ?ίl?« ( ̂ *!?/*/2, which is uniserial). Hence Λ^Λ, #(12 are contained in
Soc2(£3R). Therefore e3J=Soc2(e3R) for Soc2(e3R)l3e3J

2. As a consequence

1
*R = (3 : 2).

Then we obtain a contradiction to Lemma 2.

/3) 6=3. e3J contains a submodule 1̂2 isomorphic to *1?/*/2 as in a).
Hence ^/ίcSoc^/?) and XiR(te3J

2. Since ό=3, e3J
2/e3f* has to containa a
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simple submodule isomorphic to e^R by Lemma 9 and its proof. Hence since
Λ^jRcteg/2, Soc2(e3R)/Soc(e3R)^e1R®e1R® ", a contradiction to Lemma 2.

vii-ii) x=l and d=3 (and hence a=l).

a) b=l. Since Soc(e1R/Soc(e1R))^Soc(e3R),e3R/Soc(e3R)(=E) is injec-
tive by Lemma 12. Further Soc2(e3R)=e3J

2 and Soc2(E)/Soc(E)^e3J/e3J
2&

JRΘ , a contradiction to Lemma 2.

6=3. From the structure of e3R and Lemma 9 we know

£3/?)^*2# or ^e3R. Then Soc2(e1R)/Soc(e1R)^Soc(e3R) as above,
a contradiction.

vii-iii) x=3y i.e. ^R=(l 2 3 3).

Since e1RISoc(elR) is not injective, | Soc2(^3l?)/Soc(^3jR)| =1 by Lemma 12.

Hence

1 1
e3R — (3 - # j) or (3 A? 3;)

(note ^3/
2cSoc2(^3JR)). If £3/

3ΦO, 37 = 3, a contradiction. If e3J* = Q,
I Soc2(έ>3Λ)/Soφ3#) I ̂ 2, a contradiction.

Thus we have shown that R is a direct sum of serial rings and QF rings,

provided eλR is uniserial.

Finally we observe the structure of R, when ^/2 is not uniserial. Assume

that an injective module eR contains a projective proper submodule and is not

uniserial. Then ej is local by [3], Corollary to Theorem 1, and hence

eR = (abc' d)',

Now from i), ii), (5), Proposition 1 and Lemma 12, we may assume
a a'

iii) €^=(1 2bg) and £37?=(3 V h g') are injective, eλR is not uniserial and

*2#~*ι/; {α,i}c{l,3}.

From Lemma 12 we have

Lemma 13. Let R, e^R and eJR. be as above. Then e3R/Soc(e3R) is injec-

tive.

First we assume that e3R is not uniserial. We note that if a'=b'=3, then

R splits from Lemmas 1 and 9.
iii-1) eβ and e3R are not uniserial, and hence e3β^=0 from Lemma 13.

i) Λ=l. Then g=2.

a'—\. Then h=2 and Soc(£3jR/Soc(e3/2))—Soc(elR), a contradiction from
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Lemma 13.
ii) a=b=3.
a) a'=b'=l. Then h=2 and ̂ '=3, i.e.,

3 3 1
e,R = ( 1 2 i 1), ejt = (2 : 1) and ejt = ( 3 : 2 3 ) .

3 3 1

Then e^ί/Soc(e3R) (=E) is injective by Lemma 13 and Soc2(E)/Soc(E)^S1R®
— @8ιR. Since e3R is not uniseial, |Soc2(E')/Soc(E')| ^2, a contradiction to
Lemma 2.

β) a'=l and ft'=3. Then /r=2 from ejl and A=l or 3 from e3R, a con-
tradiction.

iii-2) eλR is not uniserial and eJR. is uniserial.
α) a=b=l. Then

1
01.R = (1 2 : 2), which contradicts Lemma 2.

1

/3) Λ==i | 4=3. Then

1
^Λ = (12 2), and hece 7̂? = (3 2 έ; rf) .

/^0 (resp, eJ2 = ϋ), Soc2(β3Λ)/Soc(^)^Soc(^Λ) (resp.
jlZ)), a contradiction from Lemma 13. Assume £3/

3Φθ, then c=l or 3,

and hence d=2, a contradiction.
γ) a=b=3.

i) ^=1. Then

3
elR = (1 2 1) and e,R = (3 1 c d)

We know as above ^T^ΦO, and so e3R=(3 123). Here we shall again make
use of the argument in the proof of Lemma 2. Since e3R is uniserial, there exist
two submodules yR, y'R in ̂ /2 such that yR^y'R^eJRIe^J2. Let a be an ele-
ment in End^(Soc(^ί?)). We shall find an extension of a in Έτ\dR(yR). Since
yR^e3R/e3Jpy Soc(yR)^Soc(e3R/e3J

2)^e1R/e1J. Hence we may assume that a
is given by an element p in eJR via the above isomorphism. Then p inducees
an endomorphism p of e1R/e1J

2^Soc2(E)c:E (^^R/e^). Further^ is exten-
dible to q in ΈndR(E). Finally since E/Boc(E)^e3R/e3J

2

> q induces an element
in Endfl^.R/tfg/2), which is an extendion of a (see the diagram below)

E ~ e3R/e3J
3 -A e3R/eJ2 - > 0

u u u
Soc2(E) ^X-^ Soc^R/e.J2) -> 0 ,
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where p is the natural epimorphism.
Using this extension, we can derive a contradiction.

β) a'=l and 6'=3. Then h— 2 from e±R and h=l or 3 from e$Ry a con-
tradiction.

3)->l). This is trivial.

Theorem 4. Let R and n be as in Theorem 3. Assume that R is a two-
sided almost QF and two-sided indecomposable ring with J4= 0 and n=4 . Then

R is either serial or QF if and only if R is not of the followίhg : there exist exactly
three infective and protective modules e{R and some one among e{R is not uniseriaL

Proof. Suppose that R is not QF. Then we have the following four
cases:

1) eiR is injective and elR'De2R^ezR^eJί (isomorphically).
2) ejt and e4R are injective and elR'De2Rl^ezR.
3) βiR and ezR are injective and elR"De2R,
4) tfx-R, e2R and e4R are injective and el

Case 1) Since /4— 0, R is serial by Theorem 2.

Case 2) Then e^R is uniserial by [3], Corollary to Theorem 1, i.e., e1R=
(1 2 3 d) (or=(l 2 3)) and e4R are injective. If e4J is local, R is right serial.
Suppose that e4J is not local. Then from Proposition 1 we have the following:

1... 1... 4 .
a) e4R = (4\ ), b) e,R = (4 | ) or c) e,R = (4 )

1... 4... 4...

jR splits if c) occurs. Hence we assume a) or b).
i) elR/Soc(e1R) and eίRISoc2(e1R) are injective (see the proof of Lemma

12).
Let xR be a submodule in e4J with (xRJre4J

2)/e4J
2^e1R. Since eji is uni-

serial, Soc(^4Λ)=Soc(Λ?jR)««2Λ or ezR if ^/3ΦO. However SocfoJR/Socfolϊ))

Λί^jR and Soc^Λ/SoCg^jR))^^? a contradiction. If ^/3=0, we obtain the
same result as above.

ii) e1RISoc(e1R) and e4RISoc(e4R) are injective.

Assume a) or b). Soc(^4/?) and Soc2(^4Λ) are waists by assumption. Since
Soc(eR/Soc(eιR))^e3Ry there exists a submodule xR in £4/ such that xR&

βiR/e^y i.e., e4J*— 0, and hence β4Λ is uniserial.

/3) βJ3-0. ^=(123).
Then xR is simple, i.e. |^4Λ| ^2, a contradiction.

iii) e4RI$oc(e4R) and e4R/Soc2(e4R) are injective. Then £4JR is uniserial and

hence Jί? is serial.
Case 3) i) e1R/Soc(e1R) and e^So^R) are injective. Then e^=

(12cd) (or=(l 2 c)) and
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__ g

h

In the latter case R is serial. Hence assume the former. Then {£, h} C {1, 3}.

Assume £ι/3=Nθ.

a) g=l> There exists xR in e4J
2 with xR^e^/A for some A in eft.

However Soc(e3R)=Soc(xR)ε&e2R, a contradiction.

/3) g=h=3. Then

3
^ = ( 3 4 : 4 ) ,

3

which is a contradiction to Lemma 2.

We obtain the same result in a case eιJ3=0.

ii) elR/Soc(e1R) and e3R/Soc(e3R) are injective. Then ^/? and £3jR are

uiserial, and hence R is serial.

Case 4) If eλRy e3R and e4R are uniserial, R is right serial.

6. Examples

In this section we shall give several examples related to the previous sec-

tions.

1. We shall give a two-sided almost QF ring with J*=Q and n=4 but nei-

ther QF nor serial. This is an example of exceptional algebras in Theorem 4.

Let K be a field and Λ^Σ^Θ^-R, where {#,•} is a set of mutually orthogonal

primitive idempotents with 1 = 2 e{. We define elR=elK@aK®abK@ctbc'K,

e2R=e2Kξ&bKξ&bcfK, •••, whose multiplicative structur is given below, where

λa2 means a=βι ae2, and so on.
(In the previous sections we expressed horizontally the structure of £,R, however

we shall do vertically here.)

βfR/eJ 1 2
I I

A 23

eιJ2/eίJ3 °b be'

ej3 abc'

where the other products among a, b, ••• are zero, e.g. bc=dc'=o. Then

(Re4)**&eιR, (Re2)*^e4R and (Re3)**&e3R are injective and e1RlDe2R(Re2^>Re1).

Hence R is the desired algebra, which satisfies (#-1, 2, 3).

In the above example we replace e3R with

3
/ \/

ca /
\

cab = c'd

4

4^3

dc

1
dca ,
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me

6

I
6^3

I
nj

cab — c'd = em — fn —

Then we obtain a two-sided almost QF-algebra with J*=Q and any ft ̂ 4, which
is neither QF nor serial. We shall give another type of exceptional algebras,
where eλR (Ί3e2R) is not uniserial.

ej3
= ab'd'

<*3

££

\3

cab - c'ab' =- de = d'e' eca

where the other products among a,b" are zero, e.g. {b,b'} {c,c'} = oy

b'd'e' = o, {ey e'} {d, d'} = o, dec = d'e 'c' = o and so on. Then (/&4)*

e2Ry (Re3)^^e4R and (Re2)*^e4R. This ring is almost QF, but (#-1) is not
satisfied.

2. We shall give an algebra which is a two-sided almost QF-algebra with
/4ΦO and n=3, but R is neither QF nor serial (cf. Corollary to Theorem 2).

as above.

«,/

1
1

A
I

αi

abc

άbca

2
I
I

be
I

bca

3
/ \

3C1 3^3
i 1
1 1

ca dd
\ /

cab = ddd

Then βiR, e3R and Re2> Re3 are injective and e
3. There exists a right almost QF algebra with /4=0 and n=3, which

is not left almost QF (cf. Corollary to Theorem 2). Put bca=o in the above.
Then Rez~DRe2 and/£3 is not local.
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