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In this paper we always assume that R is a two-sided artinian ring with
identity. In [3] we have defined right almost QF rings and showed that those
rings coincided with rings satisfying (*)* in [2], which K. Oshiro [5] called
co-H rings. We shall show in Section 2 that right almost QF rings are nothing
but direct sums of serial rings and QF rings, provided J*=0. Further in Sec-
tion 5 we show that if R is a two-sided almost QF ring and 1=e,+e,+¢;, then
R has the above structure, provided J*=0, where {e,} is a complete set of mut-
ually orthogonal primitive idempotents. Moreover if 1=e¢,+¢,}¢,-+¢,, we have
the same result except one case. We shall study, in Section 3, right almost
QF rings with homogeneous socles W;(Q) [7] and give certain conditions on
the nilpotency m of the radical of W;(Q), under which W3 (Q) is left almost
QF or serial. In particular if m<2n, W;(Q) is serial. We observe a special
type of almost QF rings such that every indecomposable projective is uniserial or
injeative in Section 4.

1. Almost QF rings

In this paper we always assume that R is a two-sided artinian ring with
identity and that every module M is a unitary right R-module. By M we de-
note M/J(M), where J(M) is the Jacobson radical of M. We use the same
notations in [3]. We call R a right almost QF ring if R is right almost injective
as a right R-module [3] and [4]. We can define similarly a left almost QF ring.
If R is a two-sided almost QF ring, we call it simply an almost QF ring. It is
clear that R is right almost QF if and only if every finitely generated projective
R-modlue is right almost injective. Hence the concept of almost QF rings is
preserved under Morita equivalence and we may assume that R is basic.

In this section we shall give some results which we use later. First we give
a property of any right almost QF rings.

Proposition 1.  Assume that R is right almost QF.  Let e,R be injective, e, J*
be projective, i.e., e J'~e,R for all i<(some k) and e J**|e,J**~&, R .
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Then if e,R is not injective, e, ] Flxe,R, and hence |e, J**'|e, J**?| =1, where
éaR=uaR/ea].

Proof. Let x,R be a submodule in ¢, J**! such that (x, R+e, J**%)/e, J#?~
e,R (x,e,=x,). Suppose that ¢,R is not injective. Then ¢, RCe,R (isomorphi-
cally) for some p==a, which is injective by [3], Corollary to Theorem 1. Let
p: & R—x, RCe R; p(e,)=x,, be the natural epimorphism. Since ¢, R is injec-
tive, there exists p’:e,R—e, R, which is an extension of p. Put y=p'(e,);
(y=ye,) and ¢,=e,7; rER. We note that the ¢, J* are all waists for i <k+1 by
assumption. If yEe, J**!, then X,= Jr=>ye,re,=0 in e, J**'/e, J**?, a contradic-
tion. Accordingly yR=e, J* for some t=k. However ¢, J! is projective, and
hence p’ is a monomorphism. Consequently e; /¥*! contains isomorphically the
projective module e, R, and e J*** is local form [3], Corollary to Theorem 1.

Proposition 2. Let R be right almost QF. If R is either a local ring or
J?=0, then R is serial or QF.

Prof. R is a QF ring in the first case from [3], Corollary to Theorem 1.
Assume J?=0 and R is basic. If eR is injective for a primitive idempotent e,
then |eR| =<2 and eR is uniserial. Hence fR is injective and uniserial provided
fJ =0 by [3], Corollary to Theorem 1. Hence R is right serial and so R is
serial by [5], Theorem 6.1.

Let kR (or Rg) be a simple module which appears in the factor modules of
composition series of eR (or Re), where g is a primitive idempotent. In this case
we say that g belongs to eR (or Re).

Lemma 1. Let R be basic and let {e;R} ;< be a set of injective and projective
modules. Assume that every primitive idempotent belonging to e,R is equal to
some eu;yE {e;} for each e;. Then 3,<,Pe;R is a direct summand of R as rings.

Proof. We note from the asumption that for each e;E {e;} there exists e;;
in {¢;} such that éjENSoc(ep<j)R). Put E=5,, ¢; and F=1—E=3,_, f;, where
the f, are primitive idempotents. Then ERF=0 from the assumption. Let
0: e,R— f,R be a homomorphism. If 8o, there exist a simple submodule S of
SR and a submodule T of ¢,R such that S C(e,R) and T'/0-'(0)~S. We may
assume S ~é jﬁ for some e; in {¢;} by assumption. Accordingly S~ Soc(e,;R)
by the initial remark, and hence we obtain a non-zero homomorphism of f,R to
e, (R, since e, R is injective. 'Therefore f, & {e;} by asumption, a contradiction.
As a consequence 0=o, i.e., FRE=0 and R=ER@FR=ERE®FRF.

The following lemma is essential in this paper.

Lemma 2. Let R be artinian and F a uniform R-modlue. Assume that
1): eR is injective, ii): e] is a local quasi-projective module and 1ii): Soc,(F)/Soc(F)
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NEEGBAZEB:%@---, where e is a primitive idempotent and the A; are simple.
Then A;2<eR for all i.

Proof. Assume A,~&R. Then since Soc, (F)/Soc(F)~eR®PeR D,
Soc(F) is simple and ¢J* is a waist by i) and ii), there exist x,, #{ in Soc,(F) such
that xR =+x(R, x,R~x{R~eR[eJ>. Now let p: x,R—eR/e]* be the isomorphism.
Then p(Soc(x,R))=e]|eJ*~& R, where eJ~e,R/D and D is a charateristic sub-
module of ¢,R by ii), where e, is a primitive idempotent. Take any element ¢ in
Endg(Soc(x,R)). Then a gives an element d, in End,(&,R) via p. Then d, is
induced by an element d; in Endg(e;R). On the other hand, since D is charac-
teristic, ,R/D~e¢J CeR and eR is injective, d; is extendible to d in Endg(eR).
Hence d induces an element in Endg(eR/eJ?) (and in Endg(x,R) via p~%, cf. the
diagram).

D

N
elR/eIJ*— BIR

p l”‘ vl’“

Soc(xR) ~ efle]? «——e]
n p N v N
R =~ eR[e]? <——eR

Thus we have obtained a mapping @ by taking extension, which may depend on
a choice of 4

6: End (Soc(x;R)) — Endg(x,R) .
Let £: x,R—x{R be the given isomorphism. Then ¢ induces d, in End(Soc(F))
— Endg(Soc(x,R)) by taking restriction. Put t'=60(d;))—t: x,R—F. Then
t' (Soc(#,R))=0, and hence #'(x,R)CSoc(F). Then #(x,R)=(0(d))—1") (x,R)C
xR+ Soc(F)=x,R, a contradiction.

2. J*=0

In this section we shall observe the ring R with following properties: 1)
R is a basic and right almost QF ring, 2): J?+0 and J*=0.

Lemma 3. Assume that fR is injective and [?=0. Then we have 1): f]* is
simple or zero and 2): fR is uniserial if f]*=0.

Lemma 4. Let fR and J be as in Lemma 3 and assume that R is right al-
most QF. If fR contains properly a projective submodule P=+0, then fR is uni-
seria and hence | fR| <3.

Proof. Since fRD fJf DPDSoc(fR), f] is local by [3], Corollary to Theo-
rem 1, and hence fR is uniserial for fJ°=0.
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Corollay. Assume that R is right almost QF and J*=0. If |eR| =3, ie.
eJ*=0, then eR is injective. Hence gR is injective or uniserial for any primitive
idempotent g.

Proof. If eR is not injective, eRC fR for some injective fR by [3], Coro-
llary to Theorem 1, a contradition to Lemma 4.

Let e,R be an (injective) R-module. If e J/e; J’~&,RPe,RD--- and
e, J*~é.R, then we denote this situation by

a e

eR=(1bc)oreeR= (e, ¢ ¢,).

Lemma 5. Let e,R be injective and e, J*+0 (~é&.R) in the above. Then
e Jle, JP~e.RPD---.

Proof. There exists x,R in e, J such that x,RDSoc(e,R), x,R/Soc(e,R)=
&R and x,R~e,R|A for some A. Hence we obtain the lemma.

Lemma 6. Let eR be a non-uniserial and injective module expressed as
above. We assume that R is right almost QF and J*=0. Then e.R is injective.
Further if e,R is uniserial, then e R is not.

Proof. First we assume a=b. Now ¢,R is an injective module with ¢, J?==0
by Proposition 1. We have the same for ¢,R. From Lemma 5 let

c [

eR=(ac,d) and ¢R=(bc, d’).

Since e,Ra&e,R, d=d’. Then ¢,R is not uniserial (even though ¢,R is uniserial
in this case), and hence ¢, R is injective by Corollary to Lemma 4. Next as-
sume a=b, i.e.

a

eR=(1: ¢

a
If ¢,R is not uniserial, ¢,R is injective by Lemma 5 and Proposition 1. Hence
assume that ¢, R is uniserial. If further e R is uniserial, then we can derive a con-
tradiction by Lemma 2. Therefore if ¢,R is uniserial, then e R is not uniserial
and hence ¢,R is injective by Corollary to Lemma 4.

Theorem 1. Let R be an aritnian ring with J*=0. Then the following
are equivalent :

1) R is right almost QF.

2) R s left almost QF.

3) Ris a direct sum of serial rings and QF rings.
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Proof. Let {¢;};<, be the complete set of mutually orthogonal primitive
idempotents. We shall prove the theorem inductively on 2 If every eR is
uniserial, then R is right serial. Therefore R is serial by [5], Theorem 6.1.
Hence we asaume that there exists an injective but not uniserial module

a
e, R=(1 : ¢). We have shown in Lemma 6
b

(1) if e, belongs to e,R, then ¢,R is injective, i.e., &,R, ¢;,R and e R are injective.

We shall show that if we replace e,R with ¢,R, ¢,R and e R, then we obtain

(2) the same result as (1) for those ¢,R, ¢,R, e.R.

If ¢,R is not uniserial, we obtain (2) for ¢,R. Suppose ¢,R is uniserial. Then

e, J~e R/B. Hence

(3) primitive idempotents (==¢,) belonging to ¢,R belongs to e.R if ¢,R is uni-
serial.

Since e,R is not uniserial by Lemma 6, from (3) we obtain again (2) for e,R.

Next consider ¢,R. If ¢,R is not uniserial, we obtain (2) for ¢,R from the above

(replace ¢,R by ¢,R). Suppose ¢,R is uniserial, and e.R is not uniserial by

Lemma 6. Hence we obtain (2) for e.R. Thus we have shown (2). Now start-

ing from e,R, we get ¢,R, ¢,R and e R which belong to e,R. Next we take primi-

tive idempotents belonging to {¢,R, ¢;R, -:+, ¢,R}. Continuing this procedure

and gathering all such primitive idempotents (use (1), (2) and (3)), we can find

finally a set {e,R, ¢ R, .-} satisfying the condition in Lemma 1. Hence R=

SisnDe;RBT 5, De,;R as rings. Now =5, Pe;R is a QF ring. Thus we can

obtain the theorem by induction.

3. Right almost QF rings with homogeneous socles

In this section we shall study rings stated in the title. Let {¢;};<, be a
complete set of mutually orghogonal promitive idempotents with 1=3, ¢; and R
a basic ring.

Let O be a local QF ring with J radical. Put O=Q/Soc(Q) and J=
J/Soc(Q). According to [7], Theorem 1 we denote a right almost QF ring R
with homogeneous socle by

k
000-0(000
B ]J J O QQ".Q -
@ WO =\ oo ||
JT cooeee J|JO-0
] ......... ] .7.77@
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We note from [1] that there is only one projective and injective module
e.R (resp. Re,) in R.

Lemma 7. Assume k<n on R=W3(Q). Then if R is left almost QF,

R is serial.

Proof. Let e;=e;; be the matrix unit in R. Then ¢; J(R)~¢;4,R for i<n
and e, J(R)=(J-++J J J---J). Now assume k<<z and R is left almost QF. Then
since J(R) e,~Re,_, for s<k, J(R) e,=(J J++- J)! is isomorphic to Re,=(Q Q-+ J)*
for some p>k from the remark before Lemma 7 and [5], Theorem 3.18 (see [3],
Corollary to Theorem 1), where () is the transposed matrix of ( ). Hence
since e; J(R) e,;~0 as left Q-modules, [ is local and hence Q is serial (cf. Lemma
9 below). Then J~Q/Soc(Q)=0 and J/Soc(]J)=]/Soc(Q)=J~Q/Soc,(Q)~
0O/Soc(Q) as right Q-modules. Put A=(Soc(Q) Soc(Q)---Soc(Q) Soc(Q)--
Soc(Q)) in e,R. Then e, J(R)~e,R/A from the above observation and hence
e, J(R) is local. 'Therefore R is right serial, and hence R is serial by [5], Theo-
rem 6.1.

Lemma 8. Assume k=n on R=W}(Q). Then R is left almost QF.
Proof. This is clear from (4)

Theorem 2. Let R and n be as in the begining. Assume that R is a right
almost QF ring with homogeneous socle and J(R)"'=0, J(R)"=0 (and hence R=
Wi(Q) and m=n). Then

1) if m=<2n, R is serial,

2) if m=nr, r=3, R is left almost QF, and

3) if m=nr+k, r=2 and o<k<n, R is left almost QF if and only if R is
serial.

Proof. By assumption and [7], Theorem 1 R=W}(Q) and we have ¢;J(R)
=~e; R for i<n—1. By a direct computation of J(R)? we have

i) e,J(R)e,J(R’~&R®D--@e&.R (cf. Proposition 1).

i) e J(R " =(J*).

1). Since m<2n, 0=r¢, J(R)*=(J?"*) by ii). Hence J?=0 and so Q is
serial. Accordingly R is seiral from the proof of Lemma 7.

2)and 3). From i) we know

123..
eR=(123n123..).

Further J"=0 if and only if ¢, J(R)"=0. Hence Soc(e,R)~e,R if m=nr and
Soc(e,R)~e,R if m=nr-+k, o<k<n. Therefore R~W;(Q) if m=nr and R~
Wi(Q)if k+o. As a consequence we obtain the theorem from Lemmas 7 and 8.
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Corollary. Assume n=2 and R is right almost QF. Then if J(R)*-140,
J(R)*™=0, R is left almost QF. If J(R)*™=0, J(R)***'=0, R is QF or serial if
and only if R is left almost QF. Further if J(R)*=0, R is QF or serial.

Proof. If R is QF or serial, the corollary is clear by [5], Theorem 4.5.
Assume that R is not QF. Since n=2, we can suppose that ¢,R is injective and
e,J(R)=~e,R. Hence we obtain the corollary from Theorem 2.

4. Rings with (4-i)

In the previous sections we have observed a ring which is a direct sum
of QF rings and serial rings. In this case
(#-1) eR is injective or uniserial for each primitive idempotent e.

We consider two more conditions. Let eR be injective but not uniserial.
Then we may assume that there exists an integer s such that eJ’/eJ'* is simple
forall { (0<i<s—1) and eJ*[e]**' ~ 3., Df;R; k=2, where the f; are primitive
idempotents. Here we consider the second condition
(#-2) the f;R is injective for all j.

Assume that R is a right almost QF ring with (§-1). In the above we put
efile]i*'~g.R; g; is a primitive ideomptent. Since eR is not uniserial, g;R is
injective by (#-1). In particular eJ*'~g,_, R/A for some A in an injective
goR and hence ] /e~ g, /(g J*+-A) —g,1JgsJ%. Since |e]*Je]}| =
2, (#-2) is satisfied from Propostion 1. From the above observation we know
that

Assume that R is right almost QF, the (#-1) is satisfied if and only if every
non-injective projective gR is contained in a uniserial injective eR and in this
case (#-2) and (#-3) below are satisfied.

Taking some non-serial right serial rings, we can get rings with (#-1, 2)
which are not right almost QF. Hence we consider the third condition. Here
we assume temporarily that R is an algebra over a field K with finite dimen-
sion. We further assume that R satisfies (§-1) as right as well as left R-modules.
Let gR be not injective, and hence uniserial. Then E(gR) is indecomposable.
Take E(gR)*=Homg(E(gR), K). Then E(gR)* is indecomposable and projec-
tive. Therefore E(gR)~E(gR)** is local. We consider this property for any
ring.

(#-3) E(gR) is local for each primitive idempotent g.
Now we study rings with (-1, 2, 3). We always assume that R is basic.

Lemma 9. Assume efije]''~&,RDe,RD---De,R. Then e [e]i*? is a
homomorphic image of &, J@e, JH - De, J.

Proof. We can express ef as x,R+x,R+---+x R+eJ'*!, where x;e;=ux;.
Hence eJi*'=ux,e, [+ - +x,e, J+eJ*?. Thus we obtain the lemma.
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Lemma 10. We assume that (§-3) is satisfied. Suppose that eR is injective
and efle]*~Z R, g, g, ’~Z,R, -+, g,-1J g, J*~Z,R, where the g, is a primitive
tdempotent and g;R is not injective for all i. Then eRDgRD---D g.R isomor-
Dphically.

Proof. We shall show eJi~g;R for all 7 by induction on 7. Assume
eJt~gRif t<(soem k—1). Then eJ*/e]J**'~g,_, J/g:-1J?~Z:R by assumption.
Let ef*=x,R (%, g4=x,) and p: guR—eJ*(p(gs)=x;) the natural epimorphism.
Take a diagram

0—g.R—E(g.R)
Lp /7
xR 7 p
N ¥
eR
Since eR is injective, we have p’: E(g,R)—eR which commutes the diagram.
E(g,R) being local from (§-3), p"(E(g,R)) 2%:R=p'(g:R) for g,R*+E(g,R). Fur-
ther eJt is a waist for all #<k by induction hypothesis. Consequenctly
p'(E(gR)) is projective. Therefore p’ is a monomorphism, and hence so is p.

Lemma 11. We assume that (§-1), (4-2) and (§-3) are satisfied and that eR
is injective and g, belongs to eR. If g\R is not injective, then g\R is contained
isomorphically in an injective and uniserial module e, R.

Proof. Since g, belongs to eR, we may suppose ef’/eJ**'~g R for
some s. g,R being not injective, s==0. If s=1, then |e]/eJ?|=1 by (#-2) and
giR~eJ from Lemma 10 and eR is uniserial by (#-1). Hence assume s>1.
From Lemma 9 there exists g, such that eJ*-Y/e[’~Z,R®--- and g,] /g, J*~Z R
@---. If g,R is not uniserial, g,R is injetive by (#-1), and then g;R is injective
by (#-2), a contradiction (cf. the remark after (#-2)). Accordingly g,R is uni-
serial and hence g,J/g, J°~gR. Next assume that g,R is not injective. Then
&,R satisfies the same condition as on g,R, and hence similarly to the above we
can find g,R such that eJ*-%/eJ* '~ ZR® - and g, J/g. J*~ZRD---. Repeating
this process, we obtain finally an injetive and uniserial module ¢,R such that
e Jle *~Z.R for some t(and g,J/g,J?’~Z,-\R, ---g,]|g.]’~ZR). Hence e,R
contains isomorphically g,R from Lemma 10.

Proposition 3. (#-1), (#-2) and (4-3) are satisfied if and only if R is right
almost QF and every non-injective projective gR is contained in a uniserial and
injective eR.

Proof. We assume (%-1, 2, 3). First we shall show that R is right QF-3.
Let eR be not injective. Then E(gR) is local by (#-3), i.e., E(¢R)~ fR/A and
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fR is uniform from (4§-1). Further fR/ADgR and gR~B|A for some B (DA4)
in fR. Therefore since gR is projective and fR is uniform, 4=0 and fR=
E(gR)DgR. Accordingly R is right QF-3. Let R be injective and suppose
hRDOFK.R, where & and k, are primitive ideompotents. Then form the last part
of the proof of Lemma 11 there exists a uniserial and injective module AR such
that ;. R=(h, ks++-k,--+) and ;,RDkR. Hence hR~mR. Thus R is right almost
QF by [3], Corollary to Theorem 1. The converse is clear from the remark
before Lemma 9.

5. J4=0

In this section we assume that R is an (basic) artinian ring with J*=0.
Let 1=3,<, ¢; be as in §3. We studied almost QF rings with =2 in Coro-
llary to Theorem 2. We study almost QF rings with =3 or 4 in this section.

Lemma 12. Let R be two-sided almost QF. If R is not QF, then there
exists an injective and projective eR such that eR[Soc(eR) ts again injective.

Proof. R is right almost QF* by [6], Theorem 3.7. Hence we obtain the
lemma from [2], Theorem 2.3.

Theorem 3. Let R be an (basic) artinian ring. Assume that J*=0 and
n=<3, where {e;};<, is a complete set of mutually orthogonal primitive idempotents.
Then the following are equivalent :

1) (#-1), (8-2) and (#-3) are satisfied as right as well as left R-modules.

2) R is a two-sided almost QF ring.

3) R s a direct sum of serial rings and QF rings.

Proof. 1)—2). This is given by Proposition 3.

2)—3). From Corollary to Theorem 2 and Theorem 1 we can suppose
n=3 and J°%0. First we note that if R is a direct sum of two rings, then R
is a direct sum of serial rings and QF rings from Propostion 2 and Corollary to
Theorem 2. We call this situation R splits. Let R be two-sided indecompos-
able and neither serial nor QF. Then we shall derive a contradiction for all
possible situations. If e,RDe,RDe;R, R is serial by Theorem 2. Thus we may
suppose from [3], Theorem 1
(5) eR, ;R are injective and e, J ~e,R.

First we assume that e,R is uniserial.

i) R is uniserial and ;] is local.
Then e¢; J/e; J? is uniserial for all 2. Hence R is right serial, and R is serial by
[5], Theorem 6.1.
Thus we may assume

ii) e R is uniserial, but ¢;J is not local, i.e.,
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’

a a
eR=(3: : d)
b b

o

Then {a, b} C {1, 3} from Propostion 1. First we note that if a=b=3, then R
splits from Lemmas 1 and 9. Hence we can skip the case a=b=3.

le,R|=2. i) e,R=(12).

a=1. Lete,J/e;J?~&R@---. Then there exists , in e, ] such that x, e,;=
%, and (%,R+e,J?)/e; J*~& R. (We use this notation in the following arguments.)
Suppose that xR is simple. Then xR==Soc(e;R)Ce,J? for e;J?+0, a contra-
diction. Hence x,R~e¢;R is injective, again a contradiction.

leR|=3. ii) eR=(121).

a=1. Then we take X, in ;R such that X, De, J? and e, J/X,~¢,R. Since
e, J| X, ~Soc(e;R)~& R and ¢,R is injective, e,=e,, a contradiction.

ili) eR=(122). Then e J/e,J?’~Soc(e;R). Hence e;=e, a contradic-
tion.

iv) eR=(123).

a=3. We obtain the same contradiction as in iii).

a=b=1. x,R~(e,R/Soc,(e,R) or e,R/Soc(e,R)). Hence (x,R+e,J?) J?=0.
Accordingly 0=(Z, x,R+e, J*) J*=e, J*, a contradiction to J°=0.

|eR|=4. v) ¢R=(121x). Thenx=2.

a=1. Then x,R in ¢;] is a homomorphic image of ¢,R, and hence x,R~
(e.R/e, P or eRleJ). If x,R~eRe ], x,RCSoc(e;R)Ce;J?, a contradiction.
Hence we obtain a homomorphism +: Soc,(x,R)—Soc, (x,R)/Soc (x,R)~&,R—
Soc(e;R). Since e,R is injective, we obtain an extension of +», which is a con-
tradiction to the structure of R and e,R.

vi) eR=(122x).
Then x=2 and e, J/e, J*~Soc(e,R). Hence ¢,=e,, a contradiction.

vil) eR=(12 3 x). Since {a, b} C{1, 3}, x=1 or 3, and d =x.

vii-i) x=1 and d=2. Then a=1.

a)b=1. Lete,J/e,J’~%RPFRP--. Since d=2, we may assume x,R~
#{R=~-.- (~eR[e, J?, which is uniserial). Hence xR, x{R--- are contained in
Socy(e;R). Therefore e; J==Soc,(e;R) for Soc,(e;R)De; J?.  As a consequence

1
e,R=(3§12).

Then we obtain a contradiction to Lemma 2.
B) b=3. ;] contains a submodule xR isomorphic to eR/e, J? as in a).
Hence x,RCSoc,(e;R) and x,Rde;J°. Since =3, e, J*/e; J° has to containa a
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simple submodule isomorphic to &R by Lemma 9 and its proof. Hence since
#mRdE e, J?, Socy(esR)/ Soc(esR)mélﬁ @e,RP---, a contradiction to Lemma 2.

vii-ii) x=1 and d=3 (and hence a=1).

a) b=1. Since Soc(e,R/Soc(e,R))~Soc(esR), e;R/Soc(e;R) (=E) is injec-
tive by Lemma 12. Further Socy(e;R)=e;]* and Soc,(E)/Soc(E)~e;]]e; J*~
& R®Pe,R®---, a contradiction to Lemma 2.

B) b=3. From the structure of e;R and Lemma 9 we know
Socy(e;R)/Soc(e;R)~&,R or ~&,R. Then Soc,(e,R)/Soc (e,R)~Soc(ezR) as above,

a contradiction.

Since ¢;R/Soc(e,R) is not injective, | Soc,(e;R)/Soc(e;R)| =1 by Lemma 12.
Hence

1 1
eeR=3:xy)or(3:xy)
1 3

(note e, J*CSoc,(e;R)). If ¢, J°+0,y=3, a contradiction. If ¢, J°=0,
| Soc,(e;R)/Soc(esR) | =2, a contradiction.

Thus we have shown that R is a direct sum of serial rings and QF rings,
provided e,R is uniserial.

Finally we observe the structure of R, when ¢R is not uniserial. Assume
that an injective module eR contains a projective proper submodule and is not
uniserial. Then e] is local by [3], Corollary to Theorem 1, and hence

c

eR = (abc' d);e]°=0.

Now from i), ii), (5), Proposition 1 and Lemma 12, we may assume

’

a a

iii) eR=(12 b g) and ¢,R=(3 b h g') are injective, ;R is not uniserial and

eZ'RzelJ-; {d, b} C {1’ 3}
From Lemma 12 we have

Lemma 13. Let R, e,R and e;R be as above. Then e;R[Soc(esR) is injec-
tive.

First we assume that e,R is not uniserial. We note that if @’=5"'=3, then
R splits from Lemmas 1 and 9.

iii-1) &R and ¢;R are not uniserial, and hence e, J°+0 from Lemma 13.

i) a=1. Theng=2.

a’=1. Then h=2 and Soc(e;R/Soc(e;R))=Soc(e,R), a contradiction from
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Lemma 13.
i) a=b=3.
a) a'=b'=1. Then h=2 and g'=3, i.e.,
3 3 1
aR=(1 2%1),e2R=(2 %1) and R = (3 5123).

Then e,R/Soc(e;R) (=E) is injective by Lemma 13 and Soc,(E)/Soc(E)~&R®
@& R. Since ;R is not uniseial, |Soc,(E)/Soc(E)|=2, a contradiction to
Lemma 2.

B) a’=1 and b'=3. Then h=2 from ¢,R and ~A=1 or 3 from ¢,R, a con-
tradiction.

iii-2) R is not uniserial and ;R is uniserial.

a) a=b=1. Then

1
e,R = (1 2 : 2), which contradicts Lemma 2.
1

B) a=1,b=3. Then

1
aR=(1 2?5)2), and hece ;R = (32 ¢ d).

If e;J°*=0 (resp, e;J?°=0), Soc,(e;R)/Soc(esR)~ Soc(e,R) (resp. Soc(eR)~
Soc(e,R)), a contradiction from Lemma 13. Assume e;J°+0, then ¢=1 or 3,
and hence d=2, a contradiction.

v) a=b=3.

i) g=1. Then

3
aR=(12:1) and ¢,R=(31c¢d)
3

We know as above ¢, =0, and so e;,R=(3 12 3). Here we shall again make
use of the argument in the proof of Lemma 2. Since ¢;R is uniserial, there exist
two submodules yR, y'R in e, J? such that yR~y'R~e,R[e; J*. Let a be an ele-
ment in Endg(Soc(yR)). We shall find an extension of & in Endg(yR). Since
yR=e;R/[e, J?, Soc(yR)~Soc(esR/e; J?)~e,R/e;J. Hence we may assume that «
is given by an element p in ¢R via the above isomorphism. Then p inducees
an endomorphism p of e,R/e; J2~Soc,(E)CE (=~e;R/e;J°). Further p is exten-
dible to ¢ in End,(E). Finally since E/Soc(E)=~e;R/e;J?, g induces an element
in Endg(e;R/e; J?), which is an extendion of « (see the diagram below)

E~eRje; ]~ egRjesJ'— 0
U U p u
eR/e; J? ~ Socy(E) ~ X —— Soc(e;R/e J?) — 0,
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where p is the natural epimorphism.
Using this extension, we can derive a contradiction.

B) a’=1 and b'=3. Then k=2 from ¢R and £=1 or 3 from ¢,R, a con-
tradiction.

3)—1). This is trivial.

Theorem 4. Let R and n be as in Theorem 3. Assume that R is a two-
sided almost QF and two-sided indecomposable ring with J*=0 and n=4. Then
R is either serial or QF if and only if R is not of the followihg : there exist exactly
three injective and projective modules e;R and some one among e;R is not uniserial.

Proof. Suppose that R is not QF. Then we have the following four
cases:

1) &R is injective and ¢ RDe,RDe;RDe, R (isomorphically).

2) R and e,R are injective and R De,RDeyR.

3) &R and ¢;R are injective and g RDe,R, e;RDe,R.

4) &R, eR and ¢,R are injective and eRDe,R.

Case 1) Since J*=0, R is serial by Theorem 2.

Case 2) Then ¢R is uniserial by [3], Corollary to Theorem 1, i.e., e, R=
(123d) (or=(123)) and ¢R are injective. If e,] is local, R is right serial.
Suppose that ¢, [ is not local. Then from Proposition 1 we have the following:

1... 1. 4...
a) eR = (4-; ), b) eR= (4i )or c) eR = (4-4 )

R splits if c¢) occurs. Hence we assume a) or b).

i) eR/Soc(eR) and e,R/Socy(e,R) are injective (see the proof of Lemma
12).

Let xR be a submodule in ¢,J with (xR--e, J?)/e, J?’~&R. Since R is uni-
serial, Soc(e,R)=Soc(xR)~&R or &R if ¢, J*+0. However Soc(e,R/Soc(e,R))
~&R and Soc(e,R/Socy(e,R))~&,R, a contradiction. If e, J°=0, we obtain the
same result as above.

il) eR/Soc(e,R) and e R/Soc(e,R) are injective.

a) e*+0. eR=(123d).

Assume a) or b). Soc(e,R) and Socy(eR) are waists by assumption. Since
Soc(eR/Soc(e,R))~&;R, there exists a submodule ¥R in e, such that ¥R~
eR/e J?, ie., e, J°>=0, and hence ¢,R is uniserial.

B) e)*=0. eR=(123).

Then xR is simple, i.e. |¢,R]| =<2, a contradiction.

iii) eR/Soc(e,R) and e,R/Soc,(e,R) are injective. Then e,R is uniserial and
hence R is serial.

Case 3) i) eR/Soc(eR) and eR[SocyeR) are injective. Then eR=
(12cd)(or=(12¢c))and
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e3R=(34§k)or(34gk)

In the latter case R is serial. Hence assume the former. Then {g, A} C {1, 3}.
Assume e, [*=0.

a) g=1. There exists xR in e, J? with xR~e,R/A for some A in eR.
However Soc(e;R)=Soc(¥R)~¢,R, a contradiction.

B) g=h=3. Then

3
eR=(34:4),
3

which is a contradiction to Lemma 2.
We obtain the same result in a case ¢, J*=0.

il) eR/Soc(e,R) and e;R/Soc(e;R) are injective. Then R and R are
uiserial, and hence R is serial.

Case 4) If ¢R, ¢;R and ¢,R are uniserial, R is right serial.

6. Examples

In this section we shall give several examples related to the previous sec-
tions.

1. We shall give a two-sided almost QF ring with /*=0 and »=4 but nei-
ther QF nor serial. This is an example of exceptional algebras in Theorem 4.
Let K be a field and R=3,.,@P¢;R, where {¢;} is a set of mutually orthogonal
primitive idempotents with 1=3¢;. We define e R=e, K@PaK PabK Pabc' K,
e,R=e,K PbK Pbc’'K, -+, whose multiplicative structur is given below, where
14, Mmeans a=e¢, ae,, and so on.

(In the previous sections we expressed horizontally the structure of ¢;R, however
we shall do vertically here.)

e;Rle; | 1 2 3 4
2 N
e Jle:] 192 21|73 €1 ach 41[13
e Jle; J? ab b’ ca dc
N\ l
e J? abc’ cab=c'd dca,

where the other products among a,b, -+ are zero, e.g. bc=dc’=o0. Then
(Re)*~e\R, (Re))*~e,R and (Re;)*=~e;R are injective and R De,R (Re,D Rey).
Hence R is the desired algebra, which satisfies (§-1, 2, 3).

In the above example we replace e,R with
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5 6

1
/ | \\\ : !
351 s 385 afs 5Ms3 671’3
ra me nf

cab = c'd = em :fn e

Then we obtain a two-sided almost QF-algebra with J*=0 and any n=4, which
is neither QF nor serial. We shall give another type of exceptional algebras,
where ¢,R (De,R) is not uniserial.

&R 1 2

LN T \\ A

e /1"2\ by b 35 1 oy 5 €3 48

e ], ab\ /ab’ \ /b 'd’ cla\c"a / / ec\:/e'c'
|

e’ abd=ab'd cab = c’ab’/-:- de=d'e’ eca

where the other products among a, b--- are zero, e.g. {b, b’} {c,c’} = o0, bde =
b'd'e’=o0, {e,e'} {d,d'} =0, dec=d'e’'c’=0 and so on. Then (Re)*~e,RD
e,R, (Re;)*~e,R and (Re)*~eR. This ring is almost QF, but (#-1) is not
satisfied.

2. We shall give an algebra which is a two-sided almost QF-algebra with
J*=+0 and #=3, but R is neither QF nor serial (cf. Corollary to Theorem 2).
R=73,.,Pe,R as above.

&R 1 2 3

- | | 7N\
&/ 1‘|12 2bs 3101 3d|3
e,J?  ab bc  ca dd

| | N/
&J® abc beca cab=ddd

|
e;J* abca

Then ¢,R, ¢;R and Re,, Re; are injective and e,R De,R, Re,D Re,.

3. There exists a right almost QF algebra with J*=0 and #=3, which
is not left almost QF (cf. Corollary to Theorem 2). Put bca=o in the above.
Then Re;D Re, and Je; is not local.
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