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1. Introduction

There are strong topological conditions for a compact manifold M of dimen-
sion 2# to admit a Kihler structure [20, 10] :

(i) the Betti numbers b2:(M) are non-zero for 1<i<n;

(ii) the Betti numbers bai—1(M) are even ;

(iii) b:(M)=bio(M) for 1<i<n;

(iv) the Hard Lefschetz Theorem holds for M ;

(v) the minimal model of M is formal (so in particular all Massey products
of M vanish).

Gordon and Benson have proved that if a compact nilmanifold admits a
Kihler structure then it is a torus [5]; more precisely they proved that the
condition (iv) fails for any symplectic structure on a non-toral nilmanifold M.
This result was independently proved by Hasegawa [12] by showing that (v) fails
for M.

For a compact solvmanifold M of dimension 4 it is known that M has a
Kihler structure if and only if it is a complex torus or a hyperelliptic surface. In
fact, Auslander and Szczarba in [4] proved that if the first Betti number &:1(M) of
M is 2, M is a fiber bundle over 7% with fiber 7% Then by Ue [19] M has a
complex structure only if it is a hyperelliptic surface or a primary Kodaira surface
which is a compact nilmanifold. Thus, if M is a K#hler manifold, it must be a
hyperelliptic surface. Since 1<5,(M)<4, M can be a Kihler manifold only if it
is a complex torus or a hyperelliptic surface. The fact that a hyperelliptic surface
is a solvmanifold follows from Auslander [3]. The above result may be general-
ized as the following conjecture: A compact solvmanifold has a Kihler structure
if and only if it is a finite quotient of a complex torus.

In contrast to the case of compact nilmanifolds there are compact symplectic
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solvmanifolds which are not nilmanifolds that satisfy both conditions (iv) and (v)
[6, 11,9, 2]. More precisely :

(1) There is a family of 4-dimensional compact solvmanifolds M (k) satisfy-
ing (i)-(v) which do not admit K#hler structures [11, 9]. In fact, M*(k) does not
admit complex structures. By using these manifolds it is possible to construct new
examples of higher dimension, but we do not know whether any of these examples
admit complex or K#hler structures. The problem is that the above results depend
strongly on Kodaira’s classification of surfaces.

(2) There is a family of six-dimensional compact symplectic non-nilpotent
solvmanifolds M®(k) satisfying (i)-(v). These manifolds are the natural generaliza-
tion to dimension 6 of the manifolds M*(k) of Fernandez and Gray [I11].
Unfortunately we do not know whether any of these admit K#hler structures [2].
But it is amazing that the manifolds M®(%) have complex structures.

(3) In [6] Benson and Gordon have constructed two examples of non-
nilpotent solvable Lie groups of dimension 8, each one of those satisfies one of the
conditions (iv) or (v), but not the other.

The purpose of this paper is to construct a compact symplectic (non-nilpotent)
solvmanifold M®=I"/G of dimension 6 which does not satisfy either (iv) or (v)
and, hence, does not admit K#hler structures. We show that the minimal model of
M? is not formal by proving that there are non-trivial (quadruple) Massey products,
however we remark that all the (triple) Massey products of M°® vanish. Then the
approach used in [7] to show that non-abelian compact nilmanifolds are non
formal fails for the solvable case.

Another problem related with the one considered above is the following.
Samelson [17] proved that every compact even dimensional Lie group possesses a
left invariant complex structure. But the same is not true for non-compact Lie
groups. In fact, since the manifold M*(k) does not admit complex structures then
the corresponding Lie group G*(k) does not admit left invariant complex structures
(see Cordero, Fernandez and Gray [8]). In the same paper they have constructed
a 6-dimensional nilpotent Lie group with no left invariant complex structure.
Since we do not know whether the manifold M°® admits complex structures or not,
we can not use this method to decide whether G admits a left invariant complex
structure. But from direct computations we prove, in the last section, that G has
no left invariant complex structures.

The authors wish to express their thanks to the referee for many valuable
suggestions. In particular, to point us the observation of which are the compact
K#&hler solvmanifolds of (complex) dimension 2, as well as, the conjecture of which
are the compact solvmanifolds of (real) dimension 2% with a Kihler structure.

2. The Lie Group G

Let G be the connected and solvable Lie group of dimension 6 consisting of



SYMPLECTIC SOLVMANIFOLD WITHOUT KAHLER STRUCTURES 21

matrices of the form

(“N
=)
xX
N
o

0 V1

0 et 0 xet 0

1 0 0 et 0 0 z
A= 0 0 0 et 0 z
0 0 0 0 1 ¢

0 0 0 0 0 1

where ¢, x, v:;, 2zE R, 1<i<2. Then, a global system of coordinates {Z, x, v1, ¥z,
z1, 22} for G is given by

HA)=t, x(A)=x, v(A)=y;, z(A)=2z;, 1<i<2;

and a standard computation shows that a basis for the left invariant 1-forms on G
consists of

a=dt, B=dx, n=e ‘dyi—xe ‘dz,
Y’=eldy.—xe'dz, Si=e 'dz, S:=e'dz.

Then we have

da=dB=0, dn=—a/ANn—B N6,

@1 dys=aNyi— BASs dor=—aAdi, ddr=aN b,

We denote by {7, X, Y1, Yz, Zi, Z»} the dual basis of left invariant vector
fields. From (2.1) we obtain

[T, =", [T, Yol=—Yo, [T, Z]=2,

(2.2) [T, Z)=—2, [X, Z]= Vi, [X, Z]=Ya,

and the other brackets being zero.
Let G be the Lie algebra of G. From (2.2) we compute the derived series of

g
D'G=9, Dlgz[g, §]=<Yl, Y., Z1, Zo>, D" 6 =0, 2<r
and the descending central series of G :
C’'9=9, C'9=[9, G]=X1\, Y, 2, Z», C"§=[9, C'G]=C"9, 2<7.

Then G is a non-nilpotent solvable Lie group. One says that a Lie group G
with Lie algebra § is completely solvable if ad(X): §——§ has only real
eigenvalues for each X€ §. Equivalently, § is isomorphic to a Lie subalgebra of
the real upper triangular matrices in g/(n, R) for some 7. A simple inspection
shows that G is completely solvable.

Alternatively, G may be described as a semi-direct product G=R?cc,R*
where @(¢, x) is the linear transformation of R* given by the matrix
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0 et 0 xet

0 0 e 0

0 0 0 e

We notice that

et 0 xet 0 et 0 0 0 1 0 x 0
0 e 0 xe*| [0 e 0 0 }01 0 «
0 0 et 0 | |\o 0 e 0 0 01 0
0 0 0 et 0 0 0 e*/\0 0 0 1

Thus the operation group in G is given by

(t, x, y1, 2, 21, 2)(¢', X', Y1, ¥4, 21, 25)
=(t+¢t, x+x, yiettxziet+y1, yse i+ xze t+ 1y, ziet+2, e +2)

Then G=R?cc,R*, where R? is a connected abelian subgroup and R* is the
nilpotent commutator subgroup.

REMARK 1. Let H be the connected Lie group of dimension 7 consisting of
matrices of the form

et 0 xet 0 0 wn

0 et 0 xe”t 0

1 0 0 et 0 0 z
A= 0 0 0 et 0 z
0 0 0 0 1 ¢

0 0 0 0 0 1

where ¢, x:, Vi, 2:ER, 1<7i<2. We notice that G is a closed subgroup of H. In
fact, G is the Lie subgroup of the matrices A€ H such that x1=x». As above H
may be described as a semi-direct product H = R*cc;R* where b (¢, x1, X2) is the
linear transformation of R* given by the matrix

0 et 0 it
0 0 et 0
0 0 0 et

A direct computation shows that a basis for the left invariant 1-forms on H
consists of

a=dt, fr=dx1,B2=dx:, 71=2_tdy1-X1e_td21,
re=e'dy:—x:e'dz, S1=e 'dzi, S2=e'dz.
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Then we have

da=0, d,81=—a//\,81, d['?z:—a'/\ﬁz, d71=—a/\71~ﬂ/\81,
dys=a/Ny,— BN\, doi=—aAd, dé2=aA b

If we put Ge=H X S', then G: is the Lie group considered by Benson and Gordon
[6].

3. The solvmanifold M°®

We shall construct a cocompact discrete subgroup I" of G.

Let BESL(2, Z) be a unimodular matrix with integer entries and with distinct
real eigenvalues, say A and A~'. Take ao=log4, i.e. e**=A. Then there exists a
matrix PEGI(2, R) such that

A0
_1=
PBP (0 A_1>
Consider the subgroup Io=(a0Z)XZ of R®>. We can easily check that the
lattice L on R* defined by

L=((m1, m2) P, (m1, nz)P?),

where 71, M2, m1, n2€Z and P? is the transpose of P, is invariant under the
subgroup Io. Thus, I'=13%<4L is a cocompact subgroup of G.

We denote by M®=G/I" the compact quotient manifold. Then M°® is a six
dimensional non-nilpotent completely solvable manifold.

REMARK 2. Alternatively, the manifold M°® may be viewed as the total space of a
T*-bundle over T2 In fact, let T*=R*/L be the 4-dimensional torus and o : Z?>—
Diff (7°*) the representation defined as follows : o(p, ¢) represents the transforma-
tion of T* covered by the linear transformation of R* given by the matrix

et 0 gefw 0
0 e (0 ge?®
0 0 e 0
0 0 0 g hao

This representation determines an action A : Z2X(T*X R*)— T*X R* defined
by

A, @), Iy, v2, 21, 22), (1, 72))=(0(p, @)1, 32, 21, 22]), (1 +p, 72+ q)).
Then 7: T*XR*——T?is a T*bundle where the projection 7 is given by

zllyy, 32, 21, 2], (1, 72)]=[(71, 72)].



24 M. FERNANDEZ, M. DE LEON AND M. SARALEGUI

In fact, this bunble is the suspension of the representation o(see [14]). Then it is
clear that 7*X ;2 R* may be canonically identified with M°,

Next, we shall compute the real cohomology of M°®. Since M® is completely
solvable we can use a theorem of Hattori [13] which asserts that the de Rham
cohomology ring H*(M°®, R) is isomorphic with the cohomology ring H*(§) of
the Lie algebra § of G. For simplicity we denote the left invariant forms {e, 3,
71,72, 01, 82} and their projections onto M°® by the same symbols. Thus, we obtain :

H(M®, R)=(1},

H'(M®, R)={[«], [B]},

H*M®, R)={[aNB], [6:iA 8], [nA S+ r.A81]},

H3(M®, R)={[aASiNG], [BANAY] [BANNAS], [aNnASetanyAd1]},
HYM® R)={[aABANNAR] [@aNBANAS:] [nAr2A0NAS]),

H(MS, R)={[aAnA7rA8iAS:] [BANnA72A8NS:],

HY(M®, R)={[aABANAYRASNS].

Thus,

bo(M°)=bs(M°)=1,
bi(M®)=bs(M®)=2,
bz(MG) = b4(M6) == 3,
bs(Me):4

Hence M satisfies conditions (i)-(iii).
Now let @ be the 2-form on M® given by

(3.1 w=a(aNB)+b(8:A82)+ c(n A2+ 72/ ),
where a, b, cER. A simple computation shows that dw=0 and that
w*=dac(aNBANA72A81NS:).
Hence »*#+0 if and only if @=+0, c#0. This proves the following
Proposition 3.1. M°® is a compact symplectic manifold. Let w be a 2-form

on M® given by (3.1), where a, b, c=R and a=0, c+0. Then w is a symplectic
form.

A compact Kdhler manifold satisfies the Hard Lefschetz Theorem. In order to
continue the analysis of the manifold M® we introduce the following

DEFINITION.  Let (M?", w) be a compact symplectic manifold. We say that (M*",
) satisfies the Hard Lefschetz Theorem if the mappings

A wn—p : Hp(MZn, R)__)HZn—p(MZn’ R)
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are all isomorphisms, 0<p<n.

(We notice that in [16], McDuff calls (M?”, w) a Lefschetz manifold when the
mapping A" H'(M?*", R)— H*""'(M?*", R) is an isomorphism. Our present
definition is more restrictive.)

Theorem 3.1. M?® does not satisfy the Hard Lefschetz Theorem.

Proof. Let us compute the morphism
Nw]: HAMS, R)— H*(MS, R).
We obtain

NollanB)=2claNBA NS,
Alo]([8: A 8:])=0,
Nol([nA S+ rAdl)=2ala ANBANAS]+2c[11 A 72 A 81N 8]

This implies that A[w]: H*(M®, R)— H*(M® R) is not an isomorphism. H.

Corollary 1. The compact symplectic solvmanifold M® does not admit
Kdhler structures.

We note that a straightforward computation shows that all the (triple) Massey
products of M°® vanish. However we have the following

Theorem 3.2. The minimal model of M® is not formal.

Proof. It is sufficient to exhibit a (quadruple) non-trivial Massey product. For
this we recall that if there are cohomology classes [Ai])E H?(M®, R), [A.]= HY (M,
R), [l H"(M®, R) and [A*]€ H°(M°®, R)(represented by differential forms A, Az,
As and A) such that the (triple) Massey products {[Ai], [Az], [4s]> and <[A:], [As],
[Ad]> are zero, then there exists the (quadruple) Massey product <[], [Az], [4s],
[Ad]>. Moreover, it is zero if and only if there are differential forms AS Q""" (M6),
LEQTTH M), LEQTTTHME), mneEQPTTT A (ME) and 1EQTTTTETH( M) satisfy-
ing :

(1) AAA=df,

(2) AN Xs=df,

(3) /13/\/14:df3,

4) ANAf+H (=D AA=dm,

6) AAft (=1 fo A= d,

(6) the cohomology class [(—1)*"'AA e+ (1) i A+ AN 5]

is zero in H?T9*"*5-2()[% R).
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Now, because all the (triple) Massey products on M°® are zero, it is defined the
(quadruple) Massey product <[81Ad2], [8], [8], [B]>. We shall prove that is
non-zero.

Let us suppose that {[81AS:], [B], [B], [B]>=0. Then, there exist differential
forms fa, f3, (1EQ(M®) and fi, nEQ*(M®) satisfying

(r) 01N\ 82\ B=df,
2) 0=df,
3) 0=dfs,
(@) SIASN fa— i\ B=dmn,
(5) BN fs+ fo A\ B=ds,
(6) [—O AN o+ A B+ AN £]=0.

Since 1A AB=d(—nAJ,), from (1’) we get a differential form f{ with dff =0
and such that

@) f=—7nA8+f.
Substituting (7) in (4’) we have
(8) 61/\62/\](2‘1‘)’1/\32/\3+f1’/\,8:d#1.

From (8) and (2’) it follows that the cohomology class [61 A 8:] A[f2] belongs to
[BIH*(M®, R); and so

(9) f2=1B for some tER.

Moreover, because the cohomology class [81A 82 A B] is zero, from (8) and (9) we
obtain [BA 71 A8:}=[BIA[f{], and then we have

10) A=t(nAdutnAd)+danf+aoind,
for some p, g€ R. Now, from (7) and (10) we get
(11) flz%(ﬁ/\&*71/\82)+paf/\,6’+q61/\82.

On the other hand, from (9), (3’) and (5’) we obtain fo— fs=sf for some sSE R, and
)

(12) fi=(t—s)B.
From (9) and (12), condition (5’) becomes :
(57) dp=0.

It is easy to get:
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(13) AAf=d((t=)7A(ad—57).
From (9), (11), (5”) and (13), conditions (4’) and (6’) become

@) (t+DBASAS—FBA(RAS=NnAS)=dm,
6”) =[N SIN[]+[mA B]=0.

But, we can check that BASIAS:=d(— 7 AS2) and BA(r2 A —nAS)=d(nA
72). These equations and (4”) imply that there is a closed differential form x{ such

that 1= —(t+q)71/\82-—%‘71/\ y2+ 44, and thus [/-‘1/\,8]2 —(l‘+q)[‘)’1/\52/\3]
_%'[71/\7’2/\,8]-1-[#{]/\[['?]. Then, condition (6”) becomes :

—[81/\82]/\[/12]—(1‘+61)[71/\8z/\,8]—%[71/\7’2/\B]+[,u{]/\[,8]=0. So, the

cohomology class [71A7:AB] belongs to [BIH*(M®, R)+[8:A8:1H'[MS, R),
which is generated by {{8A 7 A 8], [a ASiAS:]}. This is impossible because the
family {{71A 72 AB), [BA 71N 8:2), [@AS1AG2]} is free.

REMARK 3. Theorem 3.2 also proves that M°® does not admit Kahler structures.

Next, we shall prove that the minimal model of the complex of left invariant
differential forms of G: (Go=H X S', where H is the Lie group of dimension 7
constructed in Remark 1) is formal, but it does not verify the Hard Lefschetz
Theorem (see [6]). Then a compact manifold of the form I'/G: could not be
Kihler. Unfortunately we do not know if G2 admits a cocompact subgroup.

Proposition 3.2. The complex of the left invariant differential forms of Ga
is formal.

Proof. We need to show that the d.gc.a. (A1§%, dz), made up of the left
invariant differential forms of Gz, and the d.g.c.a. (H*(§2, R), 0) have the same
minimal model. We first recall the structure of (A § %, d») and H*( G2, R)(cf. [6]).
A basis of §# is the family {a, B, 1, 11, &1, 2, V2, &} and the differential operator
d is given by

da=0 dp=0

dm=—al\u, dpe=a p,
avi=2a /v, dve=—2a v,
dé=aNn&—mAwn, dé=—aAN&— /v,

On the other hand, the cohomology of &2 can be written as a product A{[a],
[B1}Q 4 where A is the following gca :
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A°=(1},

AP ={[1u A ], [ AV, [ia N &), 12\ ]},

A ={[nALANGNAE] [IANEAViAV] (A LA LAE]L [mAENA L&,
A ={[nAnAmNEA A&},

and A'=4°=4°=0. Consider ¢: (AZ, d)— A the bigraded model of A4 (cf.
[15]). A straightforward calculation gives
5 ={0}
zi={f}  Zs={0}
Zi={x:, s, 22} Zt={hs}  Zi={e}

zi={0} Zi={0} zi}={ci, g;} Z8={0}
zi={0} zi={0} Zi={0} Zt={0} Z§={b:}
s={0} zi={0} Zi={0} Zi={0} 1={0} ¢ ={0}
with
db;=de= 0,
dc;= b%,
dg;= b1b;,
dhj: ebj,
df =bzbsbs— ebl;
dx;=bic:— bigi,

dy;=b;c1— big;,
de: bkg[ - bzgk,

1<:<4, (j, k, 1) any permutation of (2, 3, 4), and

e(b)=[m A 1], e(b2)=[ma A&, e(bs)=[p2N &), p(ba)=[v1 A 12],
(0(@):[1/1/\1&/\51/\52].

We construct a d.g.c.a.-morphism ¢ : A({a, B}, 0)(ANZ, d)— (A%, d)
inducing an isomorphism in cohomology. This will end the proof. Put

d(e)=a, ¢(8)=48,

G(b)=m A o, $(b) = N &1, (bs)= 2N\ &, P(ba)=v1A1a,
Pe)=vnAnAENE,

Pg)=mAnNE,

¢(other genarators)=0.

This map extends naturally to a g.c.a.-morphism ¢ : (A{a, £}, 0)Q(AZ, d)—
(A€¥, d). It remains to prove that ¢ is a differential operator and that ¢* is an
isomorphism.

® A direct calculation shows that ¢(dx)=d¢(x) for x=ea, B and for each
generator xEMLqJSG(/lZ)E. Consider xEZf a generator with p+¢>6; by
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definition of ¢ we have ¢(x)=0. Since dZ{C(AZ)%*1 the writing of dx
does not contain any of the following monomials :

bi, e, gs, bre, bi1bs, babs, bsbs. By construction the operator ¢ vanishes when
is evaluated on the other monomials of Z. We conclude that ¢(dx) is O.

® ¢* is an isomorphism because

¢*[a]=[al],

¢*[B1=[8],
g*[on]=[m A ],
*[ba]=[mN&],

[ bs]=[1N &),
g*[ba]=[n1 A vs),
¢’*[e]=[V1/\ Vz/\gl/\éz]. [ |

4. The moduli space of complex structures on M°
First, let us recall the following lemma [1] :

Lemma 4.1. Let G be a (real) Lie group of (real) dimension 2n. Then the
space of left invariant almost complex structures on G has dimension 2n?.

In our case the space of left invariant almost complex structures on G has
dimension 18. This lemma gives no information about left invariant complex
structures, but since G has a canonical parallelization, it is extremely easy to
determine when a left invariant almost complex structure is integrable.

We set

Ei= T, EzZX, E;= Yl, E.= Yz, E5=Zl, Es=2,.

Let J be a left invariant almost complex structure on G. Then J has constant
coefficients with respect to the basis {E1, Ez, Es, Es, Es, Es}. Write

6
JE;= El ke,

where the a;. are constants. The Nijenhuis tensor N; of / is defined by
N(U, V)=[JUu, Jv]-JUU, V]1-JlU, JV]-[U, V],
for all vector fields U, V on G.
Proposition 4.1. G has no left invariant complex structures. Equivalently,

the manifold M°® has no complex structures with constant coefficients with respect
to the canonical parallelization {E:, E;, Es, Es, Es, Es}.
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Proof. Let J be a left invariant integrable almost complex structure on G.
Below, we shall prove that the matrix of J with respect to the basis {E;, 1<7<6}
must have the form

an adiz a1z Qi Ais Qs
Az1 A22 (A23 (A24 Ad2s A2
0 0 ass as« as as
0 0 43 QAss Q45 Qs
0 0 ass ass ass ase
0 0 a@es aes ass Qes

4.1) J=

Let us suppose (4.1). Since /?=—1I, we obtain

4.2) @+ aran= a3+ avan=—1,
4.3) a2 an~+ az)=axn(an + az»)=0,

and SO @iz, @21 are non-zero, and a1+ @z2=0.
Moreover, we have

OZN](EZ, Ea)
= (dzzdss — 3335 0366143)E3 + ( —2021a34+ Q22a36— A34Q35— 0366244)E4
- (d%s + aaedAs)Es - a36(26121 +ass+ d46)E6,

0=N,(E, E.)
= (26121 A3t Q22Q45— Q33045 — a4aa46)E3 + (azzd«s — A34Q45 d44d46)E4
+ d45(26221 % 6146)E5 - (Clie + 61366145)E6.

These equations imply

4.4 a%s= — aseQus,

(4.5) 0= 036(26121 + ass + a46),

(4.6) ass(@z— ass) = ass(aw—2ax),
4.7 0=a4s(2a2 — ass— as),

4.8) Qi6= — Qssus.

From (4.4) and (4.8) we obtain
4.9) asw= Tt ass.

Assume that as= —ass. Since a2150, then (4.5) and (4.7) imply ass= ass=0.
Again (4.4) and (4.8) imply ass=as=0. Now, from (4.6) it follows that ass=0;
and so JEs=awuEs. This implies af=—1, which is a contradiction. Thus, (4.9)
must be

(4.10) Q4= A3s.
From (4.10), (4.5) and (4.7) we have
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ass(az1+ ass) =0,

(4'1 1) d45(d21—6135)=0,

or equivalently

A36d21— — A36Us3s,
4.12
( ) A45a21 = A35A45.

Then, from (4.4) and (4.12) we obtain
ags = T A36A45A35— A21A36A 45— A35A36A45— — a§s,

that is @ss=0. Thus a4=0. But @170 and (4.12) imply ass=as=0. Now, axz
#0 and (4.6) imply @s=0, and hence JE:=awuFEs, which is not possible. There-
fore, G carries no left invariant integrable almost complex structures.

Finally we shall give a proof of (4.1) : For this we shall show : (I) as1=0, (II)
as1=0, (Il ae1=0, IV)aw=0, (V)as:=0, (VI) as>=0, (VII) as>=0, and (VIII) ae:
=0.

From (2.2) we have

0=N1(E3, E4)
(4.13) =2asnianE1+(asnae+ asnan) B2+ (2asias+ asads
— A35a42) E3+ (23000 + 32046 — a36a42) E4+ 2031045 Es+ 2 a36a41 E.

To prove (I), let us suppose that a4 +0. Then from (4.13), equating to zero
the coefficients of E1, E;, Es and Ej, it follows

(4.14) as1= A32= Q3= as=0.

Also, from (4.13) we have assa2=0. If a35=0, then ]E32033E3, and so d§3=
—1, which is a contradiction. Thus, we get

(4.15) ass+0 and aw=0.
Since J?=—1I and JEs=asE3+ assEs we have

(4.16) a51= As2= Asa= As6= A12= A33+ ass=0.
From (4.14) and (4.16) we obtain
(4.17) 0=N/(Es, Es)

= {dzz(dss - ass) — a33dss5 — 1}E3 - ass(dzz + ass)Es.
Since ass+0, from (4.16) and (4.17) we get
a2+ ass=0 and 2as2ass+ a%s—1=0.

These equations imply a8=—1, which a contradiction. This proves (I).
(II) Let us suppose that as1+0. Then from (4.13) and (I) we obtain

(4.18) A12= A43= Q45=0.
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From (I), (2.2) and (4.18) it follows that
0 =1\71<E2, E4) = a46(azz - a44)E4 - aieEe.

This identity implies that as=0. Then, from (I) and (4.18) we obtain JE,=
auEs which is not possible.

To prove (III), we suppose that a1 #0. Then, from (I) and (II) we obtain that
the coefficient of E: in N;(Es, Es) is 2asiaei, and hence, we get

(4. 19) as1=0.

From (I), (II) and (4.19) we deduce that the coefficient of E1 in N;(E;, Es) and
in N;(E\, Es) is azae and — aseaer, respectively. Thus, we have

(4-20) a2 =as=0.

From (4.20) we conclude that the coefficient of Es in N;(E2, Es) is — a.
Thus, we get

(4.2 | ) a3s=— 0.

From (I), (I1) and (4.21) we deduce that the coefficient of Ez in N;(Es, Es) is
—a%. Thus, we get

4.22) a3=0.
From (4.22) we have
0=N;(Es, Es)=2asae E..
This equation implies that
(4.23) as=0.

Now, from (I), (II) and (4.20)-(4.23) we have JEs=assEs, which is not
possible ; and we obtain (III).

To prove (IV), we compute the coefficient of Ez in N;(Es, Es) and we obtain
—a%2E>,=0, from which we deduce (IV).

To prove (V), let us suppose that as1+0. Then from (IV) we deduce that the
coefficient of E; in N;(E,, Es) is —azasi, from which we deduce

(4.24) an=0.

Moreover we have that the coefficient of E1 in N;(E1, Es) and in N;(Ei, Es)
is —asiass and — assasi, respectively, from which we get

(4.25) ass=aes=0.

Also we have that the coefficient of E; in N;(E1, E:) is — azsas, and that the
coefficient of Es in N;(Es, Es) is —2ausas:, from which we obtain
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(4.26) 2= as=0.
Now, from (I), (II) and (4.26), we obtain
0=N;(Es, Ey)=asassE,

and so @s2a4=0. Suppose that @s2+0 and @4s=0. Then JEi=asEs+ auF,,
and since J.=—1, we find

a43d32= 0,

(4'27) QA43Q34t 434 =—1.

Because a@sz+0, (4.27) implies a+s=0 and a%=—1. But it is not possible.
Thus, it must be as2=0. From this identity, (4.26), and equating to zero the
coefficient of E: in N;(E1, Ez), we get

(4.28) azac2=0.

Thus, if as1#0, from (I)-(IV), (4.24), (4.25), (4.26) and as2=0, it follows that
the matrix of J is of the form

@i A1z 41z Q4 Ais Qs
0 Q22 (A23 Q24 0 a26
0 0 ass A3 0 ase
0 0 as auw 0 ase

as1 As2 (As3 As4e dss  Adse
0 ae2 aes ass 0  aes

]:

From (4.28) and J?=—1I we obtain a%.=—1, which is not possible. Thus, we have
(V).

To prove (VI) we compute the coefficients of E» and Es in N;(Es, Es). They
are —(ad+ assasz) and — aseass, respectively. Then we deduce (VI).

To prove (VII), let us suppose that as2+0. If we compute the coefficient of E>
in N;(E:, Es), then we obtain — az1a52=0, which implies that @2:=0. Thus, if as2
+0, according to (I)-(VI), the matrix of / would be :

an a2 a3z Qs Qs Ais
0 a2 as au as asxs
_ 0 0 a3z (A34 A3 Ase
(4.29) J= s
0 0 aA43 Qa4 Aas  A46
0 as2 ass ass ass ase
0 ae2 aes Ges o5 Qe

and, since /?=—1I, we obtain ali=—1, which is a contradiction. This proves
(VID).
Finally, to prove (VIII), let us suppose that ae2#+0. If we compute the
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coefficient of E; in N;(Ez, Es), then we obtain az1as=0, which implies that @21 =
0. Then, if as:#0, the matrix of J is of the form (4.29). Again we have a
contradiction. This proves (VIII), and the proof of (4.1) is completed.
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