<table>
<thead>
<tr>
<th>Title</th>
<th>Almost QF rings with $J^3=0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Harada, Manabu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 30(4) P.893-P.908</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9385</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9385</td>
</tr>
</tbody>
</table>
| rights | Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
ALMOST QF RINGS WITH $J^3=0$

MANABU HARADA

(Received June 2, 1992)
(Revised September 16, 1992)

In this paper we always assume that R is a two-sided artinian ring with identity. In [3] we have defined right almost QF rings and showed that those rings coincided with rings satisfying $(*)^*$ in [2], which K. Oshiro [5] called co-H rings. We shall show in Section 2 that right almost QF rings are nothing but direct sums of serial rings and QF rings, provided $J^3=0$. Further in Section 5 we show that if R is a two-sided almost QF ring and $1=e_1+e_2+e_3$, then R has the above structure, provided $J^3=0$, where $\{e_i\}$ is a complete set of mutually orthogonal primitive idempotents. Moreover if $1=e_1+e_2+e_3+e_4$, we have the same result except one case. We shall study, in Section 3, right almost QF rings with homogeneous socles $W^*_i(Q)$ [7] and give certain conditions on the nilpotency m of the radical of $W^*_i(Q)$, under which $W^*_i(Q)$ is left almost QF or serial. In particular if $m\leq 2n$, $W^*_i(Q)$ is serial. We observe a special type of almost QF rings such that every indecomposable projective is uniserial or injective in Section 4.

1. Almost QF rings

In this paper we always assume that R is a two-sided artinian ring with identity and that every module M is a unitary right R-module. By \bar{M} we denote $M/J(M)$, where $J(M)$ is the Jacobson radical of M. We use the same notations in [3]. We call R a right almost QF ring if R is right almost injective as a right R-module [3] and [4]. We can define similarly a left almost QF ring. If R is a two-sided almost QF ring, we call it simply an almost QF ring. It is clear that R is right almost QF if and only if every finitely generated projective R-module is right almost injective. Hence the concept of almost QF rings is preserved under Morita equivalence and we may assume that R is basic.

In this section we shall give some results which we use later. First we give a property of any right almost QF rings.

Proposition 1. Assume that R is right almost QF. Let e_iR be injective, e_iJ^i be projective, i.e., $e_iJ^i\approx e_{\sigma(i)}R$ for all $i\leq (some k)$ and $e_iJ^{k+1}\approx e_{a_i}R\oplus \cdots$.
Then if \(e_aR \) is not injective, \(e_1J^{k+1} \cong e_aR \), and hence \(|e_1J^{k+1}|/|e_1J^{k+2}| = 1 \), where \(e_aR = e_aR/e_aJ \).

Proof. Let \(x_aR \) be a submodule in \(e_1J^{k+1} \) such that \((x_aR + e_1J^{k+2})/e_1J^{k+2} \cong e_aR \) (\(x_a = x_a \)). Suppose that \(e_aR \) is not injective. Then \(e_aR \subset e_pR \) (isomorphically) for some \(p = a \), which is injective by [3], Corollary to Theorem 1. Let \(\rho: e_aR \twoheadrightarrow x_aR \subset e_1R; \rho(e_a) = x_a \), be the natural epimorphism. Since \(e_1R \) is injective, there exists \(\rho': e_pR \twoheadrightarrow e_1R \), which is an extension of \(\rho \). Put \(y = \rho'(e_p); (y = ye_p) \) and \(e_a = e_\rho r; r \in R \). We note that the \(e_iJ^i \) are all waists for \(i \leq k+1 \) by assumption. If \(y \subseteq e_1J^{k+1} \), then \(x_a = yr = ye_\rho r = 0 \) in \(e_1J^{k+1}/e_1J^{k+2} \), a contradiction. Accordingly \(yR = e_iJ^i \) for some \(t \leq k \). However \(e_iJ^i \) is projective, and hence \(\rho' \) is a monomorphism. Consequently \(e_1J^{k+1} \) contains isomorphically the projective module \(e_aR \), and \(eJ^{k+1} \) is local form [3], Corollary to Theorem 1.

Proposition 2. Let \(R \) be right almost QF. If \(R \) is either a local ring or \(J^2 = 0 \), then \(R \) is serial or QF.

Proof. \(R \) is a QF ring in the first case from [3], Corollary to Theorem 1. Assume \(J^2 = 0 \) and \(R \) is basic. If \(eR \) is injective for a primitive idempotent \(e \), then \(|eR| \leq 2 \) and \(eR \) is uniserial. Hence \(fR \) is injective and uniserial provided \(fJ \neq 0 \) by [3], Corollary to Theorem 1. Hence \(R \) is right serial and so \(R \) is serial by [5], Theorem 6.1.

Let \(kR \) (or \(Rg \)) be a simple module which appears in the factor modules of composition series of \(eR \) (or \(Re \)), where \(g \) is a primitive idempotent. In this case we say that \(g \) belongs to \(eR \) (or \(Re \)).

Lemma 1. Let \(R \) be basic and let \(\{e_iR\}_{i \leq s} \) be a set of injective and projective modules. Assume that every primitive idempotent belonging to \(e_iR \) is equal to some \(e_{p(j)} \) (in \(\{e_i\} \) such that \(e_jR \cong \text{Soc}(e_{p(j)}R) \). Put \(E = \sum_{i \leq s} e_i \) and \(F = 1 - E = \sum_{s \leq i} f_s \), where the \(f_s \) are primitive idempotents. Then \(ERF = 0 \) from the assumption. Let \(\theta: e_1R \rightarrow f_1R \) be a homomorphism. If \(\theta \neq 0 \), there exist a simple submodule \(S \) of \(f_1R \) and a submodule \(T \) of \(e_1R \) such that \(S \subset \theta(e_1R) \) and \(T/\theta^{-1}(0) \cong S \). We may assume \(S \cong e_jR \) for some \(e_j \) in \(\{e_i\} \) by assumption. Accordingly \(S \cong \text{Soc}(e_{p(j)}R) \) by the initial remark, and hence we obtain a non-zero homomorphism of \(f_1R \) to \(e_{p(j)}R \), since \(e_{p(j)}R \) is injective. Therefore \(f_s \notin \{e_i\} \) by assumption, a contradiction. As a consequence \(\theta = 0 \), i.e., \(FRE = 0 \) and \(R = ER \oplus FR = ER \oplus FRF \).

The following lemma is essential in this paper.

Lemma 2. Let \(R \) be artinian and \(F \) a uniform \(R \)-module. Assume that

1. \(eR \) is injective,
2. \(eJ \) is a local quasi-projective module,
3. \(\text{Soc}_2(F)/\text{Soc}(F) \)

Almost QF Rings with $J^3 = 0$

$\simeq e\bar{R} \oplus A_2 \oplus A_3 \oplus \cdots$, where e is a primitive idempotent and the A_i are simple. Then $A_i \simeq e\bar{R}$ for all i.

Proof. Assume $A_2 \simeq e\bar{R}$. Then since $\text{Soc}_2(F)/\text{Soc}(F) \simeq e\bar{R} \oplus e\bar{R} \oplus \cdots$, $\text{Soc}(F)$ is simple and eJ^2 is a waist by i) and ii), there exist x_i, x'_i in $\text{Soc}_2(F)$ such that $x_iR + x'_iR, x_iR \simeq x'_iR \simeq eR/eJ^2$. Now let $\rho: x_iR \to eR/eJ^2$ be the isomorphism. Then $\rho(\text{Soc}(x_iR)) = eJ/eJ^2 \simeq e\bar{R}$, where $eJ \simeq eR/D$ and D is a characteristic submodule of eR by ii), where e_i is a primitive idempotent. Take any element α in $\text{End}_R(\text{Soc}(x_iR))$. Then α gives an element \bar{d}_i in $\text{End}_R(e\bar{R})$ via ρ. Then \bar{d}_i is induced by an element d_i in $\text{End}_R(e_iR)$. On the other hand, since D is characteristic, $e_iR/D \simeq eJ \subset eR$ and eR is injective, d_i is extendible to d in $\text{End}_R(e_iR)$. Hence d induces an element in $\text{End}_R(eR/eJ^2)$ (and in $\text{End}_R(x_iR)$ via ρ^{-1}, cf. the diagram).

Thus we have obtained a mapping θ by taking extension, which may depend on a choice of d

$$\theta: \text{End}(\text{Soc}(x_iR)) \to \text{End}_R(x_iR).$$

Let $t: x_iR \to x'_iR$ be the given isomorphism. Then t induces \bar{d}_i in $\text{End}(\text{Soc}(F)) = \text{End}_R(\text{Soc}(x_iR))$ by taking restriction. Put $t' = \theta(\bar{d}_i) - t: x_iR \to F$. Then $t'(\text{Soc}(x_iR)) = 0$, and hence $t'(x_iR) \subset \text{Soc}(F)$. Then $t(x_iR) = (\theta(\bar{d}_i) - t')(x_iR) \subset x_iR + \text{Soc}(F) = x_iR$, a contradiction.

2. $J^3 = 0$

In this section we shall observe the ring R with following properties: 1) R is a basic and right almost QF ring, 2) $J^2 \neq 0$ and $J^3 = 0$.

Lemma 3. Assume that fR is injective and $J^3 = 0$. Then we have 1) fJ^3 is simple or zero and 2) fR is uniserial if $fJ^3 = 0$.

Lemma 4. Let fR and J be as in Lemma 3 and assume that R is right almost QF. If fR contains properly a projective submodule $P \neq 0$, then fR is uniserial and hence $|fR| \leq 3$.

Proof. Since $fR \supset fJ \supset P \supset \text{Soc}(fR)$, fJ is local by [3], Corollary to Theorem 1, and hence fR is uniserial for $fJ^3 = 0$.
Corollary. Assume that R is right almost QF and $J^3 = 0$. If $|eR| \geq 3$, i.e. $eJ^2 \neq 0$, then eR is injective. Hence gR is injective or uniserial for any primitive idempotent g.

Proof. If eR is not injective, $eR \subseteq fR$ for some injective fR by [3], Corollary to Theorem 1, a contradiction to Lemma 4.

Let e_R be an (injective) R-module. If $e_1J/e_1J^2 \approx e_2\bar{R} \oplus e_3\bar{R} \oplus \cdots$ and $e_1J^2 \approx e_2\bar{R}$, then we denote this situation by

$$e_1R = (1 \ b \ c) \text{ or } e_1R = (e_1 \ e_2 \ e_3).$$

Lemma 5. Let e_1R be injective and $e_1J^2 \neq 0$ ($\approx e_2\bar{R}$) in the above. Then $e_2J/e_2J^2 \approx e_3\bar{R} \oplus \cdots$.

Proof. There exists x_2R in e_1J such that $x_2R \supseteq \text{Soc}(e_1R)$, $x_2R/\text{Soc}(e_1R) = \bar{e_2R}$ and $x_2R \approx e_2R/A$ for some A. Hence we obtain the lemma.

Lemma 6. Let e_1R be a non-uniserial and injective module expressed as above. We assume that R is right almost QF and $J^3 = 0$. Then e_1R is injective. Further if e_1R is uniserial, then e_1R is not.

Proof. First we assume $a \neq b$. Now e_1R is an injective module with $e_1J^2 \neq 0$ by Proposition 1. We have the same for e_2R. From Lemma 5 let

$$e_2R = (a \ c_1 \ d) \text{ and } e_2R = (b \ c_2 \ d').$$

Since $e_2R \approx e_2R$, $d \neq d'$. Then e_2R is not uniserial (even though e_2R is uniserial in this case), and hence e_2R is injective by Corollary to Lemma 4. Next assume $a = b$, i.e.

$$e_1R = (1 \ c) \text{ or } e_1R = (1 \ c).$$

If e_1R is not uniserial, e_1R is injective by Lemma 5 and Proposition 1. Hence assume that e_1R is uniserial. If further e_1R is uniserial, then we can derive a contradiction by Lemma 2. Therefore if e_1R is uniserial, then e_1R is not uniserial and hence e_1R is injective by Corollary to Lemma 4.

Theorem 1. Let R be an artinian ring with $J^3 = 0$. Then the following are equivalent:

1) R is right almost QF.
2) R is left almost QF.
3) R is a direct sum of serial rings and QF rings.
Proof. Let \(\{ e_i \}_{i \in I} \) be the complete set of mutually orthogonal primitive idempotents. We shall prove the theorem inductively on \(t \). If every \(e_R \) is uniserial, then \(R \) is right serial. Therefore \(R \) is serial by [5], Theorem 6.1. Hence we assume that there exists an injective but not uniserial module \(e_i R = (1 : c) \). We have shown in Lemma 6

1. If \(e_a \) belongs to \(e_2 R \), then \(e_a R \) is injective, i.e., \(e_a R, e_b R \) and \(e_c R \) are injective.
2. The same result as (1) for those \(e_a R, e_b R, e_c R \).
3. Primitive idempotents \((\neq e_a) \) belonging to \(e_a R \) belongs to \(e_c R \) if \(e_a R \) is uniserial.

Since \(e_a R \) is not uniserial by Lemma 6, from (3) we obtain again (2) for \(e_a R \). Next consider \(e_2 R \). If \(e_2 R \) is not uniserial, we obtain (2) for \(e_2 R \) from the above (replace \(e_1 R \) by \(e_2 R \)). Suppose \(e_2 R \) is uniserial, and \(e_2 R \) is not uniserial by Lemma 6. Hence we obtain (2) for \(e_2 R \). Thus we have shown (2). Now starting from \(e_1 R \), we get \(e_2 R, e_3 R \) and \(e_4 R \) which belong to \(e_1 R \). Next we take primitive idempotents belonging to \(\{ e_1 R, e_2 R, \ldots, e_r R \} \). Continuing this procedure and gathering all such primitive idempotents (use (1), (2) and (3)), we can find finally a set \(\{ e_i R, e_a R, \ldots \} \) satisfying the condition in Lemma 1. Hence \(R = \sum_{i \in I} e_i R \oplus \sum_{j > m} e_j R \) as rings. Now \(\sum_{i \in I} e_i R \) is a QF ring. Thus we can obtain the theorem by induction.

3. Right almost QF rings with homogeneous socles

In this section we shall study rings stated in the title. Let \(\{ e_i \}_{i \in I} \) be a complete set of mutually orthogonal primitive idempotents with \(1 = \Sigma e_i \) and \(R \) a basic ring.

Let \(Q \) be a local QF ring with \(J \) radical. Put \(Q = Q / \text{Soc}(Q) \) and \(J = J / \text{Soc}(Q) \). According to [7], Theorem 1 we denote a right almost QF ring \(R \) with homogeneous socle by

\[
W^k_n(Q) = \begin{bmatrix}
Q & Q & Q & \cdots & Q & Q & \cdots & Q \\
J & Q & Q & \cdots & Q & Q & \cdots & Q \\
J J & \cdots & J & Q & Q & \cdots & Q \\
J J & \cdots & J & J & Q & \cdots & Q \\
\vdots & \ddots & \vdots & \ddots & \ddots & \ddots & \ddots \\
J & \cdots & J & JJ & \cdots & J Q
\end{bmatrix}
\]
We note from [1] that there is only one projective and injective module $e_i R$ (resp. Re_i) in R.

Lemma 7. Assume $k < n$ on $R = W_n(Q)$. Then if R is left almost QF, R is serial.

Proof. Let $e_i = e_{ii}$ be the matrix unit in R. Then $e_i J(R) \approx e_{i+1} R$ for $i < n$ and $e_n J(R) = (J \cdots J \cdots J)$. Now assume $k < n$ and R is left almost QF. Then since $J(R) e_i \approx Re_{i-1}$ for $s \leq k$, $J(R) e_i = (J \cdots J)^t$ is isomorphic to $Re_i = (Q \cdots Q)^t$ for some $p > k$ from the remark before Lemma 7 and [5], Theorem 3.18 (see [3], Corollary to Theorem 1), where $(\cdot)^t$ is the transposed matrix of (\cdot). Hence since $e_i J(R) e_i \approx \bar{Q}$ as left Q-modules, J is local and hence Q is serial (cf. Lemma 9 below). Then $J \approx Q/Soc(Q) = \bar{Q}$ and $J/Soc(J) = J/Soc(Q) = J \approx Q/Soc(Q) \approx \bar{Q}/Soc(\bar{Q})$ as right Q-modules. Put $A = (\text{Soc}(Q) \text{Soc}(Q) \cdots \text{Soc}(Q) \text{Soc}(\bar{Q}) \cdots \text{Soc}(\bar{Q}))$ in $e_i R$. Then $e_n J(R) \approx e_i R/A$ from the above observation and hence $e_n J(R)$ is local. Therefore R is right serial, and hence R is serial by [5], Theorem 6.1.

Lemma 8. Assume $k = n$ on $R = W_n(Q)$. Then R is left almost QF.

Proof. This is clear from (4).

Theorem 2. Let R and n be as in the beginning. Assume that R is a right almost QF ring with homogeneous socle and $J(R)^{n-1} = 0$, $J(R)^n = 0$ (and hence $R = W_n(Q)$ and $m \geq n$). Then

1) if $m \leq 2n$, R is serial,
2) if $m = nr$, $r \geq 3$, R is left almost QF, and
3) if $m = nr + k$, $r \geq 2$ and $0 < k < n$, R is left almost QF if and only if R is serial.

Proof. By assumption and [7], Theorem 1 $R = W_n(Q)$ and we have $e_i J(R) \approx e_{i+1} R$ for $i < n - 1$. By a direct computation of $J(R)^p$ we have

i) $e_n J(R)/e_n J(R) \approx e_i \bar{R} \oplus \cdots \oplus e_i \bar{R}$ (cf. Proposition 1).

ii) $e_i J(R)^n = (J' \cdots)$.

1) Since $m \leq 2n$, $0 = e_i J(R)^{2n} = (J' \cdots)$ by ii). Hence $J' = 0$ and so Q is serial. Accordingly R is serial from the proof of Lemma 7.

2) and 3). From i) we know

\[e_i R = (1 \ 2 \ 3 \ \cdots) . \]

Further $J^n = 0$ if and only if $e_i J(R)^n = 0$. Hence $\text{Soc}(e_i R) \approx e_i \bar{R}$ if $m = nr$ and $\text{Soc}(e_i R) \approx e_i \bar{R}$ if $m = nr + k$, $0 < k < n$. Therefore $R = W_n(Q)$ if $m = nr$ and $R \approx W_n(Q)$ if $k = 0$. As a consequence we obtain the theorem from Lemmas 7 and 8.
Corollary. Assume \(n=2 \) and \(R \) is right almost QF. Then if \(J(R)^{2m-1} \neq 0 \), \(J(R)^{2m} = 0 \), \(R \) is left almost QF. If \(J(R)^{2m} \neq 0 \), \(J(R)^{2m+1} = 0 \), \(R \) is QF or serial if and only if \(R \) is left almost QF. Further if \(J(R)^{t} = 0 \), \(R \) is QF or serial.

Proof. If \(R \) is QF or serial, the corollary is clear by [5], Theorem 4.5. Assume that \(R \) is not QF. Since \(n=2 \), we can suppose that \(e_i R \) is injective and \(e_i J(R) \approx e_i R \). Hence we obtain the corollary from Theorem 2.

4. Rings with (♯-i)

In the previous sections we have observed a ring which is a direct sum of QF rings and serial rings. In this case

(♯-1) \(eR \) is injective or uniserial for each primitive idempotent \(e \).

We consider two more conditions. Let \(eR \) be injective but not uniserial. Then we may assume that there exists an integer \(s \) such that \(eJ^i/eJ^{i+1} \) is simple for all \(i \) (\(0 \leq i \leq s-1 \)) and \(eJ^i/eJ^{i+1} \approx \sum_{j=1}^{k} f_j R \); \(k \geq 2 \), where the \(f_j \) are primitive idempotents. Here we consider the second condition

(♯-2) the \(f_j R \) is injective for all \(j \).

Assume that \(R \) is a right almost QF ring with (♯-1). In the above we put \(eJ^i/eJ^{i+1} \approx g_i R \); \(g_i \) is a primitive idempotent. Since \(eR \) is not uniserial, \(g_i R \) is injective by (♯-1). In particular \(eJ^i/eJ^{i+1} \approx g_{s-1} R/A \) for some \(A \) in an injective \(g_{s-1} R \) and hence \(eJ^i/eJ^{i+1} \approx g_{s-1} J/(g_{s-1} J^2 + A) \leftarrow g_{s-1} J/g_{s-1} J^2 \). Since \(|eJ^i/eJ^{i-1}| \geq 2 \), (♯-2) is satisfied from Propostion 1. From the above observation we know that

Assume that \(R \) is right almost QF, the (♯-1) is satisfied if and only if every non-injective projective \(gR \) is contained in a uniserial injective \(eR \) and in this case (♯-2) and (♯-3) below are satisfied.

Taking some non-serial right serial rings, we can get rings with (♯-1, 2) which are not right almost QF. Hence we consider the third condition. Here we assume temporarily that \(R \) is an algebra over a field \(K \) with finite dimension. We further assume that \(R \) satisfies (♯-1) as right as well as left \(R \)-modules. Let \(gR \) be not injective, and hence uniserial. Then \(E(gR) \) is indecomposable. Take \(E(gR)^* = \text{Hom}_K(E(gR), K) \). Then \(E(gR)^* \) is indecomposable and projective. Therefore \(E(gR) \approx E(gR)^* \) is local. We consider this property for any ring.

(♯-3) \(E(gR) \) is local for each primitive idempotent \(g \).

Now we study rings with (♯-1, 2, 3). We always assume that \(R \) is basic.

Lemma 9. Assume \(eJ^i/eJ^{i+1} \approx \bar{e}_1 R \oplus \bar{e}_2 R \oplus \cdots \oplus \bar{e}_s R \). Then \(eJ^{i+1}/eJ^{i+2} \) is a homomorphic image of \(eJ \oplus \bar{e}_1 J \oplus \cdots \oplus \bar{e}_s J \).

Proof. We can express \(eJ^i \) as \(x_1 R + x_2 R + \cdots + x_s R + eJ^{i+1} \), where \(x_i e_j = x_j \). Hence \(eJ^{i+1} = x_1 e_1 J + \cdots + x_s e_j J + eJ^{i+2} \). Thus we obtain the lemma.
Lemma 10. We assume that (♯-3) is satisfied. Suppose that \(eR\) is injective and \(eJ/eJ^{j} \cong g_{i}R, g_{i}J^{j} \cong g_{i}R, \ldots, g_{i-1}J^{j} \cong g_{i}R, \) where the \(g_{i}\) is a primitive idempotent and \(g_{i}R\) is not injective for all \(i\). Then \(eR \supset g_{i}R \supset \cdots \supset g_{i}R\) isomorphically.

Proof. We shall show \(eJ^{i} \cong g_{i}R\) for all \(i\) by induction on \(i\). Assume \(eJ^{i} \cong g_{i}R\) if \(i \leq \text{some } k - 1\). Then \(eJ^{i}/eJ^{i+1} \cong g_{i-1}J^{i}/g_{i}J^{i} \cong g_{i}R\) by assumption. Let \(eJ^{i} = x_{i}R(x_{i}g_{i} = x_{i})\) and \(\rho: g_{i}R \rightarrow eJ^{i}(\rho(g_{i}) = x_{i})\) the natural epimorphism. Take a diagram

\[
\begin{array}{c}
0 \rightarrow g_{i}R \rightarrow E(g_{i}R) \\
\downarrow \rho \\
x_{i}R \\
\cap \rho' \\
eR
\end{array}
\]

Since \(eR\) is injective, we have \(\rho': E(g_{i}R) \rightarrow eR\) which commutes the diagram. \(E(g_{i}R)\) being local from (♯-3), \(\rho'(E(g_{i}R)) \cong x_{i}R = \rho'(g_{i}R)\) for \(g_{i}R \cong E(g_{i}R)\). Further \(eJ^{i}\) is a waist for all \(i \leq k\) by induction hypothesis. Consequently \(\rho'(E(g_{i}R))\) is projective. Therefore \(\rho'\) is a monomorphism, and hence so is \(\rho\).

Lemma 11. We assume that (♯-1), (♯-2) and (♯-3) are satisfied and that \(eR\) is injective and \(g_{i}\) belongs to \(eR\). If \(g_{i}R\) is not injective, then \(g_{i}R\) is contained isomorphically in an injective and uniserial module \(eR\).

Proof. Since \(g_{1}\) belongs to \(eR\), we may suppose \(eJ^{s}/eJ^{s+1} \cong g_{i}R \oplus \cdots\) for some \(s\), \(g_{s}R\) being not injective, \(s \neq 0\). If \(s = 1\), then \(|eJ/eJ^{j}| = 1\) by (♯-2) and \(g_{s}R \cong eJ\) from Lemma 10 and \(eR\) is uniserial by (♯-1). Hence assume \(s \geq 1\). From Lemma 9 there exists \(g_{2}\) such that \(eJ^{s-1}/eJ^{s} \cong g_{2}R \oplus \cdots\) and \(g_{s}J/g_{s}J^{s} \cong g_{i}R \oplus \cdots\). If \(g_{2}R\) is not uniserial, \(g_{2}R\) is injective by (♯-1), and then \(g_{s}R\) is injective by (♯-2), a contradiction (cf. the remark after (♯-2)). Accordingly \(g_{2}R\) is uniserial and hence \(g_{2}J/g_{2}J^{s} \cong g_{i}R\). Next assume that \(g_{2}R\) is not injective. Then \(g_{2}R\) satisfies the same condition as on \(g_{s}R\), and hence similarly to the above we can find \(g_{3}R\) such that \(eJ^{s-2}/eJ^{s-1} \cong g_{3}R \oplus \cdots\) and \(g_{s}J/g_{s}J^{s} \cong g_{3}R \oplus \cdots\). Repeating this process, we obtain finally an injective and uniserial module \(eR\) such that \(eJ/eJ^{j} \cong g_{i}R\) for some \(i\) (and \(g_{s}J/g_{s}J^{s} \cong g_{i}R, \cdots g_{2}J/g_{2}J^{s} \cong g_{i}R\)). Hence \(eR\) contains isomorphically \(g_{i}R\) from Lemma 10.

Proposition 3. (♯-1), (♯-2) and (♯-3) are satisfied if and only if \(R\) is right almost QF and every non-injective projective \(gR\) is contained in a uniserial and injective \(eR\).

Proof. We assume (♯-1, 2, 3). First we shall show that \(R\) is right QF-3. Let \(eR\) be not injective. Then \(E(gR)\) is local by (♯-3), i.e., \(E(gR) \cong fR/A\) and
Almost QF Rings with \(J^3 = 0 \)

\(fR \) is uniform from (\#-1). Further \(fR/A \supseteq gR \) and \(gR \approx B/A \) for some \(B (\supset A) \) in \(fR \). Therefore since \(gR \) is projective and \(fR \) is uniform, \(A = 0 \) and \(fR = E(gR) \supseteq gR \). Accordingly \(R \) is right QF-3. Let \(hR \) be injective and suppose \(hR \supseteq k_1R \), where \(h \) and \(k_1 \) are primitive idempotents. Then form the last part of the proof of Lemma 11 there exists a uniserial and injective module \(h_1R \) such that \(h_1R = (h_1, k_1, \cdots, k_1, \cdots) \) and \(h_1R \supseteq k_1R \). Hence \(hR \approx h_1R \). Thus \(R \) is right almost QF by [3], Corollary to Theorem 1. The converse is clear from the remark before Lemma 9.

5. \(J^4 = 0 \)

In this section we assume that \(R \) is an (basic) artinian ring with \(J^4 = 0 \). Let \(1 = \sum_{i \in \Lambda} e_i \) be as in §3. We studied almost QF rings with \(n = 2 \) in Corollary to Theorem 2. We study almost QF rings with \(n = 3 \) or 4 in this section.

Lemma 12. Let \(R \) be two-sided almost QF. If \(R \) is not QF, then there exists an injective and projective \(eR \) such that \(eR/Soc(eR) \) is again injective.

Proof. \(R \) is right almost QF by [6], Theorem 3.7. Hence we obtain the lemma from [2], Theorem 2.3.

Theorem 3. Let \(R \) be an (basic) artinian ring. Assume that \(J^4 = 0 \) and \(n \leq 3 \), where \(\{e_i\}_{i \in \Lambda} \) is a complete set of mutually orthogonal primitive idempotents. Then the following are equivalent:

1) (\#-1), (\#-2) and (\#-3) are satisfied as right as well as left \(R \)-modules.
2) \(R \) is a two-sided almost QF ring.
3) \(R \) is a direct sum of serial rings and QF rings.

Proof. 1) \(\rightarrow \) 2). This is given by Proposition 3.

2) \(\rightarrow \) 3). From Corollary to Theorem 2 and Theorem 1 we can suppose \(n = 3 \) and \(J^3 \neq 0 \). First we note that if \(R \) is a direct sum of two rings, then \(R \) is a direct sum of serial rings and QF rings from Proposition 2 and Corollary to Theorem 2. We call this situation \(R \) splits. Let \(R \) be two-sided indecomposable and neither serial nor QF. Then we shall derive a contradiction for all possible situations. If \(e_iR \supseteq e_2R \supseteq e_3R \), \(R \) is serial by Theorem 2. Thus we may suppose from [3], Theorem 1

(5) \(e_iR, e_3R \) are injective and \(e_iJ \approx e_3R \).

First we assume that \(e_iR \) is uniserial.

i) \(e_iR \) is uniserial and \(e_iJ \) is local.

Then \(e_iJ/e_iJ^2 \) is uniserial for all \(i \). Hence \(R \) is right serial, and \(R \) is serial by [5], Theorem 6.1.

Thus we may assume

ii) \(e_iR \) is uniserial, but \(e_iJ \) is not local, i.e.,
Then \(\{a, b\} \subset \{1, 3\} \) from Proposition 1. First we note that if \(a=b=3 \), then \(R \) splits from Lemmas 1 and 9. Hence we can skip the case \(a=b=3 \).

\[e_3R = \begin{pmatrix} a & a' \\ b & b' \\ c' \\ \vdots \end{pmatrix} \]

\[e_3R = (3 : 2) \]

Then \(\{a, b\} \subset \{1, 3\} \) from Proposition 1. First we note that if \(a=b=3 \), then \(R \) splits from Lemmas 1 and 9. Hence we can skip the case \(a=b=3 \).

\[|e_1R| = 2 \]

i) \(e_1R=(1 \ 2) \).

\[a=1 \]

Let \(e_3J/e_3J^2 \cong e_1R \oplus \cdots \). Then there exists \(x_1 \) in \(e_3J \) such that \(x_1 e_1 = x_1 \) and \((x_1R + e_3J)/e_3J^2 \cong e_1R \). (We use this notation in the following arguments.) Suppose that \(x_1R \) is simple. Then \(x_1R = \text{Soc}(e_3R) \subset e_3J^2 \) for \(e_3J^2 \neq 0 \), a contradiction. Hence \(x_1R \approx e_3R \) is injective, again a contradiction. \[|e_1R| = 3 \]

ii) \(e_1R=(1 \ 2 \ 1) \).

\[a=1 \]

Then we take \(X_x \) in \(e_3R \) such that \(X_x \supset e_3J^2 \) and \(e_3J/X_x \cong e_1R \). Since \(e_3J/X_x \cong \text{Soc}(e_1R) \cong e_1R \) and \(e_1R \) is injective, \(e_2 = e_3 \), a contradiction.

iii) \(e_1R=(1 \ 2 \ 2) \). Then \(e_1J/e_1J^2 \cong \text{Soc}(e_1R) \). Hence \(e_1 = e_2 \), a contradiction.

iv) \(e_1R=(1 \ 2 \ 3) \).

\[a=1 \]

Then \(x_1R \) in \(e_3J \) is a homomorphic image of \(e_1R \), and hence \(x_1R \cong \text{Soc}(e_1R) \) for \(e_3J \approx e_1J \). If \(x_1R \cong e_1R/e_1J \), \(x_1R \subset \text{Soc}(e_1R) \subset e_3J^2 \), a contradiction. Hence we obtain a homomorphism \(\psi : \text{Soc}_2(x_1R) \rightarrow \text{Soc}_2(x_1R)/\text{Soc}(x_1R) \cong e_3R \rightarrow \text{Soc}(e_1R) \). Since \(e_1R \) is injective, we obtain an extension of \(\psi \), which is a contradiction to the structure of \(e_1R \) and \(e_3R \).

v) \(e_1R=(1 \ 2 \ 1 \ x) \).

Then \(x=2 \). Then \(e_3J/e_1J \cong \text{Soc}(e_1R) \). Hence \(e_1 = e_2 \), a contradiction.

vi) \(e_1R=(1 \ 2 \ 2 \ x) \).

Then \(x=2 \) and \(e_3J/e_1J^2 \cong \text{Soc}(e_1R) \). Hence \(e_1 = e_2 \), a contradiction.

vii) \(e_1R=(1 \ 2 \ 3 \ x) \).

Since \(\{a, b\} \subset \{1, 3\} \), \(x=1 \) or \(3 \), and \(d \neq 1 \).

vii-i) \(x=1 \) and \(d=2 \). Then \(a=1 \).

\[b=1 \]

Let \(e_3J/e_3J^2 \cong x_1R \oplus x_1R \oplus \cdots \). Since \(d=2 \), we may assume \(x_1R \approx x_1R \oplus \cdots \) (\(\cong e_1R/e_1J^2 \), which is uniserial). Hence \(x_1R, x_1R \oplus x_1R \oplus \cdots \) are contained in \(\text{Soc}_2(e_3R) \). Therefore \(e_3J = \text{Soc}_2(e_3R) \) for \(\text{Soc}_2(e_3R) \supset e_3J^2 \). As a consequence

\[e_3R = (3 : 2) \]

Then we obtain a contradiction to Lemma 2.

\(\beta \) \(b=3 \). \(e_3J \) contains a submodule \(x_1R \) isomorphic to \(e_1R/e_1J^2 \) as in \(\alpha \). Hence \(x_1R \supset \text{Soc}_2(e_3R) \) and \(x_1R \subset e_3J^2 \). Since \(b=3 \), \(e_3J^2/e_3J^3 \) has to contain a
Almost QF Rings with \(J^2 = 0 \)

simple submodule isomorphic to \(\tilde{e}_1 \tilde{R} \) by Lemma 9 and its proof. Hence since \(x_1 R \subseteq e_1 J^p \), \(\text{Soc}(e_3 R) / \text{Soc}(e_2 R) \cong \tilde{e}_1 \tilde{R} \oplus \cdots \), a contradiction to Lemma 2.

vii-ii) \(x = 1 \) and \(d = 3 \) (and hence \(a = 1 \)).

\(\alpha) \) \(b = 1 \). Since \(\text{Soc}(e_1 R / \text{Soc}(e_1 R)) \cong \text{Soc}(e_3 R) \), \(e_3 R / \text{Soc}(e_3 R) (= E) \) is injective by Lemma 12. Further \(\text{Soc}(e_3 R) = e_3 J^p \) and \(\text{Soc}(E) / \text{Soc}(E) \cong e_3 J / e_3 J^p \cong \tilde{e}_1 \tilde{R} \oplus \cdots \), a contradiction to Lemma 2.

\(\beta) \) \(b = 3 \). From the structure of \(e_3 R \) and Lemma 9 we know \(\text{Soc}(e_3 R) / \text{Soc}(e_3 R) \cong \tilde{e}_2 \tilde{R} \) or \(\cong \tilde{e}_3 \tilde{R} \). Then \(\text{Soc}(e_1 R) / \text{Soc}(e_3 R) \cong \text{Soc}(e_1 R) \) as above, a contradiction.

\(\chi - iii) \) \(x = 3 \), i.e. \(e_1 R = (1 2 3 3) \).

Since \(e_1 R / \text{Soc}(e_1 R) \) is not injective, \(| \text{Soc}(e_2 R) / \text{Soc}(e_3 R) | = 1 \) by Lemma 12. Hence

\[
\begin{array}{c}
e_3 R = (3 : x y) or (3 : x y) \\
1 \\
3
\end{array}
\]

(note \(e_3 J^p \subseteq \text{Soc}(e_3 R) \)). If \(e_3 J^p \neq 0 \), \(y = 3 \), a contradiction. If \(e_3 J^p = 0 \), \(\text{Soc}(e_3 R) / \text{Soc}(e_3 R) \geq 2 \), a contradiction.

Thus we have shown that \(R \) is a direct sum of serial rings and QF rings, provided \(e_i R \) is uniserial.

Finally we observe the structure of \(R \), when \(e_1 R \) is not uniserial. Assume that an injective module \(e_1 R \) contains a projective proper submodule and is not uniserial. Then \(e_1 J \) is local by [3], Corollary to Theorem 1, and hence

\[
e_1 R = (a b c' d); e_1 J^p \neq 0 .
\]

Now from \(i) \), \(ii) \), (5), Proposition 1 and Lemma 12, we may assume

\[
a \quad a' \\
::
\]

\(iii) \) \(e_1 R = (1 2 b g) \) and \(e_3 R = (3 b' h g') \) are injective, \(e_1 R \) is not uniserial and \(e_2 R \cong e_1 J; \{ a, b \} \subseteq \{ 1, 3 \} \).

From Lemma 12 we have

Lemma 13. Let \(R, e_1 R \) and \(e_3 R \) be as above. Then \(e_3 R / \text{Soc}(e_3 R) \) is injective.

First we assume that \(e_3 R \) is not uniserial. We note that if \(a' = b' = 3 \), then \(R \) splits from Lemmas 1 and 9.

\(iii-1) \) \(e_1 R \) and \(e_3 R \) are not uniserial, and hence \(e_3 J^p \neq 0 \) from Lemma 13.

\(i) \) \(a = 1 \). Then \(g = 2 \).

\(a' = 1 \). Then \(h = 2 \) and \(\text{Soc}(e_3 R / \text{Soc}(e_3 R)) = \text{Soc}(e_1 R) \), a contradiction from
Lemma 13.

ii) \(a=b=3 \).

\[a'=b'=1. \] Then \(h=2 \) and \(g'=3 \), i.e.,

\[e_1R = (1, 2; 1), e_2R = (2, 1; 1) \text{ and } e_3R = (3, 2; 3). \]

Then \(e_3R/Soc(e_3R) (=E) \) is injective by Lemma 13 and \(Soc(E)/Soc(E) \cong e_1\bar{R} \oplus \cdots \oplus e_1\bar{R}. \) Since \(e_3R \) is not uniserial, \(|Soc(E)/Soc(E)| \geq 2 \), a contradiction to Lemma 2.

\[\beta \) \(a'=1 \) and \(b'=3 \). Then \(h=2 \) from \(e_1R \) and \(h=1 \) or \(3 \) from \(e_3R \), a contradiction.

\[\text{iii-2)} \] \(e_1R \) is not uniserial and \(e_3R \) is uniserial.

\[\alpha) \] \(a=b=1 \). Then

\[e_1R = (1, 2; 2), \] which contradicts Lemma 2.

\[\beta) \] \(a=1, b=3 \). Then

\[e_1R = (1, 2; 2), \] and hence \(e_3R = (3, 2, c, d) \).

If \(e_3J' = 0 \) (resp. \(e_3J' = 0 \)), \(Soc_2(e_3R)/Soc(e_3R) \cong Soc(e_1R) \) (resp. \(Soc(e_3R) \cong Soc(e_1R) \)), a contradiction from Lemma 13. Assume \(e_3J' \neq 0 \), then \(c=1 \) or \(3 \), and hence \(d=2 \), a contradiction.

\[\gamma) \] \(a=b=3 \).

\[i) \] \(g=1 \). Then

\[e_1R = (1, 2; 1) \text{ and } e_3R = (3, 1, c, d) \]

We know as above \(e_3J' \neq 0 \), and so \(e_3R = (3, 1, 2, 3) \). Here we shall again make use of the argument in the proof of Lemma 2. Since \(e_3R \) is uniserial, there exist two submodules \(yR, y'R \) in \(e_3J' \) such that \(yR \approx y'R \approx e_3R/e_3J' \). Let \(\alpha \) be an element in \(\text{End}_\mathbb{k}(Soc(yR)) \). We shall find an extension of \(\alpha \) in \(\text{End}_\mathbb{k}(yR) \). Since \(yR \approx e_3R/e_3J' \), \(Soc(yR) \approx Soc(e_3R/e_3J') \approx e_1R/e_1J' \). Hence we may assume that \(\alpha \) is given by an element \(p \) in \(e_1R \) via the above isomorphism. Then \(p \) induces an endomorphism \(\bar{p} \) of \(e_3J' \). Further \(\bar{p} \) is extendible to \(q \) in \(\text{End}_\mathbb{k}(E) \). Finally since \(E/Soc(E) \approx e_1R/e_1J' \), \(\bar{q} \) induces an element in \(\text{End}_\mathbb{k}(e_3R/e_3J') \), which is an extension of \(\alpha \) (see the diagram below)

\[
\begin{array}{c}
E \approx e_3R/e_3J' \xrightarrow{\rho} e_3R/e_3J' \rightarrow 0 \\
\cup \quad \cup \\
\cup \\
e_1R/e_1J' \approx Soc_2(E) \approx X \xrightarrow{\rho} Soc(e_3R/e_3J') \rightarrow 0,
\end{array}
\]
where \(\rho \) is the natural epimorphism. Using this extension, we can derive a contradiction.

(\(\beta \)) \(a' = 1 \) and \(b' = 3 \). Then \(h = 2 \) from \(e_jR \) and \(h = 1 \) or \(3 \) from \(e_jR \), a contradiction.

3) \(\rightarrow 1 \). This is trivial.

Theorem 4. Let \(R \) and \(n \) be as in Theorem 3. Assume that \(R \) is a two-sided almost QF and two-sided indecomposable ring with \(J^3 = 0 \) and \(n = 4 \). Then \(R \) is either serial or QF if and only if \(R \) is not of the following: there exist exactly three injective and projective modules \(e_iR \) and some one among \(e_iR \) is not uniserial.

Proof. Suppose that \(R \) is not QF. Then we have the following four cases:

1) \(e_1R \) is injective and \(e_1R \supset e_2R \supset e_3R \supset e_4R \) (isomorphically).
2) \(e_1R \) and \(e_2R \) are injective and \(e_1R \supset e_3R \supset e_4R \).
3) \(e_1R \) and \(e_2R \) are injective and \(e_1R \supset e_4R, e_2R \supset e_4R \).
4) \(e_1R, e_2R \) and \(e_4R \) are injective and \(e_1R \supset e_2R \).

Case 1) Since \(J^3 = 0 \), \(R \) is serial by Theorem 2.

Case 2) Then \(e_1R \) is uniserial by [3], Corollary to Theorem 1, i.e., \(e_1R = (1 2 3 d) \) (or = (1 2 3)) and \(e_1R \) are injective. If \(e_4J \) is local, \(R \) is right serial. Suppose that \(e_4J \) is not local. Then from Proposition 1 we have the following:

\[
\begin{align*}
\text{a}) & \quad e_4R = (4 \mid \cdots), \\
\text{b}) & \quad e_4R = (4 \mid \cdots) \text{ or } c}) e_4R = (4 \mid \cdots)
\end{align*}
\]

\(R \) splits if c) occurs. Hence we assume a) or b).

i) \(e_4R/\text{Soc}(e_4R) \) and \(e_4R/\text{Soc}(e_4R) \) are injective (see the proof of Lemma 12).

Let \(xR \) be a submodule in \(e_4J \) with \((xR + e_4J^3)/e_4J^3 \approx e_2R \). Since \(e_1R \) is uniserial, \(\text{Soc}(e_1R) = \text{Soc}(xR) \approx e_2R \) or \(e_3R \) if \(e_1J^3 = 0 \). However \(\text{Soc}(e_1R/\text{Soc}(e_1R)) \approx e_2R \) and \(\text{Soc}(e_1R/\text{Soc}(e_1R)) \approx e_2R \), a contradiction. If \(e_1J^3 = 0 \), we obtain the same result as above.

ii) \(e_1R/\text{Soc}(e_1R) \) and \(e_1R/\text{Soc}(e_1R) \) are injective.

Assume a) or b). \(\text{Soc}(e_4R) \) and \(\text{Soc}(e_4R) \) are waists by assumption. Since \(\text{Soc}(e_4R/\text{Soc}(e_4R)) \approx e_2R \), there exists a submodule \(xR \) in \(e_4J \) such that \(xR \approx e_1R/e_4J^3 \), i.e., \(e_4J^3 = 0 \), and hence \(e_4R \) is uniserial.

(\(\beta \)) \(e_1J^3 = 0 \). \(e_1R = (1 2 3) \).

Then \(xR \) is simple, i.e., \(|e_4R| \leq 2 \), a contradiction.

iii) \(e_4R/\text{Soc}(e_4R) \) and \(e_4R/\text{Soc}(e_4R) \) are injective. Then \(e_4R \) is uniserial and hence \(R \) is serial.

Case 3) i) \(e_4R/\text{Soc}(e_4R) \) and \(e_4R/\text{Soc}(e_4R) \) are injective. Then \(e_4R = (1 2 c d) \) (or = (1 2 c)) and
In the latter case R is serial. Hence assume the former. Then $\{g, h\} \subset \{1, 3\}$. Assume $e_1J^3 \neq 0$.

\(\alpha \) $g = 1$. There exists xR in e_1J with $xR \approx e_1R/A$ for some A in e_1R. However $\operatorname{Soc}(e_1R) = \operatorname{Soc}(xR) \approx e_1\tilde{R}$, a contradiction.

\(\beta \) $g = h = 3$. Then

\[
ed_3R = (3 4 4),
\]

which is a contradiction to Lemma 2.

We obtain the same result in a case $e_1J^3 = 0$.

ii) $e_1R/\operatorname{Soc}(e_1R)$ and $e_3R/\operatorname{Soc}(e_3R)$ are injective. Then e_1R and e_3R are uniserial, and hence R is serial.

Case 4) If e_1R, e_3R and e_4R are uniserial, R is right serial.

6. Examples

In this section we shall give several examples related to the previous sections.

1. We shall give a two-sided almost QF ring with $J^* = 0$ and $n = 4$ but neither QF nor serial. This is an example of exceptional algebras in Theorem 4. Let K be a field and $R = \Sigma_{i=4} \oplus e_iR$, where $\{e_i\}$ is a set of mutually orthogonal primitive idempotents with $1 = \Sigma e_i$. We define $e_1R = e_1K \oplus aK \oplus abK \oplus abc'K$, $e_2R = e_2K \oplus bK \oplus bc'K$, \cdots, whose multiplicative structure is given below, where λa means $a = e_1ae_2$, and so on.

(In the previous sections we expressed horizontally the structure of e_iR, however we shall do vertically here.)

\[
\begin{array}{cccc|c|c|c|c|c|}
e_1R/e_1J & 1 & 2 & 3 & 4 \\
e_1J/e_1J^3 & a_2 & b_3 & c_1 \cap c_4 \cap d_3 \\
e_1J^3/e_1J^3 & ab & bc' & cb = c'd \cap dca ,
\end{array}
\]

where the other products among a, b, \cdots are zero, e.g. $bc = dc' = 0$. Then $(Re_1)^* \approx e_1R$, $(Re_2)^* \approx e_4R$ and $(Re_3)^* \approx e_3R$ are injective and $e_1R \supset e_2R \supset (Re_2 \supset Re_1)$. Hence R is the desired algebra, which satisfies $(\#-1, 2, 3)$.

In the above example we replace e_3R with
Then we obtain a two-sided almost QF-algebra with $J^4=0$ and any $n \geq 4$, which is neither QF nor serial. We shall give another type of exceptional algebras, where $e_3R(=e_2R)$ is not uniserial.

$$e_1R$$

$$e_1J$$

$$e_1J^2$$

$$e_1J^3$$

where the other products among a, b, c are zero, e.g. $\{b, b'\} \{c, c'\} = 0$, $bde = b'd'e' = 0$, $\{e, e'\} \{d, d'\} = 0$, $dec = d'e'c' = 0$ and so on. Then $(Re_3)^* \approx e_1R \supset e_2R$, $(Re_3)^* \approx e_1R$ and $(Re_2)^* \approx e_1R$. This ring is almost QF, but $(#-1)$ is not satisfied.

2. We shall give an algebra which is a two-sided almost QF-algebra with $J^4=0$ and $n=3$, but R is neither QF nor serial (cf. Corollary to Theorem 2). $R=\sum e_3R$ as above.

Then e_1R, e_2R and Re_3, Re_3 are injective and $e_1R \supset e_2R, Re_2 \supset Re_3$.

3. There exists a right almost QF algebra with $J^4=0$ and $n=3$, which is not left almost QF (cf. Corollary to Theorem 2). Put $bca=0$ in the above. Then $Re_3 \supset Re_2$ and J_{e_3} is not local.

References

Department of Mathematics
Osaka City University
Sugimoto-3, Sumiyoshi-ku
Osaka 558, Japan