

Title	Difluoromethylene insertion into fluoroalkyl copper complexes	
Author(s)	Zhou, Yuyang; Doi, Ryohei; Ogoshi, Sensuke	
Citation	Chemical Communications. 2023, 59(77), p. 11504-11507	
Version Type	АМ	
URL	https://hdl.handle.net/11094/93984	
rights	Reproduced from Ref. Chemical Communications with permission from the Royal Society of Chemistry. https://doi.org/10.1039/d3cc03481j	
Note		

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Supporting Information for

Difluoromethylene Insertion into Fluoroalkyl Copper Complexes: Elongation of the Perfluoroalkyl Bridge

Yuyang Zhou,^a Ryohei Doi,*^a and Sensuke Ogoshi*^a

^aDepartment of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan Email: rdoi@chem.eng.osaka-u.ac.jp (RD), ogoshi@chem.eng.osaka-u.ac.jp (SO)

General Information p. S2

Experimental Details pp. S3 – S20

References p. S20

Spectrum Data pp. S21 – S80

General Information

All reactions were performed under an atmosphere of nitrogen (1 atm) unless otherwise stated. All reagents were used as received. Anhydrous solvents were purchased and were stored in a nitrogen filled glove box with MS4A. Column chromatography was performed using Biotage Isolera One with the indicated solvent as an eluent. 1 H, 13 C and 19 F NMR spectroscopy was recorded on Bruker Avance III NMR spectrometer. Chemical shifts are reported in ppm from the solvent resonance as an internal standard (1 H: CDCl₃, $\delta = 7.26$ ppm; 13 C: CDCl₃: $\delta = 77.36$ ppm) or an external standard (19 F: CFCl₃, $\delta = 0$ ppm). NMR data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br: broad signal), coupling constant (Hz), and integration. 13 C NMR spectroscopy was recorded with complete proton decoupling. The signals derived from 13 CF₂ were not assigned due to multiple coupling with fluorine atoms. High resolution mass spectra were obtained on JEOL JMS-T700EI. Recycling Preparative High Performance Liquid Chromatography (HPLC) was performed on Japan Analytical Industry LC9225NEXT equipped with JAIGEL-1H and JAIGEL-2H by using chloroform as an eluent. Single crystal X-ray diffraction data were collected with a Rigaku XtaLAB Synergy diffractometer equipped with a HyPix-6000HE detector. Fluoroalkyl copper; (phen)CuCF₂CF₂Ph was prepared by the procedure reported in our previous report Pluoroalkyl copper; (phen)CuCF₃ was prepared by the reported procedure 2 .

Caution: Tetrafluoroethylene (TFE) is suspected to be carcinogens and is explosive. The reaction mixture must be handled in a well-ventilated fume hood. The handling of TFE should be guided by a chemist having technical skills in this area of fluorine chemistry.

Experimental Details

Optimization of the reaction conditions (Table 1)

0.02 mmol scale reaction

To a screw cap test tube containing a stirring bar, (phen)CuCF₂CF₂Ph (0.02 mmol, 8 mg), the additive, and solvent (0.2 mL) were added. To this mixture, TMSCF₃ was added and stirred at room temperature for 24 hours. After the addition of CbzCl (0.14 mmol, 0.02 mL), the reaction mixture was stirred at room temperature for 1 hour. Volatiles in reaction mixture were removed under reduced pressure. CDCl₃ and PhCF₃ (internal standard, 0.04 mmol, 5 µL) were added to the tube, and the precipitate in the sample was removed by filtration. The NMR spectrum of the sample was measured to determine the NMR yield.

0.1 mmol scale reaction

To a vial containing a stirring bar, (phen)CuCF₂CF₂Ph (0.1 mmol, 42 mg), the additive, solvent (1 mL) was added. To this mixture, TMSCF₃ was added and stirred at room temperature for 24 hours. After the addition of CbzCl (0.7 mmol, 0.1 mL), the reaction mixture was stirred at room temperature for 1 hour. Volatiles in reaction mixture were removed under reduced pressure. CDCl₃ and PhCF₃ (internal standard, 0.08 mmol, 10 μL) were added to the tube, and the precipitate in the sample was removed by filtration. The NMR spectrum of the sample was measured to determine the NMR yield.

Isolation of 2₁ and 2₂ (0.6 mmol scale reaction)

A screw cap test tube was charged with a stirring bar and (phen)CuCF₂CF₂Ph (1, 0.6 mmol, 250 mg). The complex was dissolved in DMF/THF mixed solvent (v/v'=1/3, 6 mL). To this mixture, TMSCF₃ (0.72 mmol, 107 μ L) was added, and the reaction mixture was stirred at room temperature for 24 hours. After the addition of benzyl chloroformate (4.2 mmol, 0.59 mL), the reaction mixture was stirred at room temperature for 1 h. Afterwards, PhCF₃ (internal standard, 0.8 mmol, 100 μ L) was added, and a portion of the mixture was added to a small test tube. To the tube, CDCl₃ was added, and precipitate was removed by filtration. The ¹⁹F NMR spectrum of the sample was measured to determine the NMR yield. The reaction mixture was filtered and poured into a separatory funnel and diluted with Et₂O (45 mL). The organic layer was washed with H₂O (10 mL × 3) and brine (5 mL × 1), and dried over Na₂SO₄. After filtration and removal of the solvent under vacuum, the

residue was purified by HPLC using CHCl₃ to afford $\mathbf{2}_2$ (pale yellow oil, 35.9 mg, 15%), and the following flash column chromatography with hexane/ethyl acetate (v/v' = 97/3) as the eluent gave $\mathbf{2}_1$ (colorless oil, 66.8 mg, 31%): 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 5.36 (s, 2H), 7.40 (s, 5H), 7.48 (t, J = 7.6 Hz, 2H), 7.55 (d, J = 6.3 Hz, 3H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -110.4 (t, J_{FF} = 9.9 Hz, 2F), -118.1 (t, J_{FF} = 9.4 Hz, 2F), -123.6 (s, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 69.8 (t, J = 7.2 Hz), 127.1 (t, J = 6.5 Hz), 128.83, 128.87 (t, J = 25.7 Hz), 128.93, 129.1, 129.4, 132.1, 133.9, 159.7 (t, J = 29.7 Hz). One carbon is missing due to overlapping. HRMS(EI): m/z [M]⁺ calcd for C_{17} H₁₂F₆O₂ 362.0736; found 362.0751. $\mathbf{2}_2$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 5.36 (s, 2H), 7.39 (s, 5H), 7.49 (t, J = 7.5 Hz, 2H), 7.56 (d, J = 6.2 Hz, 3H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -110.9 (t, J_{FF} = 13.9 Hz, 2F), -118.6 (t, J_{FF} = 11.5 Hz, F), -121.7 (m, 2F), -122.3 (m, 2F). 13 C NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 70.0 (t, J = 6.7 Hz), 127.2 (t, J = 6.6 Hz), 128.9, 129.0, 129.2 (t, J = 51.3 Hz), 129.1, 129.4, 132.1, 133.7, 159.2 (t, J = 29.5 Hz). HRMS(EI): m/z [M]⁺ calcd for C_{18} H₁₂F₈O₂ 412.0704; found 412.0717.

Substrate scope using PhCF₂CF₂Cu(phen) (1) (Figure 2)

General procedure A

A screw cap test tube was charged with a stirring bar and (phen)CuCF₂CF₂Ph (1, 0.8 mmol, 340 mg). The complex was dissolved in DMF/THF mixed solvent (v/v'=1/3, 8 mL). To this mixture, TMSCF₃ (0.96 mmol, 140 μ L) was added, and the reaction mixture was stirred at room temperature for 24 hours. After the addition of iodoarenes (0.5 mmol), the reaction mixture was stirred at 60 °C for 18 hours. After cooling the reaction mixture, PhCF₃ (internal standard, 0.8 mmol, 100 μ L) was added, and a portion of the mixture was added to a small test tube. To the tube, CDCl₃ was added, and precipitate was removed by filtration. The ¹⁹F NMR spectrum of the sample was measured to determine the NMR yield. The reaction mixture was filtered and poured into a separatory funnel and diluted with a mixture of Et₂O, ethyl acetate, and hexane (65 mL). The organic layer was washed with H₂O (10 mL × 3) and brine (5 mL × 1), and dried over Na₂SO₄. After filtration and removal of the solvent under vacuum, the residue was purified by HPLC using CHCl₃ as an eluent to afford the desired products 3₁ and 3₂.

Following the general procedure A, the reaction with 4-iodobenzotrifluoride (136.7 mg, 0.5 mmol) was conducted to give $3a_1$ in 47% (colorless oil, 87.9 mg, 69% NMR yield) and $3a_2$ in 1% (colorless oil, 2.7 mg,

21% NMR yield). Extraction was performed with Et₂O (45 mL). **3a**₁: $\frac{1}{1}$ H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.45–7.59 (m, 5H), 7.73 (t, J = 9.7 Hz, 4H). $\frac{19}{1}$ F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -63.2 (s, 3F), -109.5 (t, J_{FF} = 12.3 Hz, 2F), -110.0 (t, J_{FF} = 12.0 Hz, 2F), -122.4 (s, 2F). $\frac{13}{1}$ C { $\frac{1}{1}$ H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 125.2 (t, J = 272.8 Hz), 125.8 (d, J = 3.4 Hz), 127.1 (t, 6.5 Hz), 127.8 (t, J = 6.1 Hz), 128.8, 130.4 (t, J = 24.3 Hz), 131.8, 133.9 (q, J = 32.9 Hz), 134.5 (t, J = 25.1 Hz). $\frac{1}{1}$ HRMS(EI): m/z [M]⁺ calcd for C₁₆H₉F₉ 372.0555; found 372.0560. **3a**₂: $\frac{1}{1}$ H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.46–7.59(m, 5H), 7.74 (q, J = 13.3 Hz, 4H). $\frac{19}{1}$ F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -63.2 (s, 3F), -110.8 (t, J_{FF} = 14.1 Hz, 2F), -111.1 (t, J_{FF} = 13.7 Hz, 2F), -121.3 (m, 4F). $\frac{13}{1}$ C { $\frac{1}{1}$ H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 125.9 (t, J = 272.8 Hz), 125.9 (d, J = 3.5 Hz), 127.2 (t, J = 6.5 Hz), 127.9 (t, J = 5.5 Hz), 128.8, 129.8 (t, J = 24.1 Hz), 132.0, 133.7 (t, J = 24.4 Hz), 134.3 (q, J = 32.9 Hz). HRMS(EI): m/z [M]⁺ calcd for C₁₇H₉F₁₁ 422.0523; found 422.0524.

3b

Following the general procedure A, the reaction with 4-iodobenzonitrile (114.2 mg, 0.5 mmol) was conducted to give the **3b**₁ in 47% (pale yellow oil, 77.7 mg, 78% NMR yield) and **3b**₂ in 13% (pale yellow oil, 25.2 mg, 16% NMR yield). **3b**₁: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.45–7.57 (m, 5H), 7.71(d, J = 8.2 Hz, 2H), 7.78(d, J = 8.4 Hz, 2H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -109.5 (t, J = 12.5 Hz, 2F), -110.5 (t, J = 12.1 Hz, 2F), -122.4 (s, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 115.9, 118.0, 127.0 (t, J = 6.4 Hz), 128.0 (t, J = 6.6 Hz), 128.8, 130.1 (t, J = 24.3 Hz), 131.9, 132.5, 135.2 (t, J = 24.6 Hz). 1 HRMS(EI): m/z [M]⁺ calcd for C₁₆H₉F₆N 329.0634; found 329.0636. **3b**₂: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.46–7.58 (m, 5H), 7.71(d, J = 8.4 Hz, 2H), 7.78(d, J = 8.5 Hz, 2H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -114.0 (t, J = 14.2 Hz, 2F), -114.7 (t, J = 13.8 Hz, 2F), -124.3 (m, 2F), -124.5 (m, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 116.2, 117.9, 127.2 (t, J = 6.4 Hz), 128.2 (t, J = 6.5 Hz), 128.9, 129.7 (t, J = 24.1 Hz), 132.1, 132.6, 134.5 (t, J = 25.0 Hz). 1 HRMS(EI): m/z [M]⁺ calcd for C₁₇H₉F₈N 379.0602; found 379.0614.

3c

Following the general procedure A, the reaction with 4-iodobenzaldehyde (117.8 mg, 0.5 mmol) was conducted to give the $3c_1$ in 51% (white solid, 83.8 mg, 65% NMR yield) and $3c_2$ in 19% (white solid, 37.0 mg, 26% NMR yield). $3c_1$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.44–7.58 (m, 5H), 7.77 (d, J = 8.1 Hz, 2H), 7.98 (d, J = 8.2 Hz, 2H), 10.1 (s, 1H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -109.7 (t, J_{FF} = 11.5 Hz, 2F), -110.2 (t, J_{FF} = 11.9 Hz, 2F), -122.5 (s, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 127.1 (t, J = 6.5 Hz), 128.0 (t, J = 6.5 Hz), 128.7, 129.8, 130.4 (t, J = 24.0 Hz), 131.8, 136.3 (t, J = 24.4 Hz), 138.6, 191.7 (d, J = 7.1

Hz). <u>HRMS(EI)</u>: m/z [M]⁺ calcd for C₁₆H₁₀F₆O 332.0630; found 332.0633. **3c**₂: 1 H NMR (400 MHz, in CDCl₃, rt, δ/ppm): 7.46–7.58 (m, 5H), 7.77(d, J = 8.2 Hz, 2H), 7.99 (d, J = 8.2 Hz, 2H), 10.1 (s, 1H). 19 F NMR (376 MHz, in CDCl₃, rt, δ/ppm): –110.9 (t, $J_{FF} = 13.5$ Hz, 2F), –111.3 (t, $J_{FF} = 13.7$ Hz, 2F), –121.4 (m, 4F). 13 C NMR (100.6 MHz, in CDCl₃, rt, δ/ppm): 127.2 (t, J = 6.8 Hz), 128.1 (, J = 6.3 Hz), 128.8, 129.9, 130.6, 132.0, 135.5 (t, J = 24.2 Hz), 138.8, 191.6 (d, J = 7.0 Hz). <u>HRMS(EI)</u>: m/z [M]⁺ calcd for C₁₇H₁₀F₈O 382.0598; found 382.0611.

3d

Following the general procedure A, the reaction with 1-iodo-4-nitrobenzene (125.1 mg, 0.5 mmol) was conducted to give the $3d_1$ in 48% (yellow solid, 84.4 mg, 67% NMR yield) and $3d_2$ in 12% (yellow solid, 23.4 mg, 18% NMR yield). $3d_1$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.46–7.57 (m, 5H), 7.78 (d, J = 8.8 Hz, 2H), 8.33 (d, J = 8.9 Hz, 2H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -109.6 (t, J_{FF} = 12.0 Hz, 2F), -110.1 (t, J_{FF} = 12.0 Hz, 2F), -122.4 (s, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 123.9, 127.0 (t, J = 6.3 Hz), 128.6 (t, J = 5.9 Hz), 128.8, 130.1 (t, J = 25.5 Hz), 132.0, 136.8 (t, J = 24.7 Hz), 150.1. 1 HRMS(EI): m/z [M]⁺ calcd for C₁₅H₉F₆NO₂ 349.0532; found 349.0538. 3 d₂: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.46–7.58 (m, 5H), 7.80 (d, J = 8.7 Hz, 2H), 8.34 (d, J = 8.9 Hz, 2H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -110.8 (t, J_{FF} = 14.2 Hz, 2F), -111.1 (t, J_{FF} = 13.7 Hz, 2F), -121.1 (m, 2F), -121.2 (m, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 124.0, 127.1 (t, J = 6.3 Hz), 128.7 (t, J = 6.1 Hz), 128.9, 130.0 (t, J = 24.0 Hz), 132.1, 136.0 (t, J = 24.5 Hz), 150.3. 1 HRMS(EI): m/z [M]⁺ calcd for C₁₆H₉F₈NO₂ 399.0500; found, 399.0511.

3e

$$Ph \xrightarrow{F F F} F Ph \xrightarrow{F F F} F CO_2Et$$

$$3e_1 3e_2 CO_2Et$$

Following the general procedure A, the reaction with ethyl 4-iodobenzoate (140.0 mg, 0.5 mmol) was conducted to give the $3e_1$ in 55% (pale yellow oil, 105.9 mg, 67% NMR yield) and $3e_2$ in 18% (pale yellow oil, 38.3 mg, 24% NMR yield). $3e_1$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 1.41 (t, J = 7.0 Hz, 3H), 4.41 (q, J = 7.1 Hz, 2H), 7.44–7.68(m, 5H), 7.66 (d, J = 8.2 Hz, 2H), 8.14 (d, J = 8.3 Hz, 2H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -109.6 (t, J_{FF} = 12.6 Hz, 2F), -110.1 (t, J_{FF} = 12.0 Hz, 2F), -122.5 (s, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 14.5 (d, J = 4.3 Hz), 61.7 (t, J = 4.3 Hz), 127.1 (t, J = 6.4 Hz), 127.2 (t, J = 6.4 Hz), 128.7, 129.8, 130.5 (t, J = 23.7 Hz), 131.8, 133.6, 134.8 (t, J = 24.9 Hz), 165.9. 1 HRMS(EI): m/z [M]⁺ calcd for C₁₈H₁₄F₆O₂ 376.0893; found 376.0896. 3 e₂: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 1.41 (t, J = 6.7 Hz, 3H), 4.41 (q, J = 7.1 Hz, 2H), 7.45–7.58 (m, 5H), 7.66 (d, J = 8.3 Hz, 2H), 8.14 (d, J = 8.3 Hz, 2H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -110.9 (t, J_{FF} = 13.7 Hz, 2F), -111.2 (t, J_{FF} = 13.7 Hz, 2F), -121.4—121.4 (m, 2F),

-121.5 - -121.6 (m, 2F). $\frac{^{13}\text{C}}{^{1}\text{H}}$ NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 14.6 (d, J = 5.0 Hz), 61.8 (t, J = 4.8 Hz), 127.2 (t, J = 6.6 Hz), 127.3 (t, J = 6.4 Hz), 128.8, 129.9 (t, J = 25.9 Hz), 132.0, 133.9, 134.1 (t, J = 24.0 Hz), 165.9. $\frac{\text{HRMS}(\text{EI})}{\text{Hz}}$: m/z [M]⁺ calcd for C₁₉H₁₄F₈O₂ 426.0861; found 426.0868.

3f

Following the general procedure A, the reaction with 4-iodoaniline (110.9 mg, 0.5 mmol) was conducted for 24 hours to give the **3f**₁ in 18% (brown oil, 28.4 mg, 42% NMR yield) and **3f**₂ in 10% (brown solid, 18.4 mg, 17% NMR yield). **3f**₁: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 3.80 (br, 2H), 6.68 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.46 (t, J = 7.3 Hz, 2H), 7.52 (t, J = 7.2 Hz, 1H), 7.59 (d, J = 7.6 Hz, 2H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -108.3 (t, J_{FF} = 11.3 Hz, 2F), -109.6 (t, J_{FF} = 12.5 Hz, 2F), -122.7 (s, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 114.5, 127.1 (t, J = 6.0 Hz), 128.4 (t, J = 5.0 Hz), 128.6, 128.7 (t, J = 16.4 Hz), 130.1 (t, J = 24.3 Hz), 131.5, 149.3. 1 HRMS(EI): m/z [M]⁺ calcd for C₁₅H₁₁F₆N 319.0790; found 319.0791. **3f**₂: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 3.90 (br, 2H), 6.68 (d, J = 7.5 Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.58 (d, J = 7.7 Hz, 2H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -109.2 (m, 2F), -110.5 (t, J_{FF} = 12.8 Hz, 2F), -121.3 (t, J_{FF} = 13.7 Hz, 4F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 114.5, 127.2 (t, J = 6.4 Hz), 128.6, 128.7, 128.8 (t, J = 15.7 Hz), 130.2 (t, J = 24.4 Hz), 131.8, 149.6. 1 HRMS(EI): m/z [M]⁺ calcd for C₁₆H₁₁F₈N 369.0758; found 369.0758.

Following the general procedure A, the reaction with 4-iodobiphenyl (143.3 mg, 0.5 mmol) was conducted to give the $3g_1$ in 51% (pale gray solid, 100.0 mg, 66% NMR yield) and $3g_2$ in 16% (pale yellow solid, 34.5 mg, 19% NMR yield). $3g_1$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.42 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.1 Hz, 4H), 7.55 (t, J = 7.3 Hz, 1H), 7.64 (d, J = 8.4 Hz, 4H), 7.69 (t, J = 9.8 Hz, 4H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -109.4 (t, J_{FF} = 12.4 Hz, 2F), -109.6 (t, J_{FF} = 12.5Hz, 2F), -122.5 (s, 2F). 13 C 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 127.1 (t, J = 5.9 Hz), 127.3, 127.5, 127.6, 128.4, 128.7, 129.3, 129.6 (t, J = 23.8 Hz), 130.8 (t, J = 24.1 Hz), 131.7, 140.2, 144.6. HRMS(EI): m/z [M]⁺ calcd for C₂₁H₁₄F₆ 380.0994; found 380.0999. $3g_2$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.40 (t, J = 7.3 Hz, 1H), 7.48 (t, J = 7.1 Hz, 4H), 7.55 (t, J = 7.2 Hz, 1H), 7.61 (d, J = 7.8 Hz, 4H), 7.67 (q, J = 8.5 Hz, 4H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -110.5 (t, J_{FF} = 13.6 Hz, 2F), -110.8 (t, J_{FF} = 13.1 Hz, 2F), -121.4 (m, 4F). 13 C 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 127.2 (t, J = 6.4 Hz), 127.5, 127.6, 127.7 (t, J = 7.0 Hz), 128.5, 128.8, 128.8 (t, J = 24.1 Hz), 129.3, 130.1 (t, J = 24.4 Hz), 131.9, 140.1, 144.9. HRMS(EI): m/z [M]⁺ calcd for C₂₂H₁₄F₈ 430.0962; found

430.0975.

3h

Following the general procedure A, the reaction with 1-iodonaphthalene (125.8 mg, 0.5 mmol) was conducted to give the $3h_1$ in 55% (pale yellow oil, 95.9 mg, 60% NMR yield) and $3h_2$ in 11% (pale yellow oil, 22.2 mg, 14% NMR yield). $3h_1$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.47–7.62 (m, 6H), 7.67 (d, J = 7.6 Hz, 2H), 7.84 (d, J = 7.3 Hz, 1H), 7.91 (d, J = 7.9 Hz, 1H), 8.02 (d, J = 8.2 Hz, 1H), 8.32 (d, J = 8.4 Hz, 1H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -103.3 (t, J_{FF} = 13.1 Hz, 2F), -109.6 (t, J_{FF} = 13.1 Hz, 2F), 120.5 (s, 2F). 13 C NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 124.54, 125.51,125.55,125.57,125.60,125.63,125.66, 125.7, 126.5 (t, J = 19.3 Hz), 127.1 (t, J = 6.4 Hz), 127.6, 128.0 (t, J = 9.9 Hz), 128.6, 129.2, 130.7, 130.7 (t, J = 24.3 Hz), 131.6, 133.1, 134.4. 1 HRMS(EI): m/z [M]+ calcd for C₁₉H₁₂F₆ 354.0838; found 354.0840. 3 h₂: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.56–7.61 (m, 8H), 7.82 (d, J = 7.3 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H), 8.26 (d, J = 8.3 Hz, 1H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -104.3 (br, 2F), -110.5 (br, 2F), -121.6 (br, 2F). 13 C NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 124.6, 125.5 (br), 125.8 (t, J = 21.8 Hz), 126.6 (t, J = 6.2 Hz), 127.8, 128.3 (t, J = 9.8 Hz), 128.8, 129.2, 130.1(t, J = 24.4 Hz), 130.7, 131.9, 133.4, 134.4. One carbon was missing probably due to overlapping. 1 HRMS(EI): m/z [M]+ calcd for C₂₀H₁₂F₈ 404.0806; found 404.0801.

3i

Following the general procedure A, the reaction with 2-iodo-9,9-dimethylfluorene (161.4 mg, 0.5 mmol) was conducted to give the $3i_1$ in 53% (pale yellow oil, 112.3 mg, 67% NMR yield) and $3i_2$ in 16% (pale yellow solid, 37.1 mg, 21% NMR yield). $3i_1$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 1.52 (s, 6H), 7.40–7.42 (m, 2H), 7.47–7.65 (m, 8H), 7.76–7.81 (m, 2H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -108.6 (t, J_{FF} = 12.6 Hz, 2F), -109.6 (t, J_{FF} = 12.0 Hz, 2F), -122.4 (s, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 27.2 (d, J = 4.8 Hz), 47.4, 120.1, 121.0, 121.5, 123.1, 126.2 (t, J = 6.4), 127.1 (t, J = 6.2Hz), 127.5, 128.6, 128.7, 129.2 (t, J = 23.9 Hz), 130.9 (t, J = 24.3 Hz), 131.6, 138.2, 142.7,153.9, 154.5. $\underline{\text{HRMS}(EI)}$: m/z [M]⁺ calcd for 420.1307; found 420.1309. $3i_2$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 1.51 (s, 6H), 7.35–7.40 (m, 2H), 7.35–7.62 (m, 8H), 7.76–7.80 (m, 2H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -109.7 (t, J_{FF} = 14.6 Hz, 2F), -110.7 (t, J_{FF} = 14.2 Hz, 2F), -121.1 (m, 2F), -121.5 (m, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 27.2 (d, J = 6.7 Hz), 47.4, 120.1, 120.2, 121.0, 121.6, 123.1, 126.3 (t, J = 6.6 Hz), 127.2 (t, J = 5.5 Hz), 127.6, 128.5 (t, J = 6.7 Hz), 47.4, 120.1, 120.2, 121.0, 121.6, 123.1, 126.3 (t, J = 6.6 Hz), 127.2 (t, J = 5.5 Hz), 127.6, 128.5 (t, J = 6.7 Hz), 47.4, 120.1, 120.2, 121.0, 121.6, 123.1, 126.3 (t, J = 6.6 Hz), 127.2 (t, J = 5.5 Hz), 127.6, 128.5 (t, J = 6.7 Hz), 47.4, 120.1, 120.2, 121.0, 121.6, 123.1, 126.3 (t, J = 6.6 Hz), 127.2 (t, J = 5.5 Hz), 127.6, 128.5 (t, J = 6.7 Hz), 47.4, 120.1, 120.2, 121.0, 121.6, 123.1, 126.3 (t, J = 6.6 Hz), 127.2 (t, J = 5.5 Hz), 127.6, 128.5 (t, J = 6.7 Hz), 47.4, 120.1, 120.2, 121.0, 121.6, 123.1, 126.3 (t, J = 6.6 Hz), 127.2 (t, J = 5.5 Hz), 127.6, 128.5 (t, J = 6.7 Hz)

24.4 Hz), 128.8, 130.1 (t, J = 24.1 Hz), 131.9, 138.1, 143.0, 154.0, 154.5. One carbon was missing probably due to overlapping. <u>HRMS(EI)</u>: m/z [M]⁺ calcd for $C_{24}H_{18}F_{6}$ 470.1275; found 470.1288.

Following the general procedure A, the reaction with 4-bromo-2-chloro-1-iodobenzene (158.7 mg, 0.5 mmol) was conducted to give the $3\mathbf{j}_1$ in 42% (yellow oil, 87.3 mg, 52% NMR yield) and $3\mathbf{j}_2$ in 8% (yellow oil, 19.1 mg, 12% NMR yield). $3\mathbf{j}_1$: ^1H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.44–7.56 (m, 5H), 7.61 (d, J = 7.4 Hz, 2H), 7.66 (s, 1H). ^{19}F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -106.3 (t, J_{FF} = 13.3 Hz, 2F), -109.9 (t, J_{FF} = 12.7 Hz, 2F), -120.7 (s, 2F). ^{13}C { ^{14}H } NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 126.4, 126.8 (t, J = 6.3 Hz), 127.1 (t, J = 23.7 Hz), 128.4, 130.0, 130.2 (t, J = 23.9 Hz), 131.1 (t, J = 8.7 Hz), 131.5, 134.5 (t, J = 2.9 Hz), 134.6 (d, J = 3.3 Hz). $^{14}\text{HRMS}(\text{EI})$: m/z [M] $^{+}$ calcd for $\text{C}_{15}\text{H}_8\text{BrClF}_6$ 415.9397; found 415.9400. $^{3}\text{j}_2$: ^{14}H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.44–7.55 (m, 5H), 7.59 (d, J = 7.5 Hz, 2H), 7.68 (s, 1H). ^{19}F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -112.1 (t, J_{FF} = 14.7 Hz, 2F), -115.5 (t, J_{FF} = 14.1 Hz, 2F), -124.4 (m, 2F), -126.4 (m, 2F). ^{13}C { ^{14}H } NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 126.8 (t, J = 23.7 Hz), 127.0, 127.2, 128.8, 129.9 (t, J = 24.3 Hz), 130.4, 131.5 (t, J = 8.3 Hz), 132.0, 135.0 (t, J = 2.7 Hz), 135.1 (d, J = 3.0 Hz). $^{14}\text{HRMS}(\text{EI})$: m/z [M] $^{+}$ calcd for $\text{C}_{16}\text{H}_8\text{BrClF}_8$ 465.9365; found 465.9369.

3k

Following the general procedure A, the reaction with 3-iodopyridine (103.4 mg, 0.5 mmol) was conducted to give the $3\mathbf{k}_1$ in 52% (pale yellow oil, 80.5 mg, 67% NMR yield) and $3\mathbf{k}_2$ in 3% (pale yellow oil, 5.9 mg, 15% NMR yield). $3\mathbf{k}_1$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.39–7.58 (m, 6H), 7.89 (d, J = 8.3 Hz, 1H), 8.82 (d, J = 24.4 Hz, 2H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -109.6 (t, J_{FF} = 12.4 Hz, 2F), -110.5 (t, J_{FF} = 11.9 Hz, 2F), -122.7 (s, 2F). 13 C 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 123.5, 127.0 (t, J = 6.6 Hz), 128.7, 130.3 (t, J = 24.2 Hz), 131.8, 134.9 (t, J = 6.2 Hz), 148.3 (t, J = 5.9 Hz), 152.8. One carbon is missing probably due to overlapping. HRMS(EI): m/z [M]⁺ calcd for C_{14} H₉F₆N 305.0634; found 305.0640. $3\mathbf{k}_2$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.44–7.59 (m, 6H), 7.89 (d, J = 8.0 Hz, 1H), 8.83 (d, J = 11.6 Hz, 2H), 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -110.9 (t, J_{FF} = 14.0 Hz, 2F), -111.6 (t, J_{FF} = 13.7 Hz, 2F), -121.3 (m, 2F), -121.6 (m, 2F). 13 C 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 123.6, 127.2 (t, J = 6.9 Hz), 128.8, 129.7 (t, J = 24.5 Hz), 132.0, 135.0, 148.4, 153.0. One peak is missing due to an overlap. HRMS(EI): m/z [M]⁺ calcd for C_{15} H₉F₈N 355.0602; found 355.0595.

31

Following the general procedure A, the reaction with ethyl (Z)-3-iodoacrylate (111.8 mg, 0.5 mmol) was conducted to give the $3l_1$ in 51% (pale yellow oil, 82.1 mg, 67% NMR yield). $3l_1$: ${}^{1}H$ NMR (400 MHz, in CDCl₃, rt, δ /ppm): 1.28 (t, J = 7.2 Hz, 3H), 4.24 (q, J = 14.3 Hz, 2H), 5.94 (dt, J = 13.9 Hz, 1H), 6.34 (dt, J = 2.5 Hz, 12.8 Hz, 1H), 7.46–7.59 (m, 5H). ${}^{19}F$ NMR (376 MHz, in CDCl₃, rt, δ /ppm): -109.1 (q, J_{FF} = 12.1 Hz, 2F), -110.2 (t, J_{FF} = 10.9 Hz, 2F), -124.1 (s, 2F). ${}^{13}C$ { ${}^{1}H$ } NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 14.2 (d, J = 4.2 Hz), 61.9 (t, J = 6.7 Hz), 124.5 (t, J = 23.6 Hz), 127.1 (t, J = 6.6 Hz), 128.8, 130.2 (t, J = 24.0 Hz), 130.7 (t, J = 5.0 Hz), 131.9, 164.8. ${}^{1}H$ RMS(ESI): m/z [M+Na]⁺ calcd for C₁₄H₁₂F₆NaO₂ 349.0634; found 349.06337.

We failed to isolate $3l_2$ in pure form, but the presence of the compound was estimated by analysis of crude ¹⁹F NMR (17% yield) and HRMS. $3l_2$: ¹⁹F NMR (376 MHz, in CDCl₃, rt, δ/ppm): -109.9 (t, J_{FF} = 12.0 Hz, 2F), -110.8 (t, J_{FF} = 12.6 Hz, 2F), -121.7 (br, 2F), -122.8 (br, 2F). <u>HRMS(ESI)</u>: m/z [M+Na]⁺ calcd for C₁₅H₁₂F₈O₂Na 399.0602; found 399.05988.

3m

Following the modified general procedure A, the reaction with benzyl bromide (84.6 mg, 0.5 mmol) was conducted at 80 °C for 24 hours to give the $3m_1$ in 42% (pale yellow solid, 65.5 mg, 61% NMR yield). $3m_1$: ${}^{1}\underline{H}$ NMR (400 MHz, in CDCl₃, rt, δ /ppm): 3.47 (t, J = 19.4 Hz, 2H), 7.40–7.72 (m, 10H). ${}^{19}\underline{F}$ NMR (376 MHz, in CDCl₃, rt, δ /ppm): -110.0 (t, J_{FF} = 11.3 Hz, 2F), -112.3 (hepta, J = 11.2 Hz, 2F), -123.9 (s, 2F). ${}^{13}\underline{C}$ { $^{1}\underline{H}$ } NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 37.6 (t, J = 21.9 Hz), 126.8 (t, J = 6.2 Hz), 127.6, 127.9, 128.4, 128.5, 129.9, 130.9, 131.4. ${}^{1}\underline{H}\underline{H}\underline{H}\underline{M}\underline{S}(\underline{E}\underline{I})$: m/z [M]⁺ calcd for C₁₆H₁₂F₆, 318.0838; found 318.0848.

We failed to isolate $3m_2$ in pure form, but the presence of the compound was estimated by analysis of crude ¹⁹F NMR (7% yield) and HRMS. $3m_1$: ¹⁹F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -110.7 (br, 2F), -113.3 (br, 2F), -121.6 (br, 2F), -123.9 (br, 2F). HRMS(EI): m/z [M]⁺ calcd for $C_{17}H_{12}F_8$ 368.0806; found 368.0807.

One-pot synthesis from aryl boronic acid esters (Figure 3)

General procedure B

A solution of [CuO'Bu] (0.90 mmol, 123 mg) and 1,10-phenanthroline (0.90 mmol, 162 mg) in THF (7 mL) was prepared in an autoclave reactor. To this solution, 5,5-dimethyl-2-aryl-1,3,2-dioxaborinane (0.90 mmol) was added, and then TFE (3.5 atm) was charged into the reactor. The reaction mixture was heated at 40 °C for 24 hours. After removal of TFE under reduced pressure, TMSCF₃ (1.1 mmol, 160 μ L) and DMF (2.5 mL) were added to the reaction mixture followed by stirring for 6 hours at room temperature. Then, 4-iodobenzotrifluoride (0.50 mmol, 136 mg) was added, and the resultant solution was heated at 60 °C for 18 hours. After cooling the reaction mixture, PhCF₃ (internal standard, 0.8 mmol, 100 μ L) was added, and a portion of the mixture was added to a small test tube. To the tube was added CDCl₃ and the resultant precipitate was removed by filtration. The ¹⁹F NMR spectrum was measured to determine the NMR yield. The reaction mixture was filtered and poured into a separatory funnel and diluted with organic solvent (65 mL, Et₂O, ethyl acetate, and hexane). The organic layer was washed with H₂O (10 mL × 3) and brine (5 mL × 1), and dried over Na₂SO₄. After filtration and removal of the solvent under vacuum, the residue was purified by HPLC with CHCl₃ to afford the desired products.

Compounds 4 were prepared by the same procedure except for use of halogenating agent (1.8 mmol) instead of 4-iodobenzotrifluoride, and the yields were calculated based on the amount of aryl boronic acid ester.

Following the general procedure B, the reaction with 2-(4-methoxyphenyl)-5,5-dimethyl-1,3,2-dioxaborinane³ (200.1 mg, 0.5 mmol) was conducted to give the $3\mathbf{n}_1$ in 46% (pale yellow solid, 91.2 mg, 62% NMR yield) and $3\mathbf{n}_2$ in 13% (pale yellow solid, 33.3 mg, 17% NMR yield). $3\mathbf{n}_1$: ¹H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 3.84 (s, 3H), 6.90 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.73 (s, 4H). ¹⁹F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -63.3 (s, 3F), -108.5 (t, $J_{FF} = 12.3$ Hz, 2F), -110.2 (t, $J_{FF} = 11.6$ Hz, 2F), -122.7 (s, 2F). ¹³C { ¹H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 55.3 (d, J = 8.0 Hz), 113.8, 122.0 (t, J = 25.7 Hz), 124.9 (t, J = 272.8 Hz), 125.4, 127.4 (t, J = 6.4 Hz), 128.3 (t, J = 6.3 Hz), 133.4 (t, J = 32.8 Hz), 134.2 (t, J = 25.4 Hz), 162.0. HRMS(EI): m/z [M]+ calcd for C₁₇H₁₁F₉O, 402.0661; found 402.0659. **3n**₂: ¹H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 3.85 (s, 3H), 6.96 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.74 (q, J = 8.3, 12.5 Hz, 4H). ¹⁹F NMR (376 MHz,

in CDCl₃, rt, δ /ppm): -63.2 (s, 3F), -109.8 (t, J_{FF} = 11.8 Hz, 2F), -111.2 (t, J_{FF} = 13.3 Hz, 2F), -121.4 (m, 4F). ¹³C {¹H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 55.7 (d, J = 8.9 Hz), 114.2, 121.8 (t, J = 24.6 Hz), 125.2 (t, J = 272.6 Hz), 125.9 (d, J = 3.8 Hz), 127.9 (t, J = 5.8 Hz), 128.8 (t, J = 5.8 Hz), 133.8 (t, J = 24.7 Hz), 134.2 (t, J = 33.2 Hz), 162.5. HRMS(EI): m/z [M]⁺ calcd for C₁₈H₁₁F₁₁O 452.0629; found 452.0632.

Following the general procedure B, the reaction with 2-(4-fluorophenyl)-5,5-dimethyl-1,3,2-dioxaborinane³ (189.5 mg, 0.9 mmol) was conducted to give the $3o_1$ in 33% (brown oil, 64.9 mg, 44% NMR yield) and $3o_2$ in 9% (brown solid, 20.2 mg, 11% NMR yield). $3o_1$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.16 (t, J = 8.7 Hz, 2H), 7.57 (q, J = 8.7 Hz, 2H), 7.73 (q, J = 14.2 Hz, 4H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -63.3 (s, 3F), -108.2 (m, 1F), -108.9 (t, J = 12.3 Hz, 2F), -110.2 (t, J = 12.2 Hz, 2F), -122.5 (s, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 116.1 (d, J = 22.3 Hz), 125.2 (t, J = 272.4 Hz), 125.8 (q, J = 3.3 Hz), 126.4 (td, J = 25.0, 3.1 Hz), 127.8 (t, J = 6.1 Hz), 129.5 (q, J = 6.3, 14.8 Hz), 134.1 (t, J = 32.6 Hz), 134.3 (t, J = 24.6 Hz), 165.0 (d, J = 251.7 Hz). 1 HRMS(EI): m/z [M]+ calcd for C₁₆H₈F₁₀ 390.0461; found 390.0461. $3o_2$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.16 (t, J = 8.7 Hz, 2H), 7.58 (q, J = 5.1, 8.7 Hz, 2H), 7.74 (q, J₁ = 8.7 Hz, J₂ = 16.2 Hz, 4H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -63.2 (s, 3F), -107.7 (m, 1F), -110.1 (t, J_{FF} = 13.0 Hz, 2F), -111.2 (t, J_{FF} = 13.0 Hz, 2F), -121.3-121.4 (m, 4F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 116.2 (d, J = 22.3 Hz), 125.1 (t, J = 272.9 Hz), 126.0 (td, J₁ = 11.2, 3.4 Hz), 127.9 (t, J = 5.8 Hz), 129.6 (q, J = 7.1 Hz), 133.6 (t, J = 24.5 Hz), 134.0 (t, J = 32.6 Hz), 165.1 (d, J = 252.1 Hz). One carbon was missing probably due to overlapping or low intensity. 1 HRMS(EI): m/z [M]+ calcd for C₁₇H₈F₁₂440.0429; found 440.0440.

Following the general procedure B, the reaction with 2-(4-chlorophenyl)-5,5-dimethyl-1,3,2-dioxaborinane³ (205.7 mg, 0.9 mmol) was conducted to give the **3p**₁ in 45% (pale yellow solid, 91.0 mg, 72% NMR yield) and **3p**₂ in 6% (pale yellow solid, 12.5 mg, 15% NMR yield). **3p**₁: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.49 (q, J = 8.7, 23.7 Hz, 4H), 7.73 (q, J = 8.6, 14.6 Hz, 4H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -63.4 (s, 2F), -109.6 (t, $J_{FF} = 12.5$ Hz, 2F), -110.2 (t, $J_{FF} = 11.8$ Hz, 2F), -122.6 (s, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 125.2 (t, J = 272.2 Hz), 125.8 (d, J = 3.5 Hz), 127.8 (t, J = 6.3 Hz), 128.9, 129.2, 133.8 (t, J = 32.8 Hz), 134.2 (t, J = 24.3 Hz), 138.4. One carbon was missing probably due to overlapping. HRMS(EI): m/z [M]⁺ calcd for C₁₆H₈ClF₉ 406.0165; found 406.0178. **3p**₂: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.49 (q, J = 8.7 Hz, 4H), 7.74 (q, J = 8.5 Hz, 4H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -63.3 (s, 3F), -110.8

(t, $J_{FF} = 13.4 \text{ Hz}$, 2F), -111.2 (t, $J_{FF} = 14.0 \text{ Hz}$, 2F), -121.4 (q, J = 12.2 Hz, 4F). $\frac{13}{2}$ C $\frac{1}{4}$ NMR (100.6 MHz, in CDCl₃, rt, $\frac{\delta}{ppm}$): 125.1 (t, J = 272.2 Hz), 125.9 (d, J = 4.0 Hz), 127.9 (t, J = 6.4 Hz), 128.6 (t, J = 6.1 Hz), 129.0, 129.3, 133.5 (t, J = 24.4 Hz), 134.3 (t, J = 31.8 Hz), 138.6. $\frac{\text{HRMS}(\text{EI})}{\text{HRMS}(\text{EI})}$: m/z [M]⁺ calcd for C₁₇H₈ClF₁₁ 456.0133; found 456.0131.

Following the general procedure B, the reaction with 2-(4-bromophenyl)-5,5-dimethyl-1,3,2-dioxaborinane³ (244.5 mg, 0.9 mmol) was conducted to give the $3\mathbf{q}_1$ in 46% (pale yellow solid, 103.8 mg, 67% NMR yield) and $3\mathbf{q}_2$ in 13% (pale yellow solid, 27.4 mg, 17% NMR yield). $3\mathbf{q}_1$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.44 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.5 Hz, 2H), 7.73 (q, J = 8.4 Hz, 4H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -63.4 (s, 3F), -109.8 (t, J = 12.3 Hz, 2F), -110.2 (t, J = 11.9 Hz, 2F), -122.6 (s, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 125.2 (t, J = 272.9 Hz), 125.8 (d, J = 3.7 Hz), 126.8 (t, J = 1.9 Hz), 127.8 (t, J = 6.2 Hz), 128.7 (t, J = 6.4 Hz), 129.4 (t, J = 24.7 Hz), 132.2, 133.8 (t, J = 32.4 Hz), 134.2 (t, J = 25.0 Hz). HRMS(EI): m/z [M]+ calcd for C₁₆H₈BrF₉ 449.9660; found 449.9668. $3\mathbf{q}_2$: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.44 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 7.74 (q, J = 8.5 Hz, 4H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -63.3 (s, 3F), -111.0 (t, J = 12.8 Hz, 2F), -111.3 (t, J = 12.8 Hz, 2F), -121.3 - -121.5 (m, 4F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 125.1 (dq, J = 4.4 Hz), 126.8 (dq, J = 4.0 Hz), 127.1 (q, J = 5.4 Hz), 128.0 (q, J = 6.5 Hz), 128.7 (q, J = 5.6 Hz), 129.6 (q, J = 5.5 Hz), 131.4 (d, J = 5.5 Hz), 133.1 (d, J = 5.6 Hz). HRMS(EI): m/z [M]+ calcd for C₁₇H₈BrF₁₁ 499.9628; found 499.9632.

Following the general procedure B, the reaction with 5,5-dimethyl-2-(2-naphthyl)-1,3,2-dioxaborinane³ (215.5 mg, 0.9 mmol) was conducted to give the **3r**₁ in 55% (white solid, 114.5 mg, 79% NMR yield). $\frac{1}{1}$ H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.50–7.65 (m, 3H), 7.74 (s, 4H), 7.86–7.95 (m, 3H), 8.13 (s, 1H). $\frac{19}{1}$ F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -63.4 (s, 3F), -109.0 (t, J_{FF} = 11.7 Hz, 2F), -110.1 (t, J_{FF} = 11.6 Hz, 2F), -122.4 (s, 2F). $\frac{13}{1}$ C { $\frac{1}{1}$ H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 123.1 (t, J = 5.7 Hz), 125.2 (t, J = 272.9 Hz), 125.8 (d, J = 3.6 Hz), 126.2, 127.3, 127.6, 127.8 (t, J = 7.0 Hz), 128.1, 128.2 (t, J = 84.4 Hz), 128.4, 128.8, 129.2, 132.6, 134.4 (t, J = 24.1 Hz), 134.8. $\frac{1}{1}$ HRMS(EI): m/z [M]⁺ calcd for C₂₀H₁₁F₉ 422.0712; found 422.0723.

We failed to isolate $3\mathbf{r}_2$ in pure form, but the presence of the compound was estimated by HRMS of crude. $3\mathbf{r}_2$: HRMS(EI): m/z [M]⁺ calcd for $C_{21}H_{11}F_{11}$ 472.0680; found 472.0674.

3s

Following the general procedure B with the modification of reaction time to 24 hours after addition of TMSCF₃, the reaction with 5,5-dimethyl-2-(1-naphthyl)-1,3,2-dioxaborinane³ (217.6 mg, 0.9 mmol) was conducted to give the **3s**₁ in 59% (brown oil, 122.5 mg, 78% NMR yield). **3s**₁: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.51–7.62 (m, 3H), 7.76 (q, J_1 = 8.8 Hz, J_2 = 13.6 Hz, 4H), 7.82 (d, J = 7.1 Hz, 1H), 7.90 (d, J = 7.7 Hz, 1H), 8.02 (d, J = 8.2 Hz, 1H), 8.27 (d, J = 8.2 Hz, 1H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -63.2 (s, 3F), –103.2 (t, J_{FF} = 13.1 Hz, 2F), –110.1 (t, J_{FF} = 12.8 Hz, 2F), –120.6 (s, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 122.5 (t, J = 272.0 Hz), 124.5, 125.4 (dq, J = 3.1 Hz), 125.7 (d, J = 3.3 Hz), 126.0 (t, J = 22.5 Hz), 126.5, 127.7, 127.8 (t, J = 7.1 Hz), 128.0 (t, J = 10.0 Hz), 129.2, 130.6, 133.3, 133.8 (t, J = 33.3 Hz), 134.4, 134.5 (t, J = 24.4 Hz). $\frac{1}{1}$ HRMS(EI): m/z [M]⁺ calcd for C₂₀H₁₁F₉ 422.0712; found 422.0712.

We failed to isolate **3s**₂, which was observed in the crude reaction mixture (NMR yield was 7%), in pure form in this single experiment. Instead, collection of samples of several trials and purification with HPLC gave analytically pure sample as a brown solid. **3s**₂: 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.52–7.61 (m, 3H), 7.75 (s, 4H), 7.81 (d, J = 7.0 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 8.03 (d, J = 8.2 Hz, 1H), 8.23 (d, J = 7.9 Hz, 1H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): -63.3 (s, 3F), -104.6 (t, J_{FF} = 14.7 Hz, 2F), -111.1 (t, J_{FF} = 14.5 Hz, 2F), -119.5 (m, 2F), -121.5 – -121.7 (m, 2F). 13 C NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 124.6, 125.1 (t, J = 273.2 Hz), 125.3 –125.5 (m), 125.9, 125.9 (d, J = 3.5 Hz), 126.6, 127.8, 127.9 (t, J = 6.9 Hz), 128.3 (t, J = 11.3 Hz), 129.3, 130.7, 133.4 133.5, 133.7 (t, J = 23.1 Hz), 134.4. 14 HRMS(EI): m/z [M]⁺ calcd for C₂₁H₁₁F₁₁ 472.0680; found 472.0681.

4a

Following the general procedure B using 5,5-dimethyl-2-(2-naphthyl)-1,3,2-dioxaborinane (217.6 mg, 0.9 mmol), the reaction with p-toluenesulfonyl chloride (344.3 mg, 1.8 mmol) was conducted to give the $4a_1$ in 43% (yellow solid, 120.7 mg, 52% NMR yield). $4a_1$: ¹H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.58–7.65 (m, 3H), 7.94 (q, J = 8.1 Hz, 3H), 8.15 (s, 1H). ¹⁹F NMR (376 MHz, in CDCl₃, rt, δ /ppm): –66.7 (t, J_{FF} = 13.2 Hz, 2F), –109.4 (t, J_{FF} = 13.0 Hz, 2F), –120.2 (s, 2F). ¹³C { ¹H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 122.9, 127.0 (t, J = 24.1 Hz), 127.5, 128.0 (t, J = 7.3 Hz), 128.1, 128.5, 129.0, 129.2, 132.6, 134.9. HRMS(EI): m/z [M]⁺ calcd for C₁₃H₇ClF₆ 312.0135; found 312.0132.

4a₂ was not characterized due to low intensity and complexity of crude ¹⁹F NMR spectrum.

4b

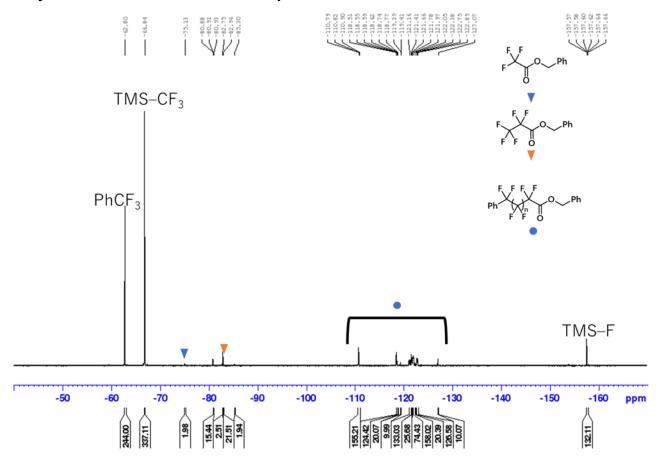
Following the general procedure B using 5,5-dimethyl-2-(2-naphthyl)-1,3,2-dioxaborinane (217.6 mg, 0.9 mmol), the reaction with *N*-bromosuccinimide (234.9 mg, 1.8 mmol) was conducted to give the **4b** in 38% (yellow solid, 118.7 mg, 41% NMR yield). ¹H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.58–7.65 (m, 3H), 7.90-7.95 (m, 3H), 8.14 (s, 1H). ¹⁹F NMR (376 MHz, in CDCl₃, rt, δ /ppm): –64.7 (tt, J = 13.6, 2.7 Hz, 2F), –112.2 (t, J_{FF} = 13.3 Hz, 2F), –120.2 (s, 2F). ¹³C { ¹H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 122.9 (t, J = 5.7 Hz), 127.1 (t, J = 24.1 Hz), 127.4, 128.0 (t, J = 7.0 Hz), 128.2, 128.5, 129.0, 129.2, 132.6, 134.9. HRMS(EI): m/z [M]⁺ calcd for C₁₃H₇BrF₆ 355.9630; found 355.9631.

4b₂ was not characterized due to low intensity and complexity of crude ¹⁹F NMR spectrum.

4c

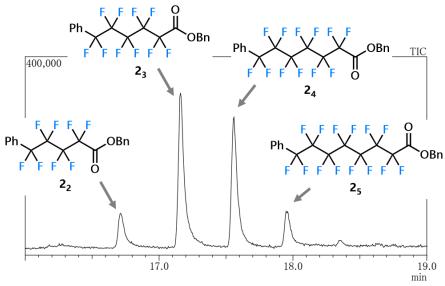
Following the general procedure B using 5,5-dimethyl-2-(2-naphthyl)-1,3,2-dioxaborinane (217.6 mg, 0.9 mmol), the reaction with I₂ (454.7 mg, 1.8 mmol) was conducted to give the **4c**₁ in 44% (orange solid, 160.8 mg, 52% NMR yield). 1 H NMR (400 MHz, in CDCl₃, rt, δ /ppm): 7.60–7.65 (m, 3H), 7.91–7.94 (m, 3H), 8.15 (s, 1H). 19 F NMR (376 MHz, in CDCl₃, rt, δ /ppm): –59.8 (m, 2F), –111.8 (t, J_{FF} = 13.7 Hz, 2F), –116.0 (t, J_{FF} = 4.9 Hz, 2F). 13 C { 1 H} NMR (100.6 MHz, in CDCl₃, rt, δ /ppm): 122.9 (t, J = 5.6 Hz), 127.3 (t, J = 24.1 Hz), 127.4, 127.9 (t, J = 6.8 Hz), 128.1, 128.5, 128.9, 129.2, 132.5, 134.9. 1 HRMS(EI): m/z [M]⁺ calcd for C₁₃H₇F₆I 403.9491; found 403.9508.

4c₂ was not characterized due to low intensity and complexity of crude ¹⁹F NMR spectrum.


Further elongation of fluoroalkyl chain (Figure 4)

Ph F F Cu N
$$\frac{1.2 \text{ equiv. TMSCF}_3}{\text{THF/DMF, rt, 24 h}} CbzCl Ph F F OBr$$

Experimental procedure


In a vial, 1 (42 mg, 0.1 mmol) was dissolved in DMF/THF = 1:3 (1 mL). To this solution was added TMSCF₃ (18 μ L, 0.12 mmol). The reaction mixture was stirred for 24 hours at room temperature. Then, the sequence of addition of TMSCF₃ and stirring 24 hours was repeated three times (total amount of TMSCF₃ was 0.48 mmol). The reaction mixture was added CbzCl (0.7 mmol, 0.1 mL) and stirred for 1 hour at room temperature. The crude product was analyzed by ¹⁹F NMR, GCMS, and HRMS.

Analysis of ¹⁹F NMR (376 MHz, CDCl₃) spectrum

Analysis of ¹⁹F NMR revealed that a significant amount of TMSCF₃ was remained.

Analysis of GCMS (low resolution) chart

Product	m/z [M] ⁺ calculated	found
22	412.0704	412
2 ₃	462.0672	462
24	512.0640	512
25	562.0608	562

HRMS (EI)

Product	m/z [M] ⁺ calculated	found
23	462.0672	462.0664
24	512.0640	512.0634
25	562.0608	562.0599
26	612.0576	612.0579
27	662.0544	662.0563
28	712.0512	712.0516

Crystallographic studies of 3bn

A. Comparison of the molecular structures of $PhCF_2(CF_2)_nCF_2(p-CNC_6H_4)$ (3b_n)

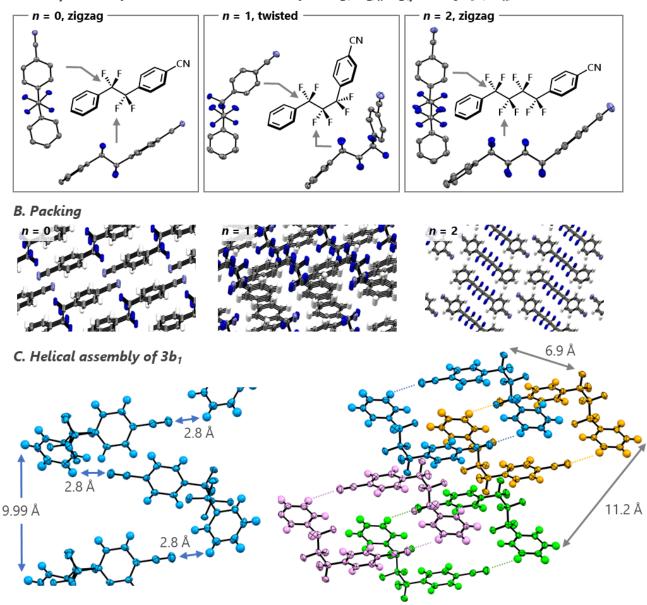
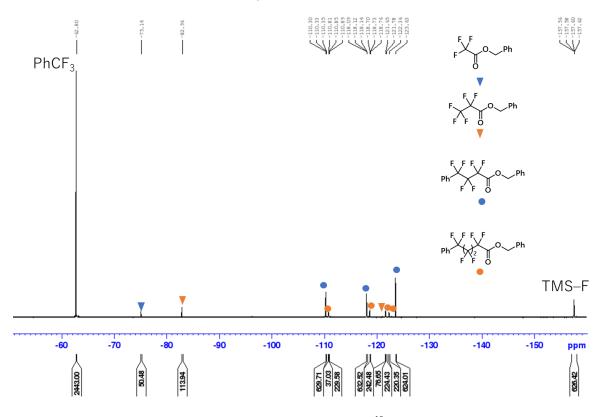


Figure S1. The crystallographic studies of 3b₀, 3b₁, and 3b₂.


3b₀ was synthesized by following the literature procedure. The single crystals suitable for X-ray studies were prepared by recrystallization from hot hexane solutions.

Mechanistic studies

Reaction in the presence of 1,1-diphenylethylene

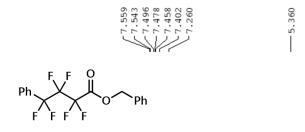
To a screw cap test tube, (phen)CuCF₂CF₂Ph (1, 0.02 mmol, 8 mg) was added, followed by addition of THF (0.2 mL) and 1,1-diphenyl ethylene (0.12 mmol, 21 μ L). To this mixture, TMSCF₃ (0.02 mmol, 3 μ L) was added and stirred at room temperature for 24 hours. After the addition of CbzCl (0.14 mmol, 0.02 mL), the reaction mixture was stirred at room temperature for 1 hour. CDCl₃ and PhCF₃ (internal standard, 0.04 mmol, 5 μ L) was added to the tube, and the precipitation in the sample was removed though filtration. Then NMR spectrum of the sample was measured, and the NMR yield was calculated to be 58% for 2_1 and 6% for 2_2 . The corresponding difluorocyclopropane or TFE was not observed.

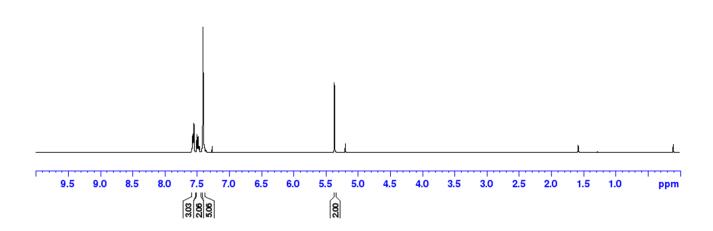
The ¹⁹F NMR (376 MHz, CDCl₃) analysis of crude reaction mixture

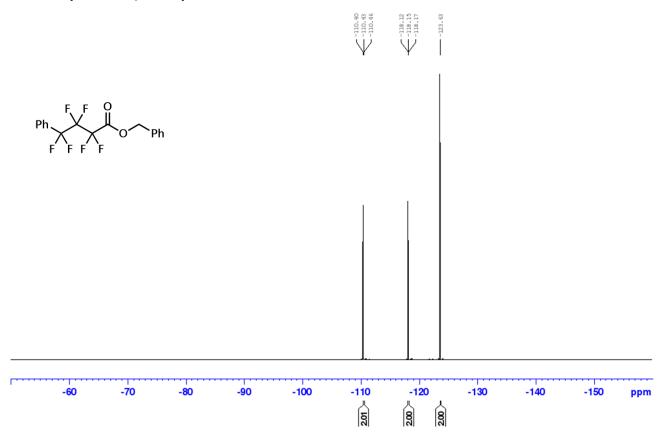
When we performed the reaction to isolate **2**, we checked the ¹⁹F NMR spectrum of the crude reaction mixture. In addition to the desired products **2**₁ and **2**₂, we observed formation of CbzCF₃⁴ and CbzCF₂CF₃⁵ of which precursor would be CuCF₃ and CuCF₂CF₃, respectively. It is unclear whether the copper species are ligated by Phen or not.

The reaction using (Phen)CuCF₃ instead of TMSCF₃

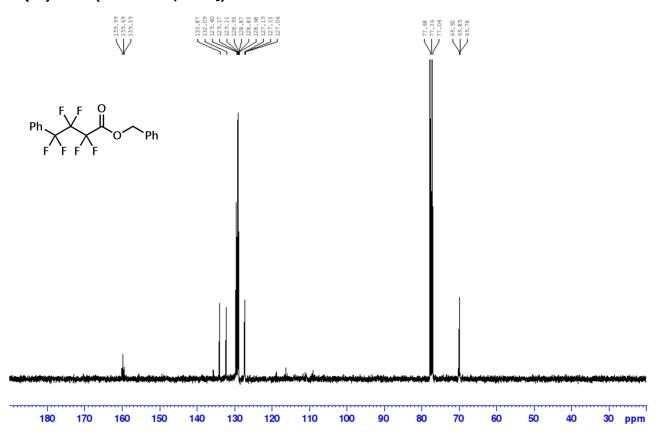
To a vial containing a stirring bar, (phen)CuCF₂CF₂Ph (42 mg, 0.1 mmol), (phen)CuCF₃ (31.8 mg, 0.1 mmol), and THF (1 mL) was added. To this mixture, TMSCF₃ was added and stirred at room temperature for 24 hours. After the addition of CbzCl (0.7 mmol, 0.1 mL), the reaction mixture was stirred at room temperature for 1 hour. Volatiles in reaction mixture were removed under reduced pressure. CDCl₃ and PhCF₃ (internal standard, 0.08 mmol, $10 \mu L$) were added to the tube, and the precipitate in the sample was removed by filtration. The NMR spectrum of the sample was measured to determine the NMR yield.

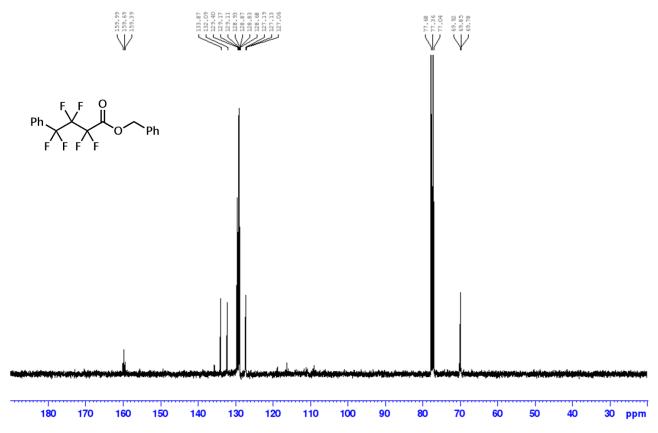

The reaction gave **2**₀ in 84% yield indicating that (phen)CuCF₃ is not a major source of difluorocarbene or carbenoid.


References

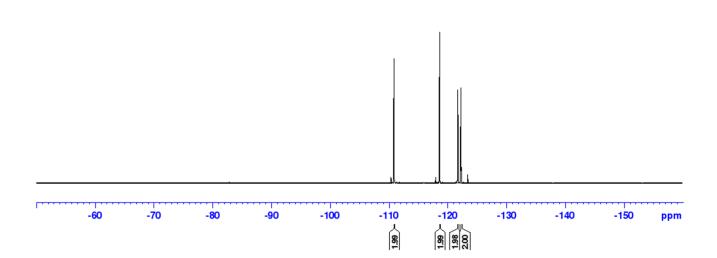

- [1] H. Saijo, M. Ohashi, S. Ogoshi J. Am. Chem. Soc. 2014, 136, 15158.
- [2] H. Morimoto, T. Tsubogo, N. D. Litvinas, J. F. Hartwig Angew. Chem. Int. Ed. 2011, 50, 3793.
- [3] T. O. Ronson, E. Renders, B. F. Van Steijvoort, X. Wang, C. C. D. Wybon, H. Prokopcová, L. Meerpoel, B.
- U. W. Maes Angew. Chem. Int. Ed. 2019, 58, 482.
- [4] M. Hitt, A. N. Vedernikov Org. Lett. 2022, 24, 7737.
- [5] K. Hajimu, H. A. Hamouda, N. Ishikawa Bull. Chem. Soc. Jpn. 1980, 53, 1694.

Spectrum Data

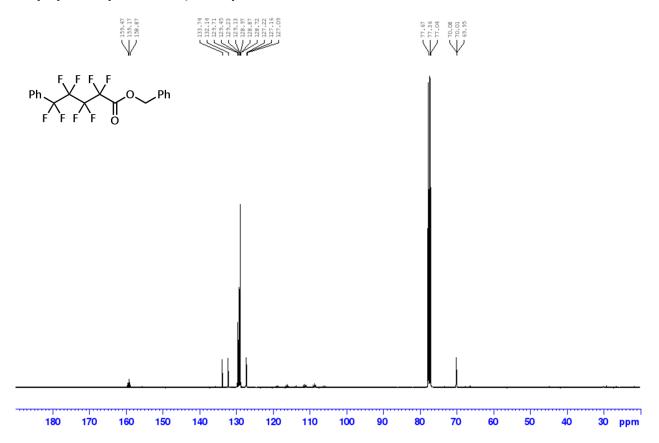

2₁ ¹H NMR (400 MHz, CDCl₃)

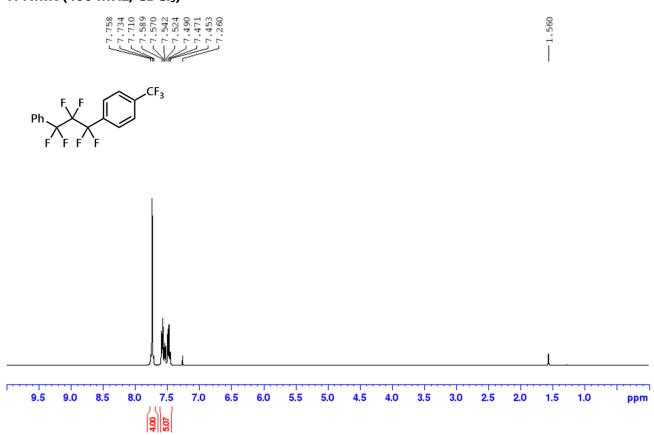


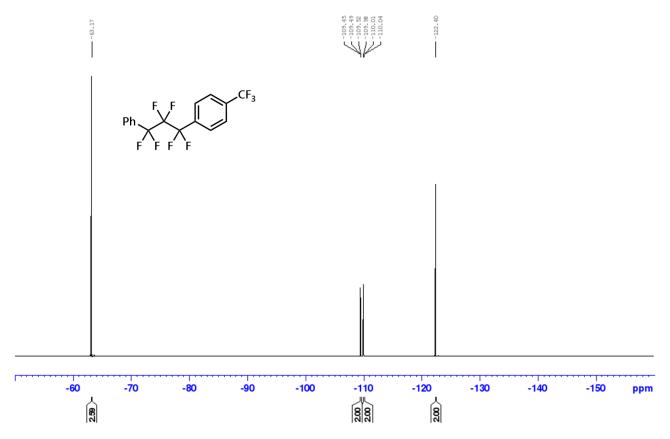
$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$


2₂

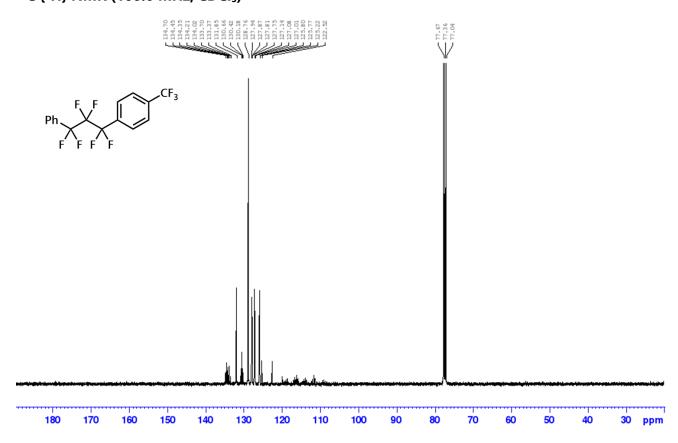
¹H NMR (400 MHz, CDCl₃)



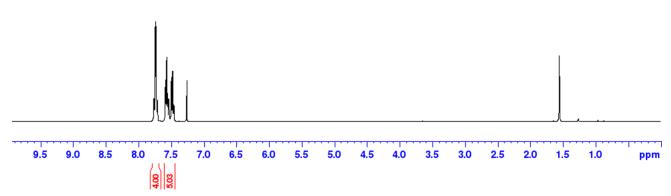

$$Ph \underbrace{+ F F F F}_{F F F F O} O \underbrace{-Ph}_{Ph}$$

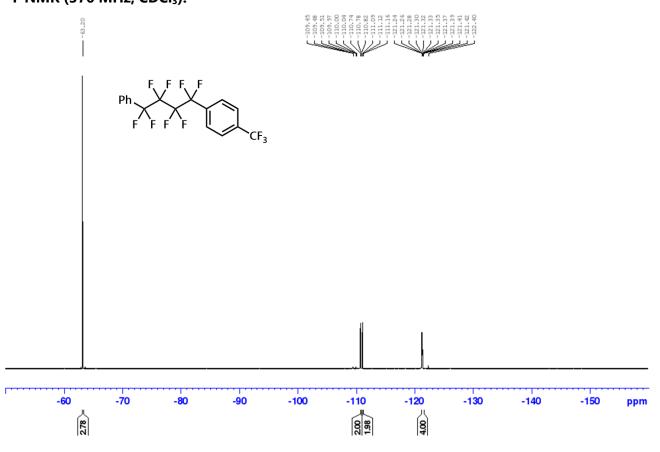


$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

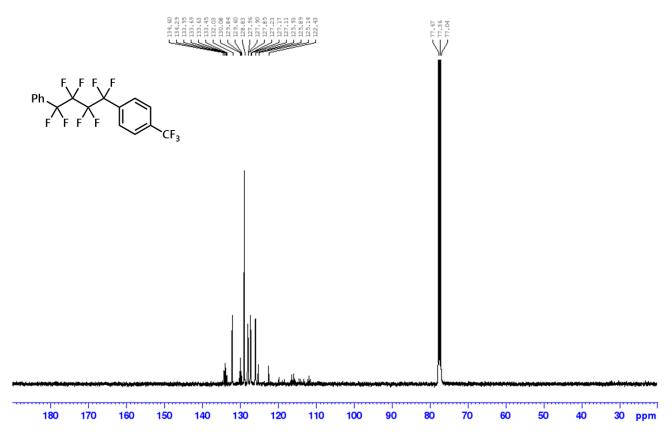


$3a_1$ ¹H NMR (400 MHz, CDCI₃)

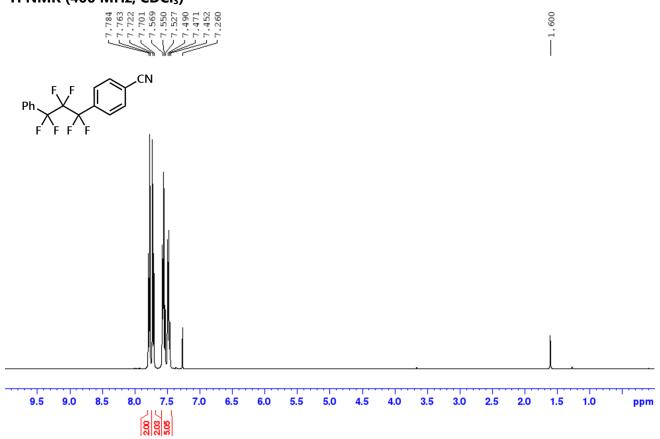

$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

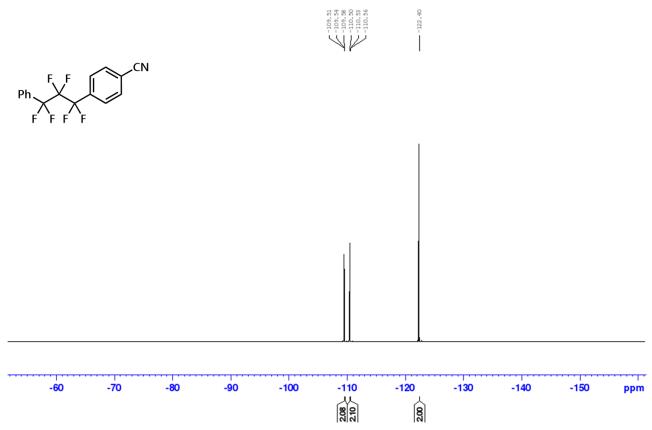

3a₂

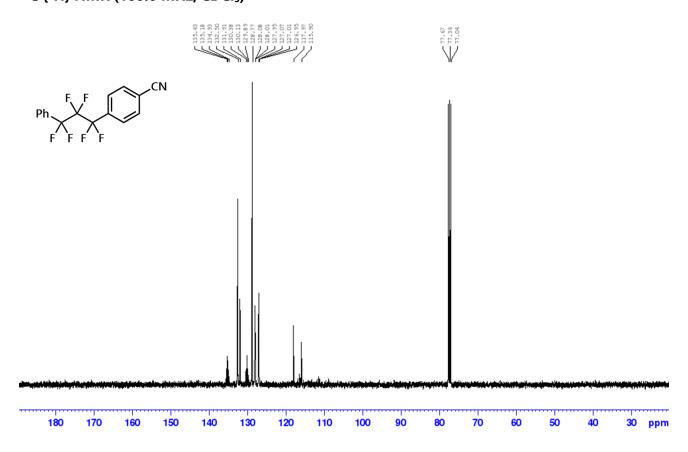
¹H NMR (400 MHz, CDCl₃)



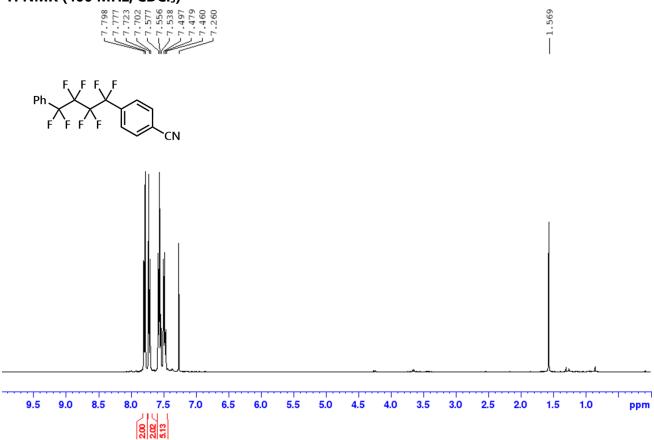
¹⁹F NMR (376 MHz, CDCl₃):

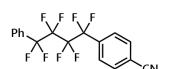


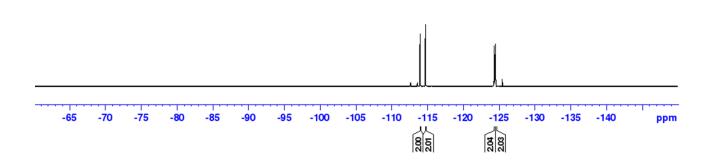

^{13}C $\{^1\text{H}\}$ NMR (100.6 MHz, CDCl₃)

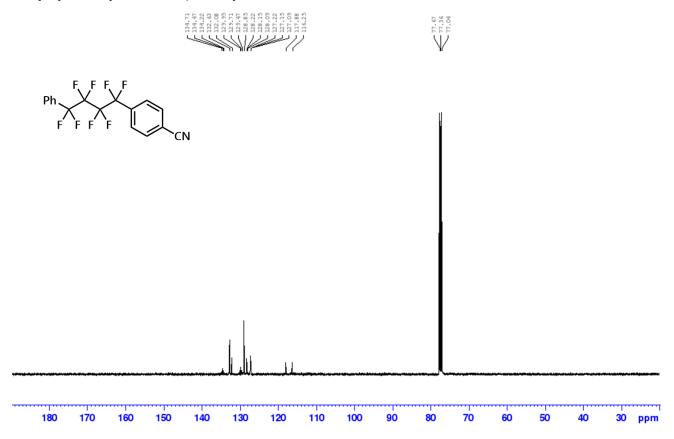

3b₁

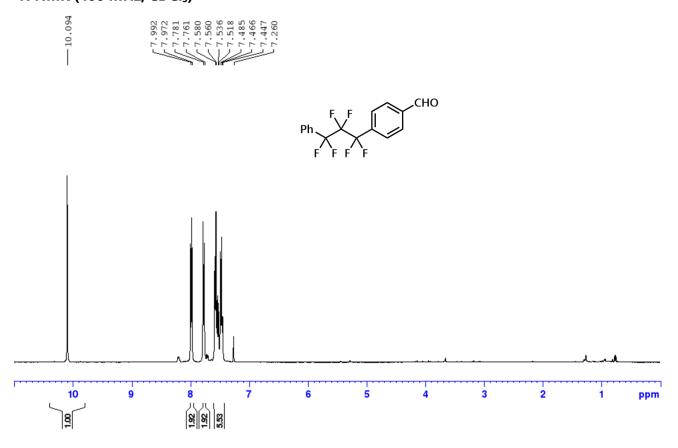
¹H NMR (400 MHz, CDCl₃)

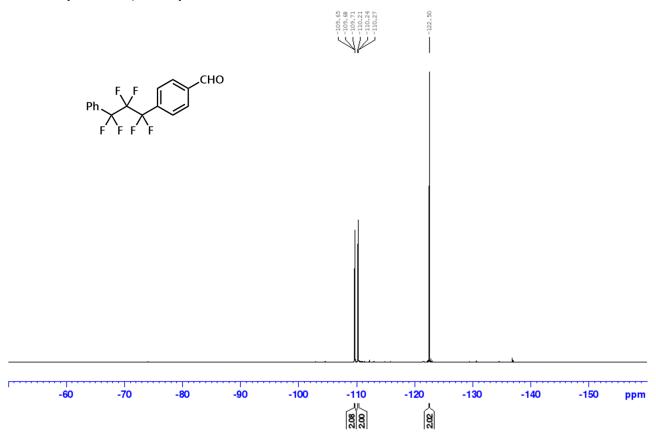



$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

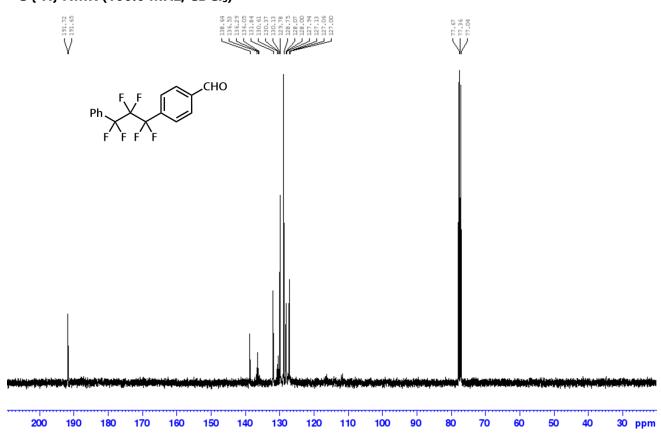




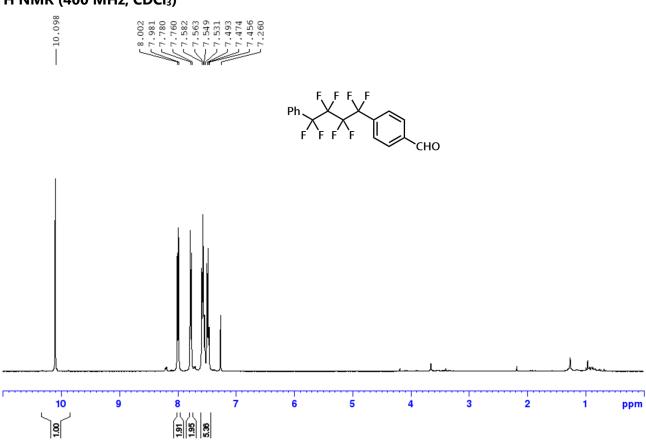


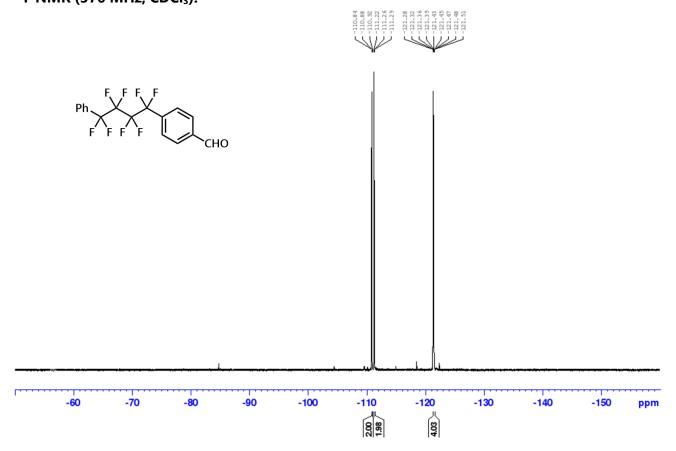


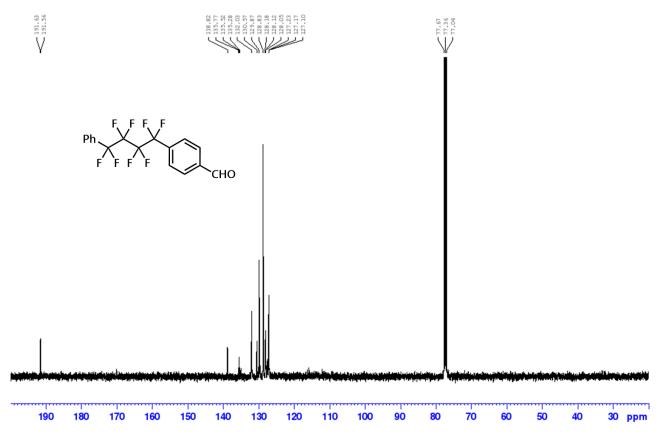
^{13}C $\{^1\text{H}\}$ NMR (100.6 MHz, CDCl₃)

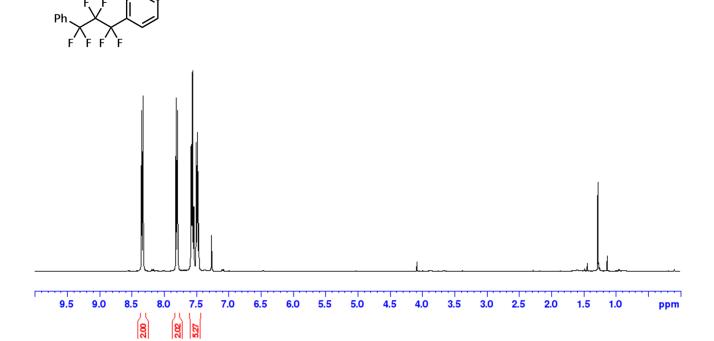


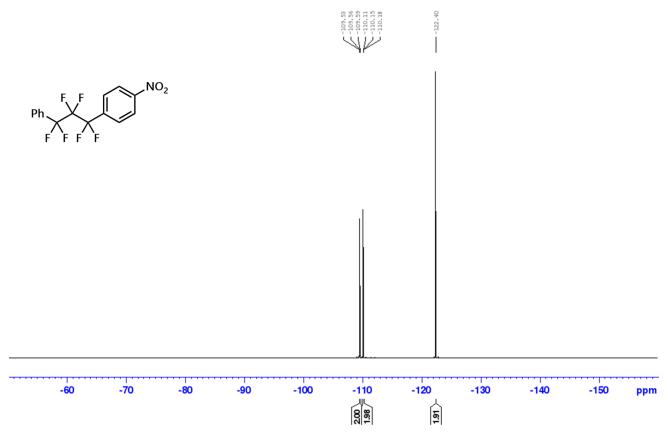
3c₁ 1H NMR (400 MHz, CDCl₃)

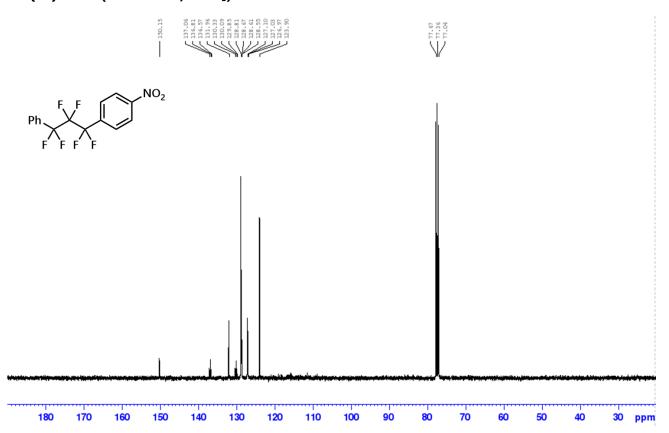


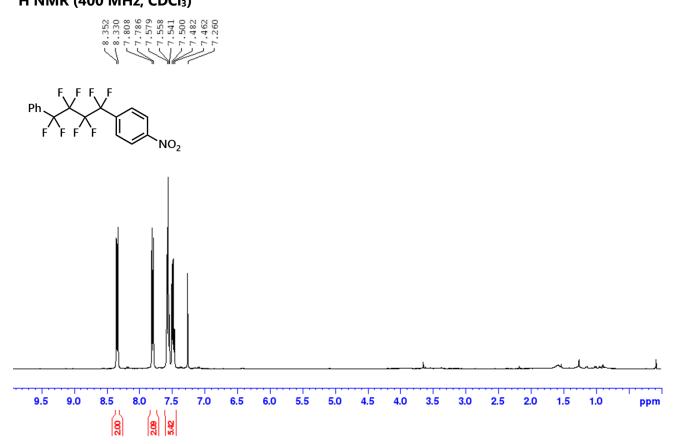

$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

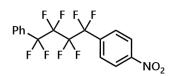


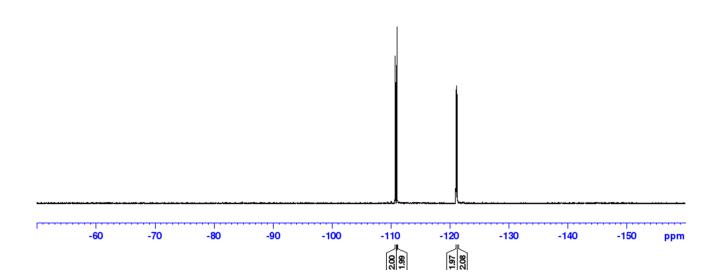


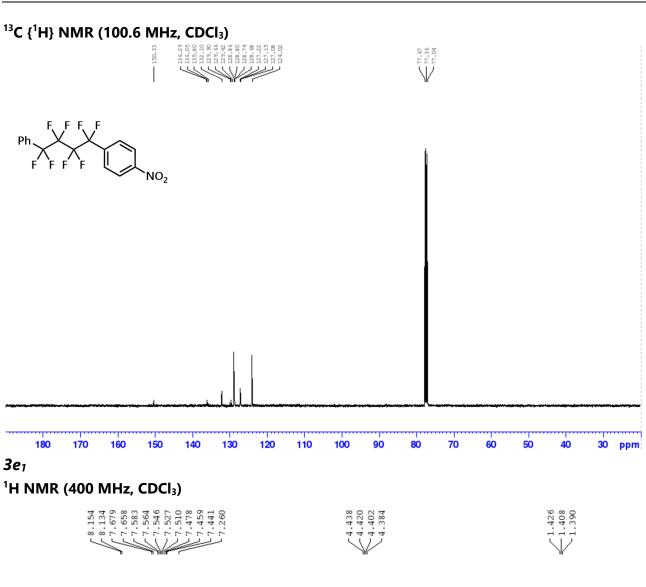

$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

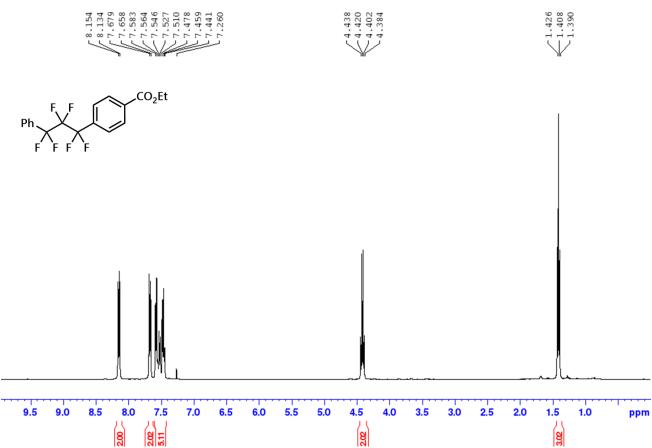

*3d*₁ ¹H NMR (400 MHz, CDCl₃)

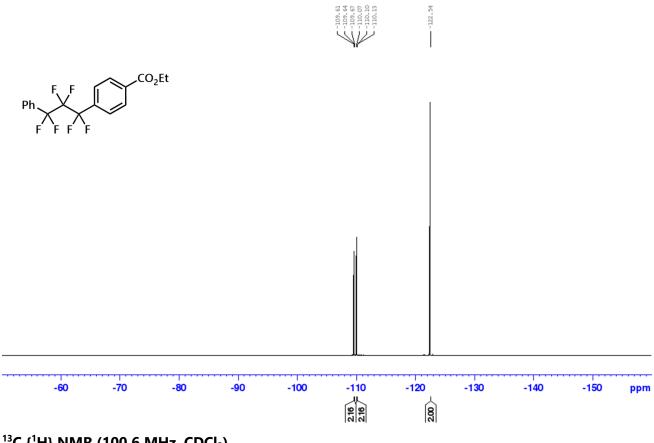


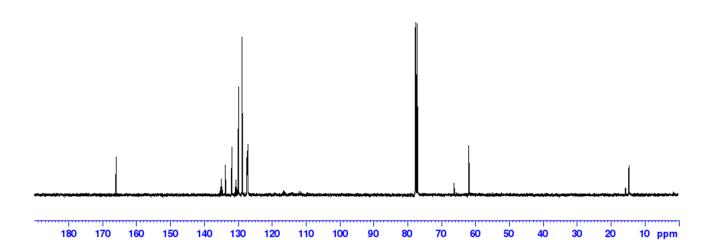

$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$



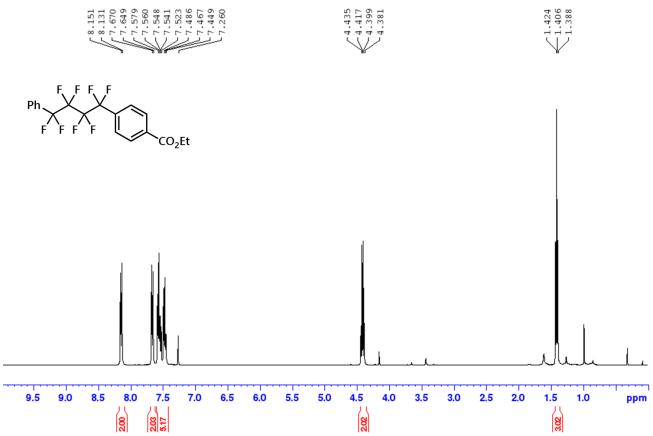

*3d*₂ ¹H NMR (400 MHz, CDCl₃)



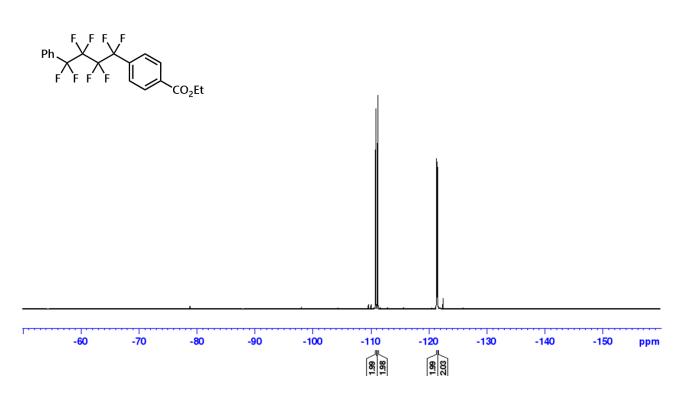


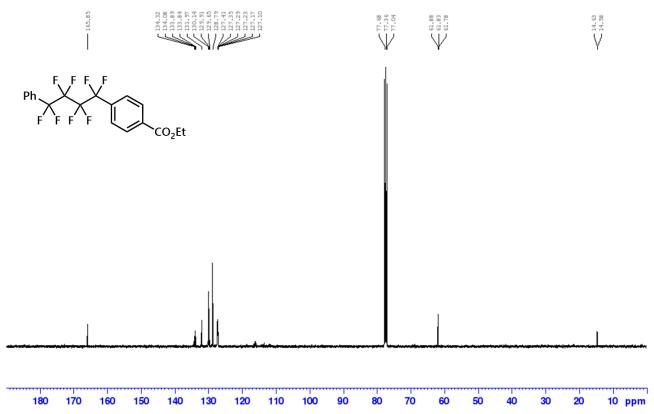


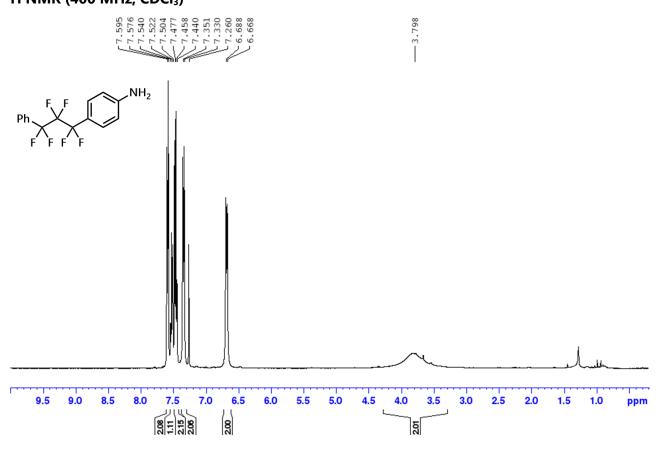
$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

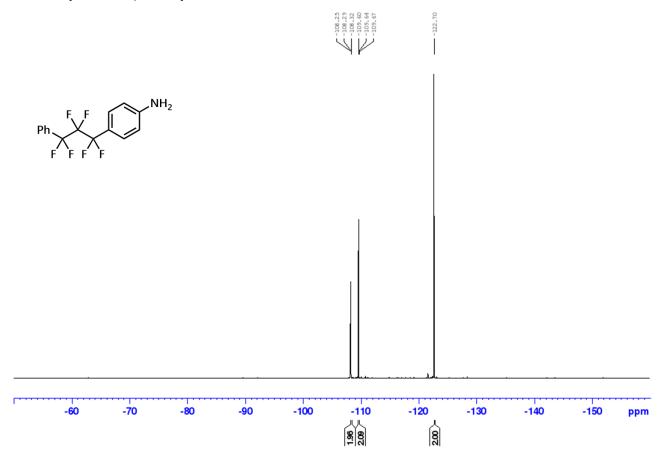


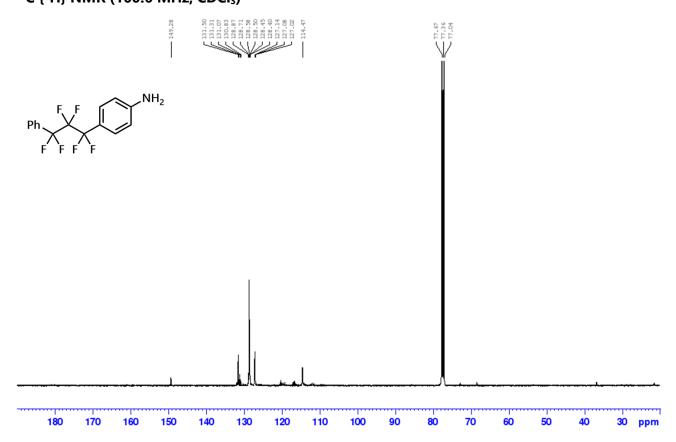
$$\mathsf{Ph} \underbrace{\mathsf{F}}_{\mathsf{E}} \underbrace{\mathsf{F}}_{\mathsf{E}} \underbrace{\mathsf{F}}_{\mathsf{E}} \underbrace{\mathsf{CO}_{2}\mathsf{Et}}_{\mathsf{E}}$$



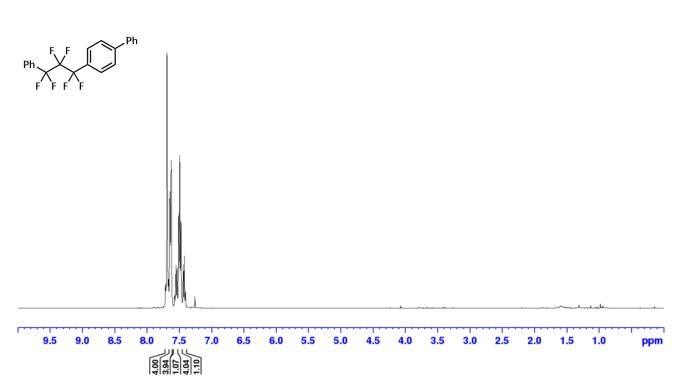


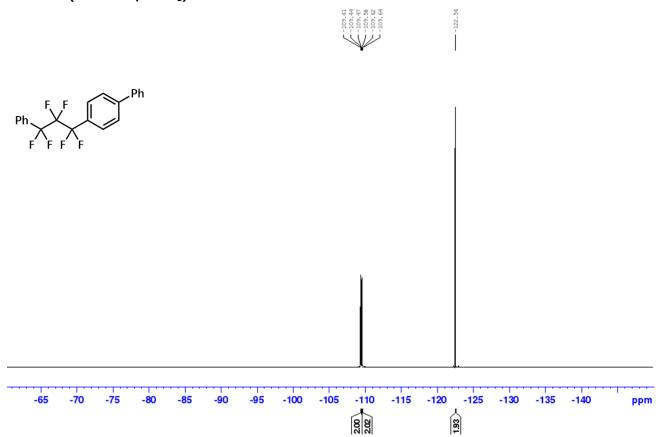


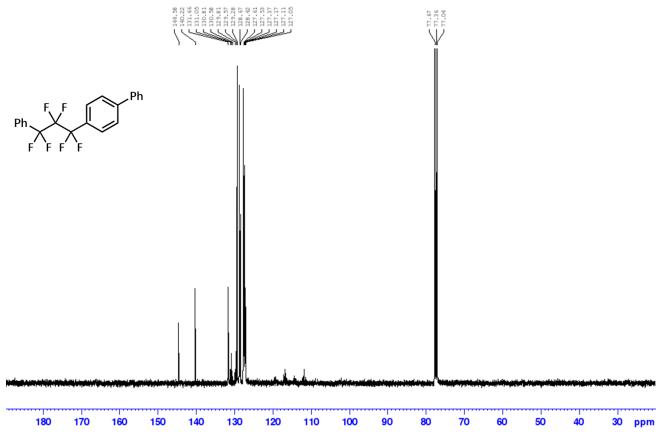


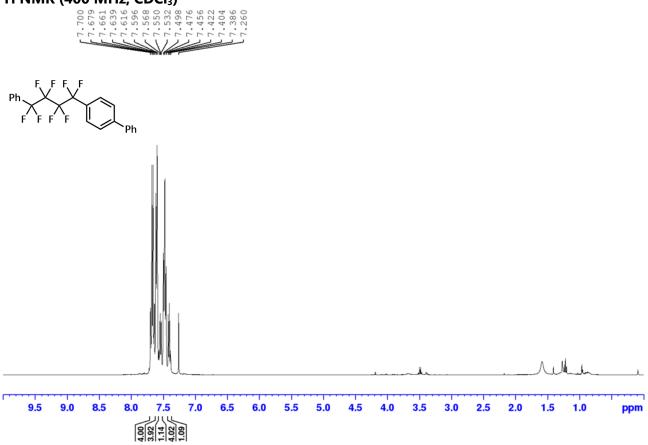


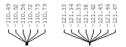
*3f*₁ ¹H NMR (400 MHz, CDCl₃)

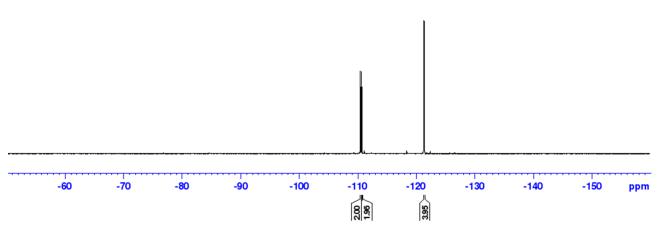



$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

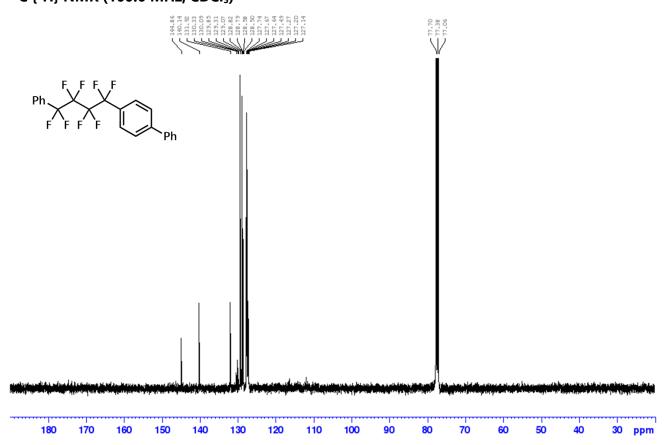

 $3g_1$ ¹H NMR (400 MHz, CDCI₃)

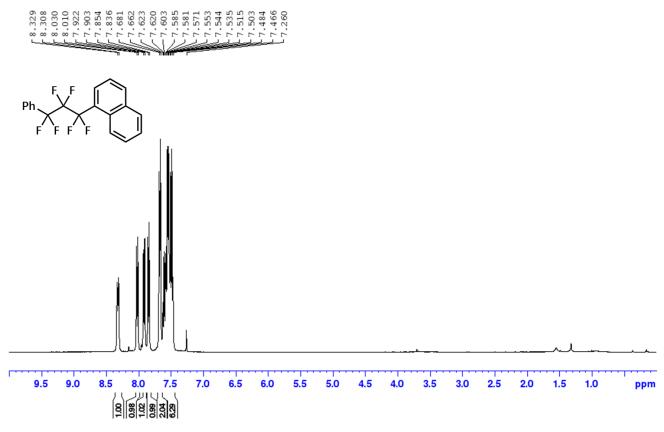


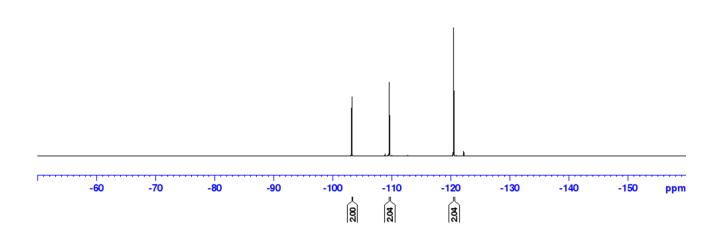


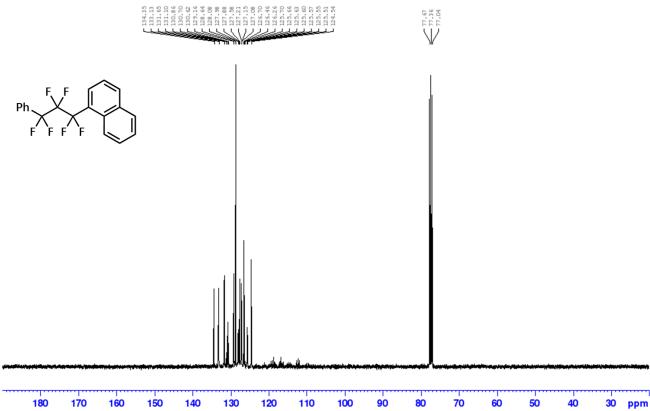


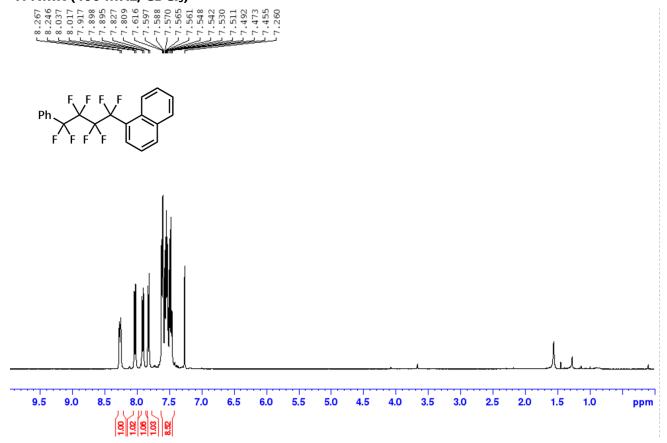
*3g*₂

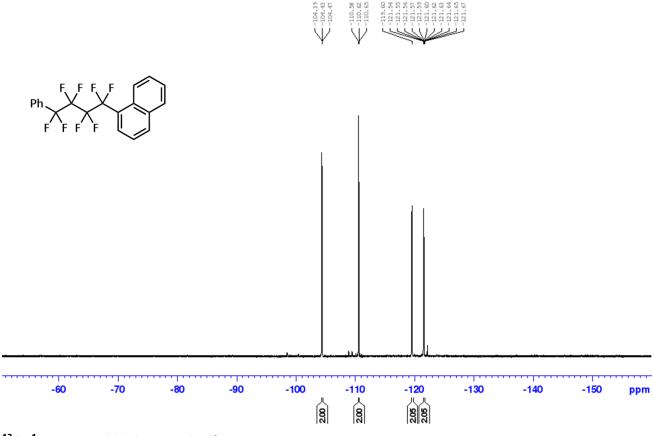

¹H NMR (400 MHz, CDCl₃)



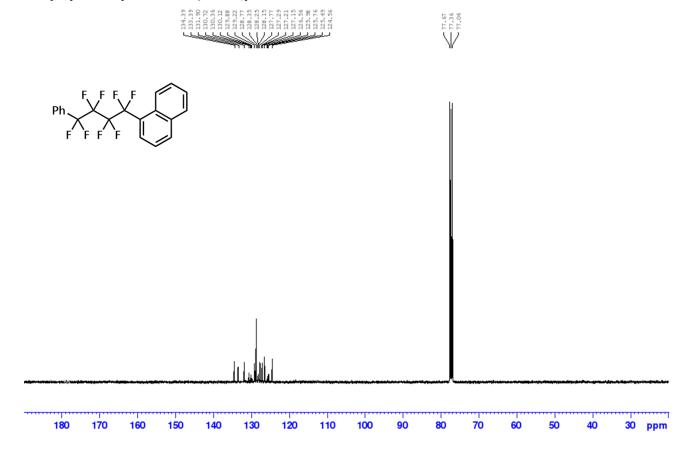

$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$


*3h*₁ ¹H NMR (400 MHz, CDCl₃)





3h₂


¹H NMR (400 MHz, CDCl₃)



$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

3.5

3.0

2.5

2.0

1.5

900

1.0

ppm

4.0

4.5

5.0

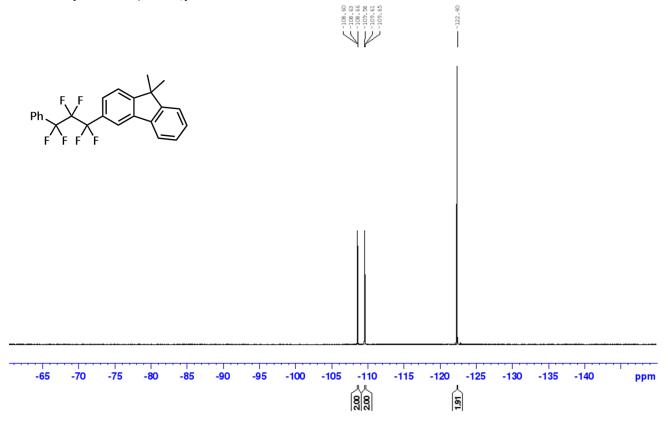
¹⁹F NMR (376 MHz, CDCl₃):

8.5

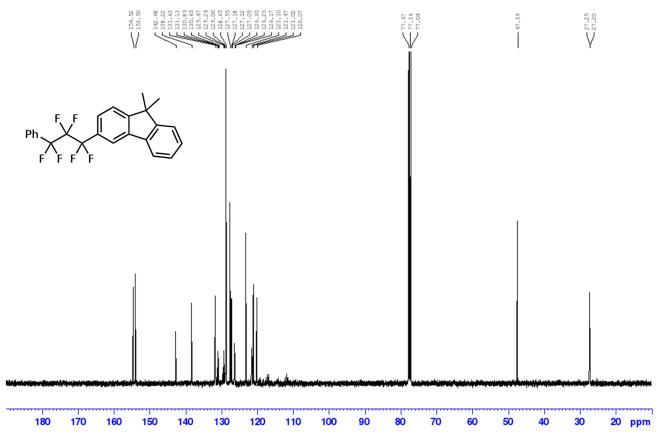
9.5

9.0

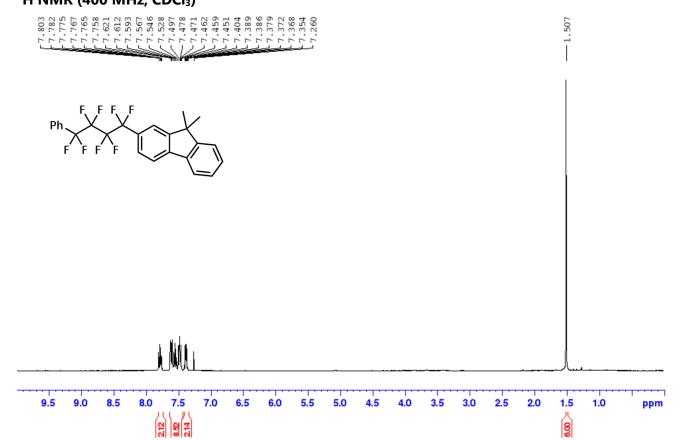
8.0

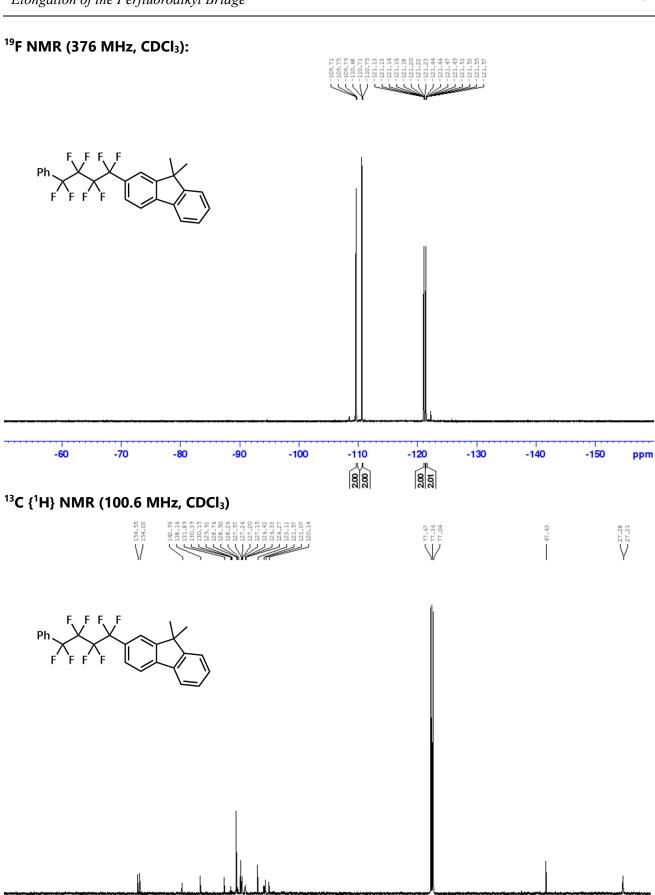

7.5

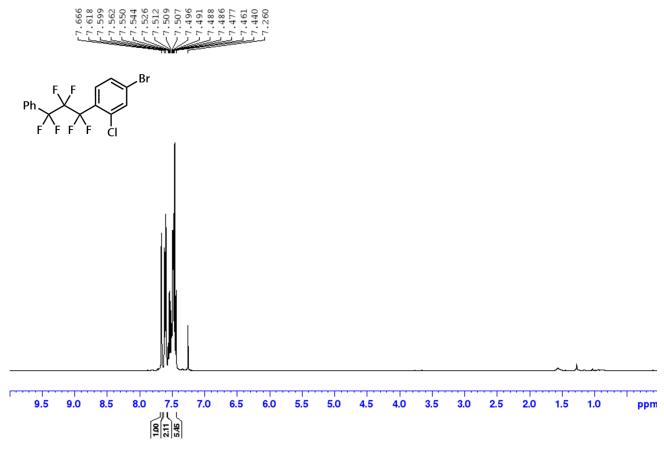
7.0

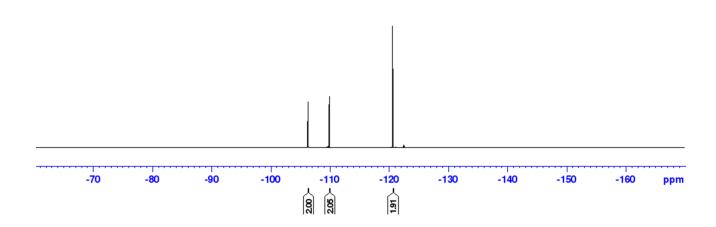

6.5

6.0

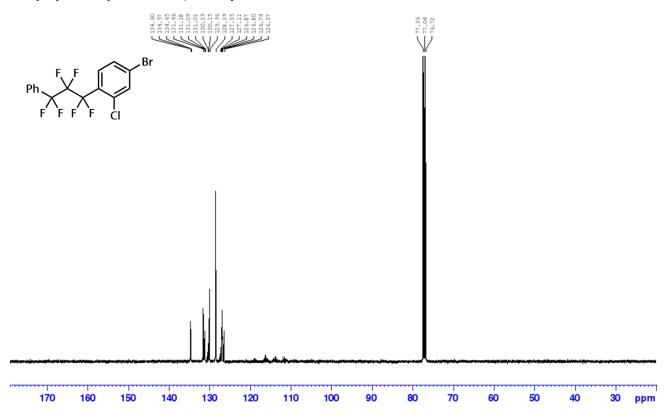

5.5

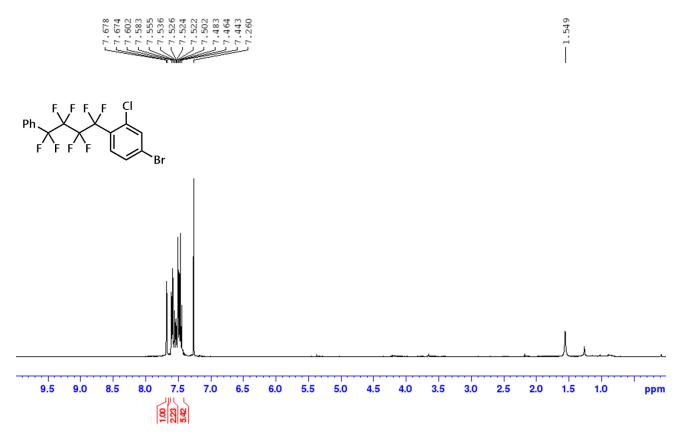


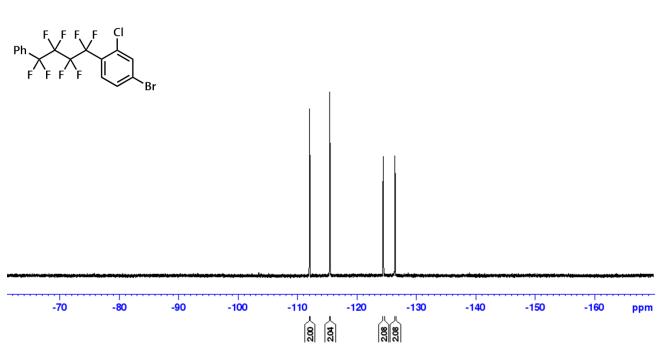

3i₂ 1H NMR (400 MHz, CDCl₃)

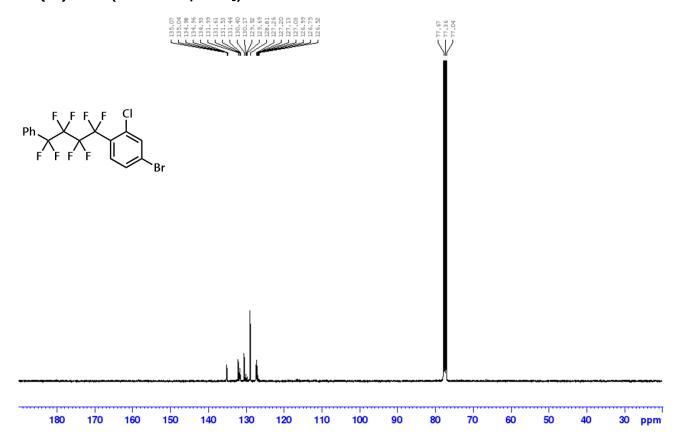


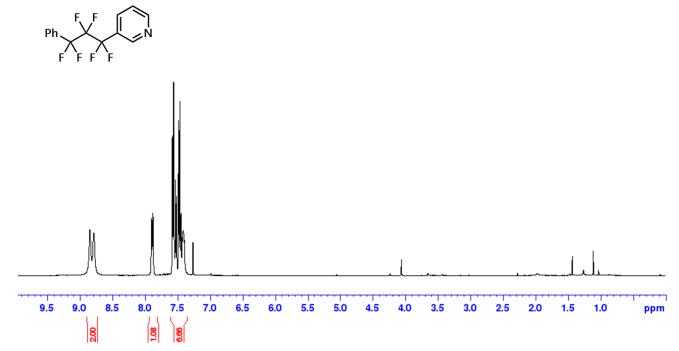
30 ppm

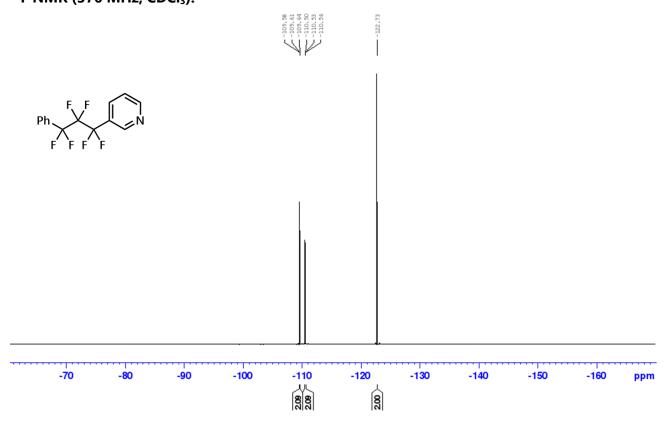

3j₁ ¹H NMR (400 MHz, CDCl₃)



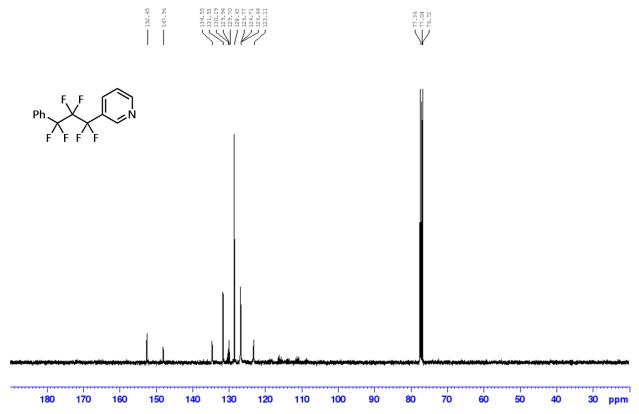

$^{13}\text{C}~\{^1\text{H}\}~\text{NMR}~\text{(100.6 MHz, CDCl}_3)$

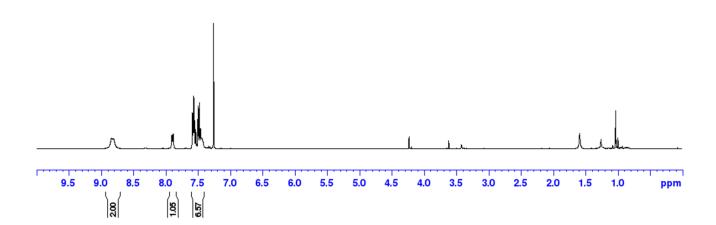

*3j*₂ ¹H NMR (400 MHz, CDCl₃)

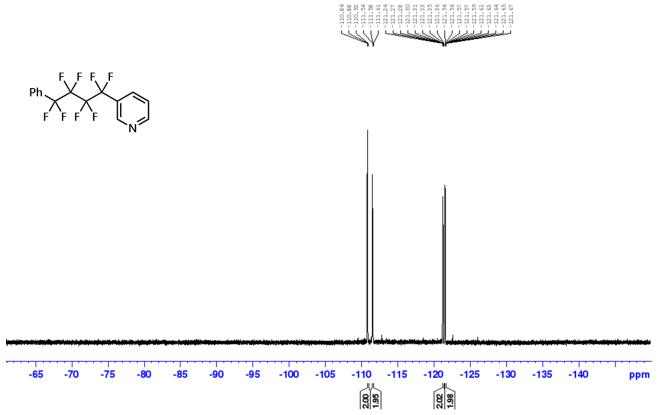

¹³C {¹H} NMR (100.6 MHz, CDCl₃)



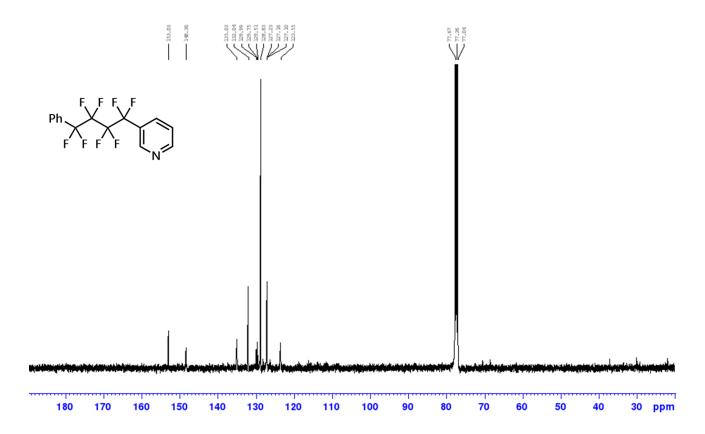
 $3k_1$

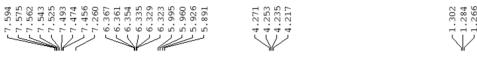

¹H NMR (400 MHz, CDCl₃)

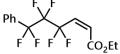


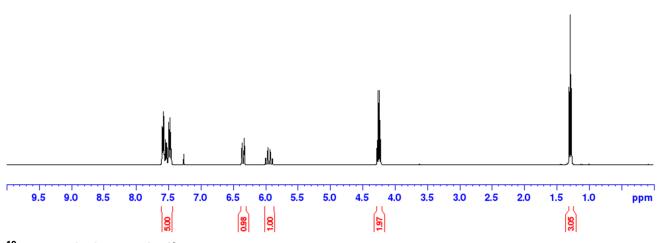

$3k_2$

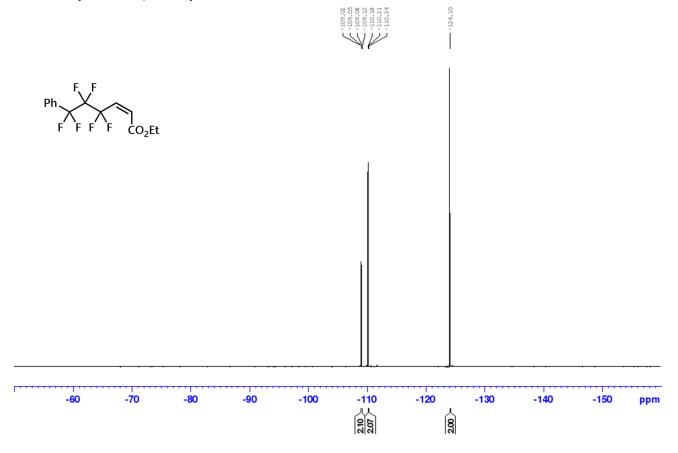
¹H NMR (400 MHz, CDCl₃)

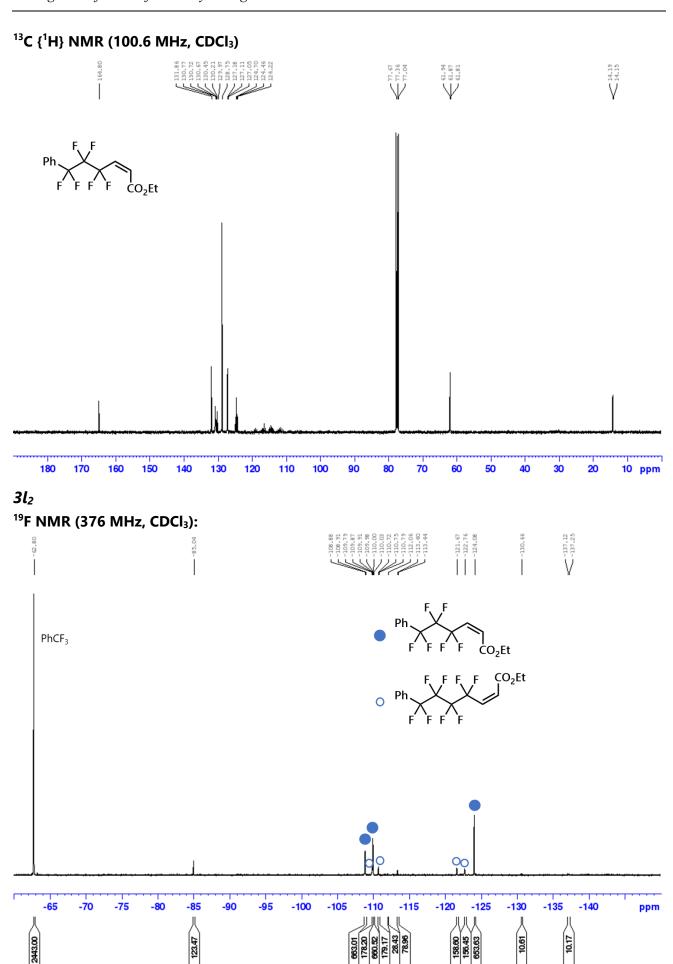


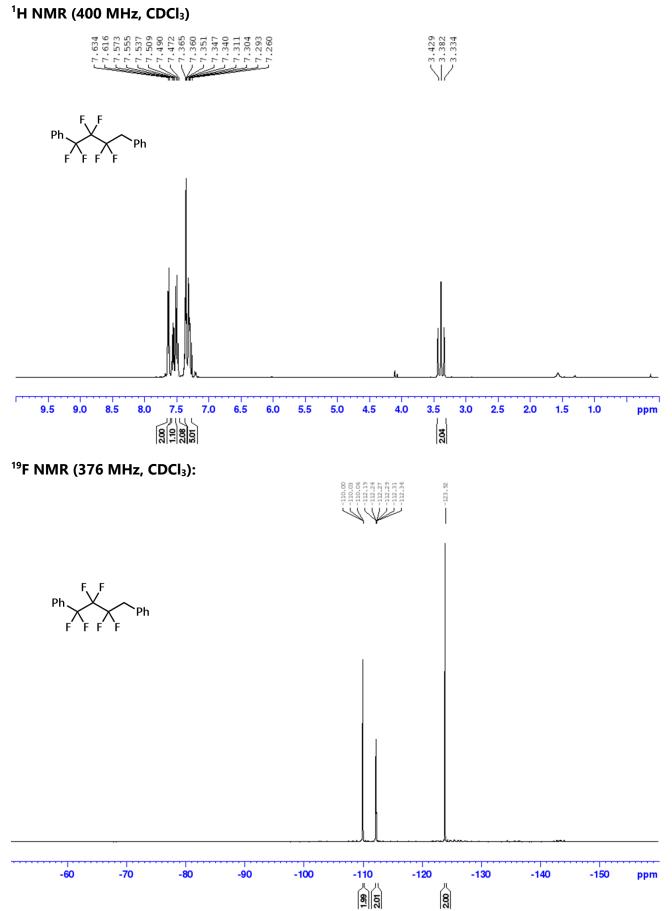


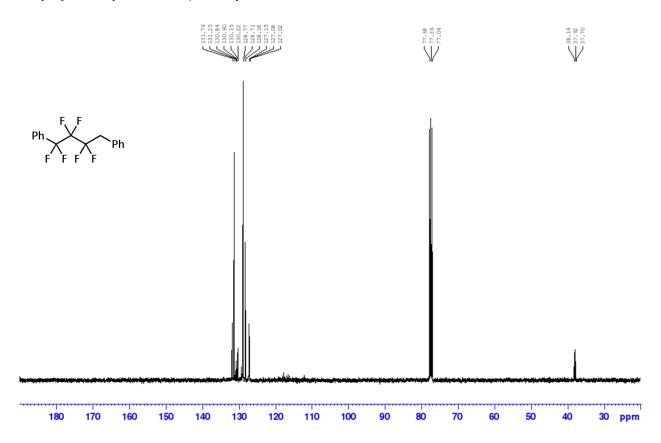

¹³C {¹H} NMR (100.6 MHz, CDCl₃)

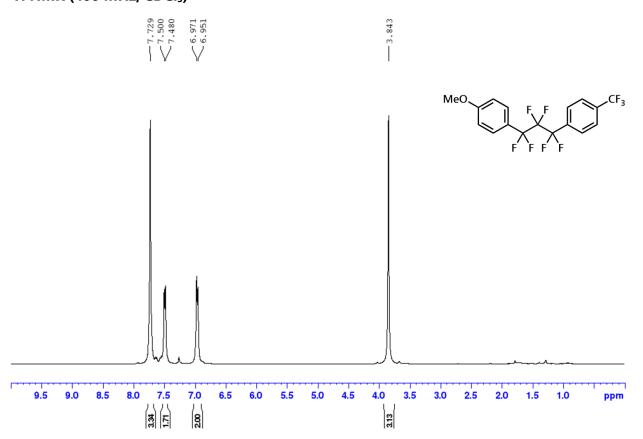


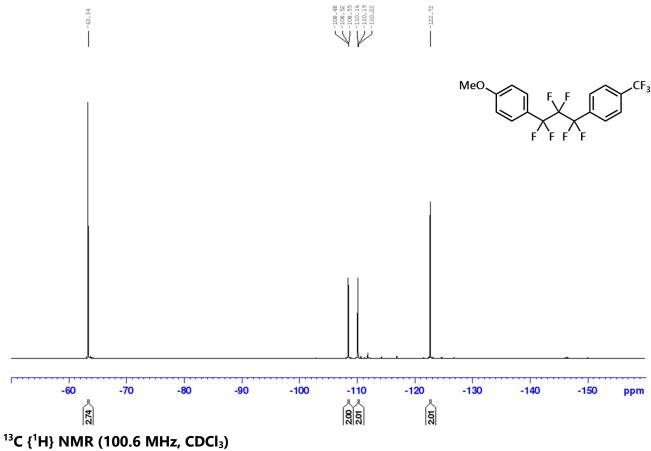


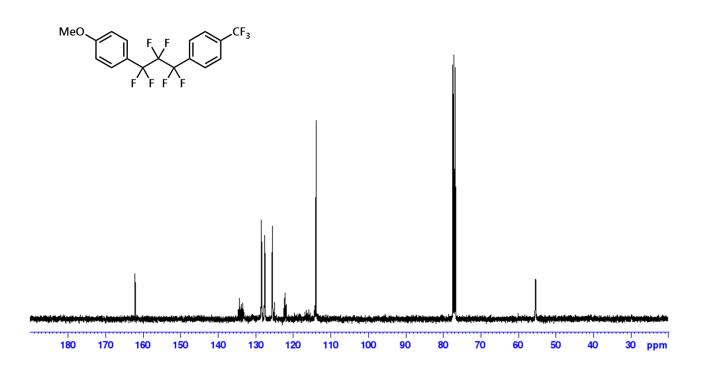


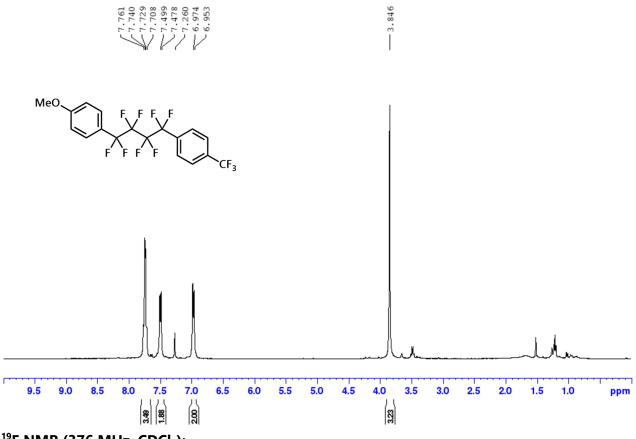


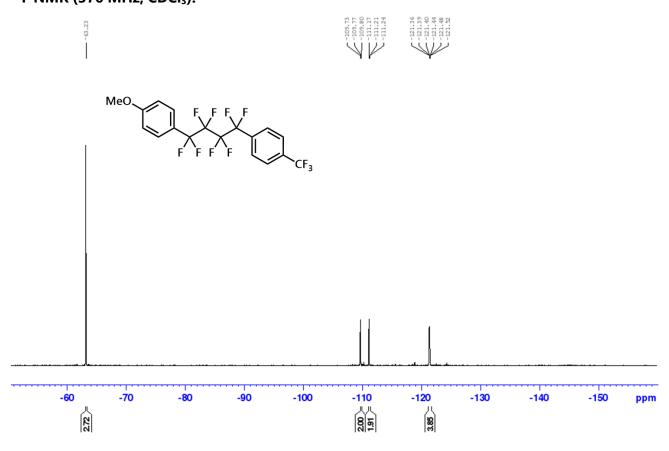



3*m*₁

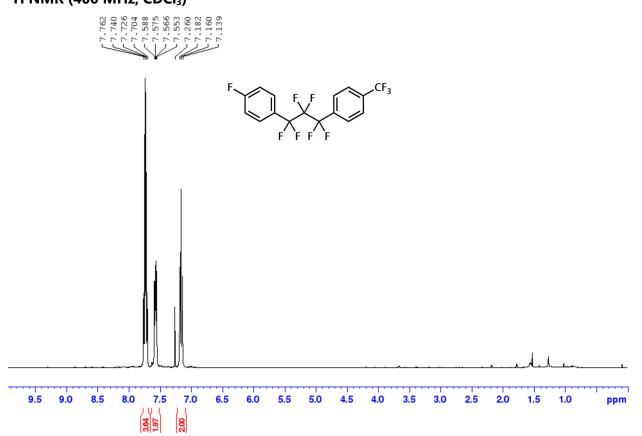

^{13}C $\{^1\text{H}\}$ NMR (100.6 MHz, CDCl₃)

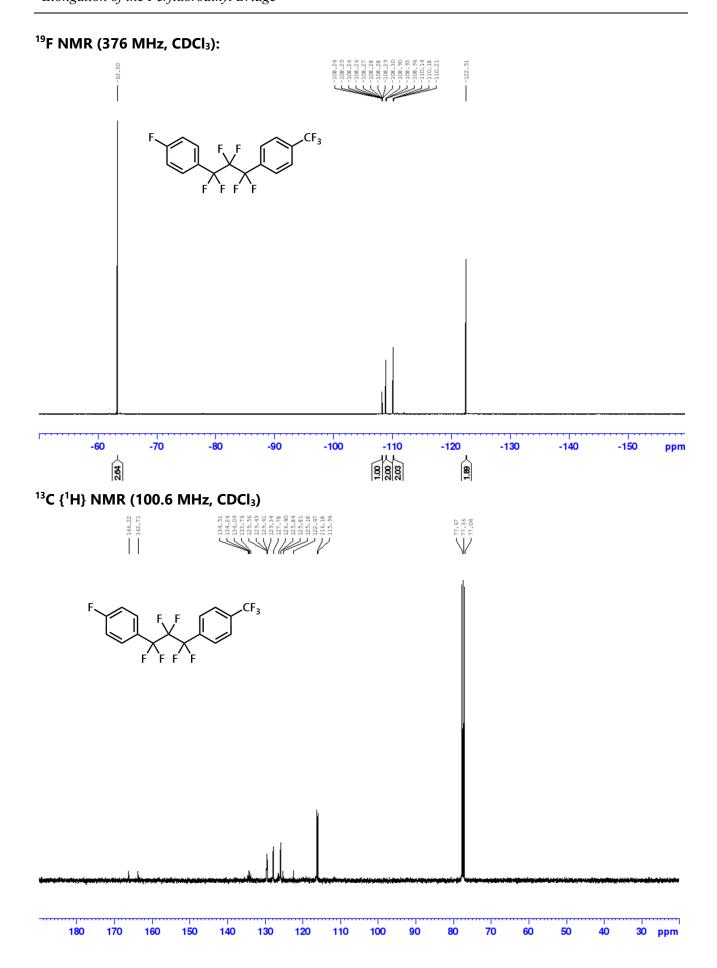

3n₁ 1H NMR (400 MHz, CDCl₃)

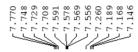


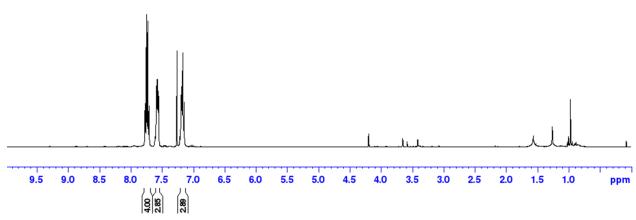


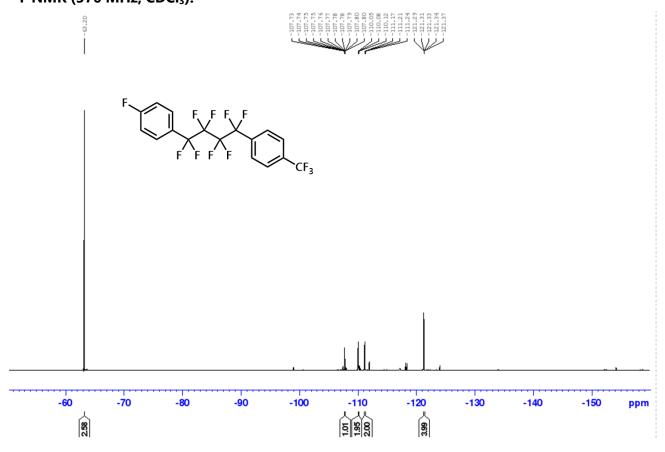
*3n*₂ ¹H NMR (400 MHz, CDCl₃)



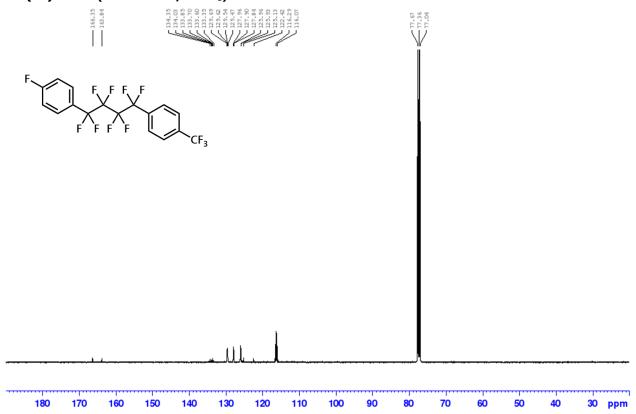



30₁ 1H NMR (400 MHz, CDCl₃)

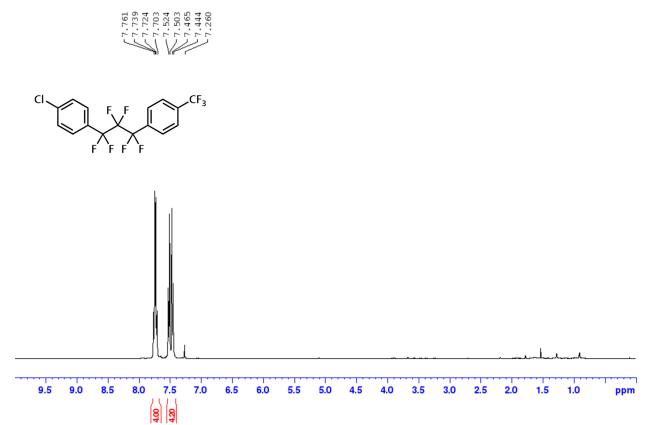



302

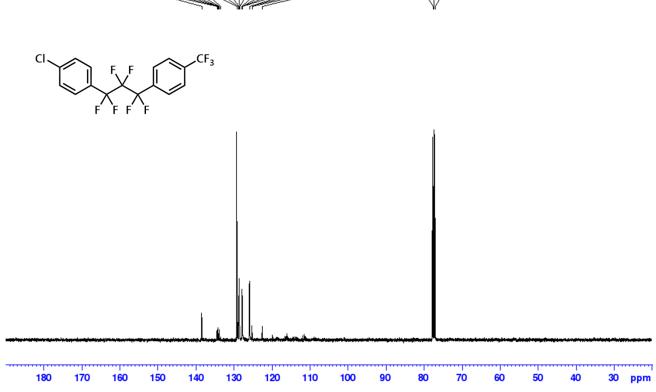
¹H NMR (400 MHz, CDCl₃)

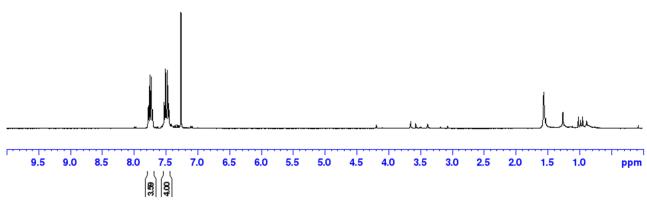


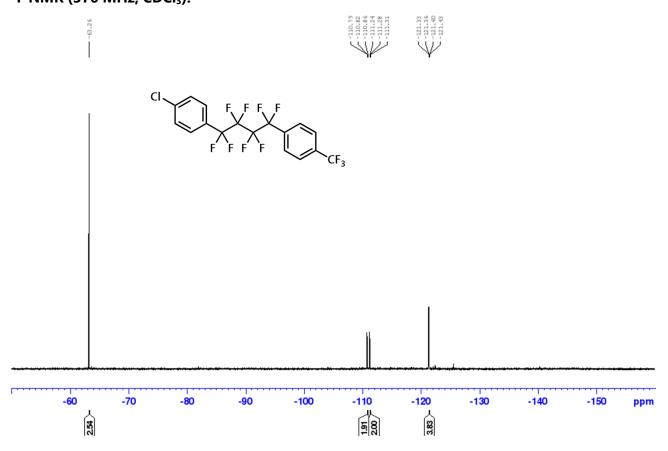
$$F \longrightarrow F \longrightarrow F \longrightarrow CF_3$$



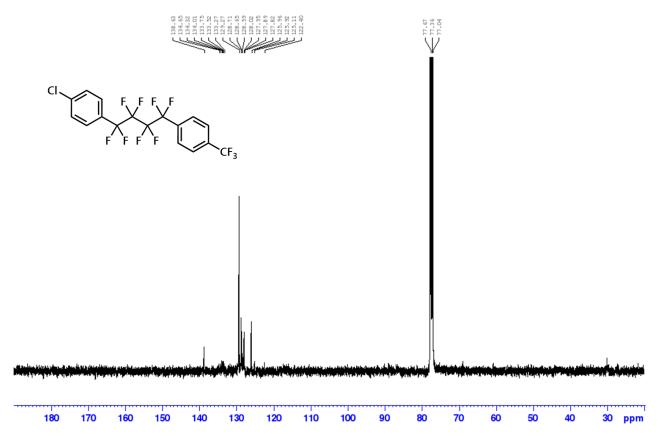


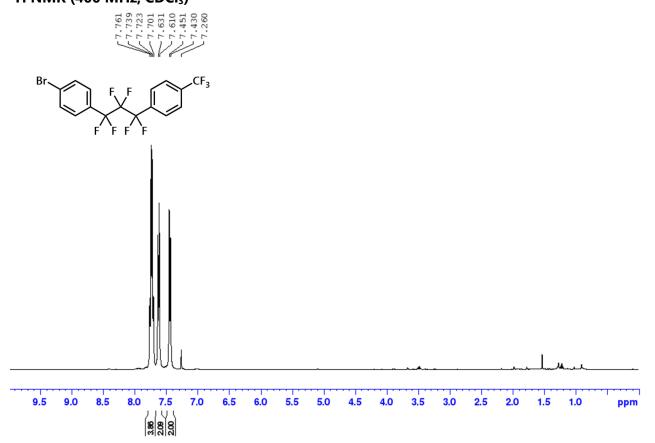

*3p*₁ ¹H NMR (400 MHz, CDCl₃)

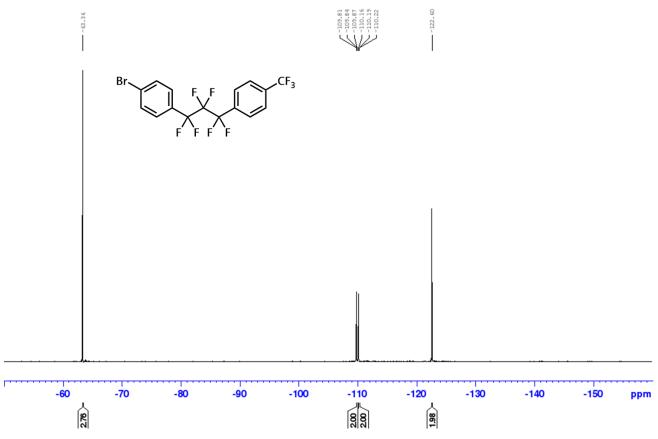

$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

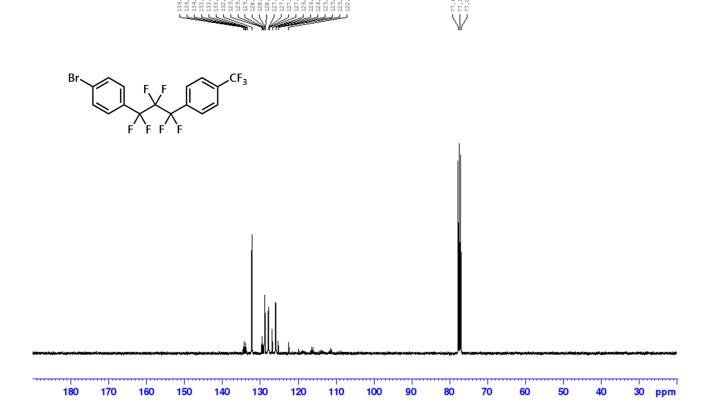


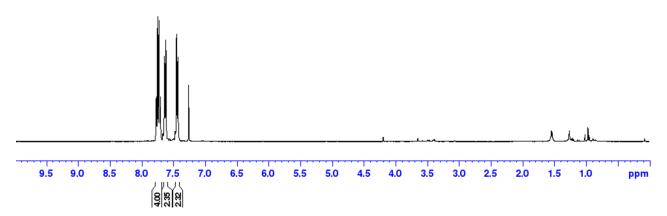
*3p*₂

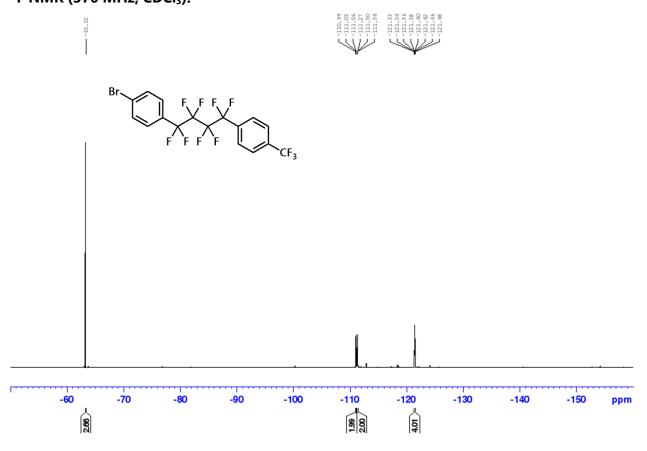

¹H NMR (400 MHz, CDCl₃)

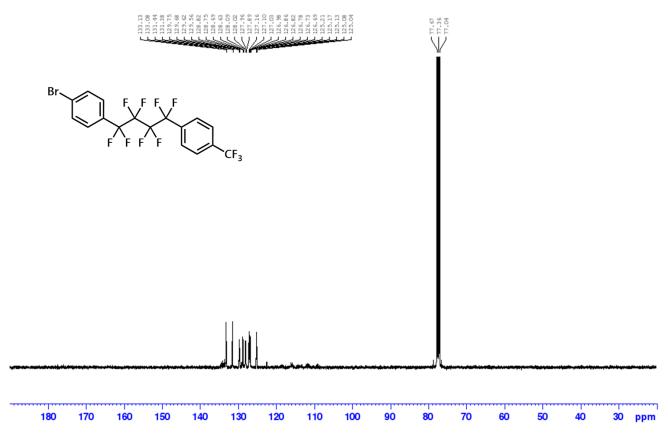


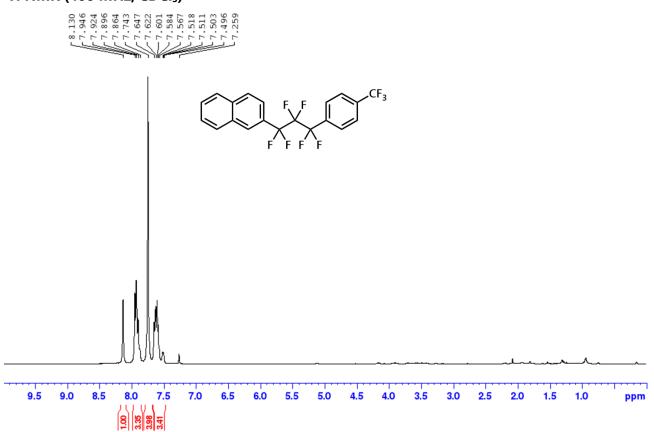

$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

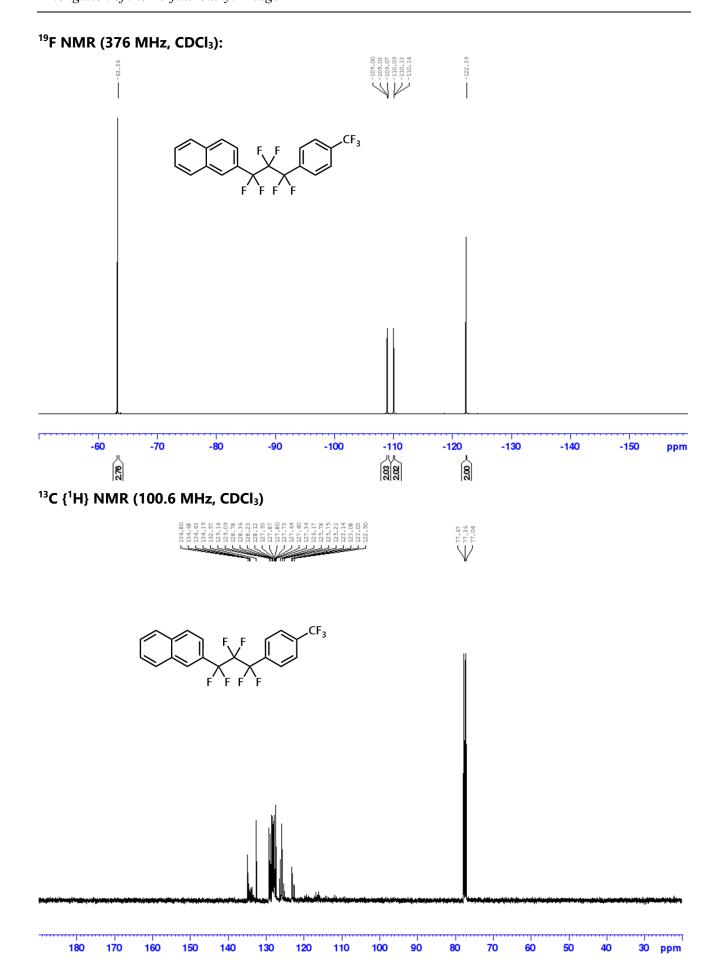

$3q_1$ ¹H NMR (400 MHz, CDCI₃)




$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

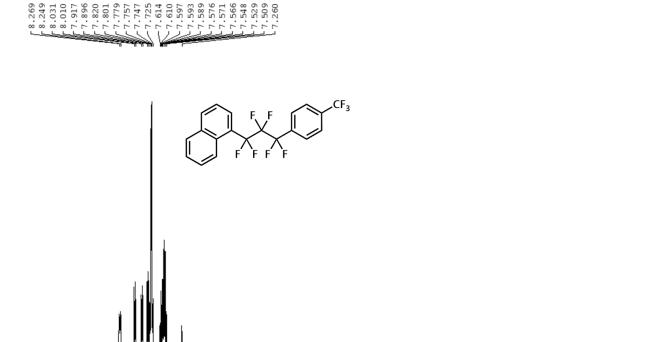

*3q*₂ ¹H NMR (400 MHz, CDCl₃)





$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

*3r*₁ ¹H NMR (400 MHz, CDCl₃)



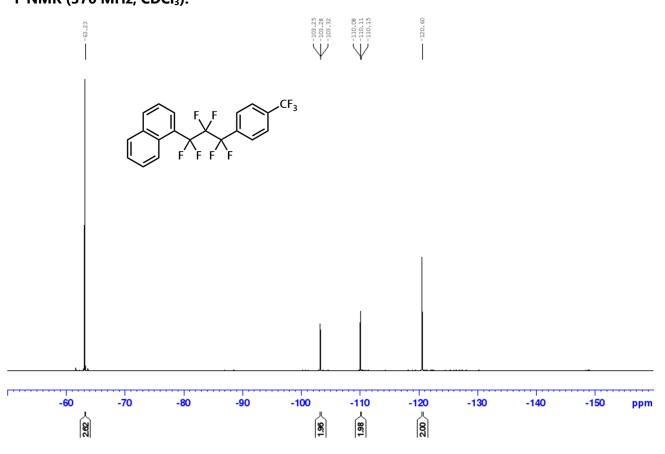
ppm

3s₁

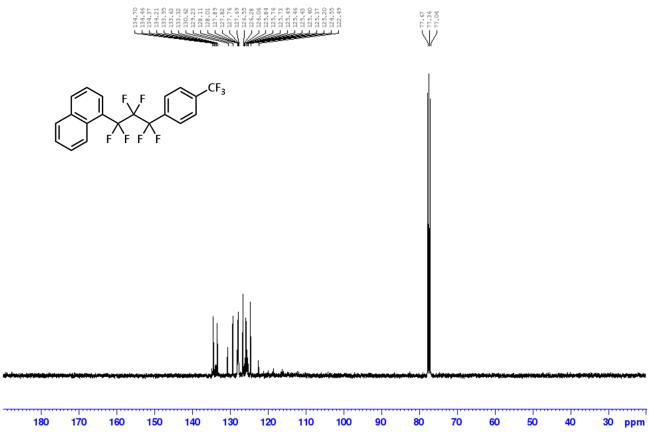
¹H NMR (400 MHz, CDCl₃)

5.0

¹⁹F NMR (376 MHz, CDCl₃):

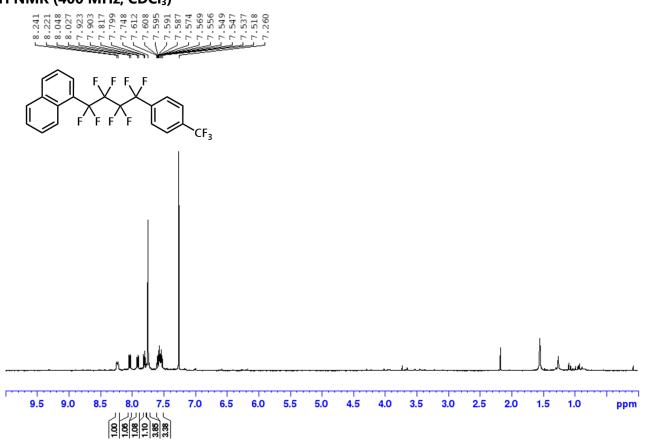

9.5

9.0

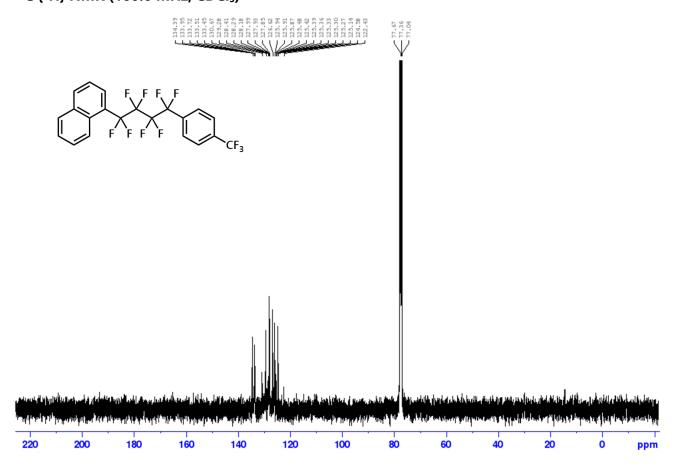

7.5

11.02 11.02 11.02 11.03 7.0

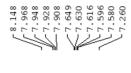
6.0

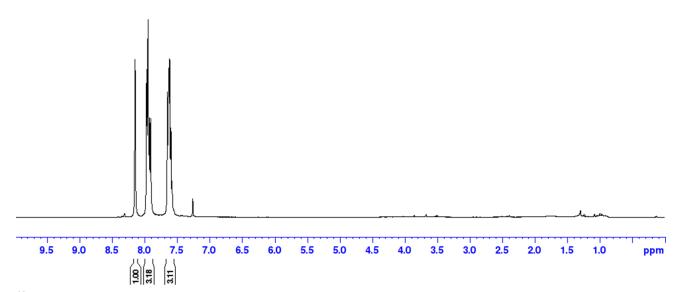


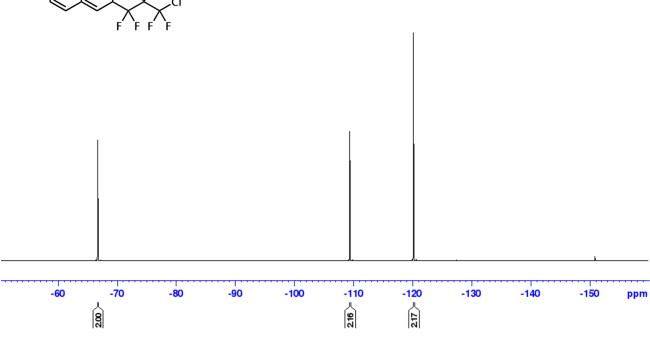
$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$

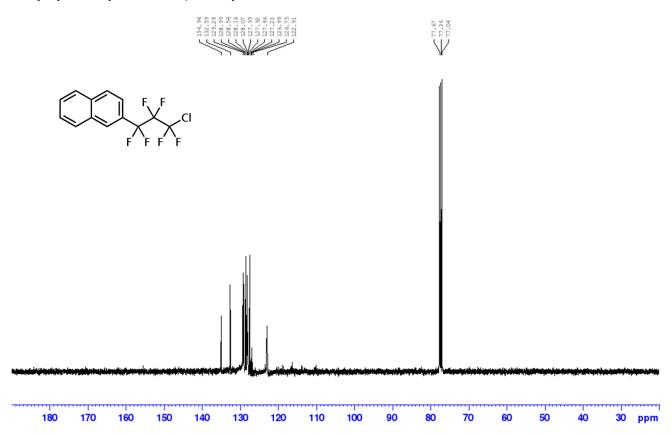

3s₂

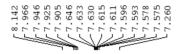
¹H NMR (400 MHz, CDCl₃)

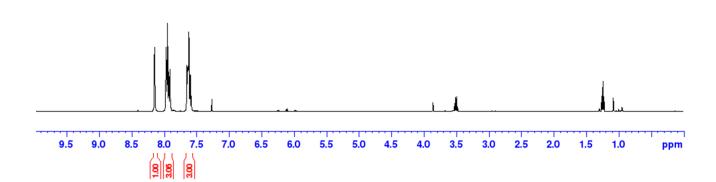



$^{13}\text{C}\ \{^1\text{H}\}\ \text{NMR}\ (100.6\ \text{MHz},\ \text{CDCl}_3)$



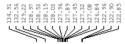


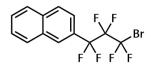


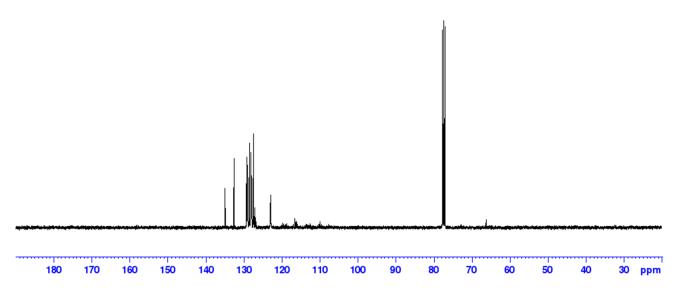

^{13}C $\{^1\text{H}\}$ NMR (100.6 MHz, CDCl₃)

4b

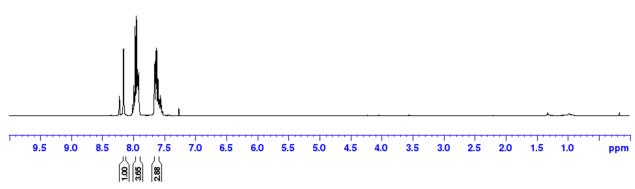
¹H NMR (400 MHz, CDCl₃)

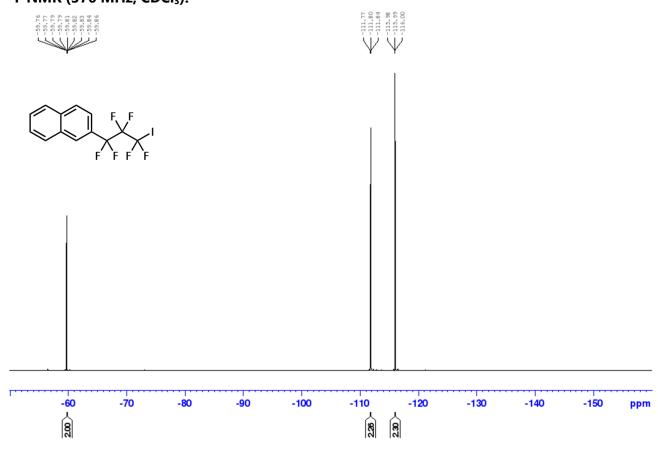




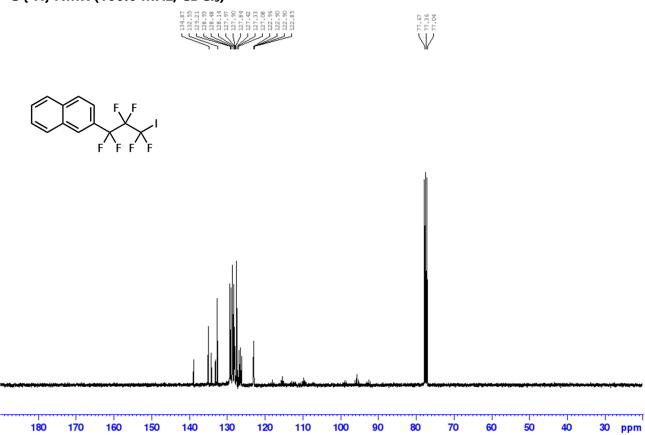


^{13}C $\{^1\text{H}\}$ NMR (100.6 MHz, CDCl₃)





4с


¹H NMR (400 MHz, CDCl₃)

