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On the Conditions of a Stein Variety

By Takeo Asami

§1. Introduction. The purpose of this paper is to give a criterion
for a Stein variety. An analytic space ¥ [1] with a countable base
is called a Stein variety, when :

1. B is holomorph-convex ; that is, a holomorphic convex hull of
any compact subset of ¥ is compact. The holomorphic convex hull of
a subset K is the set of the points P satisfying |f(P)| <Max|f(K)| for
all functions holomorphic in B.

2. For any two points P, Q € B (P==Q), there exists a function f
holomorphic in L, such that f(P)==g(Q).

3. For any point P €%, there exists a finite number of functions
holomorphic in B which imbed a neighborhood U of P in the following
way, i.e., by means of which U is represented as an analytic set® S in
an open set of the space of complex variables of sufficiently high
dimensions such that S has the property that, for arbitrary point P’ of
S, any function holomorphic in a neighborhood of P’ is expressed as a
trace of a function of the space®.

The definition in this form is due to H. Grauert [2].

The problem of simplifying these conditions is treated by H. Grauert
[2] and R. Remmert [7]. Grauert proved that a holomorphic convex
analytic space (without the assumption of having a countable base) is
a Stein variety, if it is K-complete. An analytiq space R is called
K-—complete, if, for any point P € R, there exist a finite number of func-
tions holomorphic in & which map a neighborhood of P non degeneratedly
at P, ie., the image of P in the space of complex variables has as an
inverse image in U a discrete set. Since, as Remmert remarked, K-
completeness follows immediately from the separability condition, so,
according to Grauert’s result, one of the conditions (2., 3.) implies that
a holomorph-convex analytic space is a Stein variety. But a holomorph-

1) Namely the set which is locally the common zeros of a finite number of equations.
2) In this paper, we shall call for convenience the conditions 2. and 3. the separability
condition and the coordinate condition respectively.
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convex analytic space is not always a Stein variety, as a simple example
shows®.

In the present paper we shall introduce the notion of a positive
definite Levi function and derive the coordinate condition from the
existence of such a function and the holomorph-convexity. Thus we
shall prove the following Theorem :

Theorem. [t is necessary and sufficient for an analytic space to be a
Stein variety that it is holomorph-convex and admits a positive definite
Levi function.

§2. Definition. In the following we assume an analytic space not
to be 0 dimentional unless we mention the contrary.

DeriNiTION. Let @ be an upper semicontinuous” function in an
analytic space R, which takes real values or —c. We shall call ¢ a
positive definite Levi function, if, for any point P e€®R, there exist a
neighborhood U of P and a family {s,} of characteristic surfaces in U
such that each o, is expressed by the equation f(Q,#)=0(Q € U, 0<t<1),
f(Q, t) being univalent and holomorphic for @ € U and continuous for ¢
in the interval [0, 1] and such that

1. o, passes through P and lies in the part ¢ >@(P), except P.

2. o, (t==0) lies in the part @ >@(P).

REMARK. When R is of 1 dimension, these conditions mean that
there exist continuous curves in U which start at P and lie in the part
@ >@(P), except P.

A pseudoconvex (plurisubharmonic) function with the property (P,
which is defined in a complex analytic manifold is a positive definite
Levi function®.

§3. Lemma. Lef @ be a positive definite Levi function in an analytic
space R and let R’ be an analytic subspace contained in R (R’ may have
boundaries in R). If we take the trace ¢’ of ¢ on R, ¢’ is a positive
definite Levi function in R,

From this Lemma, it is evident that, for any analytic set A con-
tained in R, @ cannot attain its relative maximums at inner points of

3) For example, the product space of the complex projective space and the space of
complex variables.

4) Precisely ¢¥ upper semicontinuous.

5) “No. 13. Propriété pricipale” of Oka [4]. For the meaning of the property (P,), see
p. 125 of Oka [5].
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A and that the set of the form @ =constant is non-dense in A. From
both facts it follows that, when A is compact and everywhere regular
in R, A is 0 dimensional and so it is a finite point set.

Proof of the Lemma. Since the statement is obvious, if R’ is of
the same dimension as R, we assume that R’ is lower dimensional.
Let R’ be of #» dimensions. It is sufficient to show that, for any point
PecR’, we dan determine a neighborhood U’ and a family {s/} of
characteristic surfaces satisfying the conditions in the definition. Let us
regard P as a point of R and consider the neighborhood U and the
family {o,} of the characteristic surfaces which are already given by
the definition of @. Roughly speaking, it will be shown that U’ and &/
will be obtained as the section on U and o, by R’ respectively.

In fact, take from the intersection U and R’ an irreducible component
passing through P and denote it U’. As easily seen from the definition
of an analytic space, we can represent U’ as zeros of an irreducible
pseudopolynomial f(x, ® in a polycylinder of the space (x,, -+, %,, ¥).
To be more precise

F(x, -, %, ) =3Y"+A,@®)y" '+ - +A4,(x)

and the coefficients are holomorphic in the polycylinder «:|x;|< 8 (8>0),
(=1, ---, n), and further we assume that P coincides with the origin.
Consider the trace of F(Q, ) on U’, which we denote by the same letter.
For each ¢, f(Q, #) is univalent” and holomorphic in U’ and since o,
passes through the origin, (0, 0)=0. Then two cases arise.
1. f=0; this means ¢’(Q) >¢’(P) for @ in U’ different from P. Then
it is easy to construct the family of characteristic surfaces (or a conti-
nuous curve) satisfying the conditions in the definition.
2. f==0; then we can prove the existence of a positive number Z, such
that, for any {0t <¢), F(Q, t) always takes zeros.

After having proved this, if we set

o't’: f(Qy t)=0 QEU,’ Ostéto’

{o/} is the required one.

Suppose that such a nositive number #, does not exist, then we
have a decreasing sequence {f{,} (0<¢{,<1) (k=1, 2, ---) converging to
0 such that f,=7f(Q, ¢,) does not vanish in U’. For each f, there exists
a pseudopolynomial

6) We use freely the theorems in Kap. II, particularly in §12 and §14, of Osgood [6].
7) This is evident if we suppose U be expressed as an analytic set which is imbedded
in the space of complex variables in the way explained in the condition 3) in Introduction.
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Gy, vy %,, 2) =2"+BP(#)2" '+ -+ +BR (%)
such that G,(x,, +*-, x,, f3) =0. Similarly for f,=f(®, 0) we have
G(xu ety Xy Z) = zm+B1(x)zm_l+ tee +Bm(x)

such that G(x,, -+, x,, f,) =0. (Here B®(x) is the m products of the
values of at the points of U’ which are superposed over the point
(%, ++-, x,) €. The same fact holds for f, and B,,(x).) Since the sequence
fiy f2y o+ converges uniformly to f, on any campact subset of U’, the
sequence B{’(x), B&(x), --- converges to B,,(x) in a similar manner in v
of the space (%,, -+, x,). Every B¥(x) does not vanish in ¢ from the
assumption for f,, while B,,(0)=0. This contradicts the well known
fact (See p. 82 of Julia [3]), q.ed.

§4. Proof of the Theorem.

Necessity. We show that a Stein variety 8 always admits a positive
definite Levi function. Owing to Remmert [7], we can suppose that B is
an analytic set in the space of complex variables (x,, ---, x5) of sufficiently
high dimension. Then ®=|x,|*+ --- + |xy|* is a positive definite Levi
function in the space (x,, -+, x5), for ® is a pseudoconvex function with
the property (P,). Hence, the Lemma implies that the trace of ® or ¥
is also a positive definite Levi function.

Sufficiency. Let R be a holomorph-convex analytic space with a
positive definite Levi function @. It is sufficient to show that R is
K-complete. Take an arbitrary point P€R. From the set = of points
P’ eR such that f(P')=f(P) for all functions holomorphic in R. Being
the holomorph-convex hull of P, % is compact by the assumption. On
the other hand, ¥ is an analytic set everywhere regular in R. Hence
3 is a finite point set, as metioned in the proceeding section. Then we
can choose a neighborhood of P and # functions holomorphic in R such
that the condition of K-complete holds at P.

(Received November 11, 1957)

Bibliography

[1] Séminaire de H. Cartan, 1951-1952, Exposé XIII.
[2] H. Grauert: Charakterisierung der holomorph vollstindigen Riume. Math. An-
nalen, 29 (1955), p. 233-259.



[3]
[4]
(5]

(6]
7]

On the Conditions of a Stein variety 219

G. Julia: Sur les familles de fonctions analytiques de plusieurs variables.
Acta math. 47 (1926), p. 53-115.

K. Oka: Sur les fonctions analytiques des plusieurs variables VI Domaines
pseudoconvexes. Tohoku Math. J. 49 (1942), p. 15-52.

K. Oka: Sur les fonctions analytiques des plusieurs variables IX Domaines
finis sans points critique intérieur. Jap. J. Math., XXIII, (1953), p. 97-155.

W. Osgood : Lehrbuch der Funktionentheorie, 1I, 1 (1929).

R. Remmert: Sur les espaces analytiques holomorphiquement séparables et
holomorphiquement convexes. Comptes rendus. 243 (1956), p. 118-121.








