

Title	Almost QF rings with $J^{\wedge}(3=0)$
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1993, 30(4), p. 893-908
Version Type	VoR
URL	https://doi.org/10.18910/9385
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Harada, M.
Osaka J. Math.
30 (1993), 893-908

ALMOST QF RINGS WITH $J^3=0$

MANABU HARADA

(Received June 2, 1992)

(Revised September 16, 1992)

In this paper we always assume that R is a two-sided artinian ring with identity. In [3] we have defined right almost QF rings and showed that those rings coincided with rings satisfying $(*)^*$ in [2], which K. Oshiro [5] called co-H rings. We shall show in Section 2 that right almost QF rings are nothing but direct sums of serial rings and QF rings, provided $J^3=0$. Further in Section 5 we show that if R is a two-sided almost QF ring and $1=e_1+e_2+e_3$, then R has the above structure, provided $J^4=0$, where $\{e_i\}$ is a complete set of mutually orthogonal primitive idempotents. Moreover if $1=e_1+e_2+e_3+e_4$, we have the same result except one case. We shall study, in Section 3, right almost QF rings with homogeneous socles $W_k^*(Q)$ [7] and give certain conditions on the nilpotency m of the radical of $W_k^*(Q)$, under which $W_k^*(Q)$ is left almost QF or serial. In particular if $m \leq 2n$, $W_k^*(Q)$ is serial. We observe a special type of almost QF rings such that every indecomposable projective is uniserial or injective in Section 4.

1. Almost QF rings

In this paper we always assume that R is a two-sided artinian ring with identity and that every module M is a unitary right R -module. By \bar{M} we denote $M/J(M)$, where $J(M)$ is the Jacobson radical of M . We use the same notations in [3]. We call R a *right almost QF ring* if R is right almost injective as a right R -module [3] and [4]. We can define similarly a *left almost QF ring*. If R is a two-sided almost QF ring, we call it simply an *almost QF ring*. It is clear that R is right almost QF if and only if every finitely generated projective R -modlue is right almost injective. Hence the concept of almost QF rings is preserved under Morita equivalence and we may assume that R is basic.

In this section we shall give some results which we use later. First we give a property of any right almost QF rings.

Proposition 1. *Assume that R is right almost QF. Let e_1R be injective, e_1J^i be projective, i.e., $e_1J^i \approx e_{p(i)}R$ for all $i \leq (some\ k)$ and $e_1J^{k+1}/e_1J^{k+2} \approx \bar{e}_a\bar{R} \oplus \dots$*

Then if e_aR is not injective, $e_1J^{k+1} \approx e_aR$, and hence $|e_1J^{k+1}/e_1J^{k+2}| = 1$, where $\bar{e}_a\bar{R} = e_aR/e_aJ$.

Proof. Let x_aR be a submodule in e_1J^{k+1} such that $(x_aR + e_1J^{k+2})/e_1J^{k+2} \approx \bar{e}_a\bar{R}$ ($x_ae_a = x_a$). Suppose that e_aR is not injective. Then $e_aR \subset e_pR$ (isomorphically) for some $p \neq a$, which is injective by [3], Corollary to Theorem 1. Let $\rho: e_aR \rightarrow x_aR \subset e_1R$; $\rho(e_a) = x_a$, be the natural epimorphism. Since e_1R is injective, there exists $\rho': e_pR \rightarrow e_1R$, which is an extension of ρ . Put $y = \rho'(e_p)$; ($y = ye_p$) and $e_a = e_p r$; $r \in R$. We note that the e_1J^i are all waists for $i \leq k+1$ by assumption. If $y \in e_1J^{k+1}$, then $\bar{x}_a = \bar{y}r = \bar{y}e_p r e_a = \bar{\delta}$ in e_1J^{k+1}/e_1J^{k+2} , a contradiction. Accordingly $yR = e_1J^t$ for some $t \leq k$. However e_1J^t is projective, and hence ρ' is a monomorphism. Consequently e_1J^{k+1} contains isomorphically the projective module e_aR , and eJ^{k+1} is local form [3], Corollary to Theorem 1.

Proposition 2. *Let R be right almost QF. If R is either a local ring or $J^2 = 0$, then R is serial or QF.*

Proof. R is a QF ring in the first case from [3], Corollary to Theorem 1. Assume $J^2 = 0$ and R is basic. If eR is injective for a primitive idempotent e , then $|eR| \leq 2$ and eR is uniserial. Hence fR is injective and uniserial provided $fJ \neq 0$ by [3], Corollary to Theorem 1. Hence R is right serial and so R is serial by [5], Theorem 6.1.

Let $\bar{k}\bar{R}$ (or $\bar{R}\bar{g}$) be a simple module which appears in the factor modules of composition series of eR (or Re), where g is a primitive idempotent. In this case we say that g belongs to eR (or Re).

Lemma 1. *Let R be basic and let $\{e_iR\}_{i \leq s}$ be a set of injective and projective modules. Assume that every primitive idempotent belonging to e_iR is equal to some $e_{\mu(i)} \in \{e_i\}$ for each e_i . Then $\sum_{i \leq s} e_iR$ is a direct summand of R as rings.*

Proof. We note from the assumption that for each $e_j \in \{e_i\}$ there exists $e_{\rho(j)}$ in $\{e_i\}$ such that $\bar{e}_j\bar{R} \approx \text{Soc}(e_{\rho(j)}R)$. Put $E = \sum_{i \leq s} e_i$ and $F = 1 - E = \sum_{k \leq p} f_k$, where the f_k are primitive idempotents. Then $ERF = 0$ from the assumption. Let $\theta: e_1R \rightarrow f_kR$ be a homomorphism. If $\theta \neq 0$, there exist a simple submodule S of f_kR and a submodule T of e_1R such that $S \subset \theta(e_1R)$ and $T/\theta^{-1}(0) \approx S$. We may assume $S \approx \bar{e}_j\bar{R}$ for some e_j in $\{e_i\}$ by assumption. Accordingly $S \approx \text{Soc}(e_{\rho(j)}R)$ by the initial remark, and hence we obtain a non-zero homomorphism of f_kR to $e_{\rho(j)}R$, since $e_{\rho(j)}R$ is injective. Therefore $f_k \in \{e_i\}$ by assumption, a contradiction. As a consequence $\theta = 0$, i.e., $FRE = 0$ and $R = ER \oplus FR = ERE \oplus FRF$.

The following lemma is essential in this paper.

Lemma 2. *Let R be artinian and F a uniform R -module. Assume that i): eR is injective, ii): eJ is a local quasi-projective module and iii): $\text{Soc}_2(F)/\text{Soc}(F)$*

$\approx \bar{e}R \oplus A_2 \oplus A_3 \oplus \dots$, where e is a primitive idempotent and the A_i are simple. Then $A_i \not\approx \bar{e}R$ for all i .

Proof. Assume $A_2 \approx \bar{e}R$. Then since $\text{Soc}_2(F)/\text{Soc}(F) \approx \bar{e}R \oplus \bar{e}R \oplus \dots$, $\text{Soc}(F)$ is simple and eJ^2 is a waist by i) and ii), there exist x_1, x'_1 in $\text{Soc}_2(F)$ such that $x_1R \neq x'_1R$, $x_1R \approx x'_1R \approx eR/eJ^2$. Now let $\rho: x_1R \rightarrow eR/eJ^2$ be the isomorphism. Then $\rho(\text{Soc}(x_1R)) = eJ/eJ^2 \approx \bar{e}_1R$, where $eJ \approx e_1R/D$ and D is a characteristic submodule of e_1R by ii), where e_1 is a primitive idempotent. Take any element α in $\text{End}_R(\text{Soc}(x_1R))$. Then α gives an element \bar{d}_1 in $\text{End}_R(\bar{e}_1R)$ via ρ . Then \bar{d}_1 is induced by an element d_1 in $\text{End}_R(e_1R)$. On the other hand, since D is characteristic, $e_1R/D \approx eJ \subset eR$ and eR is injective, d_1 is extendible to d in $\text{End}_R(eR)$. Hence d induces an element in $\text{End}_R(eR/eJ^2)$ (and in $\text{End}_R(x_1R)$ via ρ^{-1} , cf. the diagram).

$$\begin{array}{ccccc}
 & & D & & \\
 & & \cap & & \\
 & e_1R/e_1J & \xleftarrow{\quad} & e_1R & \\
 & \downarrow \rho & \downarrow \mu & \downarrow \nu & \downarrow \mu \\
 \text{Soc}(x_1R) & \approx eJ/eJ^2 & \xleftarrow{\quad} & eJ & \\
 \cap & \cap & & \cap & \cap \\
 x_1R & \approx eR/eJ^2 & \xleftarrow{\quad} & eR &
 \end{array}$$

Thus we have obtained a mapping θ by taking extension, which may depend on a choice of d

$$\theta: \text{End}(\text{Soc}(x_1R)) \rightarrow \text{End}_R(x_1R).$$

Let $t: x_1R \rightarrow x'_1R$ be the given isomorphism. Then t induces \bar{d}_1 in $\text{End}(\text{Soc}(F)) = \text{End}_R(\text{Soc}(x_1R))$ by taking restriction. Put $t' = \theta(\bar{d}_1) - t: x_1R \rightarrow F$. Then $t'(\text{Soc}(x_1R)) = 0$, and hence $t'(x_1R) \subset \text{Soc}(F)$. Then $t(x_1R) = (\theta(\bar{d}_1) - t')(x_1R) \subset x_1R + \text{Soc}(F) = x_1R$, a contradiction.

2. $J^3 = 0$

In this section we shall observe the ring R with following properties: 1) R is a basic and right almost QF ring, 2): $J^2 \neq 0$ and $J^3 = 0$.

Lemma 3. *Assume that fR is injective and $J^3 = 0$. Then we have 1): fJ^2 is simple or zero and 2): fR is uniserial if $fJ^2 = 0$.*

Lemma 4. *Let fR and J be as in Lemma 3 and assume that R is right almost QF. If fR contains properly a projective submodule $P \neq 0$, then fR is uniserial and hence $|fR| \leq 3$.*

Proof. Since $fR \supset fJ \supset P \supset \text{Soc}(fR)$, fJ is local by [3], Corollary to Theorem 1, and hence fR is uniserial for $fJ^3 = 0$.

Corollary. *Assume that R is right almost QF and $J^3=0$. If $|eR| \geq 3$, i.e. $eJ^2 \neq 0$, then eR is injective. Hence gR is injective or uniserial for any primitive idempotent g .*

Proof. If eR is not injective, $eR \subset fR$ for some injective fR by [3], Corollary to Theorem 1, a contradiction to Lemma 4.

Let e_1R be an (injective) R -module. If $e_1J/e_1J^2 \approx \bar{e}_a\bar{R} \oplus \bar{e}_b\bar{R} \oplus \dots$ and $e_1J^2 \approx \bar{e}_c\bar{R}$, then we denote this situation by

$$e_1R = \begin{pmatrix} a \\ 1 & b & c \end{pmatrix} \text{ or } e_1R = \begin{pmatrix} e_a \\ e_1 & e_b & e_c \end{pmatrix}.$$

Lemma 5. *Let e_1R be injective and $e_1J^2 \neq 0$ ($\approx \bar{e}_c\bar{R}$) in the above. Then $e_aJ/e_aJ^2 \approx \bar{e}_c\bar{R} \oplus \dots$.*

Proof. There exists x_aR in e_1J such that $x_aR \supset \text{Soc}(e_1R)$, $x_aR/\text{Soc}(e_1R) = \bar{e}_a\bar{R}$ and $x_aR \approx e_aR/A$ for some A . Hence we obtain the lemma.

Lemma 6. *Let e_1R be a non-uniserial and injective module expressed as above. We assume that R is right almost QF and $J^3=0$. Then e_cR is injective. Further if e_aR is uniserial, then e_cR is not.*

Proof. First we assume $a \neq b$. Now e_aR is an injective module with $e_aJ^2 \neq 0$ by Proposition 1. We have the same for e_bR . From Lemma 5 let

$$e_aR = \begin{pmatrix} c \\ a & c_1 & d \end{pmatrix} \text{ and } e_bR = \begin{pmatrix} c \\ b & c_2 & d' \end{pmatrix}.$$

Since $e_aR \not\approx e_bR$, $d \neq d'$. Then e_cR is not uniserial (even though e_aR is uniserial in this case), and hence e_cR is injective by Corollary to Lemma 4. Next assume $a=b$, i.e.

$$e_1R = \begin{pmatrix} a \\ 1 & \vdots & c \\ a \end{pmatrix}$$

If e_aR is not uniserial, e_cR is injective by Lemma 5 and Proposition 1. Hence assume that e_aR is uniserial. If further e_cR is uniserial, then we can derive a contradiction by Lemma 2. Therefore if e_aR is uniserial, then e_cR is not uniserial and hence e_cR is injective by Corollary to Lemma 4.

Theorem 1. *Let R be an artinian ring with $J^3=0$. Then the following are equivalent:*

- 1) R is right almost QF.
- 2) R is left almost QF.
- 3) R is a direct sum of serial rings and QF rings.

Proof. Let $\{e_i\}_{i \leq t}$ be the complete set of mutually orthogonal primitive idempotents. We shall prove the theorem inductively on t . If every eR is uniserial, then R is right serial. Therefore R is serial by [5], Theorem 6.1. Hence we assume that there exists an injective but not uniserial module

$e_1R = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. We have shown in Lemma 6

(1) if e_g belongs to e_1R , then e_gR is injective, i.e., e_aR , e_bR and e_cR are injective. We shall show that if we replace e_1R with e_aR , e_bR and e_cR , then we obtain

(2) the same result as (1) for those e_aR , e_bR , e_cR .

If e_aR is not uniserial, we obtain (2) for e_aR . Suppose e_aR is uniserial. Then $e_aJ \approx e_cR/B$. Hence

(3) primitive idempotents ($\neq e_a$) belonging to e_aR belongs to e_cR if e_aR is uniserial.

Since e_cR is not uniserial by Lemma 6, from (3) we obtain again (2) for e_aR . Next consider e_cR . If e_cR is not uniserial, we obtain (2) for e_cR from the above (replace e_1R by e_cR). Suppose e_aR is uniserial, and e_cR is not uniserial by Lemma 6. Hence we obtain (2) for e_cR . Thus we have shown (2). Now starting from e_1R , we get e_aR , e_bR and e_cR which belong to e_1R . Next we take primitive idempotents belonging to $\{e_aR, e_bR, \dots, e_cR\}$. Continuing this procedure and gathering all such primitive idempotents (use (1), (2) and (3)), we can find finally a set $\{e_1R, e_aR, \dots\}$ satisfying the condition in Lemma 1. Hence $R = \sum_{i \leq m} e_iR \oplus \sum_{j > m} e_jR$ as rings. Now $\sum_{i \leq m} e_iR$ is a QF ring. Thus we can obtain the theorem by induction.

3. Right almost QF rings with homogeneous socles

In this section we shall study rings stated in the title. Let $\{e_i\}_{i \leq n}$ be a complete set of mutually orthogonal primitive idempotents with $1 = \sum e_i$ and R a basic ring.

Let Q be a local QF ring with J radical. Put $\bar{Q} = Q/\text{Soc}(Q)$ and $\bar{J} = J/\text{Soc}(Q)$. According to [7], Theorem 1 we denote a right almost QF ring R with homogeneous socle by

$$(4) \quad W_k^*(Q) = \left(\begin{array}{c|cc} k & \overbrace{Q \ Q \ Q \dots Q} & \overbrace{\bar{Q} \ \bar{Q} \ \dots \bar{Q}} \\ \hline J \ Q \ Q \dots Q & \overbrace{\bar{Q} \ \bar{Q} \ \dots \bar{Q}} & \\ \dots & \dots & \\ \hline J \ J \ \dots \ J \ Q & \overbrace{\bar{Q} \ \bar{Q} \ \dots \bar{Q}} & \\ \hline \overbrace{J \ J \ \dots \ J} & \overbrace{\bar{Q} \ \bar{Q} \ \dots \bar{Q}} & \\ J \ J \ \dots \ J & \overbrace{\bar{J} \ \bar{Q} \ \dots \bar{Q}} & \\ \dots & \dots & \\ \hline J \ \dots \ J & \overbrace{J \ J \ \dots \ J \bar{Q}} & \end{array} \right) \Bigg\} n$$

We note from [1] that there is only one projective and injective module e_1R (resp. Re_k) in R .

Lemma 7. *Assume $k < n$ on $R = W_k^n(Q)$. Then if R is left almost QF, R is serial.*

Proof. Let $e_i = e_{ii}$ be the matrix unit in R . Then $e_i J(R) \approx e_{i+1}R$ for $i < n$ and $e_n J(R) = (J \cdots J \bar{J} \bar{J} \cdots \bar{J})$. Now assume $k < n$ and R is left almost QF. Then since $J(R) e_s \approx Re_{s-1}$ for $s \leq k$, $J(R) e_1 = (J J \cdots J)^t$ is isomorphic to $Re_q = (\bar{Q} \bar{Q} \cdots \bar{J})^t$ for some $p > k$ from the remark before Lemma 7 and [5], Theorem 3.18 (see [3], Corollary to Theorem 1), where $(\)^t$ is the transposed matrix of $(\)$. Hence since $e_1 J(R) e_1 \approx \bar{Q}$ as left Q -modules, J is local and hence Q is serial (cf. Lemma 9 below). Then $J \approx Q/\text{Soc}(Q) = \bar{Q}$ and $J/\text{Soc}(J) = J/\text{Soc}(Q) = \bar{J} \approx Q/\text{Soc}_2(Q) \approx \bar{Q}/\text{Soc}(\bar{Q})$ as right Q -modules. Put $A = (\text{Soc}(Q) \text{ Soc}(Q) \cdots \text{Soc}(Q) \text{ Soc}(\bar{Q}) \cdots \text{Soc}(\bar{Q}))$ in e_1R . Then $e_n J(R) \approx e_1R/A$ from the above observation and hence $e_n J(R)$ is local. Therefore R is right serial, and hence R is serial by [5], Theorem 6.1.

Lemma 8. *Assume $k = n$ on $R = W_k^n(Q)$. Then R is left almost QF.*

Proof. This is clear from (4)

Theorem 2. *Let R and n be as in the begining. Assume that R is a right almost QF ring with homogeneous socle and $J(R)^{m-1} \neq 0$, $J(R)^m = 0$ (and hence $R = W_k^n(Q)$ and $m \geq n$). Then*

- 1) if $m \leq 2n$, R is serial,
- 2) if $m = nr$, $r \geq 3$, R is left almost QF, and
- 3) if $m = nr + k$, $r \geq 2$ and $0 < k < n$, R is left almost QF if and only if R is serial.

Proof. By assumption and [7], Theorem 1 $R = W_k^n(Q)$ and we have $e_i J(R) \approx e_{i+1}R$ for $i < n-1$. By a direct computation of $J(R)^p$ we have

- i) $e_n J(R)/e_n J(R)^2 \approx \bar{e}_1 \bar{R} \oplus \cdots \oplus \bar{e}_1 \bar{R}$ (cf. Proposition 1).
- ii) $e_1 J(R)^{tn} = (J^t \cdots)$.

1). Since $m \leq 2n$, $0 = e_1 J(R)^{2n} = (J^2 \cdots)$ by ii). Hence $J^2 = 0$ and so Q is serial. Accordingly R is serial from the proof of Lemma 7.

2) and 3). From i) we know

$$e_1 R = (1 \ 2 \ 3 \ \cdots \ n \ 1 \ 2 \ 3 \ \cdots) \ .$$

...

Further $J^m = 0$ if and only if $e_1 J(R)^m = 0$. Hence $\text{Soc}(e_1 R) \approx \bar{e}_n \bar{R}$ if $m = nr$ and $\text{Soc}(e_1 R) \approx \bar{e}_k \bar{R}$ if $m = nr + k$, $0 < k < n$. Therefore $R \approx W_k^n(Q)$ if $m = nr$ and $R \approx W_k^n(Q)$ if $k \neq 0$. As a consequence we obtain the theorem from Lemmas 7 and 8.

Corollary. *Assume $n=2$ and R is right almost QF. Then if $J(R)^{2m-1} \neq 0$, $J(R)^{2m}=0$, R is left almost QF. If $J(R)^{2m} \neq 0$, $J(R)^{2m+1}=0$, R is QF or serial if and only if R is left almost QF. Further if $J(R)^4=0$, R is QF or serial.*

Proof. If R is QF or serial, the corollary is clear by [5], Theorem 4.5. Assume that R is not QF. Since $n=2$, we can suppose that e_1R is injective and $e_1J(R) \approx e_2R$. Hence we obtain the corollary from Theorem 2.

4. Rings with (#-i)

In the previous sections we have observed a ring which is a direct sum of QF rings and serial rings. In this case

(#-1) *eR is injective or uniserial for each primitive idempotent e .*

We consider two more conditions. Let eR be injective but not uniserial. Then we may assume that there exists an integer s such that eJ^i/eJ^{i+1} is simple for all i ($0 \leq i \leq s-1$) and $eJ^s/eJ^{s+1} \approx \sum_{j \leq s} \oplus \bar{f}_j \bar{R}$; $k \geq 2$, where the f_j are primitive idempotents. Here we consider the second condition

(#-2) *the f_jR is injective for all j .*

Assume that R is a right almost QF ring with (#-1). In the above we put $eJ^i/eJ^{i+1} \approx \bar{g}_i \bar{R}$; g_i is a primitive idempotent. Since eR is not uniserial, g_iR is injective by (#-1). In particular $eJ^{s-1} \approx g_{s-1}R/A$ for some A in an injective $g_{s-1}R$ and hence $eJ^s/eJ^{s+1} \approx g_{s-1}J/(g_{s-1}J^2 + A) \subset g_{s-1}J/g_{s-1}J^2$. Since $|eJ^s/eJ^{s-1}| \geq 2$, (#-2) is satisfied from Proposition 1. From the above observation we know that

Assume that R is right almost QF, the (#-1) is satisfied if and only if every non-injective projective gR is contained in a uniserial injective eR and in this case (#-2) and (#-3) below are satisfied.

Taking some non-serial right serial rings, we can get rings with (#-1, 2) which are not right almost QF. Hence we consider the third condition. Here we assume temporarily that R is an algebra over a field K with finite dimension. We further assume that R satisfies (#-1) as right as well as left R -modules. Let gR be not injective, and hence uniserial. Then $E(gR)$ is indecomposable. Take $E(gR)^* = \text{Hom}_K(E(gR), K)$. Then $E(gR)^*$ is indecomposable and projective. Therefore $E(gR) \approx E(gR)^{**}$ is local. We consider this property for any ring.

(#-3) *$E(gR)$ is local for each primitive idempotent g .*

Now we study rings with (#-1, 2, 3). We always assume that R is basic.

Lemma 9. *Assume $eJ^i/eJ^{i+1} \approx \bar{e}_1 \bar{R} \oplus \bar{e}_2 \bar{R} \oplus \dots \oplus \bar{e}_s \bar{R}$. Then eJ^{i+1}/eJ^{i+2} is a homomorphic image of $\bar{e}_1 \bar{J} \oplus \bar{e}_2 \bar{J} \oplus \dots \oplus \bar{e}_s \bar{J}$.*

Proof. We can express eJ^i as $x_1R + x_2R + \dots + x_sR + eJ^{i+1}$, where $x_j e_j = x_j$. Hence $eJ^{i+1} = x_1 e_1 J + \dots + x_s e_s J + eJ^{i+2}$. Thus we obtain the lemma.

Lemma 10. *We assume that (#-3) is satisfied. Suppose that eR is injective and $eJ/eJ^2 \approx \bar{g}_1\bar{R}$, $g_1J/g_1J^2 \approx \bar{g}_2\bar{R}$, \dots , $g_{s-1}J/g_{s-1}J^2 \approx \bar{g}_s\bar{R}$, where the g_i is a primitive idempotent and g_iR is not injective for all i . Then $eR \supset g_1R \supset \dots \supset g_sR$ isomorphically.*

Proof. We shall show $eJ^i \approx g_iR$ for all i by induction on i . Assume $eJ^t \approx g_iR$ if $t \leq (s \text{ or } k-1)$. Then $eJ^k/eJ^{k+1} \approx g_{k-1}J/g_{k-1}J^2 \approx \bar{g}_k\bar{R}$ by assumption. Let $eJ^k = x_kR$ ($x_k g_k = x_k$) and $\rho: g_kR \rightarrow eJ^k$ ($\rho(g_k) = x_k$) the natural epimorphism. Take a diagram

$$\begin{array}{ccc} 0 \rightarrow g_kR \rightarrow E(g_kR) \\ \downarrow \rho & & \\ x_kR & \xrightarrow{\rho} & \bar{g}_k\bar{R} \\ \cap & \swarrow & \rho' \\ eR & & \end{array}$$

Since eR is injective, we have $\rho': E(g_kR) \rightarrow eR$ which commutes the diagram. $E(g_kR)$ being local from (#-3), $\rho'(E(g_kR)) \cong x_kR = \rho'(g_kR)$ for $g_kR \neq E(g_kR)$. Further eJ^t is a waist for all $t \leq k$ by induction hypothesis. Consequently $\rho'(E(g_kR))$ is projective. Therefore ρ' is a monomorphism, and hence so is ρ .

Lemma 11. *We assume that (#-1), (#-2) and (#-3) are satisfied and that eR is injective and g_1 belongs to eR . If g_1R is not injective, then g_1R is contained isomorphically in an injective and uniserial module e_1R .*

Proof. Since g_1 belongs to eR , we may suppose $eJ^s/eJ^{s+1} \approx \bar{g}_1\bar{R} \oplus \dots$ for some s . g_1R being not injective, $s \neq 0$. If $s=1$, then $|eJ/eJ^2|=1$ by (#-2) and $g_1R \approx eJ$ from Lemma 10 and eR is uniserial by (#-1). Hence assume $s > 1$. From Lemma 9 there exists g_2 such that $eJ^{s-1}/eJ^s \approx \bar{g}_2\bar{R} \oplus \dots$ and $g_2J/g_2J^2 \approx \bar{g}_2\bar{R} \oplus \dots$. If g_2R is not uniserial, g_2R is injective by (#-1), and then g_1R is injective by (#-2), a contradiction (cf. the remark after (#-2)). Accordingly g_2R is uniserial and hence $g_2J/g_2J^2 \approx \bar{g}_1\bar{R}$. Next assume that g_2R is not injective. Then g_2R satisfies the same condition as on g_1R , and hence similarly to the above we can find g_3R such that $eJ^{s-2}/eJ^{s-1} \approx \bar{g}_3\bar{R} \oplus \dots$ and $g_3J/g_3J^2 \approx \bar{g}_3\bar{R} \oplus \dots$. Repeating this process, we obtain finally an injective and uniserial module e_1R such that $e_1J/e_1J^2 \approx \bar{g}_1\bar{R}$ for some t (and $g_tJ/g_tJ^2 \approx \bar{g}_{t-1}\bar{R}, \dots, g_2J/g_2J^2 \approx \bar{g}_1\bar{R}$). Hence e_1R contains isomorphically g_1R from Lemma 10.

Proposition 3. *(#-1), (#-2) and (#-3) are satisfied if and only if R is right almost QF and every non-injective projective gR is contained in a uniserial and injective eR .*

Proof. We assume (#-1, 2, 3). First we shall show that R is right QF-3. Let eR be not injective. Then $E(gR)$ is local by (#-3), i.e., $E(gR) \approx fR/A$ and

fR is uniform from (#-1). Further $fR/A \supseteq gR$ and $gR \approx B/A$ for some B ($\supseteq A$) in fR . Therefore since gR is projective and fR is uniform, $A=0$ and $fR = E(gR) \supseteq gR$. Accordingly R is right QF-3. Let hR be injective and suppose $hR \supseteq k_1R$, where h and k_1 are primitive idempotents. Then from the last part of the proof of Lemma 11 there exists a uniserial and injective module h_1R such that $h_1R = (h_1 k_1 \cdots k_1 \cdots)$ and $h_1R \supseteq k_1R$. Hence $hR \approx h_1R$. Thus R is right almost QF by [3], Corollary to Theorem 1. The converse is clear from the remark before Lemma 9.

5. $J^4 = 0$

In this section we assume that R is an (basic) artinian ring with $J^4=0$. Let $1=\sum_{i \leq n} e_i$ be as in §3. We studied almost QF rings with $n=2$ in Corollary to Theorem 2. We study almost QF rings with $n=3$ or 4 in this section.

Lemma 12. *Let R be two-sided almost QF. If R is not QF, then there exists an injective and projective eR such that $eR/\text{Soc}(eR)$ is again injective.*

Proof. R is right almost QF* by [6], Theorem 3.7. Hence we obtain the lemma from [2], Theorem 2.3.

Theorem 3. *Let R be an (basic) artinian ring. Assume that $J^4=0$ and $n \leq 3$, where $\{e_i\}_{i \leq n}$ is a complete set of mutually orthogonal primitive idempotents. Then the following are equivalent:*

- 1) (#-1), (#-2) and (#-3) are satisfied as right as well as left R -modules.
- 2) R is a two-sided almost QF ring.
- 3) R is a direct sum of serial rings and QF rings.

Proof. 1) \rightarrow 2). This is given by Proposition 3.

2) \rightarrow 3). From Corollary to Theorem 2 and Theorem 1 we can suppose $n=3$ and $J^3 \neq 0$. First we note that if R is a direct sum of two rings, then R is a direct sum of serial rings and QF rings from Proposition 2 and Corollary to Theorem 2. We call this situation R splits. Let R be two-sided indecomposable and neither serial nor QF. Then we shall derive a contradiction for all possible situations. If $e_1R \supseteq e_2R \supseteq e_3R$, R is serial by Theorem 2. Thus we may suppose from [3], Theorem 1

(5) e_1R, e_3R are injective and $e_1J \approx e_2R$.

First we assume that e_1R is uniserial.

i) e_1R is uniserial and e_3J is local.

Then e_iJ/e_iJ^2 is uniserial for all i . Hence R is right serial, and R is serial by [5], Theorem 6.1.

Thus we may assume

ii) e_1R is uniserial, but e_3J is not local, i.e.,

$$e_3R = (3 \begin{array}{cc|cc} a & a' \\ \vdots & \vdots & d \\ b & b' \\ \vdots & \vdots \\ c' \\ \vdots \end{array})$$

Then $\{a, b\} \subset \{1, 3\}$ from Proposition 1. First we note that if $a=b=3$, then R splits from Lemmas 1 and 9. Hence we can skip the case $a=b=3$.

| $e_1R| = 2$. i) $e_1R = (1 2)$.

$a=1$. Let $e_3J/e_3J^2 \approx \bar{e}_1\bar{R} \oplus \dots$. Then there exists x_1 in e_3J such that $x_1e_1 = x_1$ and $(x_1R + e_3J^2)/e_3J^2 \approx \bar{e}_1\bar{R}$. (We use this notation in the following arguments.) Suppose that x_1R is simple. Then $x_1R = \text{Soc}(e_3R) \subset e_3J^2$ for $e_3J^2 \neq 0$, a contradiction. Hence $x_1R \approx e_1R$ is injective, again a contradiction.

| $e_1R| = 3$. ii) $e_1R = (1 2 1)$.

$a=1$. Then we take X_a in e_3R such that $X_a \supset e_3J^2$ and $e_3J/X_a \approx \bar{e}_a\bar{R}$. Since $e_3J/X_s \approx \text{Soc}(e_1R) \approx \bar{e}_1\bar{R}$ and e_1R is injective, $e_2 = e_3$, a contradiction.

iii) $e_1R = (1 2 2)$. Then $e_1J/e_1J^2 \approx \text{Soc}(e_1R)$. Hence $e_1 = e_2$, a contradiction.

iv) $e_1R = (1 2 3)$.

$a=3$. We obtain the same contradiction as in iii).

$a=b=1$. $x_aR \approx (e_1R/\text{Soc}_2(e_1R))$ or $e_1R/\text{Soc}(e_1R)$. Hence $(x_aR + e_1J^2)J^2 = 0$. Accordingly $0 = (\sum_a x_aR + e_1J^2)J^2 = e_3J^3$, a contradiction to $J^3 \neq 0$.

| $e_1R| = 4$. v) $e_1R = (1 2 1 x)$. Then $x=2$.

$a=1$. Then x_aR in e_3J is a homomorphic image of e_1R , and hence $x_aR \approx (e_1R/e_1J^3 \text{ or } e_1R/e_1J)$. If $x_aR \approx e_1R/e_1J$, $x_aR \subset \text{Soc}(e_3R) \subset e_3J^2$, a contradiction. Hence we obtain a homomorphism $\psi: \text{Soc}_2(x_aR) \rightarrow \text{Soc}_2(x_aR)/\text{Soc}(x_aR) \approx \bar{e}_2\bar{R} \rightarrow \text{Soc}(e_1R)$. Since e_1R is injective, we obtain an extension of ψ , which is a contradiction to the structure of e_1R and e_3R .

vi) $e_1R = (1 2 2 x)$.

Then $x=2$ and $e_1J/e_1J^2 \approx \text{Soc}(e_1R)$. Hence $e_1 = e_2$, a contradiction.

vii) $e_1R = (1 2 3 x)$. Since $\{a, b\} \subset \{1, 3\}$, $x=1$ or 3, and $d \neq x$.

vii-i) $x=1$ and $d=2$. Then $a=1$.

$\alpha) b=1$. Let $e_3J/e_3J^2 \approx \bar{x}_1\bar{R} \oplus \bar{x}'_1\bar{R} \oplus \dots$. Since $d=2$, we may assume $x_1R \approx x'_1R \approx \dots$ ($\approx e_1R/e_1J^2$, which is uniserial). Hence x_1R, x'_1R, \dots are contained in $\text{Soc}_2(e_3R)$. Therefore $e_3J = \text{Soc}_2(e_3R)$ for $\text{Soc}_2(e_3R) \supset e_3J^2$. As a consequence

$$e_3R = (3 \begin{array}{c} 1 \\ \vdots \\ 2 \\ \vdots \\ 1 \end{array})$$

Then we obtain a contradiction to Lemma 2.

$\beta) b=3$. e_3J contains a submodule x_1R isomorphic to e_1R/e_1J^2 as in α). Hence $x_1R \subset \text{Soc}_2(e_3R)$ and $x_1R \not\subset e_3J^2$. Since $b=3$, e_3J^2/e_3J^3 has to contain a

simple submodule isomorphic to $\bar{e}_1\bar{R}$ by Lemma 9 and its proof. Hence since $e_1R \not\subseteq e_3J^2$, $\text{Soc}_2(e_3R)/\text{Soc}(e_3R) \approx \bar{e}_1\bar{R} \oplus \bar{e}_1\bar{R} \oplus \dots$, a contradiction to Lemma 2.

vii-ii) $x=1$ and $d=3$ (and hence $a=1$).

$\alpha)$ $b=1$. Since $\text{Soc}(e_1R)/\text{Soc}(e_1R) \approx \text{Soc}(e_3R)$, $e_3R/\text{Soc}(e_3R) (=E)$ is injective by Lemma 12. Further $\text{Soc}_2(e_3R) = e_3J^2$ and $\text{Soc}_2(E)/\text{Soc}(E) \approx e_3J/e_3J^2 \approx \bar{e}_1\bar{R} \oplus \bar{e}_1\bar{R} \oplus \dots$, a contradiction to Lemma 2.

$\beta)$ $b=3$. From the structure of e_3R and Lemma 9 we know $\text{Soc}_2(e_3R)/\text{Soc}(e_3R) \approx \bar{e}_2\bar{R}$ or $\approx \bar{e}_3\bar{R}$. Then $\text{Soc}_2(e_1R)/\text{Soc}(e_1R) \approx \text{Soc}(e_3R)$ as above, a contradiction.

vii-iii) $x=3$, i.e. $e_1R = (1 \ 2 \ 3 \ 3)$.

Since $e_1R/\text{Soc}(e_1R)$ is not injective, $|\text{Soc}_2(e_3R)/\text{Soc}(e_3R)| = 1$ by Lemma 12. Hence

$$e_3R = (3 \begin{smallmatrix} 1 \\ \vdots \\ x \end{smallmatrix} y) \text{ or } (3 \begin{smallmatrix} 1 \\ \vdots \\ 3 \end{smallmatrix} y)$$

(note $e_3J^2 \subset \text{Soc}_2(e_3R)$). If $e_3J^3 \neq 0$, $y=3$, a contradiction. If $e_3J^3 = 0$, $|\text{Soc}_2(e_3R)/\text{Soc}(e_3R)| \geq 2$, a contradiction.

Thus we have shown that R is a direct sum of serial rings and QF rings, provided e_1R is uniserial.

Finally we observe the structure of R , when e_1R is not uniserial. Assume that an injective module eR contains a projective proper submodule and is not uniserial. Then eJ is local by [3], Corollary to Theorem 1, and hence

$$eR = (a \ b \ c' \ d); \ eJ^3 \neq 0.$$

Now from **i**), **ii**), (5), Proposition 1 and Lemma 12, we may assume

iii) $e_1R = (1 \ 2 \ b \ g)$ and $e_3R = (3 \ b' \ h \ g')$ are injective, e_1R is not uniserial and
 $\begin{array}{cc} a & a' \\ \vdots & \vdots \\ e_2R \approx e_1J; \{a, b\} \subset \{1, 3\}. & \end{array}$

From Lemma 12 we have

Lemma 13. *Let R , e_1R and e_3R be as above. Then $e_3R/\text{Soc}(e_3R)$ is injective.*

First we assume that e_3R is not uniserial. We note that if $a'=b'=3$, then R splits from Lemmas 1 and 9.

iii-1) e_1R and e_3R are not uniserial, and hence $e_3J^3 \neq 0$ from Lemma 13.

i) $a=1$. Then $g=2$.

$a'=1$. Then $h=2$ and $\text{Soc}(e_3R/\text{Soc}(e_3R)) \simeq \text{Soc}(e_1R)$, a contradiction from

Lemma 13.

- ii) $a=b=3$.
- $\alpha)$ $a'=b'=1$. Then $h=2$ and $g'=3$, i.e.,

$$e_1R = \begin{pmatrix} 3 \\ 1 & 2 \\ 3 \end{pmatrix}, e_2R = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} \text{ and } e_3R = \begin{pmatrix} 1 \\ 2 & 3 \\ 1 \end{pmatrix}.$$

Then $e_3R/\text{Soc}(e_3R) (=E)$ is injective by Lemma 13 and $\text{Soc}_2(E)/\text{Soc}(E) \approx e_1\bar{R} \oplus \dots \oplus \bar{e}_1\bar{R}$. Since e_3R is not uniserial, $|\text{Soc}_2(E)/\text{Soc}(E)| \geq 2$, a contradiction to Lemma 2.

$\beta)$ $a'=1$ and $b'=3$. Then $h=2$ from e_1R and $h=1$ or 3 from e_3R , a contradiction.

iii-2) e_1R is not uniserial and e_3R is uniserial.

- $\alpha)$ $a=b=1$. Then

$$e_1R = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \text{ which contradicts Lemma 2.}$$

- $\beta)$ $a=1, b=3$. Then

$$e_1R = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \text{ and hence } e_3R = \begin{pmatrix} 1 \\ 2 & c & d \end{pmatrix}.$$

If $e_3J^3 = 0$ (resp., $e_3J^2 = 0$), $\text{Soc}_2(e_3R)/\text{Soc}(e_3R) \approx \text{Soc}(e_1R)$ (resp. $\text{Soc}(e_3R) \approx \text{Soc}(e_1R)$), a contradiction from Lemma 13. Assume $e_3J^3 \neq 0$, then $c=1$ or 3, and hence $d=2$, a contradiction.

- $\gamma)$ $a=b=3$.
- $i)$ $g=1$. Then

$$e_1R = \begin{pmatrix} 3 \\ 1 & 2 \\ 3 \end{pmatrix} \text{ and } e_3R = \begin{pmatrix} 1 \\ 2 & c & d \end{pmatrix}$$

We know as above $e_3J^3 \neq 0$, and so $e_3R = (3 \ 1 \ 2 \ 3)$. Here we shall again make use of the argument in the proof of Lemma 2. Since e_3R is uniserial, there exist two submodules $yR, y'R$ in e_1J^2 such that $yR \approx y'R \approx e_3R/e_3J^2$. Let α be an element in $\text{End}_R(\text{Soc}(yR))$. We shall find an extension of α in $\text{End}_R(yR)$. Since $yR \approx e_3R/e_3J^2$, $\text{Soc}(yR) \approx \text{Soc}(e_3R/e_3J^2) \approx e_1R/e_1J$. Hence we may assume that α is given by an element p in e_1R via the above isomorphism. Then p induces an endomorphism \bar{p} of $e_1R/e_1J^2 \approx \text{Soc}_2(E) \subset E$ ($\approx e_3R/e_3J^3$). Further \bar{p} is extendible to q in $\text{End}_R(E)$. Finally since $E/\text{Soc}(E) \approx e_3R/e_3J^2$, \bar{q} induces an element in $\text{End}_R(e_3R/e_3J^2)$, which is an extension of α (see the diagram below)

$$\begin{array}{ccc} E \approx e_3R/e_3J^3 & \xrightarrow{\rho} & e_3R/e_3J^2 \longrightarrow 0 \\ \cup & \cup & \cup \\ e_1R/e_1J^2 \approx \text{Soc}_2(E) \approx X & \xrightarrow{\rho} & \text{Soc}(e_3R/e_3J^2) \rightarrow 0, \end{array}$$

where ρ is the natural epimorphism.

Using this extension, we can derive a contradiction.

$\beta)$ $a'=1$ and $b'=3$. Then $h=2$ from e_1R and $h=1$ or 3 from e_3R , a contradiction.

3) \rightarrow 1). This is trivial.

Theorem 4. *Let R and n be as in Theorem 3. Assume that R is a two-sided almost QF and two-sided indecomposable ring with $J^4=0$ and $n=4$. Then R is either serial or QF if and only if R is not of the following: there exist exactly three injective and projective modules e_iR and some one among e_iR is not uniserial.*

Proof. Suppose that R is not QF. Then we have the following four cases:

- 1) e_1R is injective and $e_1R \supset e_2R \supset e_3R \supset e_4R$ (isomorphically).
- 2) e_1R and e_4R are injective and $e_1R \supset e_2R \supset e_3R$.
- 3) e_1R and e_3R are injective and $e_1R \supset e_2R$, $e_3R \supset e_4R$.
- 4) e_1R , e_2R and e_4R are injective and $e_1R \supset e_2R$.

Case 1) Since $J^4=0$, R is serial by Theorem 2.

Case 2) Then e_1R is uniserial by [3], Corollary to Theorem 1, i.e., $e_1R=(1\ 2\ 3\ d)$ (or $=(1\ 2\ 3)$) and e_4R are injective. If e_4J is local, R is right serial. Suppose that e_4J is not local. Then from Proposition 1 we have the following:

$$\text{a) } e_4R = \begin{pmatrix} 1 & \dots & 1 & \dots & 4 & \dots \\ 4 & \vdots & & & & \\ 1 & \dots & 4 & \dots & & 4 \dots \end{pmatrix}, \quad \text{b) } e_4R = \begin{pmatrix} 1 & \dots & 4 & \dots \\ 4 & \vdots & & \\ 1 & \dots & & 4 \dots \end{pmatrix} \text{ or c) } e_4R = \begin{pmatrix} 4 & \dots \\ 1 & \dots \end{pmatrix}$$

R splits if c) occurs. Hence we assume a) or b).

i) $e_1R/\text{Soc}(e_1R)$ and $e_1R/\text{Soc}_2(e_1R)$ are injective (see the proof of Lemma 12).

Let xR be a submodule in e_4J with $(xR+e_4J^2)/e_4J^2 \approx \bar{e}_1R$. Since e_1R is uniserial, $\text{Soc}(e_4R) = \text{Soc}(xR) \approx \bar{e}_2R$ or \bar{e}_3R if $e_1J^3 \neq 0$. However $\text{Soc}(e_1R/\text{Soc}(e_1R)) \approx \bar{e}_3R$ and $\text{Soc}(e_1R/\text{Soc}_2(e_1R)) \approx \bar{e}_2R$, a contradiction. If $e_1J^3=0$, we obtain the same result as above.

ii) $e_1R/\text{Soc}(e_1R)$ and $e_4R/\text{Soc}(e_4R)$ are injective.

$\alpha)$ $e_1J^3 \neq 0$. $e_1R=(1\ 2\ 3\ d)$.

Assume a) or b). $\text{Soc}(e_4R)$ and $\text{Soc}_2(e_4R)$ are waists by assumption. Since $\text{Soc}(e_4R/\text{Soc}(e_4R)) \approx \bar{e}_3R$, there exists a submodule xR in e_4J such that $xR \approx e_1R/e_1J^2$, i.e., $e_4J^3=0$, and hence e_4R is uniserial.

$\beta)$ $e_1J^3=0$. $e_1R=(1\ 2\ 3)$.

Then xR is simple, i.e. $|e_4R| \leq 2$, a contradiction.

iii) $e_4R/\text{Soc}(e_4R)$ and $e_4R/\text{Soc}_2(e_4R)$ are injective. Then e_4R is uniserial and hence R is serial.

Case 3) i) $e_1R/\text{Soc}(e_1R)$ and $e_1R/\text{Soc}_2(e_1R)$ are injective. Then $e_1R=(1\ 2\ c\ d)$ (or $=(1\ 2\ c)$) and

$$e_3R = (3 \ 4 \begin{smallmatrix} g \\ h \end{smallmatrix} : k) \text{ or } (3 \ 4 \ g \ k)$$

In the latter case R is serial. Hence assume the former. Then $\{g, h\} \subset \{1, 3\}$. Assume $e_1J^3 \neq 0$.

$\alpha)$ $g=1$. There exists xR in e_4J^2 with $xR \approx e_1R/A$ for some A in e_1R . However $\text{Soc}(e_3R) = \text{Soc}(xR) \approx e_2\bar{R}$, a contradiction.

$\beta)$ $g=h=3$. Then

$$e_4R = (3 \ 4 \begin{smallmatrix} 3 \\ 3 \end{smallmatrix} : 4),$$

which is a contradiction to Lemma 2.

We obtain the same result in a case $e_1J^3 = 0$.

ii) $e_1R/\text{Soc}(e_1R)$ and $e_3R/\text{Soc}(e_3R)$ are injective. Then e_1R and e_3R are uniserial, and hence R is serial.

Case 4) If e_1R , e_3R and e_4R are uniserial, R is right serial.

6. Examples

In this section we shall give several examples related to the previous sections.

1. We shall give a two-sided almost QF ring with $J^4=0$ and $n=4$ but neither QF nor serial. This is an example of exceptional algebras in Theorem 4. Let K be a field and $R=\sum_{i \leq 4} \oplus e_iR$, where $\{e_i\}$ is a set of mutually orthogonal primitive idempotents with $1=\sum e_i$. We define $e_1R=e_1K \oplus aK \oplus abK \oplus abc'K$, $e_2R=e_2K \oplus bK \oplus bc'K$, ..., whose multiplicative structure is given below, where $1a_2$ means $a=e_1ae_2$, and so on.

(In the previous sections we expressed horizontally the structure of e_iR , however we shall do vertically here.)

$$\begin{array}{ccccccc}
 e_iR/e_iJ & 1 & 2 & 3 & 4 & \\
 & | & | & \swarrow & & | \\
 e_iJ/e_iJ^2 & 1a_2 & 2b_3 & 3e_1 & 4d_3 & \\
 & | & | & | & & | \\
 e_1J^2/e_1J^3 & ab & bc' & ca & / & dc \\
 & | & & \diagdown & & | \\
 e_1J^3 & abc' & & cab = c'd & & dca,
 \end{array}$$

where the other products among a, b, \dots are zero, e.g. $bc=dc'=0$. Then $(Re_4)^* \approx e_1R$, $(Re_2)^* \approx e_4R$ and $(Re_3)^* \approx e_3R$ are injective and $e_1R \supset e_2R$ ($Re_2 \supset Re_1$). Hence R is the desired algebra, which satisfies (#-1, 2, 3).

In the above example we replace e_3R with

Then we obtain a two-sided almost QF-algebra with $J^4=0$ and any $n \geq 4$, which is neither QF nor serial. We shall give another type of exceptional algebras, where e_1R ($\supset e_2R$) is not uniserial.

where the other products among a, b, \dots are zero, e.g. $\{b, b'\} \{c, c'\} = o$, $bde = b'd'e' = o$, $\{e, e'\} \{d, d'\} = o$, $dec = d'e'c' = o$ and so on. Then $(Re_4)^* \approx e_1R \supset e_2R$, $(Re_3)^* \approx e_4R$ and $(Re_2)^* \approx e_4R$. This ring is almost QF, but $(\#-1)$ is not satisfied.

2. We shall give an algebra which is a two-sided almost QF-algebra with $J^4 \neq 0$ and $n=3$, but R is neither QF nor serial (cf. Corollary to Theorem 2). $R = \sum_{i \leq 3} \oplus e_i R$ as above.

Then e_1R , e_3R and Re_2 , Re_3 are injective and $e_1R \supset e_2R$, $Re_2 \supset Re_1$.

3. There exists a right almost QF algebra with $J^4=0$ and $n=3$, which is not left almost QF (cf. Corollary to Theorem 2). Put $bca=o$ in the above. Then $Re_3 \supset Re_2$ and Re_3 is not local.

References

[1] K.R. Fuller: *On indecomposable injectives over artinian rings*, Pacific J. Math. **29** (1969), 115–135.

- [2] M. Harada: *Non small modules and non co-small modules*, Ring Theory, Proceeding of 1978 Antwerp Conference, Marcel Dekker Inc. (1979), 669–687.
- [3] _____: *Almost QF rings and almost QF¹ rings*, Osaka J. Math. **30** (1993), 887–892.
- [4] _____: *Almost projective modules*, J. Algebra **159** (1993), 150–157.
- [5] K. Oshiro: *Lifting modules, extending modules and their applications to QF-rings*, Hokkaido Math. J. **13** (1984), 339–364.
- [6] _____: *On Harada rings I*, J. Math. Okayama Univ., **31** (1989), 161–178.
- [7] K. Oshiro and K. Shugenaga: *On Harada rings with homogeneous socles*, Math. J. Okayama Univ. **31** (1989), 189–196.

Department of Mathematics
Osaka City University
Sugimoto-3, Sumiyoshi-ku
Osaka 558, Japan