

Title	Immune tolerance caused by repeated P. falciparum infection against SE36 malaria vaccine candidate antigen and the resulting limited polymorphism
Author(s)	Palacpac, Nirianne Marie Q.; Ishii, Ken J.; Arisue, Nobuko et al.
Citation	Parasitology International. 2024, 99, p. 102845
Version Type	AO
URL	https://hdl.handle.net/11094/94028
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

1 Immune tolerance caused by repeated P. falciparum infection against SE36 malaria vaccine 2 candidate antigen and the resulting limited polymorphism 3 4 5 Nirianne Marie Q. Palacpac¹, Ken J. Ishii², Nobuko Arisue^{3*}, Takahiro Tougan^{3§} and Toshihiro 6 Horii1 7 8 ¹Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka 9 University, Suita, Osaka 565-0871, Japan 10 11 ²Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, 12 Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, 13 Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; 14 Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of 15 Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan 16 17 ³Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka 18 University, Suita, Osaka 565-0871, Japan 19 20 Present address: 21 *Department of Hygiene and Public Health, Tokyo Women's Medical University, Tokyo 162-22 0054, Japan 23 §Cell Technology Group, Reagent Engineering, Sysmex Corporation, Kobe, Hyogo 651-2271, 24 Japan; Department of Cellular Immunology, Research Institute for Microbial Diseases, Osaka 25 University, Suita, Osaka 565-0871, Japan 26 27 Corresponding author 28 Toshihiro Horii 29 horii@biken.osaka-u.ac.jp 30 Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka 31 University, Suita, Osaka 565-0871, Japan 32 TEL: +81(6)6879-8280 33 34 **Keywords**: malaria, immune tolerance, vaccine, *Plasmodium falciparum*, serine repeat antigen, 35 immune evasion 36 37

38	Nirianne MQ Palacpac	nirian@biken.osaka-u.ac.jp
39	Ken J. Ishii	kenishii@ims.u-tokyo.ac.jp
40	Nobuko Arisue	arisue.nobuko@twmu.ac.jp
41	Takahiro Tougan	ttougan@biken.osaka-u.ac.jp
42	Toshihiro Horii	horii@biken.osaka-u.ac.jp
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		
66		
67		
68		

69	Abstract (\leq 250 words)
70	The call for second gene

71

72

73

74

75

76

77

78

79

80

81

The call for second generation malaria vaccines needs not only the identification of novel candidate antigens or adjuvants but also a better understanding of immune responses and the underlying protective processes. *Plasmodium* parasites have evolved a range of strategies to manipulate the host immune system to guarantee survival and establish parasitism. These immune evasion strategies hamper efforts to develop effective malaria vaccines. In the case of a malaria vaccine targeting the N-terminal domain of P. falciparum serine repeat antigen 5 (SE36), now in clinical trials, we observed reduced responsiveness (lowered immunogenicity) which may be attributed to immune tolerance/immune suppression. Here, immunogenicity data and insights into the immune responses to SE36 antigen from epidemiological studies and clinical trials are summarized. Documenting these observations is important to help identify gaps for SE36 continued development and engender hope that highly effective bloodstage/multi-stage vaccines can be achieved.

82

83

84

85

86

1. Introduction

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Malaria, due to *Plasmodium falciparum*, disproportionately affects sub-Saharan African children, pregnant women especially the primigravidae, as well as those immunocompromised in malaria endemic areas [1]. The African region accounts for 95% of cases and 96% of malaria deaths worldwide. After more than 30 years of research and clinical trials, the World Health Organization (WHO) approved the world's first malaria vaccine in 2021 [2]. RTS,S/AS01 (Mosquirix®) targets the pre-erythrocytic stage of *P. falciparum*. Based on phase 3 and large pilot implementation programs the vaccine is recommended as a 4-dose schedule for children from 5 months of age living in moderate to high transmission areas [3]. The modest and shortlived efficacy of RTS,S/AS01, however, highlights that new, more efficacious vaccines be sought. Another anti-sporozoite vaccine, R21/Matrix-M, has recently reported a 77% protective efficacy in a phase 1/2b clinical trial [4], has an on-going phase 3 trial and follow-up study (ClinicalTrials.gov: NCT04704830), and is fast tracked in its regulatory approval for use in Ghana, Nigeria and Burkina Faso [5]. Similar to RTS,S, R21 contains recombinant particles of the central repeat and C-terminal circumsporozoite protein (CSP) fused to Hepatitis B surface antigen (HBsAg) but with improved protective efficacy due to a higher density of the CSP antigen on the VLP surface and formulation with a new, potent saponin-containing adjuvant [4]. Missing from the arsenal is a blood-stage vaccine to confer protection against disease and death. Moreover, long term studies of children vaccinated with RTS,S and living in areas of moderate

transmission showed a significant increase in rebound episodes of clinical malaria 3 to 6 years after the primary trial [6]. Thus, the availability of more than one vaccine that targets other life stages of the parasite, either as a stand-alone or combination/multi-stage vaccine, has a public health value and would be preferable for risk mitigation.

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

The complex parasite life cycle, genetic diversity (high polymorphism and allelespecific variations), and the various immune escape mechanisms of the *Plasmodium* parasite are among the reasons why there is limited success for most candidate malaria vaccines tested to date [7-10]. Furthermore, humoral (antibody) responses have often been harnessed for the evaluation of vaccines, but a thorough understanding of the dynamic interplay of the host immune response, the parasites immune evasion mechanisms, and what level of antibody response can be sufficient to confer protection is lacking. There are differences in the immune response between malaria naïve individuals and those in endemic areas (malaria exposed) [11]. We summarize below the immunogenicity observations with the blood-stage vaccine antigen, SE36, based on serine repeat antigen 5 (SERA5). The findings from other vaccine studies that suggest instances where humoral and cellular responses appear to be compromised/suppressed are also presented. This review highlights the diversity of immune evasion mechanisms that malaria parasites use to gain an edge in the host-parasite relationship, their implications for

vaccine-based strategies, and allows us to identify gaps in developing highly effective, long-lasting malaria vaccines.

2. Epidemiological studies on SERA5

SERA5 is a highly conserved [12, 13], essential [14] and abundant asexual blood stage antigen, expressed specifically during late trophozoite and schizont stages [15] (Fig. 1A). The protein is a vaccine candidate based on (a) epidemiological studies that show a strong correlation between high antibody titers and protection from malaria symptoms and severe disease [15-17]; (b) *in vitro* studies of sero-positive sera that demonstrate parasite growth inhibition [15, 18-20]; and (c) non-human primate challenge studies demonstrating protection against parasite challenge [20-22].

In sero-epidemiological studies from populations residing in malaria holoendemic areas, IgG antibodies were detected against the amino terminal part of SERA5 using either the N-terminal 47 kDa domain with serine repeats (*i.e.*, SE47') or without the serine repeats (SE36) (Fig. 1B). Humoral responses were evaluated in Ugandan adults and children [15-17]; pregnant women and newborns [23]. High titers of IgG anti-SERA5 were associated with protection from severe malaria [16,17,24] or absence of placental parasitemia, and babies delivered with normal birthweights [23]. Children with uncomplicated malaria have significantly higher median titers

of anti-SE36 IgG than age-matched children who experience severe malaria [17].

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

In 2 to 70 year-old Guadalcanal, Solomon Island residents, a significant negative correlation was observed between high parasite densities and those positive for anti-SE36 [21]. Seropositive individuals had low parasite burden or were in the non-infected group while seronegative individuals bore high parasite densities. The observed association of parasite density with anti-SE36 antibody titer was specific and not due to non-specific immunosuppression driven by severe infection since people with high parasite densities showed no downregulation of anti-polio antibody titers. The proportion of seropositive individuals were generally lower compared to individuals positive for merozoite surface protein-1 (MSP-1) [17,23], or other erythrocyte stage proteins (rhoptry proteins, exported proteins, etc) [25]. Using 40 adult sera from residents in Atopi Parish (a malaria holoendemic area in Uganda), high responders (ELISA titer > 1000) to SE47' and MSP1₁₉ were 38 and 80%, respectively [15]. Sero-positivity to SE36 also showed a clear age-dependency in the Solomon Islands, although as noted above, the rate of seropositivity does not exceed >50% of the population [21].

3. Assessing the vaccine response to SE36

A recombinant form of SERA5 N-terminal domain (SE36) was selected for clinical development, prepared under Good Manufacturing Practice (GMP) standards and formulated with aluminum hydroxide gel (AHG) to yield BK-SE36 (100 µg/mL SE36 protein and 1 mg/mL

aluminum) [21]. AHG was first chosen as the standard vaccine adjuvant because of the proven safety profile and production of primarily humoral immune and Th2 biased cellular responses. However, as it became clear in recent years that alum is not sufficient to induce effective immune responses for malaria vaccines [10,26,27], a second formulation/generation of SE36 was developed. BK-SE36 was administered concomitantly with another adjuvant containing unmethylated cytosine guanine (CpG) oligonucleotide (ODN) motifs to yield BK-SE36/CpG (100 µg/mL SE36 protein, 1 mg/mL aluminum and 1 mg/mL CpG ODN K3). CpG-induced activation of innate immunity has been reported and in initial studies, CpG ODN (code name: K3) efficiently induced Th1 response, selectively promoting cellular and humoral immune responses [22]. So far, all clinical studies reported to date show that both vaccine formulations have acceptable reactogenicity and have no unexpected safety signals [21, 28-30].

3.1 Early vaccination studies in non-human primates. SE36/AHG was immunogenic in chimpanzees, and squirrel monkeys [21]. In all three immunized chimpanzees, antibody titers increased 2 weeks after the first administration, peaked 2 weeks after the second administration and were maintained for more than 40 weeks. Squirrel monkeys vaccinated two or three times were protected against high parasitemia after parasite challenge. The challenge with *P. falciparum*-infected red blood cells elevated the antibody titer and protected squirrel monkeys against high parasitemia.

Cynomolgus monkeys administered with SE36/AHG/CpG had approximately 10 times greater serum anti-SE36 IgG antibody levels and induced mixed Th1/Th2 responses compared to those administered with SE36/AHG alone [22]. However, in squirrel monkeys, it was surprising that although protection that correlates with decreased parasite density in the *P*: falciparum challenge study was observed, administration of SE36/AHG/CpG did not result in higher antibody titers when compared to those vaccinated with SE36/AHG alone suggesting additional or independent immune response(s) with the use of CpG (e.g. T cell-mediated cellular immunity).

- 3.2 First-in-human trials (Japanese adults). Phase 1a trials for BK-SE36 and BK-SE36/CpG were conducted in malaria naïve Japanese adults. Seroconversion was 100% after two vaccinations of full-dose BK-SE36 given 21 days apart [21]. When BK-SE36/CpG was used, immunogenicity assessments showed high antibody titers with accelerated seroconversion [29]. A 100% seroconversion was achieved in malaria naïve adults with one full-dose of BK-SE36/CpG vs. 2 full-doses of BK-SE36. The full-dose group had significantly higher titers than half-dose (p = 0.002 Student's t-test) and remained above baseline even after 12 months post-Dose 2. BK-SE36/CpG formulation induced > 3-fold higher antibody titer than BK-SE36.
- 3.3 Clinical trial: Uganda. In sharp contrast to phase 1a in Japan, the phase 1b trial in Uganda showed low seroconversion (25%) in most vaccinated adults (21–32 years-old) [28].

Those who were administered with BK-SE36 were categorized as either responder (i.e. those whose fold-change in anti-SE36 antibody titer from baseline was \geq 2-fold after vaccination) or non-responder (those whose fold change in anti-SE36 antibody titer from baseline was \leq 2-fold).

All seropositive subjects (except one), did not have any obvious increase in antibody titers (non-responders) 21 days post Dose 2. However, notably, not all seronegative subjects also had a significant change from baseline antibody titers: more than half (55%) of seronegative adults (21-32 years-old) were classified as non-responders, while only 45% showed a 2-fold higher change in antibody titer from baseline confirming the low seroconversion to SERA5 observed in epidemiological studies [21]. In 16–20 years-old, 11–15 years-old and 6–10 years-old, the proportion of subjects with \geq 2-fold increase in antibody titers after 2 full-dose vaccinations were 27, 27 and 73%, respectively [28] (Fig. 2A). When vaccinated with full-dose, the change in antibody titers before vaccination to 21 days after Dose 2 was significant in 6–10 years-old (p=0.01) and 11-15 years-old (p=0.02) but not in the 16-20 years-old cohort.

The low seroconversion observed in Ugandan adults was unexpected when compared to the 100% seroconversion in Japanese adults after either half- (containing 50 µg/mL SE36 protein and 0.5 mg/mL aluminum) or full-dose [21]. There was no indication of general immune suppression correlated to host genetic background. Analysis of the allelic polymorphism of human leukocyte antigen (HLA)-DRB1 alleles found that age rather than a particular DRB1

allele was associated with antibody response to vaccination [31].

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

The follow-up study demonstrated boosting of vaccine-induced immune response as a result of natural infection [32]. Children whose antibody titers against SE36 increased by ≥2fold after vaccination and had high antibody titers throughout the follow-up (i.e, those with a geometric mean (GM) of 314 arbitrary units (AU), 21 days post vaccination to 102 AU at Day 365) did not experience malaria infection (defined as any parasitemia \geq 100 parasites/ μ L). Responders who had GM <100 AU experienced 1-2 episodes of natural *P. falciparum* infection during a year of follow-up. Responders had significantly decreased odds to reinfection: the percentage of children who experienced more than one infection in the responder group was 18% vs 46% in non-responders; and 55% in the control. The observed association of fewer reinfections in responders was robust and was not influenced by age (p=0.175), antibody titer after infection (p=0.156) or parasitemia levels (p=0.091). GMs of anti-SE36 antibody titers were significantly different among responder, non-responder and those in the control. The 3.3-fold increase from baseline antibody titer after the first infection in the responder group was 1.5x higher than non-responders and 2.3x higher than the control group, suggesting immunological memory. Thus, in vaccinated subjects, natural infection can boost the immune response. There is little evidence of boosting in non-responder and control groups which may reflect the inherent low immunogenicity of SE36 during natural infections [32].

3.4 Clinical trial: Burkina Faso. BK-SE36 was immunogenic in 12–60 month-old Burkinabe children using either intramuscular or subcutaneous route of administration [30]. Seroconversion was not markedly different after two full-dose vaccinations in 25–60 month-old (83%) vs 12–24 month-old (79%) (Fig. 2A). A third dose, 22 weeks after the second dose (i.e., 6 months from Dose 1), resulted in higher immune response and increased the proportion of children with >2-fold increase in antibody titer 4 weeks after vaccination (89% for 25–60 month-old; and 97% for 12 –24 month-old children) (Fig. 2A). Dose 3 successfully raised anti-SE36 antibody titer to levels higher than after primary vaccination (Dose 1 and 2). This kinetics of immune response after primary vaccination is a characteristic response akin to immunological memory [33]. Of interest, it was in contrast to the observed antibody response after three vaccine doses of BK-SE36 in a phase 1a study [21]. When given at 21-days interval, the induced antibody titer did not differ significantly between Dose 2 and Dose 3 in Japanese adults. Delaying the timing of the third dose appeared to have contributed to improved immunogenicity in Burkinabe children [30]. A delayed third dose is likely recommended to boost memory responses and keep antibody titer high in malaria endemic areas. The youngest cohort (12–24 month-old) had 2- and 4-fold higher anti-SE36 antibody titers after 2 and 3 doses of BK-SE36 compared to the 25–60 month-old cohort [30]. The 25–60

month-old children are presumed to have a longer history of exposure to repeated malaria

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

infections and, within this cohort, a subgroup of children may also have a lower SE36 responsiveness. Indeed, more children are infected in this cohort than their younger counterparts during recruitment and vaccination day (52.8% vs. 19.4% in 12–24 month-old, p=0.003). It was noted that concurrent infection (defined as any parasitemia > 0 by microscopy) during vaccination days resulted in lower SE36 antibody titer levels in vaccinees [34]. Study participants who were not infected during vaccination days had the highest GMT one month post Dose 3. The difference in antibody titers between uninfected and infected subjects was statistically significant. By multivariate analysis, a negative correlation between parasite density and anti-SE36 antibody GMT was observed: there was a decrease in antibody GMT for every 1000 parasites/ μ L increase in P. falciparum density after adjustment for baseline antibody titer, age and interaction between age and baseline antibody titer.

With BK-SE36, titers dropped to near pre-vaccination titers 5 months after Dose 2, but was boosted, at Dose 3 as noted above [30]. Data on what level of anti-SE36 antibody titer can be considered protective is limited at the moment. Using the high-titer pooled serum as standard (*i.e.*, from Ugandan adults with naturally acquired titers where the positive standard was calculated at 5000), the average antibody titer observed in BK-SE36 vaccinees was 10× less. The plateau level of SE36-specific antibody titers achieved in chimpanzees [21] was also 10× higher than the average titer obtained in all BK-SE36 trials reported to date. Learning from

the experience of RTS,S, a combination of adjuvants or choice of a multi-adjuvant approach may be ideal to improve the level and duration of antibody response [35]. This was the motivation for the improved formulation of BK-SE36 using the CpG ODN (K3) adjuvant. The vaccine formulation was tested in Burkina Faso for three age groups [36] following the success of a phase 1a trial in Japanese adults [29]. CpG ODN (K3) improved vaccine immunogenicity, as seen by the high titers and high seroconversion rates in vaccinated participants aged 21-45 years, 5-10 years, and 12-24 months [36].

4. Observations from other malaria vaccine trials

Clues on hyporesponsiveness largely stem from observations on the heterogeneity of immune response in malaria endemic areas. As most trials that have progressed to late-stage clinical evaluation targets the pre-erythrocytic stage, Table 1 highlights observations from these advanced vaccine candidates. Both the controlled human malaria infection (CHMI) and clinical trials in malaria endemic areas report observations of immune suppression in vaccinated volunteers. In a number of blood-stage vaccine trials, similar observations were reported (Table 2).

283 <mark>2)</mark>

4.1 Repeated infection in malaria endemic areas overshadowed the inductive capacity of candidate vaccines in clinical trials. Repeated malaria infections tailor the host's

immune response, making the parasite less recognizable by the immune system. In vaccine trials of merozoite surface protein3-long synthetic peptide (MSP3-LSP), high baseline antibody levels (as a result of natural infection/high transmission intensity) in semi-immune adults were presumed to have overshadowed the inductive capacity of the vaccine [52,53]. In 18-40 yearold Burkinabe subjects, although there was some indication of cell-mediated immune response (increase in lymphocyte proliferation index and IFN-y), there was no detectable humoral immune response from MSP3-LSP vaccination when compared to children [52]. The highly variable individual antibody titers to another blood-stage vaccine candidate, the FMP1 vaccine (consisting of the 42-kDa carboxy-terminal 392 amino acids of MSP-1 and 17 non-MSP-1 amino acids encoding a 6-histidine tag plus linking sequence), in 18-55 year-old Malian adults was also attributed to the variation in background immunity [50]. When the baseline GMT for MSP-1₄₂ titer was < 3,000 there was an 8-fold or greater increase in titer after vaccination; but when the baseline titer is > 20,000, the observed increase was only < 2-fold. This was similar in 18–55 year-old Kenyan adults [51]: the highest rise in antibody responses was seen in individuals with low pre-existing antibody titers. In Mali, antibody titers rose from < 6,000 to a peak of nearly 38,000 vs an increase from 17,000 to 46,000 in Kenya [50]. Regression lines fitted using data from Day 0, 75 and 90 in the two study sites, showed similar rates of increase in vaccine-induced antibody responses to the 3D7 alleles of MSP-1₄₂ and MSP-1₁₉ with only

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

pre-existing antibody titers as the difference.

Valuable clues can be obtained in younger age groups. In a multi-site (Burkina Faso, Gabon, Ghana and Uganda) phase 2 children (12–60 months-old) trial of a recombinant vaccine with glutamate-rich protein and MSP3 antigens (GMZ2), there was a greater increase in anti-GMZ2 antibodies in children 1–2 years-old compared to children 3–4 years-old (14-fold increase, 95% CI 8.7, 23 vs 5.7-fold, 95% CI 4.0, 8.2; respectively) [55]. Children with low baseline antibody titers to GMZ2 responded strongly to vaccination, whereas those with more exposure to *P. falciparum* infection showed a smaller boost in anti-GMZ2 IgG titers.

In a recent report of an RH5 phase 1b trial in Bagamoyo, Tanzania with 3 age cohorts (18-35 years, 1-6 years and 6-11 months) higher anti-RH5 IgG antibody was induced in pediatric groups (6 to 10-fold higher) compared to the adults [56]. ChAd63-MVA RH5 is another blood-stage vaccine based on the reticulocyte-binding protein homolog 5 (RH5) formulated with recombinant replication-deficient chimpanzee adenovirus serotype 64 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA). Authors determined that there was no significant correlation between existing anti-vector immunity at baseline and the humoral immunogenicity obtained 14 days after vaccination. The pre-existing anti-ChAd63 antibody was found to be unlikely the reason for improved immunogenicity and/or

relatively higher vaccine dose per unit body mass in infants and children [56].

immunogenicity/immunosuppression. Low response to vaccination in infected individuals has been reported in pre-erythrocytic vaccine trials (Table 1). Also, as mentioned for BK-SE36, reduced response in Burkinabe children was associated with concomitant infection at the time of administration [34]. The effect of parasite clearance with sulphadoxine-pyrimethamine (SP) a week before vaccination in 5–9 years-old Papua New Guinean children was assessed in a study using Combination B vaccine (composed of three blood-stage antigens: ring-infected erythrocyte surface antigen and MSP1 and MSP2) [49]. Interestingly, concurrent *P. falciparum* infection and SP pre-treatment at the time of vaccination did not alter the antibody response to this blood-stage vaccine candidate. It is, however, noted that IFN-γ response to MSP1 was substantially lowered in the vaccine group who had received SP before vaccination. Further work on the possible influence of concomitant *P. falciparum* infection is important in vaccine

5. Host vitronectin and immunogenicity to SE47/SE36 molecule

trials conducted in malaria endemic areas.

Just as the host has developed several defenses against pathogens, pathogens have evolved a variety of immune evasion mechanisms: *e.g.*, antigenic variation, latency/sequestration, antigen

capping, antigenic disguise, molecular mimicry/molecular smokescreen, and immune suppression (inhibition of host factors, evasion of complement-mediated killing, B cell manipulation, etc.) [57,58]. Indeed, these various strategies, using one or more in combination, contribute to poor immunogenicity or the lack of effective vaccines for several viruses (*e.g.* herpes simplex virus, human immuno-deficiency virus), bacteria (*Mycobacterium tuberculosis*, *Helicobacter pylori*), and parasites (*Leishmania*, *Trypanosoma*) [59].

subterfuge can be seen from Schistosoma mansoni and S. haematobium where a protein with 98% identical nucleotide is shared with the human ortholog complement C2 receptor inhibitory trispannin gene; Taenia solium uses the parasite protein paramyosin to inhibit complement proteins that in turn binds to another complement to inhibit the membrane attack complexes (MAC); Brugia malayi generates a protein similar to host keratinocytes periphilin-1 protein [58,60]. Being recognized as "self", the parasites camouflage themselves to avoid recognition by the host immune system. In silico genome-wide identification in P. falciparum has identified several var family members of erythrocyte membrane protein 1 (PfEMP1) having a stretch of 13 to 16 amino acids identical to the heparin-binding domain in human vitronectin [60]. The candidate mimicry motif in vitronectin is in the N-terminal half and in PfEMP1 the motif lies in the extracellular part of the protein, close to the predicted transmembrane domain. A mimicked

structure was also found in TRAP and CSP.

Vitronectin has been implicated as one of the serum proteins that function for the adhesion of parasites to endothelial receptors and is selectively internalized and associated with malaria pathogenicity [61]. Known as the glue protein, it is reported to promote cytoadherence, tissue regeneration, cell colonization, stabilization of plasminogen activator inhibitor 1, and inhibition of the formation of the pore-forming MAC of the complement system [61-68]. The protein is abundant in the extracellular matrix of different tissues and in the serum.

5.2 SE36 molecule tightly binds to vitronectin. In further efforts to elucidate the role of SE36 and understand the heterogeneity in immunological responses in vaccinated subjects, proteins binding to SE36 were elucidated. Using SE36-immobilized column, Tougan et al. [69] demonstrated that while vitronectin in naive human serum and Ugandan high titer serum equally bound to SE36 even in the presence of other serum proteins (Fig. 2B), no clear direct binding was observed for complement factors (C5, C7, C8, C9, and H), apolipoproteins (ApoAI, HDL, and LDL), thrombin, clusterin, fibronectin, serum albumin, CD5L, or CD14. Purified vitronectin, not human serum albumin, bound to SE36 in a concentration dependent manner.

Binding of SE36 to vitronectin occurred even on commercially available vitronectin lacking somatomedin-B motif and Hemopexin domain 4, suggesting that both domains may not be essential for binding. The study also showed that since the recombinant *E. coli-*produced

vitronectin is not glycosylated, the glycosylation moiety may also not be necessary.

Vitronectin was internalized before DNA replication when SERA5 was not yet expressed [69,70]. At the trophozoite stage, vitronectin colocalizes with SERA5; and with the processed 47-kDa fragment during the schizont stage and on the merozoite surface [69]. The binding (dimer bound as predicted by surface plasmon resonance) site was mapped to 18 residues (NH2-Tyr-Lys-Tyr-Leu-Ser-Glu-Asp-Ile-Val-Ser-Asn-Phe-Lys-Glu-Ile-Lys-Ala-Glu-COOH) in the C-terminal region of SE36. This site is predicted to form an α -helix structure [20] and was conserved in 445 geographically distributed *P. falciparum* parasites [13,71]. The binding was tight (equilibrium dissociation constant, $K_{D1} = 3.7 \times 10^{-9} \text{ M}$), concentration-dependent and specific, observed even in the presence of other serum proteins or under the presence of naturally acquired anti-SE36 IgG [69].

5.3 SE47-vitronectin complex camouflage merozoites. To elucidate the role of vitronectin on the merozoite surface, SE36 beads acted as merozoite models in a phagocytosis assay with and without vitronectin [69]. IgG-independent phagocytosis was demonstrated using IgG purified from naïve human serum and Ugandan high anti-SE36 IgG titer serum. Without vitronectin, it was demonstrated that SE36-beads were engulfed by THP-1 cells in an antibody-independent manner. When vitronectin was bound to SE36 beads, engulfment by THP-1 monocytes was inhibited. Several other host proteins (e.g. thrombin; antithrombin III;

complements C9, C7) were significantly recruited on the merozoite surface. Unlike vitronectin, these host proteins do not have the motif or structural similarity to facilitate direct binding to SE36. Moreover, the specificity of inhibition was confirmed when inhibition was partially recovered using vitronectin-depleted sera. The binding of several other host proteins is consistent with vitronectin acting as a glue or bridging molecule [61,63,65,68]. Interestingly, although *in silico* analysis revealed that most var family members of PfEMP1, TRAP and CSP had a stretch of 13-16 amino acids identical to the heparin-binding domain (HB1) in vitronectin acting as a mimicry motif [60], the binding site of vitronectin to SE36 was demonstrated at the hemopexin domain (with remarkable binding in regions between hemopexin motifs 2 and 3; near HB2) [69]. Binding to hemopexin-type repeats in human vitronectin was first reported in *Streptococcus pyrogenes* [72].

In different pathogens the vitronectin-binding molecules interact with a conserved region in the host vitronectin molecule to regulate the complement mediated lysis [64-68].

Streptococcus pneumoniae [66] engage vitronectin to bind various oligosaccharides and complement inhibitor Factor H for stronger adhesion and effective bacterial colonization to host cells. In Haemophilus influenzae, a gram-negative pathogen, the binding of vitronectin acted as an intermediate bridging molecule to form a multicomplex of bacterial and human proteins that served for adherence to host cells as well as inhibited the host immune response by inactivating

the formation of MAC [67]. The binding of vitronectin on the surface of *Helicobacter pylori* (specifically sulfated polysaccharides), in the presence of complement, was shown to inhibit phagocytosis by macrophages [64]. The resulting vitronectin-C5b-7 complex cannot be inserted into the cell membrane [65]; blocks the membrane binding site of Cb5-7 and the deposition/polymerization of C9 effectively inhibiting MAC formation [68]. In malaria parasites, MAC formation can lyse sporozoites, merozoites and gametes and its formation was reportedly controlled by CD59, clusterin and vitronectin [73]. Although further studies are needed to understand the multifaceted profile of vitronectin (to prevent attack by phagocytes and/or evasion by direct lysis by complement) and how it is exploited by malaria parasites, the binding to SE36 was shown to aid in the binding of other host factors which in turn camouflages the merozoite contributing to evasion from the host immune response.

5.4 Limited polymorphism of SE36. Antigenic polymorphism is well documented as one of the most difficult hurdles for the development of effective malaria vaccines, especially for those targeting the blood-stages [7,9,74]. Added to the list of mechanisms by which SERA5/SE36 is protected from the host immune response (aside from functional redundancy and expansion of family members) would be molecular camouflage. As shown above, the presentation of vitronectin-bound-SE36, as a result of infection, was exploited by the parasite to modulate immunity such that SE36 disguises itself avoiding host clearance leading to the gradual acquisition of immune tolerance.

Immune tolerance may explain why adults or those with high baseline antibody titers before vaccination were low/non-responders and as a whole had low seroconversion compared to subjects with low baseline antibody titers. Indeed, young children or individuals with limited malaria infection history would respond better to BK-SE36 vaccination (Fig. 2A) similar to malaria naïve Japanese adults. This response was seen in all BK-SE36 clinical trials reported to date: individuals with high pre-existing anti-SE36 antibodies had markedly lower antibody response [28,30].

The observed immune tolerance from the host may explain why SERA5 is less likely to be under substantial immune selection pressure compared to other blood-stage malaria vaccine antigens such as AMA1 and CSP. Indeed, *ama1* and *csp* show high nucleotide diversity and significant levels of positive selection (dN>dS) in contrast to *sera5* [71]. The nucleotide diversity of non-repeat regions in the vaccine candidate SE36 was comparable to the housekeeping genes of P-type Ca2+-ATPase and adenylosuccinate lyase (Fig 2C) [13,71]. In a sero-epidemiological study in the Solomon Islands, <50% of adults and <10% of children under 10 years were seropositive to anti-SE36, although higher seropositivity to MSP-1 was observed in the population [21]. The low immunogenicity would mean consequently limited immune pressure for SERA5 which would suggest a limited need for the parasite to acquire mutations to escape the host immune response. From pre-clinical studies, polymorphism in SERA5 may not hamper the potency of SE36 since mouse, rat, or monkey antibodies raised against SE36 cross-react to all the parasite lines so far

examined. Mouse and rat antibodies against SE36 have been shown to inhibit the intraerythrocytic proliferation of parasites *in vitro* [20].

From our studies, SERA5 polymorphism is largely confined to the repeat regions of the gene [13,71,75-77]. There were variations in the number of octamer repeats and serine repeat regions near the N-terminal region of SERA5. Polymorphic sites in the non-repeat regions was confined to 24 nucleotides, and there was no strong signature of positive selection. Sequence analyses performed on strains collected from the two clinical trial/follow-up studies, and cross-sectional studies in Africa did show a consensus sequence with African-specific polymorphisms [77]. It was however, reassuring to note that despite mismatches with the BK-SE36 sequence (based on Honduras 1 strain) in the octamer repeat, serine repeat and flanking regions, and single-nucleotide polymorphisms in non-repeat regions, these polymorphisms did not compromise vaccine response and the observed promising effectiveness based on phase 1 trials [28,30,36]. Of note, sequence analysis of 445 geographically distributed P. falciparum parasites showed one genetic polymorphism, "Asn" to "Lys" at the 11th residue, in the 18 residues implicated for vitronectin binding [69]. It is suggested that the binding property of vitronectin is almost conserved in worldwide *P. falciparum* parasites.

463

464

465

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

6. Conclusion and perspective

Immune evasion strategies in malaria contribute to parasite persistence and immune

dysregulation making it difficult to develop effective vaccines. To achieve a robust immune response and consequently high protective efficacy, it will be ideal to overcome some factors which limit the host's ability to respond efficiently to vaccine administration. There are differences in how vaccines may work in malaria naïve adults and in immunized African infants/children and adults. We have observed variations in vaccine responsiveness in our clinical trials which is highlighted for further studies. So far clinical trials for SE36 do provide valuable positive clues: acceptable reactogenicity, absence of unexpected safety signals, favorable immunogenicity profile (immune response can be boosted by natural infection, absence of allele-specific immune response), and an immune response across an HLA diverse population. Some bridging studies and practical strategies may aim to circumvent the immature immune system in infants, e.g. presumably postponing vaccination similar to vaccination recommendations for measles and yellow fever. Immune tolerance from previous exposure/immune suppression may evaluate the vaccination schedule, the intervention of chemoprophylaxis/drug pre-treatment or the use of potent novel adjuvants. Current trials do show that delaying the third dose is beneficial. The lack of data on cell-mediated immunity in SE36 and a robust functional assay are some limitations that need to be addressed. Although a few cytokine analyses and complement assays have been done, streamlining and standardization of these assays could prove valuable. Investigation of the underlying mechanisms of

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

484 suppression of vaccine responses can reveal novel insights into the capabilities and limitations 485 of human immunity and enhance vaccine effectiveness. So far a hypothesis of immune 486 tolerance/immune suppression has been suggested but the mechanism has not been thoroughly elucidated. 487 488 489 490 Declaration of interest: TH is the inventor of BK-SE36; TH, KJI, and TT are inventors of BK-491 SE36/CpG. NP and TH are both supported by a research fund from Nobelpharma Co., Ltd 492 (NPC), the clinical trial sponsor of Burkina Faso trials. These involvements did not influence 493 the writing of this review and the decision to submit the article for publication. 494 495 **Acknowledgements:** Authors gratefully acknowledges the funding support from NPC. 496 497 Funding: The writing of this review did not receive any specific grant from funding agencies in 498 the public, commercial, or not-for-profit sectors. 499 500 **Author contributions:** 501 NP and TH drafted the review; NA created Fig. 2C. All authors read, edited and approved the 502 manuscript.

504	1.	World Health Organization, World Malaria Report 2022.
505		https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-
506		2022 (accessed 20 November 2023).
507		
508	2.	L. Geddes, The groundbreaking history of the world's first malaria vaccine. 3 December
509		2021. https://www.gavi.org/vaccineswork/groundbreaking-history-worlds-first-malaria-
510		vaccine (accessed 20 November 2023).
511		
512	3.	Y.Y. Syed, RTS,S/AS01 malaria vaccine (Mosquirix®): a profile of its use, Drugs Ther
513		Perspect. 38 (9) (2022) 373-381. doi: 10.1007/s40267-022-00937-3.
514		
515	4.	M.S. Datoo, H.M. Natama, A. Somé, D. Bellamy, O. Traoré, T. Rouamba, M.C. Tahita,
516		N.F.A. Ido, P. Yameogo, D. Valia, A. Millogo, F. Ouedraogo, R. Soma, S. Sawadogo, F.
517		Sorgho, K. Derra, E. Rouamba, F. Ramos-Lopez, M. Cairns, S. Provstgaard-Morys, J.
518		Aboagye, A. Lawrie, R. Roberts, I. Valéa, H. Sorgho, N. Williams, G. Glenn, L. Fries, J.
519		Reimer, K.J. Ewer, U. Shaligram, A.V.S. Hill, H. Tinto, Efficacy and immunogenicity of
520		R21/Matrix-M vaccine against clinical malaria after 2 years' follow-up in children in
521		Burkina Faso: a phase 1/2b randomised controlled trial, Lancet Infect Dis. 22 (12)
522		(2022) 1728-1736. doi: 10.1016/S1473-3099(22)00442-X.
523		
524	5.	J. Zarocostas, Gavi unveils malaria vaccine plans, Lancet, 401 (10387) (2023) 1485.
525		doi: https://doi.org/10.1016/S0140-6736(23)00902-9.
526		
527	6.	A. Olotu, G. Fegan, J. Wambua, G. Nyangweso, A. Leach, M. Lievens, D.C. Kaslow, P.
528		Njuguna, K. Marsh, P. Bejon, Seven-year efficacy of RTS,S/AS01 malaria vaccine
529		among young African children, N Engl J Med. 374 (26) (2016) 2519-2529. doi:
530		10.1056/NEJMoa1515257.
531		
532	7.	L. Rénia, Y.S. Goh, Malaria Parasites: The Great Escape, Front Immunol. 7 (2016) 463.
533		doi: 10.3389/fimmu.2016.00463.

References

535	8.	I.A. Cockburn, R.A. Seder, Malaria prevention: from immunological concepts to
536		effective vaccines and protective antibodies, Nat Immunol. 19 (11) (2018) 1199-1211.
537		doi: 10.1038/s41590-018-0228-6.
538		
539	9.	N.M.Q. Palacpac, T. Horii, Malaria vaccines: facing unknowns. F1000Res. 9 (F1000
540		Faculty Rev) (2020) 296. doi: 10.12688/f1000research.22143.1.
541		
542	10	S.R. Bonam, L. Rénia, G. Tadepalli, J. Bayry, H.M.S. Kumar, <i>Plasmodium falciparum</i>
543		malaria vaccines and vaccine adjuvants, Vaccines (Basel) 9 (10) (2021) 1072. doi:
544		10.3390/vaccines9101072.
545		
546	11.	. C.L. Calle, B. Mordmüller, A. Singh, Immunosuppression in malaria: do <i>Plasmodium</i>
547		falciparum parasites hijack the host?, Pathogens 10 (10) (2021) 1277. doi:
548		10.3390/pathogens10101277.
549		
550	12.	N. Arisue, S. Kawai, M. Hirai, N.M. Palacpac, M. Jia, A. Kaneko, K. Tanabe, T. Horii,
551		Clues to evolution of the SERA multigene family in 18 Plasmodium species, PLoS One
552		6 (3) (2011) e17775. doi: 10.1371/journal.pone.0017775.
553		
554	13.	N. Arisue, N.M.Q. Palacpac, T. Tougan, T. Horii T. Characteristic features of the SERA
555		multigene family in the malaria parasite, Parasit Vectors. 13 (1) (2020) 170. doi:
556		10.1186/s13071-020-04044-y.
557		
558	14	S.K. Miller, R.T. Good, D.R. Drew, M. Delorenzi, P.R. Sanders, A.N. Hodder, T.P.
559		Speed, A.F. Cowman, T.F. de Koning-Ward, B.S. Crabb, A subset of <i>Plasmodium</i>
560		falciparum SERA genes are expressed and appear to play an important role in the
561		erythrocytic cycle, J Biol Chem. 277 (49) (2002) 47524-47532. doi:
562		10.1074/jbc.M206974200.
563		
564	15.	S. Aoki, J. Li, S. Itagaki, B.A. Okech, T.G. Egwang, H. Matsuoka, N.M. Palacpac, T.
565		Mitamura, T. Horii, Serine repeat antigen (SERA5) is predominantly expressed among

300	the SERA multigene family of <i>Plasmoatum falciparum</i> , and the acquired antibody titer
567	correlate with serum inhibition of the parasite growth, J Biol Chem. 277 (49) (2002)
568	47533-47540. doi: https://doi.org/10.1074/jbc.M207145200.
569	
570	16. B.A. Okech BA, Nalunkuma A, Okello D, Pang XL, Suzue K, Li J, Horii T, Egwang
571	TG. Natural human immunoglobulin G subclass responses to Plasmodium falciparum
572	serine repeat antigen in Uganda. Am J Trop Med Hyg. 2001 Dec;65(6):912-7. doi:
573	https://doi.org/10.4269/ajtmh.2001.65.912.
574	
575	17. B. Okech, G. Mujuzi, A. Ogwal, H. Shirai, T. Horii, T.G. Egwang, High titers of IgG
576	antibodies against Plasmodium falciparum serine repeat antigen 5 (SERA5) are
577	associated with protection against severe malaria in Ugandan children, Am J Trop Med
578	Hyg. 74 (2) (2006) 191-197. doi: https://doi.org/10.4269/ajtmh.2006.74.191.
579	
580	18. S. Arastu-Kapur, E.L. Ponder, U.P. Fonović, S.Yeoh, F. Yuan, M. Fonović, M. Grainger
581	C.I. Phillips, J.C. Powers, M. Bogyo, Identification of proteases that regulate
582	erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol. 4
583	(3) (2008) 203-13. doi: 10.1038/nchembio.70.
584	
585	19. A. Alam, V.S. Chauhan, Inhibitory potential of prodomain of <i>Plasmodium falciparum</i>
586	protease serine repeat antigen 5 for asexual blood stages of parasite, PLoS One 7 (1)
587	(2012) e30452. doi: 10.1371/journal.pone.0030452.
588	
589	20. M. Yagi, G. Bang, T. Tougan, N.M. Palacpac, N. Arisue, T. Aoshi, Y. Matsumoto, K.J.
590	Ishii, T.G. Egwang, P. Druilhe, T. Horii, Protective epitopes of the <i>Plasmodium</i>
591	falciparum SERA5 malaria vaccine reside in intrinsically unstructured N-terminal
592	repetitive sequences, PLoS One. 9 (6) (2014) e98460.
593	doi:10.1371/journal.pone.0098460.
594	
595	21. T. Horii, H. Shirai, L. Jie, K.J. Ishii, N.Q. Palacpac, T. Tougan, M. Hato, N. Ohta, A.
596	Bohogare N Arakaki Y Matsumoto I Namazue T Ishikawa S Heda M Takahashi

598		novel protein vaccine SE36. Parasitol Int. 59 (3) (2010) 380-386. doi:
599		10.1016/j.parint.2010.05.002.
600		
601	22.	T. Tougan, T. Aoshi, C. Coban, Y. Katakai, C. Kai, Y. Yasutomi, K.J. Ishii, T. Horii,
602		TLR9 adjuvants enhance immunogenicity and protective efficacy of the SE36/AHG
603		malaria vaccine in nonhuman primate models, Hum Vaccin Immunother. 9 (2) (2013)
604		283-290. doi: 10.4161/hv.22950.
605		
606	23.	T.J. Owalla, N.M. Palacpac, H. Shirai, T. Horii, T.G. Egwang, Association of naturally
607		acquired IgG antibodies against <i>Plasmodium falciparum</i> serine repeat antigen-5 with
608		reduced placental parasitemia and normal birth weight in pregnant Ugandan women: a
609		pilot study, Parasitol Int. 62 (3) (2013) 237-239. doi:
610		https://doi.org/10.1016/j.parint.2013.01.006.
611		
612	24.	G. Mujuzi, B. Magambo, B. Okech, T.G. Egwang, Pigmented monocytes are negative
613		correlates of protection against severe and complicated malaria in Ugandan children,
614		Am J Trop Med Hyg. 74 (5) (2006) 724-729. doi:
615		https://doi.org/10.4269/ajtmh.2006.74.724
616		
617	25.	B.N. Kanoi, E. Takashima, M. Morita, M.T. White, N.M. Palacpac, E.H. Ntege, B.
618		Balikagala, A. Yeka, T.G. Egwang, T. Horii, T. Tsuboi, Antibody profiles to wheat germ
619		cell-free system synthesized <i>Plasmodium falciparum</i> proteins correlate with protection
620		from symptomatic malaria in Uganda, Vaccine. 35 (6) (2017) 873-881. doi:
621		https://doi.org/10.1016/j.vaccine.2017.01.001
622		
623	26.	R.N. Coler, D. Carter, M. Friede, S.G. Reed, Adjuvants for malaria vaccines, Parasite
624		Immunol. (2009) 520-528. doi: 10.1111/j.1365-3024.2009.01142.x.
625		
626	27.	S. Pirahmadi, S. Zakeri, N.D. Djadid, A.A. Mehrizi, A review of combination adjuvants
627		for malaria vaccines: a promising approach for vaccine development, Int J Parasitol. 51

Evidences of protection against blood-stage infection of Plasmodium falciparum by the

628	(9) (2021) 699-717. doi: 10.1016/j.ijpara.2021.01.006.
629	
630	28. N.M. Palacpac, E. Ntege, A. Yeka, B. Balikagala, N. Suzuki, H. Shirai, M. Yagi, K. Ito,
631	W. Fukushima, Y. Hirota, C. Nsereko, T. Okada, B.N. Kanoi, K. Tetsutani, N. Arisue, S.
632	Itagaki, T. Tougan, K.J. Ishii, S. Ueda, T.G. Egwang, T. Horii, Phase 1b randomized trial
633	and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36,
634	PLoS One. 8 (5) (2013) e64073. doi: 10.1371/journal.pone.0064073.
635	
636	29. S. Ezoe, N.M.Q. Palacpac, K. Tetsutani, K. Yamamoto, K. Okada, M. Taira, S. Nishida,
637	H. Hirata, A. Ogata, T. Yamada, M. Yagi, J.R. Edula, Y. Oishi, T. Tougan, K.J. Ishii, A.
638	Myoui, T. Horii, First-in-human randomised trial and follow-up study of <i>Plasmodium</i>
639	falciparum blood-stage malaria vaccine BK-SE36 with CpG-ODN(K3), Vaccine. 38
640	(46) (2020) 7246-7257. doi: 10.1016/j.vaccine.2020.09.056
641	
642	30. E.C. Bougouma, N.M.Q. Palacpac, A.B. Tiono, I. Nebie, A. Ouédraogo, S. Houard, M.
643	Yagi, S.A. Coulibaly, A. Diarra, T. Tougan, A.Z. Ouedraogo, I. Soulama, N. Arisue, J.B.
644	Yaro, F. D'Alessio, O. Leroy, S. Cousens, T. Horii, S.B. Sirima, Safety and
645	immunogenicity of BK-SE36 in a blinded, randomized, controlled, age de-escalating
646	phase Ib clinical trial in Burkinabe children, Front Immunol. 13 (2022) 978591. doi:
647	10.3389/fimmu.2022.978591.
648	
649	31. T. Tougan, K. Ito, N.M. Palacpac, T.G. Egwang, T. Horii, Immunogenicity and
650	protection from malaria infection in BK-SE36 vaccinated volunteers in Uganda is not
651	influenced by HLA-DRB1 alleles, Parasitol Int. 65 (5 Pt A) (2016) 455-458.
652	https://doi.org/10.1016/j.parint.2016.06.012.
653	
654	32. M. Yagi, N.M. Palacpac, K. Ito, Y. Oishi, S. Itagaki, B. Balikagala, E.H. Ntege, A. Yeka,
655	B.N. Kanoi, O. Katuro, H. Shirai, W. Fukushima, Y. Hirota, T.G. Egwang, T. Horii,
656	Antibody titres and boosting after natural malaria infection in BK-SE36 vaccine
657	responders during a follow-up study in Uganda, Sci Rep. 6 (2016) 34363. doi:
658	10.1038/srep34363.

659		
660	33.	C.A. Janeway Jr, P. Travers, M. Walport, et al, Immunobiology: The Immune System in
661		Health and Disease, 5th edition, New York: Garland Science, 2001. Immunological
662		memory. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27158/ (accessed 20
663		November 2023).
664		
665	34.	A.B. Tiono, N.M.Q. Palacpac, E.C. Bougouma, I. Nebie, A. Ouédraogo, S. Houard, N.
666		Arisue, F. D'Alessio, T. Horii, S.B. Sirima, <i>Plasmodium falciparum</i> infection coinciding
667		with the malaria vaccine candidate BK-SE36 administration interferes with the immune
668		responses in Burkinabe children, Front. Immunol. 14 (2023) 1119820. doi:
669		10.3389/fimmu.2023.1119820
670		
671	35.	M.B. Laurens, RTS,S/AS01 vaccine (Mosquirix TM): an overview, Hum Vaccin
672		Immunother. 16 (3) (2020) 480-489. doi: 10.1080/21645515.2019.1669415.
673		
674	<mark>36.</mark>	A. Ouedraogo, E.C. Bougouma, N.M.Q. Palacpac, S.A. Houard, I. Nebie, J. Sawadogo,
675		G.D. Berges, I. Soulama, A. Diarra, D. Hien, A.Z. Ouedraogo, A.T. Konate, S.
676		Kouanda, A. Myoui, S. Ezoe, K.J. Ishii, T. Sato, F. D'Alessio, O. Leroy, A.B. Tiono, S.
677		Cousens, T. Horii, S.B. Sirima, Safety and immunogenicity of BK-SE36/CpG malaria
678		vaccine in healthy Burkinabe adults and children: a phase 1b randomised, controlled,
679		double blinded, age de-escalation trial, Front Immunol. 14 (2023)1267372. doi:
680		10.3389/fimmu.2023.1267372.
681		
682	37.	J.M. Obiero, S. Shekalaghe, C.C. Hermsen, M. Mpina, E.M. Bijker, M. Roestenberg, K.
683		Teelen, P.F. Billingsley, B.K. Sim, E.R. James, C.A.Daubenberger, S.L. Hoffman, S.
684		Abdulla, R.W. Sauerwein, A. Scholzen, Impact of malaria preexposure on antiparasite
685		cellular and humoral immune responses after controlled human malaria infection, Infect
686		Immun. 83 (5) (2015) 2185-2196. doi: 10.1128/IAI.03069-14.
687		
688	38.	N. KC, L.W.P. Church, P. Riyahi, S. Chakravarty, R.A. Seder, J.E. Epstein, K.E. Lyke,
689		B. Mordmüller, P.G. Kremener, M.S. Sissoko, S. Healy, P.E. Duffy, S.A. Jongo

690		V.U.N.N. Nchama, S. Abdulla, M. Mpina, S.B. Sirima, L.C. Laurens Steinhardt, M.
691		Oneko, M. Li, T. Murshedkar, P.F. Billingsley, B.K.L. Sim, T.L. Richie, S.L. Hoffman
692		SL, Increased levels of anti-PfCSP antibodies in post-pubertal females versus males
693		immunized with PfSPZ Vaccine does not translate into increased protective efficacy,
694		Front. Immunol. 13 (2022) 1006716. doi: 10.3389/fimmu.2022.1006716
695		
696	39.	S.C. Murphy, G.A. Deye, B.K.L. Sim, S. Galbiati, J.K. Kennedy, K.W. Cohen, S.
697		Chakravarty, N. Kc, Y. Abebe, E.R. James, J.G. Kublin, S.L. Hoffman, T.L. Richie, L.A.
698		Jackson, PfSPZ-CVac efficacy against malaria increases from 0% to 75% when
699		administered in the absence of erythrocyte stage parasitemia: A randomized, placebo-
700		controlled trial with controlled human malaria infection, PLoS Pathog. 17 (5) (2021)
701		e1009594. doi: 10.1371/journal.ppat.1009594.
702		
703	40.	K.M. Abuga, W. Jones-Warner, J.C.R Hafalla, Immune responses to malaria pre-
704		erythrocytic stages: Implications for vaccine development, Parasite Immunol. 43 (2)
705		(2021) e12795. doi: 10.1111/pim.12795.
706		
707	41.	H. Nunes-Cabaço, D. Moita, M. Prudêncio, Five decades of clinical assessment of
708		whole-sporozoite malaria vaccines, Front Immunol. 13 (2022) 977472. doi:
709		10.3389/fimmu.2022.977472.
710		
711	42.	G. Feng, L. Kurtovic, P.A. Agius, E.H. Aitken, J. Sacarlal, B.D. Wines, P.M. Hogarth,
712		S.J. Rogerson, F.J.I. Fowkes, C. Dobaño, J.G. Beeson, Induction, decay, and
713		determinants of functional antibodies following vaccination with the RTS,S malaria
714		vaccine in young children, BMC Med. 20 (2022) 289. doi: 10.1186/s12916-022-02466-
715		2.
716		
717	43.	P. Vandoolaeghe, L. Schuerman. The RTS,S/AS01 malaria vaccine in children 5 to 17
718		months of age at first vaccination, Expert Rev Vaccines. 15 (2016) 1481-1493. doi:
719		10.1080/14760584.2016.1236689.
720		
721	44.	M.T. White, R. Verity, J.T. Griffin, K.P. Asante, S. Owusu-Agyei, B. Greenwood, C.

Drakeley, S. Gesase, J. Lusingu, D. Ansong, S. Adjei, T. Agbenyega, B. Ogutu, L.

723		Otieno, W. Otieno, S.T. Agnandji, B. Lell, P. Kremsner, I. Hoffman, F. Martinson, P.
724		Kamthunzu, H. Tinto, I. Valea, H. Sorgho, M. Oneko, K. Otieno, M.J. Hamel, N. Salim,
725		A. Mtoro, S. Abdulla, P. Aide, J. Sacarlal, J.J. Aponte, P. Njuguna, K. Marsh, P. Bejon,
726		E.M. Riley, A.C. Ghani, Immunogenicity of the RTS,S/AS01 malaria vaccine and
727		implications for duration of vaccine efficacy: secondary analysis of data from a phase 3
728		randomised controlled trial, Lancet Infect Dis. 15 (12) (2015) 1450-1458. doi:
729		10.1016/S1473-3099(15)00239-X.
730		
731	45.	S. Khan, M. Parrillo, A.H. Gutierrez, F.E. Terry, L. Moise, W.D. Martin, A.S. De Groot,
732		Immune escape and immune camouflage may reduce the efficacy of RTS,S vaccine in
733		Malawi, Hum Vaccin Immunother. 16 (2) (2020) 214-227. doi:
734		10.1080/21645515.2018.1560772.
735		
736	46.	P. Bejon, J. Mwacharo J, O. Kai, S. Todryk, S. Keating, B. Lowe, T. Lang, T.W.
737		Mwangi, S.C. Gilbert, N. Peshu, K. Marsh, A.V. Hill, The induction and persistence of
738		T cell IFN-gamma responses after vaccination or natural exposure is suppressed by
739		Plasmodium falciparum, J Immunol. 179 (6) (2007) 4193-201. doi:
740		10.4049/jimmunol.179.6.4193.
741		
742	47.	R. Morter R, A.B. Tiono, I. Nébié, O. Hague, A. Ouedraogo, A. Diarra, N.K. Viebig,
743		A.V.S. Hill, K.J. Ewer, S.B. Sirima, Impact of exposure to malaria and nutritional status
744		on responses to the experimental malaria vaccine ChAd63 MVA ME-TRAP in 5-17
745		month-old children in Burkina Faso, Front Immunol. 13 (2022) 1058227. doi:
746		10.3389/fimmu.2022.1058227.
747		
748	<mark>48.</mark>	B. Genton, F. Al-Yaman, R. Anders, A. Saul, G. Brown, D. Pye, D.O. Irving, W.R.
749		Briggs, A. Mai, M. Ginny, T. Adiguma, L. Rare, A. Giddy, R. Reber-Liske, D.
750		Stuerchler, M.P. Alpers, Safety and immunogenicity of a three-component blood-stage
751		malaria vaccine in adults living in an endemic area of Papua New Guinea, Vaccine. 18
752		(2000) 2504-2511. doi: https://doi.org/10.1016/S0264-410X(00)00036-0.
753		
754	49.	B. Genton, F. Al-Yaman, I. Betuela, R.F. Anders, A. Saul, K. Baea, M. Mellombo, J.
755		Taraika, G.V. Brown, D. Pye, D.O. Irving, I. Felger, H.P. Beck, T.A. Smith, M.P. Alpers,

756	Safety and immunogenicity of a three-component blood-stage malaria vaccine (MSP1,
757	MSP2, RESA) against Plasmodium falciparum in Papua New Guinean children,
758	Vaccine. 22 (1) (2003) 30-41. doi: 10.1016/s0264-410x(03)00536-x.
759	
760	50. M.A. Thera, O.K. Doumbo, D. Coulibaly, D.A. Diallo, I. Sagara, A. Dicko, D.J.
761	Diemert, D.G. Heppner Jr, V.A. Stewart, E. Angov, L. Soisson, A. Leach, K. Tucker,
762	K.E. Lyke, C.V. Plowe; Mali FMP1 Working Group. Safety and allele-specific
763	immunogenicity of a malaria vaccine in Malian adults: results of a phase I randomized
764	trial, PLoS Clin Trials. 1 (7) (2006) e34. doi: 10.1371/journal.pctr.0010034.
765	
766	51. J.A. Stoute, J. Gombe, M.R. Withers, J. Siangla, D. McKinney, M. Onyango, J.F.
767	Cummings, J. Milman, K. Tucker, L. Soisson, V.A. Stewart, J.A. Lyon, E. Angov, A.
768	Leach, J. Cohen, K.E. Kester, C.F. Ockenhouse, C.A. Holland, C.L. Diggs, J. Wittes,
769	D.G. Heppner Jr, MSP-1 Malaria Vaccine Working Group, Phase 1 randomized double-
770	blind safety and immunogenicity trial of Plasmodium falciparum malaria merozoite
771	surface protein FMP1 vaccine, adjuvanted with AS02A, in adults in western Kenya,
772	Vaccine. 25 (1) (2007) 176-184. doi: https://doi.org/10.1016/j.vaccine.2005.11.037.
773	
774	52. S.B. Sirima, I. Nébié, A. Ouédraogo, A.B. Tiono, A.T. Konaté, A. Gansané, A.I. Dermé,
775	A. Diarra, A. Ouédraogo, I. Soulama, N. Cuzzin-Ouattara, S. Cousens, O. Leroy, Safety
776	and immunogenicity of the Plasmodium falciparum merozoite surface protein-3 long
777	synthetic peptide (MSP3-LSP) malaria vaccine in healthy, semi-immune adult males in
778	Burkina Faso, West Africa, Vaccine. 25 (14) (2007) 2723-2732. doi:
779	https://doi.org/10.1016/j.vaccine.2006.05.090.
780	
781	53. S.B. Sirima, A.B. Tiono, A. Ouédraogo, A. Diarra, A.L. Ouédraogo, J.B. Yaro, E.
782	Ouédraogo, A. Gansané, E.C. Bougouma, A.T. Konaté, Y. Kaboré, A. Traoré, R.
783	Chilengi, I. Soulama, A.J. Luty, P. Druilhe, S. Cousens, I. Nébié, Safety and
784	immunogenicity of the malaria vaccine candidate MSP3 long synthetic peptide in 12-24
785	months-old Burkinabe children, PLoS One. 4 (10) (2009) e7549. doi:
786	10.1371/journal.pone.0007549. Erratum in: PLoS One. 5 (4) (2010) doi: Mali FMP1
787	Working Group, Safety and allele-specific immunogenicity of a malaria vaccine in

788		10.1371/annotation/3221b8d9-038d-4e67-82fa-de6b1233b459. Druilhe, Pierre [added];
789		Roma, Chilengi [corrected to Chilengi, Roma].
790		
791	<mark>54.</mark>	M.P. Jepsen, P.S. Jogdand, S.K. Singh, M. Esen, M. Christiansen, S. Issifou, A.B.
792		Hounkpatin, U. Ateba-Ngoa, P.G. Kremsner, M.H. Dziegiel, S. Olesen-Larsen, S.
793		Jepsen, B. Mordmüller, M. Theisen, The malaria vaccine candidate GMZ2 elicits
794		functional antibodies in individuals from malaria endemic and non-endemic areas, J
795		Infect Dis. 208 (2013) 479-488. doi: 10.1093/infdis/jit185.
796		
797	55.	S.B. Sirima, B. Mordmüller, P. Milligan, U.A. Ngoa, F. Kironde, F. Atuguba, A.B.
798		Tiono, S. Issifou, M. Kaddumukasa, O. Bangre, C. Flach, M. Christiansen, P. Bang, R.
799		Chilengi, S. Jepsen, P.G. Kremsner, M. Theisen, GMZ2 Trial Study Group, A phase 2b
800		randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African
801		children, Vaccine. 34 (38) (2016) 4536-4542. doi: 10.1016/j.vaccine.2016.07.041.
802		
803	<mark>56</mark> .	S.E. Silk, W.F. Kalinga, I.M. Mtaka, N.S. Lilolime, M. Mpina, F. Milando, S. Ahmed,
804		A. Diouf, F. Mkwepu, B. Simon, T. Athumani, M. Rashid, L. Mohammed, O. Lweno,
805		A.M. Ali, G. Nyaulingo, B. Mwalimu, S. Mswata, T.G. Mwamlima, J.R. Barrett, L.T.
806		Wang, Y. Themistocleous, L.D.W. King, S.H. Hodgson, R.O. Payne, C.M. Nielsen,
807		A,M. Lawrie, F.L. Nugent, J.S. Cho, C.A. Long, K. Miura, S.J. Draper, A.M. Minassian
808		A.I. Olotu, Superior antibody immunogenicity of a viral-vectored RH5 blood-stage
809		malaria vaccine in Tanzanian infants as compared to adults, Med. 4 (10) (2023) 668-
810		686.e7. doi: 10.1016/j.medj.2023.07.003.
811		
812	57.	C.A. Janeway Jr, P. Travers, M. Walport, et al, Immunobiology: The Immune System in
813		Health and Disease, 5th edition, New York: Garland Science, 2001. Pathogens have
814		evolved various means of evading or subverting normal host defenses. Available from:
815		https://www.ncbi.nlm.nih.gov/books/NBK27176/ (accessed 20 November 2023).
816		
817	58.	M. Chulanetra, W. Chaicumpa, Revisiting the mechanisms of immune evasion
818		employed by human parasites, Front Cell Infect Microbiol. 11 (2021) 702125. doi:
819		10.3389/fcimb.2021.702125.

820	
821	59. A.S. De Groot, L. Moise, R. Liu, A.H. Gutierrez, R. Tassone, C. Bailey-Kellogg, W.
822	Martin, Immune camouflage: relevance to vaccines and human immunology, Hum
823	Vaccin Immunother. 10 (12) (2014) 3570-3575. doi: 10.4161/hv.36134.
824	
825	60. P. Ludin, D. Nilsson, P. Mäser, Genome-wide identification of molecular mimicry
826	candidates in parasites, PLoS One. 6 (3) (2011) e17546. doi:
827	10.1371/journal.pone.0017546
828	
829	61. A. Mahamar, O. Attaher, B. Swihart, A. Barry, B.S. Diarra, M.B. Kanoute, K.B. Cisse,
830	A.B. Dembele, S. Keita, B. Gamain, S. Gaoussou, D. Issiaka, A. Dicko, P.E. Duffy, M.
831	Fried, Host factors that modify Plasmodium falciparum adhesion to endothelial
832	receptors, Sci Rep. 7 (1) (2017) 13872. doi: 10.1038/s41598-017-14351-7.
833	
834	62. O.D. Liang, M. Maccarana, J.I. Flock, M. Paulsson, K.T. Preissner, T. Wadström,
835	Multiple interactions between human vitronectin and Staphylococcus aureus, Biochim
836	Biophys Acta. 1225 (1) (1993) 57-63. doi: 10.1016/0925-4439(93)90122-h.
837	
838	63. I. Schvartz, D. Seger, S. Shaltiel, Vitronectin, Int J Biochem Cell Biol. 31 (5) (1999)
839	539-544. doi: 10.1016/s1357-2725(99)00005-9.
840	
841	64. J.D. Dubreuil, G.D. Giudice, R. Rappuoli, <i>Helicobacter pylori</i> interactions with host
842	serum and extracellular matrix proteins: potential role in the infectious process,
843	Microbiol Mol Biol Rev. 66 (4) (2002) 617-629, table of contents. doi:
844	10.1128/MMBR.66.4.617-629.2002.
845	
846	65. B. Singh, Y.C. Su, K. Riesbeck, Vitronectin in bacterial pathogenesis: a host protein
847	used in complement escape and cellular invasion, Mol Microbiol. 78 (3) (2010) 545-60.
848	doi: 10.1111/j.1365-2958.2010.07373.x.
849	
850	66. S. Kohler, T. Hallström, B. Singh, K. Riesbeck, G. Spartà, P.F. Zipfel, Hammerschmidt
851	S. Binding of vitronectin and Factor H to Hic contributes to immune evasion of

852		Streptococcus pneumoniae serotype 3. Thromb Haemost. 113 (1) (2015) 125-42. doi:
853		10.1160/TH14-06-0561
854		
855	67.	B.L. Duell, Y.C. Su, K. Riesbeck, Host-pathogen interactions of nontypeable
856		Haemophilus influenzae: from commensal to pathogen, FEBS Lett. 590 (21) (2016)
857		3840-3853. doi: https://doi.org/10.1002/1873-3468.12351.
858		
859	68.	T. Hallström, B. Singh, P. Kraiczy, S. Hammerschmidt, C. Skerka, P.F. Zipfel, K.
860		Riesbeck, Conserved patterns of microbial immune escape: pathogenic microbes of
861		diverse origin target the human terminal complement inhibitor vitronectin via a single
862		common motif, PLoS One. 11 (1) (2016) e0147709. doi:
863		10.1371/journal.pone.0147709.
864		
865	69.	T. Tougan, J.R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi,
866		T. Horii, Molecular camouflage of <i>Plasmodium falciparum</i> merozoites by binding of
867		host vitronectin to P47 fragment of SERA5, Sci Rep. 8 (1) (2018) 5052. doi:
868		10.1038/s41598-018-23194-9.
869		
870	70.	T. Tougan, J.R. Edula, M. Morita, E. Takashima, H. Honma, T. Tsuboi, T. Horii, The
871		malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum
872		proteins that affect host pathogenicity, Malar J. 19 (1) (2020) 155. doi: 10.1186/s12936-
873		020-03229-1.
874		
875	71.	K. Tanabe, N. Arisue, N.M. Palacpac, M. Yagi, T. Tougan, H. Honma, M.U. Ferreira, A.
876		Färnert, A. Björkman, A. Kaneko, M. Nakamura, K. Hirayama, T. Mita, T. Horii,
877		Geographic differentiation of polymorphism in the <i>Plasmodium falciparum</i> malaria
878		vaccine candidate gene SERA5, Vaccine. 30 (9) (2012) 1583-1593. doi:
879		https://doi.org/10.1016/j.vaccine.2011.12.124
880		nups.// doi.org/10.1010/j./decine.2011.12.12
881	72	O.D. Liang, K.T. Preissner, G.S. Chhatwal, The hemopexin-type repeats of human
882	14.	vitronectin are recognized by <i>Streptococcus pyogenes</i> , Biochem Biophys Res Commun.
883		234 (2) (1997) 445-449 doi: https://doi.org/10.1006/bbrc.1997.6663
00.3		/ 14 L/ LL 177 / 144 1=447 - 00L DUDS //00L019/ 1U 1UUD/DDFC 177 / DDD 1

884	
885	73. P.K. Kiyuka, S. Meri, A. Khattab, Complement in malaria: immune evasion strategies
886	and role in protective immunity, FEBS Lett. 594 (16) (2020) 2502-2517. doi:
887	https://doi.org/10.1002/1873-3468.13772.
888	
889	74. G.J. Wright, J.C. Rayner, Plasmodium falciparum erythrocyte invasion: combining
890	function with immune evasion, PLoS Pathogens. 10 (3) (2014) e1003943. doi:
891	10.1371/journal.ppat.1003943.
892	
893	75. K. Morimatsu, T. Morikawa, K. Tanabe, D.J. Bzik, T. Horii, Sequence diversity in the
894	amino-terminal 47 kDa fragment of the Plasmodium falciparum serine repeat antigen,
895	Mol Biochem Parasitol. 86 (2) (1997) 249-254. doi: 10.1016/s0166-6851(97)00038-8.
896	
897	76. I. Safitri, A. Jalloh, I.S. Tantular, S. Pusarawati, T.T. Win, Q. Liu, M.U. Ferreira, Y.P.
898	Dachlan, T. Horii, F. Kawamoto, Sequence diversity in the amino-terminal region of the
899	malaria-vaccine candidate serine repeat antigen in natural Plasmodium falciparum
900	populations, Parasitol Int. 52 (2) (2003) 117-131. doi: 10.1016/s1383-5769(02)00088-0
901	
902	77. N. Arisue, N.M.Q. Palacpac, E.H. Ntege, A. Yeka, B. Balikagala B, Kanoi BN,
903	Bougouma EC, Tiono AB, Nebie I, Diarra A, Houard S, D'Alessio F, Leroy O, Sirima
904	SB, Egwang TG, Horii T. African-specific polymorphisms in Plasmodium falciparum
905	serine repeat antigen 5 in Uganda and Burkina Faso clinical samples do not interfere
906	with antibody response to BK-SE36 vaccination, Front Cell Infect Microbiol. 12 (2022)
907	1058081. doi: 10.3389/fcimb.2022.1058081.
908	
909	
910	
911	
912	
913	
914	
915	

916 917 Figure 1. Representation of serine repeat antigen (SERA5), SE47' and the recombinant vaccine 918 candidate, SE36. A. Full-length *Plasmodium falciparum* SERA5 (orange) [13,21]. In a highly 919 regulated protease cascade, the secreted 120 kDa (~100–130 kDa) precursor in the 920 parasitophorous vacuole is processed to P47 (green) and P73 (blue) upon merozoite egress. The 921 P47 is linked to the C-terminal P18 via disulfide bond, another cleavage site in P73. These two 922 fragments are subsequently processed into smaller fragments (P47, P50, P6 and P18) [21]. 923 The N-terminal fragment, SE47'. Antibodies against this fragment are elicited in immune 924 individuals and is the basis of the blood-stage malaria vaccine, BK-SE36. SE36, the 925 recombinant N-terminal domain without polyserine repeats, is based on Honduras 1 strain and 926 expressed in *Escherichia coli* for mass production and purification under GMP conditions. 927 928 Figure 2. Clues from BK-SE36 clinical trials. A. Percentage of subjects with >2-fold increase in 929 antibody titers. Data from Uganda [28] and Burkina Faso [30] clinical trials show that younger 930 age group remarkably respond to BK-SE36 vaccination. Green bars, after two full doses of BK-931 SE36; yellow bars, after booster dose (Dose 3). A full dose contains 100 µg/mL SE36 protein 932 and 1 mg/mL aluminum. A booster dose was done only in younger cohorts (1-5 years-old). **B**. 933 Molecular camouflage of *P. falciparum* merozoites utilizing host vitronectin [69]. SE36 covers 934 the whole merozoite surface and host vitronectin tightly binds to SE36. Vitronectin in turn binds 935 to other host serum proteins to camouflage the merozoite from host immune attacks. Majority of 936 bound proteins are blood coagulation proteins, apolipoproteins and proteins that belong to the 937 complement system. This molecular camouflage is an immune evasion strategy that contributes 938 to parasite persistence and being recognized as "self" the parasites protect themselves from the 939 host immune system by having a host immune steady state, and may explain why there is lesser immune pressure (and thus, limited polymorphism) for SERA5. C. Comparison of sequence 940 941 diversities in some P. falciparum antigen (ama1, csp, sera {SE36 region} and housekeeping 942 (serca + adsl) genes [77]. Immune tolerance may explain the low polymorphism of SERA5. 943 Nucleotide diversity (π , grey bars), the number of synonymous substitutions per synonymous 944 site (dS, pink bars), and non-synonymous substitutions per non-synonymous site (dN, blue bars) 945 are shown. The sequence length and the number of sequences used for each gene are reflected: 946 ama 1, apical membrane protein 1 (n = 241, 1866 bp); csp, circumsporozoite protein (n = 238,

947 681 bp); se36, serine repeat antigen (n = 314, 741 bp); and housekeeping genes serca, P-type 948 Ca2+-ATPase; adsl, adenylosuccinate lyase (n = 292, 5043bp). Data of ama1, csp and 949 serca+adsl are from three parasite populations from Africa (Uganda, Tanzania and Ghana). Data 950 using the SE36 region are from four parasite populations (Uganda, Tanzania, Ghana and Burkina Faso): π was analyzed by DnaSP6; dS and dN by MEGA. Excluded from the analyses 951 952 were: NANP repeat region in *ama1*, eight-mer amino acid repeat units in *csp*; the octamer 953 region, 13-mer insertion/deletion region, serine repeat regions, and the 17-mer dimorphic region 954 in SE36 vaccine; and the asparagine repeat region in adsl + serca. When dN>dS, immune 955 pressure/positive selection is inferred.

Table 1. Immunogenicity and hyporesponsiveness in pre-erythrocytic vaccine trials.

Vaccine	Study population	Observation	Authors note	Reference
PfSPZ	Tanzanian	Before CHMI: Tanzanian adults have higher baseline	While the influence of genetic background	[37]
	(20-35 years old)	antibody titers for AMA-1, EXP-1, and CSP; although	cannot be excluded, the lack of increased	
	and Dutch adults	both populations had comparable IFN-γ responses.	proliferative Th1 responses in Tanzanian	
	(19-30 years old)	Post-CHMI: cellular recall responses were	volunteers could be partially due to	
	in CHMI trials	significantly increased in Dutch volunteers. Tanzanians	immunosuppression following exposure to	
		showed lower lymphocyte IFN-γ production.	blood-stage parasites during CHMI.	
		Immunosuppression was still present 1-month post-		
		СНМІ		
PfSPZ	11 clinical trials	Females ≥ 11 years of age had significantly higher	Antibodies to PfCSP (and PfSPZ) primarily	[38]
	in Germany, US	levels of antibodies to PfCSP than males, but with no	correlate with other potentially protective	
	and Africa (5-	evidence of improved protection	immune mechanisms (e.g. antibody dependent	
	month to 61		and antibody independent cellular responses in	
	years-old)		the liver)	

		Individuals with prior malaria exposure, such as	Attributed to immune dysregulation due to (a)	
		African adults, have significantly lower antibody	lifelong exposure to malaria parasites; (b)	
		responses to PfCSP than malaria naïve adults	elimination of the PfSPZ by naturally acquired	
			adaptive immune responses; and/or (c)	
			immunosuppression due to concomitant	
			coinfections	
		In African infants and children, there was a negative	Antibody levels in these children was	
		correlation between age and antibodies to PfCSP, with	comparable to responses seen with malaria-naive	
		the highest antibody levels observed in infants and	adults.	
		young children		
PfSPZ-CVac	CHMI trial in the	Vaccine efficacy was variable (0 to 75% efficacy with	In the 7-day dosing schedule, the second and	[39]
(PfSPZ vaccination	US (18-45 years-	same dose but different dosing schedule: with a 7-	third vaccine administration coincided with the	
with concurrent	old)	day administration schedule the vaccine had no	period of blood-stage parasitemia from the first	
antimalarial		efficacy vs 75% efficacy on a 5-day dosing schedule)	vaccination, demonstrating the absence of sterile	
chemoprophylaxis)			protective immunity	

Whole Sporozoite	e phase 1 and 2	Compared to malaria naïve adults, individuals with	Protection was seen in vaccinated subjects living	[40]
and CSP sub-uni	t clinical trials	prior malaria exposure have significantly lower	in malaria endemic areas, despite the observed	(radiation-
vaccine		antibody responses to CSP (e.g. adult males from	several-fold lower antibody and cellular immune	attenuated
		Equatorial Guinea reported lower antibody responses	responses obtained from malaria naïve adults in	sporozoites)
		to PfSPZ compared to US adults; PfSPZ efficacy was	Germany or the US.	[41] (whole-
		greatly reduced in a site with seasonal transmission		sporozoite
		[30% protection at 6 months in Mali adults vs 64%	A fine, yet inadequately described balance	vaccine)
		protection in malaria naïve individuals])	between innate and adaptive immune responses	
			is required for protection	
		Malaria blood-stage infection downregulate pre-		
		erythrocytic stage immunity.		
RTS,S/AS01	Phase 2b data	Induction of functional antibodies was lower among	High baseline antibody titers obtained either	[42]
	(2 sites in	children with higher malaria exposure.	through repeated malaria infection or vaccination	
	Mozambique, 1-4		impacts B cells, CD ₄₊ T cells and innate immune	
	years-old)		cell phenotypes	

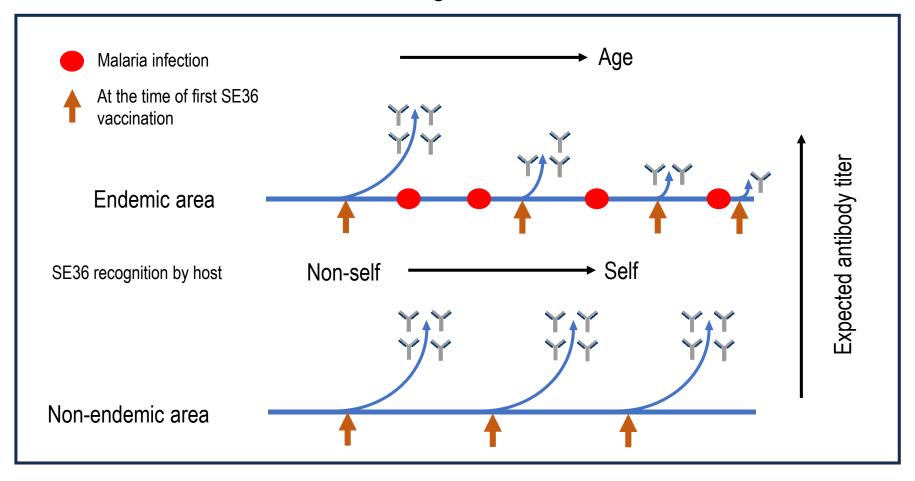
RTS,S/AS01	Phase 2 and 3	Younger age at time of vaccination (5-11 months vs	Anti-CS antibody titers after vaccination supports	[43]
	trials in 5-17	12-17 months) and high transmission setting were	a short-lived and long-lived component of the	
	month-old	significantly associated with higher anti-CS antibody	humoral response; with a higher proportion of the	
	children	response	long-lived response noted after Dose 4.	
RTS,S/AS01	Phase 3 data	In 6–12 week-old children, high baseline anti-	Maternal antibodies or fetal exposure to malaria	[44]
	(11 sites, 5-17	circumsporozoite antibody titers were associated with	parasites inhibit immunogenicity	
	months and 6-12	low anti-circumsporozoite antibody titers after		
	week-old	vaccination		
	children)	Within the 5–17 month age group, younger children		
		had higher anti-circumsporozoite antibody titers after		
		vaccination		
RTS,S/AS01	Immuno-	CSP component of the RTS,S vaccine exhibited a low	Reduction in CD4+ T-cell (reduced T-cell help,	[45]
	informatic tools	degree of T-cell epitope relatedness to circulating	low T-cell epitope content, reduced presentation	
	were used to	variants:	of T-cell epitopes by prevalent HLA-DRB1, high	
	compare T helper	The prevalence of epitopes restricted by specific HLA-	human-cross reactivity of T-cell epitopes and	

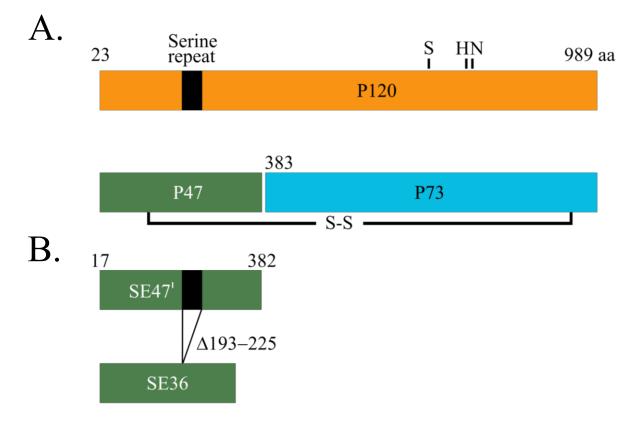
	epitopes in	DRB1 alleles was inversely associated with prevalence	polymorphism of CSP in circulating strains)
	RTS,S vaccine	of the HLA-DRB1 allele in the Malawi study	contributed to tolerance/immune camouflage and
	antigens vs 57	population	have overshadowed the protective efficacy of
	CSP variants	T-cell epitope content shared between the vaccine and	RTS,S
	isolated from	the Malawian CSP variants was only 34%.	
	infected		
	individuals in		
	Malawi		
ME-TRAP	Kilifi District, 1-	Parasitemia immediately before vaccination suppressed	Parasitemia influences initial priming but not [46]
	6 years-old: one	the acquisition of T cell responses (by 15-25%, as	subsequent recall and/or boosting of T cell
	group vaccinated	measured by IFN-γ production).	responses.
	vs naturally		
	exposed group	Parasitemia immediately after vaccination did not	In 1-6 years old, age appears to be a less
		suppress T cell response. Concurrent parasitemia did	important consideration; likewise, mild and
		not influence T cell response.	moderate malnutrition does not appear to reduce

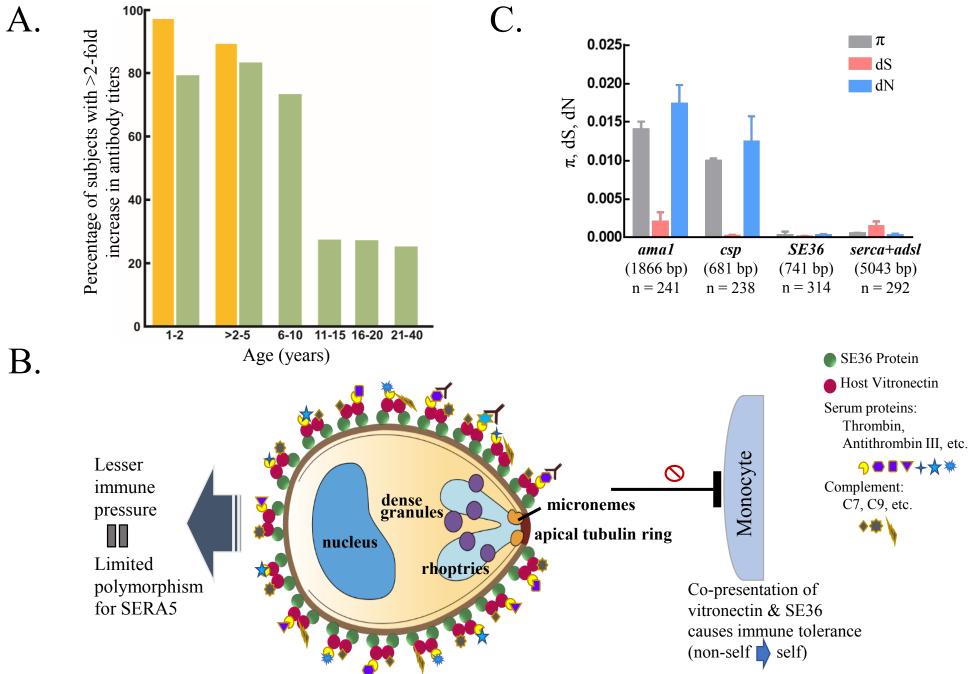
ChAd63 MVA MEPhase 2 (5-17 Anti-TRAP IgG titers were significantly lower in the Using anti-AMA-1 titers as surrogate marker for [47] TRAP month-old parasite positive group compared to the parasite prior exposure, acute malaria infection could have reduced humoral immunity to vaccination with children) Anti-AMA titers were significantly higher in the positive parasitemia group at vaccination; but exposure may have an impact on cell mediated negatively correlated with peak T cell response immunity

immunogenicity

Table 2. Vaccine immunogenicity and high baseline antibody titers in blood-stage vaccine candidate trials.


Vaccine	Study population	Observation and author's notes	Reference
MSP1, MSP2	Phase 1	Humoral response was significantly boosted by the vaccine in individuals with the lowest	[48]
and RESA in	18-50 years-old	MSP1 titer at baseline. No change noted for MSP2 and RESA. The lack of boosting of	
Montanide	East Sepik Province,	humoral responses was attributed to the high concentration of antibodies prior to vaccination.	
ISA720	Papua New Guinea		
Combination B:	Phase 1-11b	Vaccine immunogenicity was neither impaired by circulating parasites nor increased after pre-	[49]
MSP1, MSP2	5-9 years-old	treatment with sulphadoxine-pyrimethamine.	
and RESA in			
Montanide			
ISA720			
FMP1/AS02A	Phase 1	Response to vaccine varied and was attributed to the variation in background immunity: in 6	[50]
	18-55 years-old Bandiagara, Mali	participants that developed high antibody titers (≥ 8-fold increase in antibody titer) the	
		baseline GMT for MSP1 ₄₂ was <3,000 vs. those with baseline GMT of >20,000, a <2-fold rise	
		was observed.	
FMP1/AS02	Phase 1	Highest rise in antibody responses was seen in those with low pre-existing antibody titers prior	[51]


	18-55 years-old	to immunization. However based on anti-MSP142 antibody titers at Day 90, FMP1/AS02S	
	Kombewa Division,	vaccinees with low and high pre-existing titers were boosted after 3 doses.	
	Western Kenya		
MSP3-LSP	Phase 1b 18-40 years-old Balonghin, Burkina	Total IgG, IgG subclasses and IgM to MSP3 and MSP3-LSP were similar in vaccinees and control (vaccinated with tetanus toxoid vaccine). The absence of response to vaccination was attributed to high pre-existing antibody levels.	[52]
MSP3-LSP	Phase 1b 12-24 months old	IgG1 and IgG3 responses to MSP3-LSP were higher post vaccination than at baseline. Immunogenicity in young children with limited exposure to natural <i>P. falciparum</i> infection	[53]
	Balonghin, Saponé, Burkina Faso	contrast with [52].	
GMZ2/Al (OH)	(serum samples from 3	GMZ2 vaccination elicited increase in geometric mean antibody titers: 2.8-fold in Gabonese adults; 290-fold in Gabonese children and German adults compared to day 0 (D0). At D0,	[54]
	phase 1 clinical trials	Gabonese adults have 50-fold higher anti-GMZ2 IgG than Gabonese children and 63.5-fold	
	obtained on day 0 and	higher anti-GMZ2 IgG than German adults.	
	4 weeks after the last	There was a strong correlation between antibody titers after vaccination and pre-vaccination	
	vaccination): German,	level.	
	Gabonese adults and		
	children		


GMZ2	Phase 2	Higher baseline level of naturally acquired antibodies in 3-4 years-old resulted to 5.7-fold	[55]
	12-60 months old	increase in anti-GMZ antibodies vs. 14-fold increase in 1-2 years old	
	Burkina Faso, Gabon,	increase in ann G112 annocates 18. I From increase in F 2 years ord	
	Ghana and Uganda		

1 2	Highli	ghts
3 4	•	Clinical trials show that SE36 antigen is a promising blood-stage vaccine candidate
5	•	Repeated malaria infection lowers the humoral response in some SE36 vaccinees
6	•	Concurrent parasitemia during vaccination resulted to reduced immunogenicity
7	•	SE36 binds to host vitronectin akin to molecular camouflage
8	•	Immune tolerance may explain the limited observed polymorphism of SE36
9		
10		

Immune tolerance against SE36 molecule

37

1 Immune tolerance caused by repeated P. falciparum infection against SE36 malaria vaccine 2 candidate antigen and the resulting limited polymorphism 3 4 5 Nirianne Marie Q. Palacpac¹, Ken J. Ishii², Nobuko Arisue^{3*}, Takahiro Tougan^{3§} and Toshihiro 6 Horii1 7 8 ¹Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka 9 University, Suita, Osaka 565-0871, Japan 10 11 ²Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, 12 Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, 13 Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; 14 Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of 15 Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan 16 17 ³Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka 18 University, Suita, Osaka 565-0871, Japan 19 20 Present address: 21 *Department of Hygiene and Public Health, Tokyo Women's Medical University, Tokyo 162-22 0054, Japan 23 §Cell Technology Group, Reagent Engineering, Sysmex Corporation, Kobe, Hyogo 651-2271, 24 Japan; Department of Cellular Immunology, Research Institute for Microbial Diseases, Osaka 25 University, Suita, Osaka 565-0871, Japan 26 27 Corresponding author 28 Toshihiro Horii 29 horii@biken.osaka-u.ac.jp 30 Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka 31 University, Suita, Osaka 565-0871, Japan 32 TEL: +81(6)6879-8280 33 34 **Keywords**: malaria, immune tolerance, vaccine, *Plasmodium falciparum*, serine repeat antigen, 35 immune evasion 36

38	Nirianne MQ Palacpac	nirian@biken.osaka-u.ac.jp
39	Ken J. Ishii	kenishii@ims.u-tokyo.ac.jp
40	Nobuko Arisue	arisue.nobuko@twmu.ac.jp
41	Takahiro Tougan	ttougan@biken.osaka-u.ac.jp
42	Toshihiro Horii	horii@biken.osaka-u.ac.jp
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		
61		
62		
63		
64		
65		
66		
67		
68		

Abstract (\leq 250 words)

The call for second generation malaria vaccines needs not only the identification of novel candidate antigens or adjuvants but also a better understanding of immune responses and the underlying protective processes. *Plasmodium* parasites have evolved a range of strategies to manipulate the host immune system to guarantee survival and establish parasitism. These immune evasion strategies hamper efforts to develop effective malaria vaccines. In the case of a malaria vaccine targeting the N-terminal domain of *P. falciparum* serine repeat antigen 5 (SE36), now in clinical trials, we observed reduced responsiveness (lowered immunogenicity) which may be attributed to immune tolerance/immune suppression. Here, immunogenicity data and insights into the immune responses to SE36 antigen from epidemiological studies and clinical trials are summarized. Documenting these observations is important to help identify gaps for SE36 continued development and engender hope that highly effective bloodstage/multi-stage vaccines can be achieved.

1. Introduction

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Malaria, due to *Plasmodium falciparum*, disproportionately affects sub-Saharan African children, pregnant women especially the primigravidae, as well as those immunocompromised in malaria endemic areas [1]. The African region accounts for 95% of cases and 96% of malaria deaths worldwide. After more than 30 years of research and clinical trials, the World Health Organization (WHO) approved the world's first malaria vaccine in 2021 [2]. RTS,S/AS01 (Mosquirix®) targets the pre-erythrocytic stage of *P. falciparum*. Based on phase 3 and large pilot implementation programs the vaccine is recommended as a 4-dose schedule for children from 5 months of age living in moderate to high transmission areas [3]. The modest and shortlived efficacy of RTS,S/AS01, however, highlights that new, more efficacious vaccines be sought. Another anti-sporozoite vaccine, R21/Matrix-M, has recently reported a 77% protective efficacy in a phase 1/2b clinical trial [4], has an on-going phase 3 trial and follow-up study (ClinicalTrials.gov: NCT04704830), and is fast tracked in its regulatory approval for use in Ghana, Nigeria and Burkina Faso [5]. Similar to RTS,S, R21 contains recombinant particles of the central repeat and C-terminal circumsporozoite protein (CSP) fused to Hepatitis B surface antigen (HBsAg) but with improved protective efficacy due to a higher density of the CSP antigen on the VLP surface and formulation with a new, potent saponin-containing adjuvant [4]. Missing from the arsenal is a blood-stage vaccine to confer protection against disease and death. Moreover, long term studies of children vaccinated with RTS,S and living in areas of moderate

transmission showed a significant increase in rebound episodes of clinical malaria 3 to 6 years after the primary trial [6]. Thus, the availability of more than one vaccine that targets other life stages of the parasite, either as a stand-alone or combination/multi-stage vaccine, has a public health value and would be preferable for risk mitigation.

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

The complex parasite life cycle, genetic diversity (high polymorphism and allelespecific variations), and the various immune escape mechanisms of the *Plasmodium* parasite are among the reasons why there is limited success for most candidate malaria vaccines tested to date [7-10]. Furthermore, humoral (antibody) responses have often been harnessed for the evaluation of vaccines, but a thorough understanding of the dynamic interplay of the host immune response, the parasites immune evasion mechanisms, and what level of antibody response can be sufficient to confer protection is lacking. There are differences in the immune response between malaria naïve individuals and those in endemic areas (malaria exposed) [11]. We summarize below the immunogenicity observations with the blood-stage vaccine antigen, SE36, based on serine repeat antigen 5 (SERA5). The findings from other vaccine studies that suggest instances where humoral and cellular responses appear to be compromised/suppressed are also presented. This review highlights the diversity of immune evasion mechanisms that malaria parasites use to gain an edge in the host-parasite relationship, their implications for

vaccine-based strategies, and allows us to identify gaps in developing highly effective, longlasting malaria vaccines.

2. Epidemiological studies on SERA5

SERA5 is a highly conserved [12, 13], essential [14] and abundant asexual blood stage antigen, expressed specifically during late trophozoite and schizont stages [15] (Fig. 1A). The protein is a vaccine candidate based on (a) epidemiological studies that show a strong correlation between high antibody titers and protection from malaria symptoms and severe disease [15-17]; (b) *in vitro* studies of sero-positive sera that demonstrate parasite growth inhibition [15, 18-20]; and (c) non-human primate challenge studies demonstrating protection against parasite challenge [20-22].

In sero-epidemiological studies from populations residing in malaria holoendemic areas, IgG antibodies were detected against the amino terminal part of SERA5 using either the N-terminal 47 kDa domain with serine repeats (*i.e.*, SE47') or without the serine repeats (SE36) (Fig. 1B). Humoral responses were evaluated in Ugandan adults and children [15-17]; pregnant women and newborns [23]. High titers of IgG anti-SERA5 were associated with protection from severe malaria [16,17,24] or absence of placental parasitemia, and babies delivered with normal birthweights [23]. Children with uncomplicated malaria have significantly higher median titers

of anti-SE36 IgG than age-matched children who experience severe malaria [17].

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

In 2 to 70 year-old Guadalcanal, Solomon Island residents, a significant negative correlation was observed between high parasite densities and those positive for anti-SE36 [21]. Seropositive individuals had low parasite burden or were in the non-infected group while seronegative individuals bore high parasite densities. The observed association of parasite density with anti-SE36 antibody titer was specific and not due to non-specific immunosuppression driven by severe infection since people with high parasite densities showed no downregulation of anti-polio antibody titers. The proportion of seropositive individuals were generally lower compared to individuals positive for merozoite surface protein-1 (MSP-1) [17,23], or other erythrocyte stage proteins (rhoptry proteins, exported proteins, etc) [25]. Using 40 adult sera from residents in Atopi Parish (a malaria holoendemic area in Uganda), high responders (ELISA titer > 1000) to SE47' and MSP1₁₉ were 38 and 80%, respectively [15]. Sero-positivity to SE36 also showed a clear age-dependency in the Solomon Islands, although as noted above, the rate of seropositivity does not exceed >50% of the population [21].

3. Assessing the vaccine response to SE36

A recombinant form of SERA5 N-terminal domain (SE36) was selected for clinical development, prepared under Good Manufacturing Practice (GMP) standards and formulated with aluminum hydroxide gel (AHG) to yield BK-SE36 (100 µg/mL SE36 protein and 1 mg/mL

aluminum) [21]. AHG was first chosen as the standard vaccine adjuvant because of the proven safety profile and production of primarily humoral immune and Th2 biased cellular responses. However, as it became clear in recent years that alum is not sufficient to induce effective immune responses for malaria vaccines [10,26,27], a second formulation/generation of SE36 was developed. BK-SE36 was administered concomitantly with another adjuvant containing unmethylated cytosine guanine (CpG) oligonucleotide (ODN) motifs to yield BK-SE36/CpG (100 µg/mL SE36 protein, 1 mg/mL aluminum and 1 mg/mL CpG ODN K3). CpG-induced activation of innate immunity has been reported and in initial studies, CpG ODN (code name: K3) efficiently induced Th1 response, selectively promoting cellular and humoral immune responses [22]. So far, all clinical studies reported to date show that both vaccine formulations have acceptable reactogenicity and have no unexpected safety signals [21, 28-30].

3.1 Early vaccination studies in non-human primates. SE36/AHG was immunogenic in chimpanzees, and squirrel monkeys [21]. In all three immunized chimpanzees, antibody titers increased 2 weeks after the first administration, peaked 2 weeks after the second administration and were maintained for more than 40 weeks. Squirrel monkeys vaccinated two or three times were protected against high parasitemia after parasite challenge. The challenge with *P. falciparum*-infected red blood cells elevated the antibody titer and protected squirrel monkeys against high parasitemia.

Cynomolgus monkeys administered with SE36/AHG/CpG had approximately 10 times greater serum anti-SE36 IgG antibody levels and induced mixed Th1/Th2 responses compared to those administered with SE36/AHG alone [22]. However, in squirrel monkeys, it was surprising that although protection that correlates with decreased parasite density in the *P*. falciparum challenge study was observed, administration of SE36/AHG/CpG did not result in higher antibody titers when compared to those vaccinated with SE36/AHG alone suggesting additional or independent immune response(s) with the use of CpG (e.g. T cell-mediated cellular immunity).

- 3.2 First-in-human trials (Japanese adults). Phase 1a trials for BK-SE36 and BK-SE36/CpG were conducted in malaria naïve Japanese adults. Seroconversion was 100% after two vaccinations of full-dose BK-SE36 given 21 days apart [21]. When BK-SE36/CpG was used, immunogenicity assessments showed high antibody titers with accelerated seroconversion [29]. A 100% seroconversion was achieved in malaria naïve adults with one full-dose of BK-SE36/CpG vs. 2 full-doses of BK-SE36. The full-dose group had significantly higher titers than half-dose (p = 0.002 Student's t-test) and remained above baseline even after 12 months post-Dose 2. BK-SE36/CpG formulation induced > 3-fold higher antibody titer than BK-SE36.
- 3.3 Clinical trial: Uganda. In sharp contrast to phase 1a in Japan, the phase 1b trial in Uganda showed low seroconversion (25%) in most vaccinated adults (21–32 years-old) [28].

Those who were administered with BK-SE36 were categorized as either responder (i.e. those whose fold-change in anti-SE36 antibody titer from baseline was \geq 2-fold after vaccination) or non-responder (those whose fold change in anti-SE36 antibody titer from baseline was \leq 2-fold).

All seropositive subjects (except one), did not have any obvious increase in antibody titers (non-responders) 21 days post Dose 2. However, notably, not all seronegative subjects also had a significant change from baseline antibody titers: more than half (55%) of seronegative adults (21-32 years-old) were classified as non-responders, while only 45% showed a 2-fold higher change in antibody titer from baseline confirming the low seroconversion to SERA5 observed in epidemiological studies [21]. In 16–20 years-old, 11–15 years-old and 6–10 years-old, the proportion of subjects with \geq 2-fold increase in antibody titers after 2 full-dose vaccinations were 27, 27 and 73%, respectively [28] (Fig. 2A). When vaccinated with full-dose, the change in antibody titers before vaccination to 21 days after Dose 2 was significant in 6–10 years-old (p=0.01) and 11-15 years-old (p=0.02) but not in the 16-20 years-old cohort.

The low seroconversion observed in Ugandan adults was unexpected when compared to the 100% seroconversion in Japanese adults after either half- (containing 50 µg/mL SE36 protein and 0.5 mg/mL aluminum) or full-dose [21]. There was no indication of general immune suppression correlated to host genetic background. Analysis of the allelic polymorphism of human leukocyte antigen (HLA)-DRB1 alleles found that age rather than a particular DRB1

allele was associated with antibody response to vaccination [31].

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

The follow-up study demonstrated boosting of vaccine-induced immune response as a result of natural infection [32]. Children whose antibody titers against SE36 increased by ≥2fold after vaccination and had high antibody titers throughout the follow-up (i.e, those with a geometric mean (GM) of 314 arbitrary units (AU), 21 days post vaccination to 102 AU at Day 365) did not experience malaria infection (defined as any parasitemia \geq 100 parasites/ μ L). Responders who had GM <100 AU experienced 1-2 episodes of natural *P. falciparum* infection during a year of follow-up. Responders had significantly decreased odds to reinfection: the percentage of children who experienced more than one infection in the responder group was 18% vs 46% in non-responders; and 55% in the control. The observed association of fewer reinfections in responders was robust and was not influenced by age (p=0.175), antibody titer after infection (p=0.156) or parasitemia levels (p=0.091). GMs of anti-SE36 antibody titers were significantly different among responder, non-responder and those in the control. The 3.3-fold increase from baseline antibody titer after the first infection in the responder group was 1.5x higher than non-responders and 2.3x higher than the control group, suggesting immunological memory. Thus, in vaccinated subjects, natural infection can boost the immune response. There is little evidence of boosting in non-responder and control groups which may reflect the inherent low immunogenicity of SE36 during natural infections [32].

3.4 Clinical trial: Burkina Faso. BK-SE36 was immunogenic in 12–60 month-old Burkinabe children using either intramuscular or subcutaneous route of administration [30]. Seroconversion was not markedly different after two full-dose vaccinations in 25-60 month-old (83%) vs 12–24 month-old (79%) (Fig. 2A). A third dose, 22 weeks after the second dose (i.e., 6 months from Dose 1), resulted in higher immune response and increased the proportion of children with >2-fold increase in antibody titer 4 weeks after vaccination (89% for 25–60 month-old; and 97% for 12 –24 month-old children) (Fig. 2A). Dose 3 successfully raised anti-SE36 antibody titer to levels higher than after primary vaccination (Dose 1 and 2). This kinetics of immune response after primary vaccination is a characteristic response akin to immunological memory [33]. Of interest, it was in contrast to the observed antibody response after three vaccine doses of BK-SE36 in a phase 1a study [21]. When given at 21-days interval, the induced antibody titer did not differ significantly between Dose 2 and Dose 3 in Japanese adults. Delaying the timing of the third dose appeared to have contributed to improved immunogenicity in Burkinabe children [30]. A delayed third dose is likely recommended to boost memory responses and keep antibody titer high in malaria endemic areas. The youngest cohort (12–24 month-old) had 2- and 4-fold higher anti-SE36 antibody

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

titers after 2 and 3 doses of BK-SE36 compared to the 25–60 month-old cohort [30]. The 25–60 month-old children are presumed to have a longer history of exposure to repeated malaria

infections and, within this cohort, a subgroup of children may also have a lower SE36 responsiveness. Indeed, more children are infected in this cohort than their younger counterparts during recruitment and vaccination day (52.8% vs. 19.4% in 12–24 month-old, p=0.003). It was noted that concurrent infection (defined as any parasitemia > 0 by microscopy) during vaccination days resulted in lower SE36 antibody titer levels in vaccinees [34]. Study participants who were not infected during vaccination days had the highest GMT one month post Dose 3. The difference in antibody titers between uninfected and infected subjects was statistically significant. By multivariate analysis, a negative correlation between parasite density and anti-SE36 antibody GMT was observed: there was a decrease in antibody GMT for every 1000 parasites/ μ L increase in P. falciparum density after adjustment for baseline antibody titer, age and interaction between age and baseline antibody titer.

With BK-SE36, titers dropped to near pre-vaccination titers 5 months after Dose 2, but was boosted, at Dose 3 as noted above [30]. Data on what level of anti-SE36 antibody titer can be considered protective is limited at the moment. Using the high-titer pooled serum as standard (*i.e.*, from Ugandan adults with naturally acquired titers where the positive standard was calculated at 5000), the average antibody titer observed in BK-SE36 vaccinees was 10× less. The plateau level of SE36-specific antibody titers achieved in chimpanzees [21] was also 10× higher than the average titer obtained in all BK-SE36 trials reported to date. Learning from

the experience of RTS,S, a combination of adjuvants or choice of a multi-adjuvant approach may be ideal to improve the level and duration of antibody response [35]. This was the motivation for the improved formulation of BK-SE36 using the CpG ODN (K3) adjuvant. The vaccine formulation was tested in Burkina Faso for three age groups [36] following the success of a phase 1a trial in Japanese adults [29]. CpG ODN (K3) improved vaccine immunogenicity, as seen by the high titers and high seroconversion rates in vaccinated participants aged 21-45 years, 5-10 years, and 12-24 months [36].

4. Observations from other malaria vaccine trials

Clues on hyporesponsiveness largely stem from observations on the heterogeneity of immune response in malaria endemic areas. As most trials that have progressed to late-stage clinical evaluation targets the pre-erythrocytic stage, Table 1 highlights observations from these advanced vaccine candidates. Both the controlled human malaria infection (CHMI) and clinical trials in malaria endemic areas report observations of immune suppression in vaccinated volunteers. In a number of blood-stage vaccine trials, similar observations were reported (Table 2).

4.1 Repeated infection in malaria endemic areas overshadowed the inductive capacity of candidate vaccines in clinical trials. Repeated malaria infections tailor the host's

immune response, making the parasite less recognizable by the immune system. In vaccine trials of merozoite surface protein3-long synthetic peptide (MSP3-LSP), high baseline antibody levels (as a result of natural infection/high transmission intensity) in semi-immune adults were presumed to have overshadowed the inductive capacity of the vaccine [52,53]. In 18-40 yearold Burkinabe subjects, although there was some indication of cell-mediated immune response (increase in lymphocyte proliferation index and IFN-y), there was no detectable humoral immune response from MSP3-LSP vaccination when compared to children [52]. The highly variable individual antibody titers to another blood-stage vaccine candidate, the FMP1 vaccine (consisting of the 42-kDa carboxy-terminal 392 amino acids of MSP-1 and 17 non-MSP-1 amino acids encoding a 6-histidine tag plus linking sequence), in 18-55 year-old Malian adults was also attributed to the variation in background immunity [50]. When the baseline GMT for MSP-1₄₂ titer was < 3,000 there was an 8-fold or greater increase in titer after vaccination; but when the baseline titer is > 20,000, the observed increase was only < 2-fold. This was similar in 18–55 year-old Kenyan adults [51]: the highest rise in antibody responses was seen in individuals with low pre-existing antibody titers. In Mali, antibody titers rose from < 6,000 to a peak of nearly 38,000 vs an increase from 17,000 to 46,000 in Kenya [50]. Regression lines fitted using data from Day 0, 75 and 90 in the two study sites, showed similar rates of increase in vaccine-induced antibody responses to the 3D7 alleles of MSP-1₄₂ and MSP-1₁₉ with only

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

pre-existing antibody titers as the difference.

Valuable clues can be obtained in younger age groups. In a multi-site (Burkina Faso, Gabon, Ghana and Uganda) phase 2 children (12–60 months-old) trial of a recombinant vaccine with glutamate-rich protein and MSP3 antigens (GMZ2), there was a greater increase in anti-GMZ2 antibodies in children 1–2 years-old compared to children 3–4 years-old (14-fold increase, 95% CI 8.7, 23 vs 5.7-fold, 95% CI 4.0, 8.2; respectively) [55]. Children with low baseline antibody titers to GMZ2 responded strongly to vaccination, whereas those with more exposure to *P. falciparum* infection showed a smaller boost in anti-GMZ2 IgG titers.

In a recent report of an RH5 phase 1b trial in Bagamoyo, Tanzania with 3 age cohorts (18-35 years, 1-6 years and 6-11 months) higher anti-RH5 IgG antibody was induced in pediatric groups (6 to 10-fold higher) compared to the adults [56]. ChAd63-MVA RH5 is another blood-stage vaccine based on the reticulocyte-binding protein homolog 5 (RH5) formulated with recombinant replication-deficient chimpanzee adenovirus serotype 64 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA). Authors determined that there was no significant correlation between existing anti-vector immunity at baseline and the humoral immunogenicity obtained 14 days after vaccination. The pre-existing anti-ChAd63 antibody was found to be unlikely the reason for improved immunogenicity and the high titers in younger age groups was attributed to greater B cell immunogenicity and/or

relatively higher vaccine dose per unit body mass in infants and children [56].

4.2 Parasitemia on vaccination day was associated with reduced humoral immunogenicity/immunosuppression. Low response to vaccination in infected individuals has been reported in pre-erythrocytic vaccine trials (Table 1). Also, as mentioned for BK-SE36, reduced response in Burkinabe children was associated with concomitant infection at the time of administration [34]. The effect of parasite clearance with sulphadoxine-pyrimethamine (SP) a week before vaccination in 5-9 years-old Papua New Guinean children was assessed in a study using Combination B vaccine (composed of three blood-stage antigens: ring-infected erythrocyte surface antigen and MSP1 and MSP2) [49]. Interestingly, concurrent P. falciparum infection and SP pre-treatment at the time of vaccination did not alter the antibody response to this blood-stage vaccine candidate. It is, however, noted that IFN-y response to MSP1 was substantially lowered in the vaccine group who had received SP before vaccination. Further work on the possible influence of concomitant P. falciparum infection is important in vaccine

336

337

338

339

322

323

324

325

326

327

328

329

330

331

332

333

334

335

5. Host vitronectin and immunogenicity to SE47/SE36 molecule

trials conducted in malaria endemic areas.

Just as the host has developed several defenses against pathogens, pathogens have evolved a variety of immune evasion mechanisms: *e.g.*, antigenic variation, latency/sequestration, antigen

capping, antigenic disguise, molecular mimicry/molecular smokescreen, and immune suppression (inhibition of host factors, evasion of complement-mediated killing, B cell manipulation, etc.) [57,58]. Indeed, these various strategies, using one or more in combination, contribute to poor immunogenicity or the lack of effective vaccines for several viruses (*e.g.* herpes simplex virus, human immuno-deficiency virus), bacteria (*Mycobacterium tuberculosis*, *Helicobacter pylori*), and parasites (*Leishmania*, *Trypanosoma*) [59].

subterfuge can be seen from Schistosoma mansoni and S. haematobium where a protein with 98% identical nucleotide is shared with the human ortholog complement C2 receptor inhibitory trispannin gene; Taenia solium uses the parasite protein paramyosin to inhibit complement proteins that in turn binds to another complement to inhibit the membrane attack complexes (MAC); Brugia malayi generates a protein similar to host keratinocytes periphilin-1 protein [58,60]. Being recognized as "self", the parasites camouflage themselves to avoid recognition by the host immune system. In silico genome-wide identification in P. falciparum has identified several var family members of erythrocyte membrane protein 1 (PfEMP1) having a stretch of 13 to 16 amino acids identical to the heparin-binding domain in human vitronectin [60]. The candidate mimicry motif in vitronectin is in the N-terminal half and in PfEMP1 the motif lies in the extracellular part of the protein, close to the predicted transmembrane domain. A mimicked

structure was also found in TRAP and CSP.

Vitronectin has been implicated as one of the serum proteins that function for the adhesion of parasites to endothelial receptors and is selectively internalized and associated with malaria pathogenicity [61]. Known as the glue protein, it is reported to promote cytoadherence, tissue regeneration, cell colonization, stabilization of plasminogen activator inhibitor 1, and inhibition of the formation of the pore-forming MAC of the complement system [61-68]. The protein is abundant in the extracellular matrix of different tissues and in the serum.

5.2 SE36 molecule tightly binds to vitronectin. In further efforts to elucidate the role of SE36 and understand the heterogeneity in immunological responses in vaccinated subjects, proteins binding to SE36 were elucidated. Using SE36-immobilized column, Tougan et al. [69] demonstrated that while vitronectin in naive human serum and Ugandan high titer serum equally bound to SE36 even in the presence of other serum proteins (Fig. 2B), no clear direct binding was observed for complement factors (C5, C7, C8, C9, and H), apolipoproteins (ApoAI, HDL, and LDL), thrombin, clusterin, fibronectin, serum albumin, CD5L, or CD14. Purified vitronectin, not human serum albumin, bound to SE36 in a concentration dependent manner. Binding of SE36 to vitronectin occurred even on commercially available vitronectin lacking somatomedin-B motif and Hemopexin domain 4, suggesting that both domains may not be essential for binding. The study also showed that since the recombinant *E. coli-*produced

vitronectin is not glycosylated, the glycosylation moiety may also not be necessary.

Vitronectin was internalized before DNA replication when SERA5 was not yet expressed [69,70]. At the trophozoite stage, vitronectin colocalizes with SERA5; and with the processed 47-kDa fragment during the schizont stage and on the merozoite surface [69]. The binding (dimer bound as predicted by surface plasmon resonance) site was mapped to 18 residues (NH2-Tyr-Lys-Tyr-Leu-Ser-Glu-Asp-Ile-Val-Ser-Asn-Phe-Lys-Glu-Ile-Lys-Ala-Glu-COOH) in the C-terminal region of SE36. This site is predicted to form an α -helix structure [20] and was conserved in 445 geographically distributed *P. falciparum* parasites [13,71]. The binding was tight (equilibrium dissociation constant, $K_{D1} = 3.7 \times 10^{-9} \text{ M}$), concentration-dependent and specific, observed even in the presence of other serum proteins or under the presence of naturally acquired anti-SE36 IgG [69].

5.3 SE47-vitronectin complex camouflage merozoites. To elucidate the role of vitronectin on the merozoite surface, SE36 beads acted as merozoite models in a phagocytosis assay with and without vitronectin [69]. IgG-independent phagocytosis was demonstrated using IgG purified from naïve human serum and Ugandan high anti-SE36 IgG titer serum. Without vitronectin, it was demonstrated that SE36-beads were engulfed by THP-1 cells in an antibody-independent manner. When vitronectin was bound to SE36 beads, engulfment by THP-1 monocytes was inhibited. Several other host proteins (e.g. thrombin; antithrombin III;

complements C9, C7) were significantly recruited on the merozoite surface. Unlike vitronectin, these host proteins do not have the motif or structural similarity to facilitate direct binding to SE36. Moreover, the specificity of inhibition was confirmed when inhibition was partially recovered using vitronectin-depleted sera. The binding of several other host proteins is consistent with vitronectin acting as a glue or bridging molecule [61,63,65,68]. Interestingly, although *in silico* analysis revealed that most var family members of PfEMP1, TRAP and CSP had a stretch of 13-16 amino acids identical to the heparin-binding domain (HB1) in vitronectin acting as a mimicry motif [60], the binding site of vitronectin to SE36 was demonstrated at the hemopexin domain (with remarkable binding in regions between hemopexin motifs 2 and 3; near HB2) [69]. Binding to hemopexin-type repeats in human vitronectin was first reported in *Streptococcus pyrogenes* [72].

In different pathogens the vitronectin-binding molecules interact with a conserved region in the host vitronectin molecule to regulate the complement mediated lysis [64-68].

Streptococcus pneumoniae [66] engage vitronectin to bind various oligosaccharides and complement inhibitor Factor H for stronger adhesion and effective bacterial colonization to host cells. In Haemophilus influenzae, a gram-negative pathogen, the binding of vitronectin acted as an intermediate bridging molecule to form a multicomplex of bacterial and human proteins that served for adherence to host cells as well as inhibited the host immune response by inactivating

the formation of MAC [67]. The binding of vitronectin on the surface of *Helicobacter pylori* (specifically sulfated polysaccharides), in the presence of complement, was shown to inhibit phagocytosis by macrophages [64]. The resulting vitronectin-C5b-7 complex cannot be inserted into the cell membrane [65]; blocks the membrane binding site of Cb5-7 and the deposition/polymerization of C9 effectively inhibiting MAC formation [68]. In malaria parasites, MAC formation can lyse sporozoites, merozoites and gametes and its formation was reportedly controlled by CD59, clusterin and vitronectin [73]. Although further studies are needed to understand the multifaceted profile of vitronectin (to prevent attack by phagocytes and/or evasion by direct lysis by complement) and how it is exploited by malaria parasites, the binding to SE36 was shown to aid in the binding of other host factors which in turn camouflages the merozoite contributing to evasion from the host immune response.

5.4 Limited polymorphism of SE36. Antigenic polymorphism is well documented as one of the most difficult hurdles for the development of effective malaria vaccines, especially for those targeting the blood-stages [7,9,74]. Added to the list of mechanisms by which SERA5/SE36 is protected from the host immune response (aside from functional redundancy and expansion of family members) would be molecular camouflage. As shown above, the presentation of vitronectin-bound-SE36, as a result of infection, was exploited by the parasite to modulate immunity such that SE36 disguises itself avoiding host clearance leading to the gradual acquisition of immune tolerance.

Immune tolerance may explain why adults or those with high baseline antibody titers before vaccination were low/non-responders and as a whole had low seroconversion compared to subjects with low baseline antibody titers. Indeed, young children or individuals with limited malaria infection history would respond better to BK-SE36 vaccination (Fig. 2A) similar to malaria naïve Japanese adults. This response was seen in all BK-SE36 clinical trials reported to date: individuals with high pre-existing anti-SE36 antibodies had markedly lower antibody response [28,30].

The observed immune tolerance from the host may explain why SERA5 is less likely to be under substantial immune selection pressure compared to other blood-stage malaria vaccine antigens such as AMA1 and CSP. Indeed, *ama1* and *csp* show high nucleotide diversity and significant levels of positive selection (dN>dS) in contrast to *sera5* [71]. The nucleotide diversity of non-repeat regions in the vaccine candidate SE36 was comparable to the housekeeping genes of P-type Ca2+-ATPase and adenylosuccinate lyase (Fig 2C) [13,71]. In a sero-epidemiological study in the Solomon Islands, <50% of adults and <10% of children under 10 years were seropositive to anti-SE36, although higher seropositivity to MSP-1 was observed in the population [21]. The low immunogenicity would mean consequently limited immune pressure for SERA5 which would suggest a limited need for the parasite to acquire mutations to escape the host immune response. From pre-clinical studies, polymorphism in SERA5 may not hamper the potency of SE36 since mouse, rat, or monkey antibodies raised against SE36 cross-react to all the parasite lines so far

examined. Mouse and rat antibodies against SE36 have been shown to inhibit the intraerythrocytic proliferation of parasites *in vitro* [20].

From our studies, SERA5 polymorphism is largely confined to the repeat regions of the gene [13,71,75-77]. There were variations in the number of octamer repeats and serine repeat regions near the N-terminal region of SERA5. Polymorphic sites in the non-repeat regions was confined to 24 nucleotides, and there was no strong signature of positive selection. Sequence analyses performed on strains collected from the two clinical trial/follow-up studies, and cross-sectional studies in Africa did show a consensus sequence with African-specific polymorphisms [77]. It was however, reassuring to note that despite mismatches with the BK-SE36 sequence (based on Honduras 1 strain) in the octamer repeat, serine repeat and flanking regions, and single-nucleotide polymorphisms in non-repeat regions, these polymorphisms did not compromise vaccine response and the observed promising effectiveness based on phase 1 trials [28,30,36]. Of note, sequence analysis of 445 geographically distributed P. falciparum parasites showed one genetic polymorphism, "Asn" to "Lys" at the 11th residue, in the 18 residues implicated for vitronectin binding [69]. It is suggested that the binding property of vitronectin is almost conserved in worldwide *P. falciparum* parasites.

463

464

465

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

6. Conclusion and perspective

Immune evasion strategies in malaria contribute to parasite persistence and immune

dysregulation making it difficult to develop effective vaccines. To achieve a robust immune response and consequently high protective efficacy, it will be ideal to overcome some factors which limit the host's ability to respond efficiently to vaccine administration. There are differences in how vaccines may work in malaria naïve adults and in immunized African infants/children and adults. We have observed variations in vaccine responsiveness in our clinical trials which is highlighted for further studies. So far clinical trials for SE36 do provide valuable positive clues: acceptable reactogenicity, absence of unexpected safety signals, favorable immunogenicity profile (immune response can be boosted by natural infection, absence of allele-specific immune response), and an immune response across an HLA diverse population. Some bridging studies and practical strategies may aim to circumvent the immature immune system in infants, e.g. presumably postponing vaccination similar to vaccination recommendations for measles and yellow fever. Immune tolerance from previous exposure/immune suppression may evaluate the vaccination schedule, the intervention of chemoprophylaxis/drug pre-treatment or the use of potent novel adjuvants. Current trials do show that delaying the third dose is beneficial. The lack of data on cell-mediated immunity in SE36 and a robust functional assay are some limitations that need to be addressed. Although a few cytokine analyses and complement assays have been done, streamlining and standardization of these assays could prove valuable. Investigation of the underlying mechanisms of

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

484 suppression of vaccine responses can reveal novel insights into the capabilities and limitations 485 of human immunity and enhance vaccine effectiveness. So far a hypothesis of immune 486 tolerance/immune suppression has been suggested but the mechanism has not been thoroughly elucidated. 487 488 489 490 Declaration of interest: TH is the inventor of BK-SE36; TH, KJI, and TT are inventors of BK-491 SE36/CpG. NP and TH are both supported by a research fund from Nobelpharma Co., Ltd 492 (NPC), the clinical trial sponsor of Burkina Faso trials. These involvements did not influence 493 the writing of this review and the decision to submit the article for publication. 494 495 **Acknowledgements:** Authors gratefully acknowledges the funding support from NPC. 496 497 Funding: The writing of this review did not receive any specific grant from funding agencies in 498 the public, commercial, or not-for-profit sectors. 499 500 **Author contributions:** 501 NP and TH drafted the review; NA created Fig. 2C. All authors read, edited and approved the 502 manuscript.

504	1.	World Health Organization, World Malaria Report 2022.
505		https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-
506		2022 (accessed 20 November 2023).
507		
508	2.	L. Geddes, The groundbreaking history of the world's first malaria vaccine. 3 December
509		2021. https://www.gavi.org/vaccineswork/groundbreaking-history-worlds-first-malaria-
510		vaccine (accessed 20 November 2023).
511		
512	3.	Y.Y. Syed, RTS,S/AS01 malaria vaccine (Mosquirix®): a profile of its use, Drugs Ther
513		Perspect. 38 (9) (2022) 373-381. doi: 10.1007/s40267-022-00937-3.
514		
515	4.	M.S. Datoo, H.M. Natama, A. Somé, D. Bellamy, O. Traoré, T. Rouamba, M.C. Tahita,
516		N.F.A. Ido, P. Yameogo, D. Valia, A. Millogo, F. Ouedraogo, R. Soma, S. Sawadogo, F.
517		Sorgho, K. Derra, E. Rouamba, F. Ramos-Lopez, M. Cairns, S. Provstgaard-Morys, J.
518		Aboagye, A. Lawrie, R. Roberts, I. Valéa, H. Sorgho, N. Williams, G. Glenn, L. Fries, J.
519		Reimer, K.J. Ewer, U. Shaligram, A.V.S. Hill, H. Tinto, Efficacy and immunogenicity of
520		R21/Matrix-M vaccine against clinical malaria after 2 years' follow-up in children in
521		Burkina Faso: a phase 1/2b randomised controlled trial, Lancet Infect Dis. 22 (12)
522		(2022) 1728-1736. doi: 10.1016/S1473-3099(22)00442-X.
523		
524	5.	J. Zarocostas, Gavi unveils malaria vaccine plans, Lancet, 401 (10387) (2023) 1485.
525		doi: https://doi.org/10.1016/S0140-6736(23)00902-9.
526		
527	6.	A. Olotu, G. Fegan, J. Wambua, G. Nyangweso, A. Leach, M. Lievens, D.C. Kaslow, P.
528		Njuguna, K. Marsh, P. Bejon, Seven-year efficacy of RTS,S/AS01 malaria vaccine
529		among young African children, N Engl J Med. 374 (26) (2016) 2519-2529. doi:
530		10.1056/NEJMoa1515257.
531	_	
532	7.	L. Rénia, Y.S. Goh, Malaria Parasites: The Great Escape, Front Immunol. 7 (2016) 463.
533		doi: 10.3389/fimmu.2016.00463.

References

535	8.	I.A. Cockburn, R.A. Seder, Malaria prevention: from immunological concepts to
536		effective vaccines and protective antibodies, Nat Immunol. 19 (11) (2018) 1199-1211.
537		doi: 10.1038/s41590-018-0228-6.
538		
539	9.	N.M.Q. Palacpac, T. Horii, Malaria vaccines: facing unknowns. F1000Res. 9 (F1000
540		Faculty Rev) (2020) 296. doi: 10.12688/f1000research.22143.1.
541		
542	10	S.R. Bonam, L. Rénia, G. Tadepalli, J. Bayry, H.M.S. Kumar, <i>Plasmodium falciparum</i>
543		malaria vaccines and vaccine adjuvants, Vaccines (Basel) 9 (10) (2021) 1072. doi:
544		10.3390/vaccines9101072.
545		
546	11.	C.L. Calle, B. Mordmüller, A. Singh, Immunosuppression in malaria: do <i>Plasmodium</i>
547		falciparum parasites hijack the host?, Pathogens 10 (10) (2021) 1277. doi:
548		10.3390/pathogens10101277.
549		
550	12.	N. Arisue, S. Kawai, M. Hirai, N.M. Palacpac, M. Jia, A. Kaneko, K. Tanabe, T. Horii,
551		Clues to evolution of the SERA multigene family in 18 Plasmodium species, PLoS One
552		6 (3) (2011) e17775. doi: 10.1371/journal.pone.0017775.
553		
554	13.	N. Arisue, N.M.Q. Palacpac, T. Tougan, T. Horii T. Characteristic features of the SERA
555		multigene family in the malaria parasite, Parasit Vectors. 13 (1) (2020) 170. doi:
556		10.1186/s13071-020-04044-y.
557		
558	14	S.K. Miller, R.T. Good, D.R. Drew, M. Delorenzi, P.R. Sanders, A.N. Hodder, T.P.
559		Speed, A.F. Cowman, T.F. de Koning-Ward, B.S. Crabb, A subset of <i>Plasmodium</i>
560		falciparum SERA genes are expressed and appear to play an important role in the
561		erythrocytic cycle, J Biol Chem. 277 (49) (2002) 47524-47532. doi:
562		10.1074/jbc.M206974200.
563		
564	15.	S. Aoki, J. Li, S. Itagaki, B.A. Okech, T.G. Egwang, H. Matsuoka, N.M. Palacpac, T.
565		Mitamura, T. Horii, Serine repeat antigen (SERA5) is predominantly expressed among

566		the SERA multigene family of <i>Plasmodium falciparum</i> , and the acquired antibody titers
567		correlate with serum inhibition of the parasite growth, J Biol Chem. 277 (49) (2002)
568		47533-47540. doi: https://doi.org/10.1074/jbc.M207145200.
569		
570	16.	B.A. Okech BA, Nalunkuma A, Okello D, Pang XL, Suzue K, Li J, Horii T, Egwang
571		TG. Natural human immunoglobulin G subclass responses to <i>Plasmodium falciparum</i>
572		serine repeat antigen in Uganda. Am J Trop Med Hyg. 2001 Dec;65(6):912-7. doi:
573		https://doi.org/10.4269/ajtmh.2001.65.912.
574		
575	17.	B. Okech, G. Mujuzi, A. Ogwal, H. Shirai, T. Horii, T.G. Egwang, High titers of IgG
576		antibodies against Plasmodium falciparum serine repeat antigen 5 (SERA5) are
577		associated with protection against severe malaria in Ugandan children, Am J Trop Med
578		Hyg. 74 (2) (2006) 191-197. doi: https://doi.org/10.4269/ajtmh.2006.74.191.
579		
580	18.	S. Arastu-Kapur, E.L. Ponder, U.P. Fonović, S.Yeoh, F. Yuan, M. Fonović, M. Grainger,
581		C.I. Phillips, J.C. Powers, M. Bogyo, Identification of proteases that regulate
582		erythrocyte rupture by the malaria parasite <i>Plasmodium falciparum</i> . Nat Chem Biol. 4
583		(3) (2008) 203-13. doi: 10.1038/nchembio.70.
584		
585	19.	A. Alam, V.S. Chauhan, Inhibitory potential of prodomain of <i>Plasmodium falciparum</i>
586		protease serine repeat antigen 5 for asexual blood stages of parasite, PLoS One 7 (1)
587		(2012) e30452. doi: 10.1371/journal.pone.0030452.
588		
589	20.	M. Yagi, G. Bang, T. Tougan, N.M. Palacpac, N. Arisue, T. Aoshi, Y. Matsumoto, K.J.
590		Ishii, T.G. Egwang, P. Druilhe, T. Horii, Protective epitopes of the <i>Plasmodium</i>
591		falciparum SERA5 malaria vaccine reside in intrinsically unstructured N-terminal
592		repetitive sequences, PLoS One. 9 (6) (2014) e98460.
593		doi:10.1371/journal.pone.0098460.
594		
595	21.	T. Horii, H. Shirai, L. Jie, K.J. Ishii, N.Q. Palacpac, T. Tougan, M. Hato, N. Ohta, A.
596		Bobogare, N. Arakaki, Y. Matsumoto, J. Namazue, T. Ishikawa, S. Ueda, M. Takahashi,

598		novel protein vaccine SE36. Parasitol Int. 59 (3) (2010) 380-386. doi:
599		10.1016/j.parint.2010.05.002.
600		
601	22.	T. Tougan, T. Aoshi, C. Coban, Y. Katakai, C. Kai, Y. Yasutomi, K.J. Ishii, T. Horii,
602		TLR9 adjuvants enhance immunogenicity and protective efficacy of the SE36/AHG
603		malaria vaccine in nonhuman primate models, Hum Vaccin Immunother. 9 (2) (2013)
604		283-290. doi: 10.4161/hv.22950.
605		
606	23.	T.J. Owalla, N.M. Palacpac, H. Shirai, T. Horii, T.G. Egwang, Association of naturally
607		acquired IgG antibodies against Plasmodium falciparum serine repeat antigen-5 with
608		reduced placental parasitemia and normal birth weight in pregnant Ugandan women: a
609		pilot study, Parasitol Int. 62 (3) (2013) 237-239. doi:
610		https://doi.org/10.1016/j.parint.2013.01.006.
611		
612	24.	G. Mujuzi, B. Magambo, B. Okech, T.G. Egwang, Pigmented monocytes are negative
613		correlates of protection against severe and complicated malaria in Ugandan children,
614		Am J Trop Med Hyg. 74 (5) (2006) 724-729. doi:
615		https://doi.org/10.4269/ajtmh.2006.74.724
616		
617	25.	B.N. Kanoi, E. Takashima, M. Morita, M.T. White, N.M. Palacpac, E.H. Ntege, B.
618		Balikagala, A. Yeka, T.G. Egwang, T. Horii, T. Tsuboi, Antibody profiles to wheat germ
619		cell-free system synthesized <i>Plasmodium falciparum</i> proteins correlate with protection
620		from symptomatic malaria in Uganda, Vaccine. 35 (6) (2017) 873-881. doi:
621		https://doi.org/10.1016/j.vaccine.2017.01.001
622		
623	26.	R.N. Coler, D. Carter, M. Friede, S.G. Reed, Adjuvants for malaria vaccines, Parasite
624		Immunol. (2009) 520-528. doi: 10.1111/j.1365-3024.2009.01142.x.
625		
626	27.	S. Pirahmadi, S. Zakeri, N.D. Djadid, A.A. Mehrizi, A review of combination adjuvants
627		for malaria vaccines: a promising approach for vaccine development, Int J Parasitol. 51

Evidences of protection against blood-stage infection of Plasmodium falciparum by the

628	(9) (2021) 699-717. doi: 10.1016/j.ijpara.2021.01.006.
629	
630	28. N.M. Palacpac, E. Ntege, A. Yeka, B. Balikagala, N. Suzuki, H. Shirai, M. Yagi, K. Ito,
631	W. Fukushima, Y. Hirota, C. Nsereko, T. Okada, B.N. Kanoi, K. Tetsutani, N. Arisue, S.
632	Itagaki, T. Tougan, K.J. Ishii, S. Ueda, T.G. Egwang, T. Horii, Phase 1b randomized trial
633	and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36,
634	PLoS One. 8 (5) (2013) e64073. doi: 10.1371/journal.pone.0064073.
635	
636	29. S. Ezoe, N.M.Q. Palacpac, K. Tetsutani, K. Yamamoto, K. Okada, M. Taira, S. Nishida,
637	H. Hirata, A. Ogata, T. Yamada, M. Yagi, J.R. Edula, Y. Oishi, T. Tougan, K.J. Ishii, A.
638	Myoui, T. Horii, First-in-human randomised trial and follow-up study of <i>Plasmodium</i>
639	falciparum blood-stage malaria vaccine BK-SE36 with CpG-ODN(K3), Vaccine. 38
640	(46) (2020) 7246-7257. doi: 10.1016/j.vaccine.2020.09.056
641	
642	30. E.C. Bougouma, N.M.Q. Palacpac, A.B. Tiono, I. Nebie, A. Ouédraogo, S. Houard, M.
643	Yagi, S.A. Coulibaly, A. Diarra, T. Tougan, A.Z. Ouedraogo, I. Soulama, N. Arisue, J.B.
644	Yaro, F. D'Alessio, O. Leroy, S. Cousens, T. Horii, S.B. Sirima, Safety and
645	immunogenicity of BK-SE36 in a blinded, randomized, controlled, age de-escalating
646	phase Ib clinical trial in Burkinabe children, Front Immunol. 13 (2022) 978591. doi:
647	10.3389/fimmu.2022.978591.
648	
649	31. T. Tougan, K. Ito, N.M. Palacpac, T.G. Egwang, T. Horii, Immunogenicity and
650	protection from malaria infection in BK-SE36 vaccinated volunteers in Uganda is not
651	influenced by HLA-DRB1 alleles, Parasitol Int. 65 (5 Pt A) (2016) 455-458.
652	https://doi.org/10.1016/j.parint.2016.06.012.
653	
654	32. M. Yagi, N.M. Palacpac, K. Ito, Y. Oishi, S. Itagaki, B. Balikagala, E.H. Ntege, A. Yeka,
655	B.N. Kanoi, O. Katuro, H. Shirai, W. Fukushima, Y. Hirota, T.G. Egwang, T. Horii,
656	Antibody titres and boosting after natural malaria infection in BK-SE36 vaccine
657	responders during a follow-up study in Uganda, Sci Rep. 6 (2016) 34363. doi:
658	10.1038/srep34363.

659		
660	33.	C.A. Janeway Jr, P. Travers, M. Walport, et al, Immunobiology: The Immune System in
661		Health and Disease, 5th edition, New York: Garland Science, 2001. Immunological
662		memory. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27158/ (accessed 20
663		November 2023).
664		
665	34.	A.B. Tiono, N.M.Q. Palacpac, E.C. Bougouma, I. Nebie, A. Ouédraogo, S. Houard, N.
666		Arisue, F. D'Alessio, T. Horii, S.B. Sirima, <i>Plasmodium falciparum</i> infection coinciding
667		with the malaria vaccine candidate BK-SE36 administration interferes with the immune
668		responses in Burkinabe children, Front. Immunol. 14 (2023) 1119820. doi:
669		10.3389/fimmu.2023.1119820
670		
671	35.	M.B. Laurens, RTS,S/AS01 vaccine (Mosquirix TM): an overview, Hum Vaccin
672		Immunother. 16 (3) (2020) 480-489. doi: 10.1080/21645515.2019.1669415.
673		
674	36.	A. Ouedraogo, E.C. Bougouma, N.M.Q. Palacpac, S.A. Houard, I. Nebie, J. Sawadogo,
675		G.D. Berges, I. Soulama, A. Diarra, D. Hien, A.Z. Ouedraogo, A.T. Konate, S.
676		Kouanda, A. Myoui, S. Ezoe, K.J. Ishii, T. Sato, F. D'Alessio, O. Leroy, A.B. Tiono, S.
677		Cousens, T. Horii, S.B. Sirima, Safety and immunogenicity of BK-SE36/CpG malaria
678		vaccine in healthy Burkinabe adults and children: a phase 1b randomised, controlled,
679		double blinded, age de-escalation trial, Front Immunol. 14 (2023)1267372. doi:
680		10.3389/fimmu.2023.1267372.
681		
682	37.	J.M. Obiero, S. Shekalaghe, C.C. Hermsen, M. Mpina, E.M. Bijker, M. Roestenberg, K.
683		Teelen, P.F. Billingsley, B.K. Sim, E.R. James, C.A.Daubenberger, S.L. Hoffman, S.
684		Abdulla, R.W. Sauerwein, A. Scholzen, Impact of malaria preexposure on antiparasite
685		cellular and humoral immune responses after controlled human malaria infection, Infect
686		Immun. 83 (5) (2015) 2185-2196. doi: 10.1128/IAI.03069-14.
687		
688	38.	N. KC, L.W.P. Church, P. Riyahi, S. Chakravarty, R.A. Seder, J.E. Epstein, K.E. Lyke,
689		B. Mordmüller, P.G. Kremener, M.S. Sissoko, S. Healy, P.E. Duffy, S.A. Jongo

690		V.U.N.N. Nchama, S. Abdulla, M. Mpina, S.B. Sirima, L.C. Laurens Steinhardt, M.
691		Oneko, M. Li, T. Murshedkar, P.F. Billingsley, B.K.L. Sim, T.L. Richie, S.L. Hoffman
692		SL, Increased levels of anti-PfCSP antibodies in post-pubertal females versus males
693		immunized with PfSPZ Vaccine does not translate into increased protective efficacy,
694		Front. Immunol. 13 (2022) 1006716. doi: 10.3389/fimmu.2022.1006716
695		
696	39.	S.C. Murphy, G.A. Deye, B.K.L. Sim, S. Galbiati, J.K. Kennedy, K.W. Cohen, S.
697		Chakravarty, N. Kc, Y. Abebe, E.R. James, J.G. Kublin, S.L. Hoffman, T.L. Richie, L.A.
698		Jackson, PfSPZ-CVac efficacy against malaria increases from 0% to 75% when
699		administered in the absence of erythrocyte stage parasitemia: A randomized, placebo-
700		controlled trial with controlled human malaria infection, PLoS Pathog. 17 (5) (2021)
701		e1009594. doi: 10.1371/journal.ppat.1009594.
702		
703	40.	K.M. Abuga, W. Jones-Warner, J.C.R Hafalla, Immune responses to malaria pre-
704		erythrocytic stages: Implications for vaccine development, Parasite Immunol. 43 (2)
705		(2021) e12795. doi: 10.1111/pim.12795.
706		
707	41.	H. Nunes-Cabaço, D. Moita, M. Prudêncio, Five decades of clinical assessment of
708		whole-sporozoite malaria vaccines, Front Immunol. 13 (2022) 977472. doi:
709		10.3389/fimmu.2022.977472.
710		
711	42.	G. Feng, L. Kurtovic, P.A. Agius, E.H. Aitken, J. Sacarlal, B.D. Wines, P.M. Hogarth,
712		S.J. Rogerson, F.J.I. Fowkes, C. Dobaño, J.G. Beeson, Induction, decay, and
713		determinants of functional antibodies following vaccination with the RTS,S malaria
714		vaccine in young children, BMC Med. 20 (2022) 289. doi: 10.1186/s12916-022-02466-
715		2.
716		
717	43.	P. Vandoolaeghe, L. Schuerman. The RTS,S/AS01 malaria vaccine in children 5 to 17
718		months of age at first vaccination, Expert Rev Vaccines. 15 (2016) 1481-1493. doi:
719		10.1080/14760584.2016.1236689.
720		
721	44.	M.T. White, R. Verity, J.T. Griffin, K.P. Asante, S. Owusu-Agyei, B. Greenwood, C.

Drakeley, S. Gesase, J. Lusingu, D. Ansong, S. Adjei, T. Agbenyega, B. Ogutu, L.

723	Otieno, W. Otieno, S.T. Agnandji, B. Lell, P. Kremsner, I. Hoffman, F. Martinson, P.
724	Kamthunzu, H. Tinto, I. Valea, H. Sorgho, M. Oneko, K. Otieno, M.J. Hamel, N. Salim,
725	A. Mtoro, S. Abdulla, P. Aide, J. Sacarlal, J.J. Aponte, P. Njuguna, K. Marsh, P. Bejon,
726	E.M. Riley, A.C. Ghani, Immunogenicity of the RTS,S/AS01 malaria vaccine and
727	implications for duration of vaccine efficacy: secondary analysis of data from a phase 3
728	randomised controlled trial, Lancet Infect Dis. 15 (12) (2015) 1450-1458. doi:
729	10.1016/S1473-3099(15)00239-X.
730	
731	45. S. Khan, M. Parrillo, A.H. Gutierrez, F.E. Terry, L. Moise, W.D. Martin, A.S. De Groot,
732	Immune escape and immune camouflage may reduce the efficacy of RTS,S vaccine in
733	Malawi, Hum Vaccin Immunother. 16 (2) (2020) 214-227. doi:
734	10.1080/21645515.2018.1560772.
735	
736	46. P. Bejon, J. Mwacharo J, O. Kai, S. Todryk, S. Keating, B. Lowe, T. Lang, T.W.
737	Mwangi, S.C. Gilbert, N. Peshu, K. Marsh, A.V. Hill, The induction and persistence of
738	T cell IFN-gamma responses after vaccination or natural exposure is suppressed by
739	Plasmodium falciparum, J Immunol. 179 (6) (2007) 4193-201. doi:
740	10.4049/jimmunol.179.6.4193.
741	
742	47. R. Morter R, A.B. Tiono, I. Nébié, O. Hague, A. Ouedraogo, A. Diarra, N.K. Viebig,
743	A.V.S. Hill, K.J. Ewer, S.B. Sirima, Impact of exposure to malaria and nutritional status
744	on responses to the experimental malaria vaccine ChAd63 MVA ME-TRAP in 5-17
745	month-old children in Burkina Faso, Front Immunol. 13 (2022) 1058227. doi:
746	10.3389/fimmu.2022.1058227.
747	
748	48. B. Genton, F. Al-Yaman, R. Anders, A. Saul, G. Brown, D. Pye, D.O. Irving, W.R.
749	Briggs, A. Mai, M. Ginny, T. Adiguma, L. Rare, A. Giddy, R. Reber-Liske, D.
750	Stuerchler, M.P. Alpers, Safety and immunogenicity of a three-component blood-stage
751	malaria vaccine in adults living in an endemic area of Papua New Guinea, Vaccine. 18
752	(2000) 2504-2511. doi: https://doi.org/10.1016/S0264-410X(00)00036-0.
753	
754	49. B. Genton, F. Al-Yaman, I. Betuela, R.F. Anders, A. Saul, K. Baea, M. Mellombo, J.
755	Taraika, G.V. Brown, D. Pye, D.O. Irving, I. Felger, H.P. Beck, T.A. Smith, M.P. Alpers,

757		MSP2, RESA) against Plasmodium falciparum in Papua New Guinean children,
758		Vaccine. 22 (1) (2003) 30-41. doi: 10.1016/s0264-410x(03)00536-x.
759		
760	50.	M.A. Thera, O.K. Doumbo, D. Coulibaly, D.A. Diallo, I. Sagara, A. Dicko, D.J.
761		Diemert, D.G. Heppner Jr, V.A. Stewart, E. Angov, L. Soisson, A. Leach, K. Tucker,
762		K.E. Lyke, C.V. Plowe; Mali FMP1 Working Group. Safety and allele-specific
763		immunogenicity of a malaria vaccine in Malian adults: results of a phase I randomized
764		trial, PLoS Clin Trials. 1 (7) (2006) e34. doi: 10.1371/journal.pctr.0010034.
765		
766	51.	J.A. Stoute, J. Gombe, M.R. Withers, J. Siangla, D. McKinney, M. Onyango, J.F.
767		Cummings, J. Milman, K. Tucker, L. Soisson, V.A. Stewart, J.A. Lyon, E. Angov, A.
768		Leach, J. Cohen, K.E. Kester, C.F. Ockenhouse, C.A. Holland, C.L. Diggs, J. Wittes,
769		D.G. Heppner Jr, MSP-1 Malaria Vaccine Working Group, Phase 1 randomized double-
770		blind safety and immunogenicity trial of Plasmodium falciparum malaria merozoite
771		surface protein FMP1 vaccine, adjuvanted with AS02A, in adults in western Kenya,
772		Vaccine. 25 (1) (2007) 176-184. doi: https://doi.org/10.1016/j.vaccine.2005.11.037.
773		
774	52.	S.B. Sirima, I. Nébié, A. Ouédraogo, A.B. Tiono, A.T. Konaté, A. Gansané, A.I. Dermé,
775		A. Diarra, A. Ouédraogo, I. Soulama, N. Cuzzin-Ouattara, S. Cousens, O. Leroy, Safety
776		and immunogenicity of the <i>Plasmodium falciparum</i> merozoite surface protein-3 long
777		synthetic peptide (MSP3-LSP) malaria vaccine in healthy, semi-immune adult males in
778		Burkina Faso, West Africa, Vaccine. 25 (14) (2007) 2723-2732. doi:
779		https://doi.org/10.1016/j.vaccine.2006.05.090.
780		
781	53.	S.B. Sirima, A.B. Tiono, A. Ouédraogo, A. Diarra, A.L. Ouédraogo, J.B. Yaro, E.
782		Ouédraogo, A. Gansané, E.C. Bougouma, A.T. Konaté, Y. Kaboré, A. Traoré, R.
783		Chilengi, I. Soulama, A.J. Luty, P. Druilhe, S. Cousens, I. Nébié, Safety and
784		immunogenicity of the malaria vaccine candidate MSP3 long synthetic peptide in 12-24
785		months-old Burkinabe children, PLoS One. 4 (10) (2009) e7549. doi:
786		10.1371/journal.pone.0007549. Erratum in: PLoS One. 5 (4) (2010) doi: Mali FMP1
787		Working Group, Safety and allele-specific immunogenicity of a malaria vaccine in

Safety and immunogenicity of a three-component blood-stage malaria vaccine (MSP1,

788		10.1371/annotation/3221b8d9-038d-4e67-82fa-de6b1233b459. Druilhe, Pierre [added];
789		Roma, Chilengi [corrected to Chilengi, Roma].
790		
791	54.	M.P. Jepsen, P.S. Jogdand, S.K. Singh, M. Esen, M. Christiansen, S. Issifou, A.B.
792		Hounkpatin, U. Ateba-Ngoa, P.G. Kremsner, M.H. Dziegiel, S. Olesen-Larsen, S.
793		Jepsen, B. Mordmüller, M. Theisen, The malaria vaccine candidate GMZ2 elicits
794		functional antibodies in individuals from malaria endemic and non-endemic areas, J
795		Infect Dis. 208 (2013) 479-488. doi: 10.1093/infdis/jit185.
796		
797	55.	S.B. Sirima, B. Mordmüller, P. Milligan, U.A. Ngoa, F. Kironde, F. Atuguba, A.B.
798		Tiono, S. Issifou, M. Kaddumukasa, O. Bangre, C. Flach, M. Christiansen, P. Bang, R.
799		Chilengi, S. Jepsen, P.G. Kremsner, M. Theisen, GMZ2 Trial Study Group, A phase 2b
800		randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African
801		children, Vaccine. 34 (38) (2016) 4536-4542. doi: 10.1016/j.vaccine.2016.07.041.
802		
803	56.	S.E. Silk, W.F. Kalinga, I.M. Mtaka, N.S. Lilolime, M. Mpina, F. Milando, S. Ahmed,
804		A. Diouf, F. Mkwepu, B. Simon, T. Athumani, M. Rashid, L. Mohammed, O. Lweno,
805		A.M. Ali, G. Nyaulingo, B. Mwalimu, S. Mswata, T.G. Mwamlima, J.R. Barrett, L.T.
806		Wang, Y. Themistocleous, L.D.W. King, S.H. Hodgson, R.O. Payne, C.M. Nielsen,
807		A,M. Lawrie, F.L. Nugent, J.S. Cho, C.A. Long, K. Miura, S.J. Draper, A.M. Minassian
808		A.I. Olotu, Superior antibody immunogenicity of a viral-vectored RH5 blood-stage
809		malaria vaccine in Tanzanian infants as compared to adults, Med. 4 (10) (2023) 668-
810		686.e7. doi: 10.1016/j.medj.2023.07.003.
811		
812	57.	C.A. Janeway Jr, P. Travers, M. Walport, et al, Immunobiology: The Immune System in
813		Health and Disease, 5th edition, New York: Garland Science, 2001. Pathogens have
814		evolved various means of evading or subverting normal host defenses. Available from:
815		https://www.ncbi.nlm.nih.gov/books/NBK27176/ (accessed 20 November 2023).
816		
817	58.	M. Chulanetra, W. Chaicumpa, Revisiting the mechanisms of immune evasion
818		employed by human parasites, Front Cell Infect Microbiol. 11 (2021) 702125. doi:
819		10.3389/fcimb.2021.702125.

820	
821	59. A.S. De Groot, L. Moise, R. Liu, A.H. Gutierrez, R. Tassone, C. Bailey-Kellogg, W.
822	Martin, Immune camouflage: relevance to vaccines and human immunology, Hum
823	Vaccin Immunother. 10 (12) (2014) 3570-3575. doi: 10.4161/hv.36134.
824	
825	60. P. Ludin, D. Nilsson, P. Mäser, Genome-wide identification of molecular mimicry
826	candidates in parasites, PLoS One. 6 (3) (2011) e17546. doi:
827	10.1371/journal.pone.0017546
828	
829	61. A. Mahamar, O. Attaher, B. Swihart, A. Barry, B.S. Diarra, M.B. Kanoute, K.B. Cisse,
830	A.B. Dembele, S. Keita, B. Gamain, S. Gaoussou, D. Issiaka, A. Dicko, P.E. Duffy, M.
831	Fried, Host factors that modify Plasmodium falciparum adhesion to endothelial
832	receptors, Sci Rep. 7 (1) (2017) 13872. doi: 10.1038/s41598-017-14351-7.
833	
834	62. O.D. Liang, M. Maccarana, J.I. Flock, M. Paulsson, K.T. Preissner, T. Wadström,
835	Multiple interactions between human vitronectin and Staphylococcus aureus, Biochim
836	Biophys Acta. 1225 (1) (1993) 57-63. doi: 10.1016/0925-4439(93)90122-h.
837	
838	63. I. Schvartz, D. Seger, S. Shaltiel, Vitronectin, Int J Biochem Cell Biol. 31 (5) (1999)
839	539-544. doi: 10.1016/s1357-2725(99)00005-9.
840	
841	64. J.D. Dubreuil, G.D. Giudice, R. Rappuoli, <i>Helicobacter pylori</i> interactions with host
842	serum and extracellular matrix proteins: potential role in the infectious process,
843	Microbiol Mol Biol Rev. 66 (4) (2002) 617-629, table of contents. doi:
844	10.1128/MMBR.66.4.617-629.2002.
845	
846	65. B. Singh, Y.C. Su, K. Riesbeck, Vitronectin in bacterial pathogenesis: a host protein
847	used in complement escape and cellular invasion, Mol Microbiol. 78 (3) (2010) 545-60.
848	doi: 10.1111/j.1365-2958.2010.07373.x.
849	
850	66. S. Kohler, T. Hallström, B. Singh, K. Riesbeck, G. Spartà, P.F. Zipfel, Hammerschmidt
851	S. Binding of vitronectin and Factor H to Hic contributes to immune evasion of

852		Streptococcus pneumoniae serotype 3. Thromb Haemost. 113 (1) (2015) 125-42. doi:
853		10.1160/TH14-06-0561
854		
855	67.	B.L. Duell, Y.C. Su, K. Riesbeck, Host-pathogen interactions of nontypeable
856		Haemophilus influenzae: from commensal to pathogen, FEBS Lett. 590 (21) (2016)
857		3840-3853. doi: https://doi.org/10.1002/1873-3468.12351.
858		
859	68.	T. Hallström, B. Singh, P. Kraiczy, S. Hammerschmidt, C. Skerka, P.F. Zipfel, K.
860		Riesbeck, Conserved patterns of microbial immune escape: pathogenic microbes of
861		diverse origin target the human terminal complement inhibitor vitronectin via a single
862		common motif, PLoS One. 11 (1) (2016) e0147709. doi:
863		10.1371/journal.pone.0147709.
864		
865	69.	T. Tougan, J.R. Edula, E. Takashima, M. Morita, M. Shinohara, A. Shinohara, T. Tsuboi,
866		T. Horii, Molecular camouflage of <i>Plasmodium falciparum</i> merozoites by binding of
867		host vitronectin to P47 fragment of SERA5, Sci Rep. 8 (1) (2018) 5052. doi:
868		10.1038/s41598-018-23194-9.
869		
870	70.	T. Tougan, J.R. Edula, M. Morita, E. Takashima, H. Honma, T. Tsuboi, T. Horii, The
871		malaria parasite Plasmodium falciparum in red blood cells selectively takes up serum
872		proteins that affect host pathogenicity, Malar J. 19 (1) (2020) 155. doi: 10.1186/s12936-
873		020-03229-1.
874		
875	71.	K. Tanabe, N. Arisue, N.M. Palacpac, M. Yagi, T. Tougan, H. Honma, M.U. Ferreira, A.
876		Färnert, A. Björkman, A. Kaneko, M. Nakamura, K. Hirayama, T. Mita, T. Horii,
877		Geographic differentiation of polymorphism in the <i>Plasmodium falciparum</i> malaria
878		vaccine candidate gene SERA5, Vaccine. 30 (9) (2012) 1583-1593. doi:
879		https://doi.org/10.1016/j.vaccine.2011.12.124
880		
881	72	O.D. Liang, K.T. Preissner, G.S. Chhatwal, The hemopexin-type repeats of human
882	14.	vitronectin are recognized by <i>Streptococcus pyogenes</i> , Biochem Biophys Res Commun.
883		234 (2) (1997) 445-449 doi: https://doi.org/10.1006/bbrc.1997.6663
$\alpha\alpha$		/ 14 L/ LL 177 / 144 1-447 - OOL THIDS //OOLOLY/TU TUUD/DDFC 177 / DDD 1

884	
885	73. P.K. Kiyuka, S. Meri, A. Khattab, Complement in malaria: immune evasion strategies
886	and role in protective immunity, FEBS Lett. 594 (16) (2020) 2502-2517. doi:
887	https://doi.org/10.1002/1873-3468.13772.
888	
889	74. G.J. Wright, J.C. Rayner, Plasmodium falciparum erythrocyte invasion: combining
890	function with immune evasion, PLoS Pathogens. 10 (3) (2014) e1003943. doi:
891	10.1371/journal.ppat.1003943.
892	
893	75. K. Morimatsu, T. Morikawa, K. Tanabe, D.J. Bzik, T. Horii, Sequence diversity in the
894	amino-terminal 47 kDa fragment of the Plasmodium falciparum serine repeat antigen,
895	Mol Biochem Parasitol. 86 (2) (1997) 249-254. doi: 10.1016/s0166-6851(97)00038-8.
896	
897	76. I. Safitri, A. Jalloh, I.S. Tantular, S. Pusarawati, T.T. Win, Q. Liu, M.U. Ferreira, Y.P.
898	Dachlan, T. Horii, F. Kawamoto, Sequence diversity in the amino-terminal region of the
899	malaria-vaccine candidate serine repeat antigen in natural Plasmodium falciparum
900	populations, Parasitol Int. 52 (2) (2003) 117-131. doi: 10.1016/s1383-5769(02)00088-0
901	
902	77. N. Arisue, N.M.Q. Palacpac, E.H. Ntege, A. Yeka, B. Balikagala B, Kanoi BN,
903	Bougouma EC, Tiono AB, Nebie I, Diarra A, Houard S, D'Alessio F, Leroy O, Sirima
904	SB, Egwang TG, Horii T. African-specific polymorphisms in Plasmodium falciparum
905	serine repeat antigen 5 in Uganda and Burkina Faso clinical samples do not interfere
906	with antibody response to BK-SE36 vaccination, Front Cell Infect Microbiol. 12 (2022
907	1058081. doi: 10.3389/fcimb.2022.1058081.
908	
909	
910	
911	
912	
913	
914	
915	

Figure 1. Representation of serine repeat antigen (SERA5), SE47' and the recombinant vaccine candidate, SE36. A. Full-length *Plasmodium falciparum* SERA5 (orange) [13,21]. In a highly regulated protease cascade, the secreted 120 kDa (~100–130 kDa) precursor in the parasitophorous vacuole is processed to P47 (green) and P73 (blue) upon merozoite egress. The P47 is linked to the C-terminal P18 via disulfide bond, another cleavage site in P73. These two fragments are subsequently processed into smaller fragments (P47, P50, P6 and P18) [21]. **B.** The N-terminal fragment, SE47'. Antibodies against this fragment are elicited in immune individuals and is the basis of the blood-stage malaria vaccine, BK-SE36. SE36, the recombinant N-terminal domain without polyserine repeats, is based on Honduras 1 strain and expressed in Escherichia coli for mass production and purification under GMP conditions. Figure 2. Clues from BK-SE36 clinical trials. A. Percentage of subjects with >2-fold increase in antibody titers. Data from Uganda [28] and Burkina Faso [30] clinical trials show that younger age group remarkably respond to BK-SE36 vaccination. Green bars, after two full doses of BK-SE36; yellow bars, after booster dose (Dose 3). A full dose contains 100 μg/mL SE36 protein and 1 mg/mL aluminum. A booster dose was done only in younger cohorts (1-5 years-old). **B**. Molecular camouflage of *P. falciparum* merozoites utilizing host vitronectin [69]. SE36 covers the whole merozoite surface and host vitronectin tightly binds to SE36. Vitronectin in turn binds to other host serum proteins to camouflage the merozoite from host immune attacks. Majority of bound proteins are blood coagulation proteins, apolipoproteins and proteins that belong to the complement system. This molecular camouflage is an immune evasion strategy that contributes to parasite persistence and being recognized as "self" the parasites protect themselves from the host immune system by having a host immune steady state, and may explain why there is lesser immune pressure (and thus, limited polymorphism) for SERA5. C. Comparison of sequence diversities in some P. falciparum antigen (ama1, csp, sera {SE36 region} and housekeeping (serca + adsl) genes [77]. Immune tolerance may explain the low polymorphism of SERA5. Nucleotide diversity (π , grey bars), the number of synonymous substitutions per synonymous site (dS, pink bars), and non-synonymous substitutions per non-synonymous site (dN, blue bars) are shown. The sequence length and the number of sequences used for each gene are reflected: ama 1, apical membrane protein 1 (n = 241, 1866 bp); csp, circumsporozoite protein (n = 238,

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

947 681 bp); se36, serine repeat antigen (n = 314, 741 bp); and housekeeping genes serca, P-type 948 Ca2+-ATPase; adsl, adenylosuccinate lyase (n = 292, 5043bp). Data of ama1, csp and 949 serca+adsl are from three parasite populations from Africa (Uganda, Tanzania and Ghana). Data 950 using the SE36 region are from four parasite populations (Uganda, Tanzania, Ghana and Burkina Faso): π was analyzed by DnaSP6; dS and dN by MEGA. Excluded from the analyses 951 952 were: NANP repeat region in *ama1*, eight-mer amino acid repeat units in *csp*; the octamer 953 region, 13-mer insertion/deletion region, serine repeat regions, and the 17-mer dimorphic region 954 in SE36 vaccine; and the asparagine repeat region in adsl + serca. When dN>dS, immune 955 pressure/positive selection is inferred.

Table 1. Immunogenicity and hyporesponsiveness in pre-erythrocytic vaccine trials.

Vaccine	Study population	Observation	Authors note	Reference
PfSPZ	Tanzanian	Before CHMI: Tanzanian adults have higher baseline	While the influence of genetic background	[37]
	(20-35 years old)	antibody titers for AMA-1, EXP-1, and CSP; although	cannot be excluded, the lack of increased	
	and Dutch adults	both populations had comparable IFN-γ responses.	proliferative Th1 responses in Tanzanian	
	(19-30 years old)	Post-CHMI: cellular recall responses were	volunteers could be partially due to	
	in CHMI trials	significantly increased in Dutch volunteers. Tanzanians	immunosuppression following exposure to	
		showed lower lymphocyte IFN-γ production.	blood-stage parasites during CHMI.	
		Immunosuppression was still present 1-month post-		
		CHMI		
PfSPZ	11 clinical trials	Females ≥ 11 years of age had significantly higher	Antibodies to PfCSP (and PfSPZ) primarily	[38]
	in Germany, US	levels of antibodies to PfCSP than males, but with no	correlate with other potentially protective	
	and Africa (5-	evidence of improved protection	immune mechanisms (e.g. antibody dependent	
	month to 61		and antibody independent cellular responses in	
	years-old)		the liver)	

		Individuals with prior malaria exposure, such as	Attributed to immune dysregulation due to (a)	
		African adults, have significantly lower antibody	lifelong exposure to malaria parasites; (b)	
		responses to PfCSP than malaria naïve adults	elimination of the PfSPZ by naturally acquired	
			adaptive immune responses; and/or (c)	
			immunosuppression due to concomitant	
			coinfections	
		In African infants and children, there was a negative	Antibody levels in these children was	
		correlation between age and antibodies to PfCSP, with	comparable to responses seen with malaria-naive	
		the highest antibody levels observed in infants and	adults.	
		young children		
PfSPZ-CVac	CHMI trial in the	Vaccine efficacy was variable (0 to 75% efficacy with	In the 7-day dosing schedule, the second and [39])]
(PfSPZ vaccination	US (18-45 years-	same dose but different dosing schedule: with a 7-	third vaccine administration coincided with the	
with concurrent	old)	day administration schedule the vaccine had no	period of blood-stage parasitemia from the first	
antimalarial		efficacy vs 75% efficacy on a 5-day dosing schedule)	vaccination, demonstrating the absence of sterile	

protective immunity

chemoprophylaxis)

Whole Sporozoite	phase 1 and 2	Compared to malaria naïve adults, individuals with	Protection was seen in vaccinated subjects living	[40]
and CSP sub-unit	clinical trials	prior malaria exposure have significantly lower	in malaria endemic areas, despite the observed	(radiation-
vaccine		antibody responses to CSP (e.g. adult males from	several-fold lower antibody and cellular immune	attenuated
		Equatorial Guinea reported lower antibody responses	responses obtained from malaria naïve adults in	sporozoites)
		to PfSPZ compared to US adults; PfSPZ efficacy was	Germany or the US.	[41] (whole-
		greatly reduced in a site with seasonal transmission		sporozoite
		[30% protection at 6 months in Mali adults vs 64%	A fine, yet inadequately described balance	vaccine)
		protection in malaria naïve individuals])	between innate and adaptive immune responses	
			is required for protection	
		Malaria blood-stage infection downregulate pre-		
		erythrocytic stage immunity.		
RTS,S/AS01	Phase 2b data	Induction of functional antibodies was lower among	High baseline antibody titers obtained either	[42]
	(2 sites in	children with higher malaria exposure.	through repeated malaria infection or vaccination	
	Mozambique, 1-4		impacts B cells, CD ₄₊ T cells and innate immune	
	years-old)		cell phenotypes	

RTS,S/AS01	Phase 2 and 3	Younger age at time of vaccination (5-11 months vs	Anti-CS antibody titers after vaccination supports	[43]
	trials in 5-17	12-17 months) and high transmission setting were	a short-lived and long-lived component of the	
	month-old	significantly associated with higher anti-CS antibody	humoral response; with a higher proportion of the	
	children	response	long-lived response noted after Dose 4.	
RTS,S/AS01	Phase 3 data	In 6–12 week-old children, high baseline anti-	Maternal antibodies or fetal exposure to malaria	[44]
	(11 sites, 5-17	circumsporozoite antibody titers were associated with	parasites inhibit immunogenicity	
	months and 6-12	low anti-circumsporozoite antibody titers after		
	week-old	vaccination		
	children)	Within the 5–17 month age group, younger children		
		had higher anti-circumsporozoite antibody titers after		
		vaccination		
RTS,S/AS01	Immuno-	CSP component of the RTS,S vaccine exhibited a low	Reduction in CD4+ T-cell (reduced T-cell help,	[45]
	informatic tools	degree of T-cell epitope relatedness to circulating	low T-cell epitope content, reduced presentation	
	were used to	variants:	of T-cell epitopes by prevalent HLA-DRB1, high	
	compare T helper	The prevalence of epitopes restricted by specific HLA-	human-cross reactivity of T-cell epitopes and	

	epitopes in	DRB1 alleles was inversely associated with prevalence	polymorphism of CSP in circulating strains)
	RTS,S vaccine	of the HLA-DRB1 allele in the Malawi study	contributed to tolerance/immune camouflage and
	antigens vs 57	population	have overshadowed the protective efficacy of
	CSP variants	T-cell epitope content shared between the vaccine and	RTS,S
	isolated from	the Malawian CSP variants was only 34%.	
	infected		
	individuals in		
	Malawi		
ME-TRAP	Kilifi District, 1-	Parasitemia immediately before vaccination suppressed	Parasitemia influences initial priming but not [46]
	6 years-old: one	the acquisition of T cell responses (by 15-25%, as	subsequent recall and/or boosting of T cell
	group vaccinated	measured by IFN-γ production).	responses.
	vs naturally		
	exposed group	Parasitemia immediately after vaccination did not	In 1-6 years old, age appears to be a less
		suppress T cell response. Concurrent parasitemia did	important consideration; likewise, mild and
		not influence T cell response.	moderate malnutrition does not appear to reduce

ChAd63 MVA MEPhase 2 (5-17 Anti-TRAP IgG titers were significantly lower in the Using anti-AMA-1 titers as surrogate marker for [47] TRAP month-old parasite positive group compared to the parasite prior exposure, acute malaria infection could have reduced humoral immunity to vaccination with children) Anti-AMA titers were significantly higher in the positive parasitemia group at vaccination; but exposure may have an impact on cell mediated negatively correlated with peak T cell response immunity

immunogenicity

Table 2. Vaccine immunogenicity and high baseline antibody titers in blood-stage vaccine candidate trials.

Vaccine	Study population	Observation and author's notes	Reference
MSP1, MSP2	Phase 1	Humoral response was significantly boosted by the vaccine in individuals with the lowest	[48]
and RESA in	18-50 years-old	MSP1 titer at baseline. No change noted for MSP2 and RESA. The lack of boosting of	
Montanide	East Sepik Province,	humoral responses was attributed to the high concentration of antibodies prior to vaccination.	
ISA720	Papua New Guinea		
Combination B:	Phase 1-11b	Vaccine immunogenicity was neither impaired by circulating parasites nor increased after pre-	[49]
MSP1, MSP2	5-9 years-old	treatment with sulphadoxine-pyrimethamine.	
and RESA in			
Montanide			
ISA720			
FMP1/AS02A	Phase 1 18-55 years-old	Response to vaccine varied and was attributed to the variation in background immunity: in 6	[50]
	Bandiagara, Mali	participants that developed high antibody titers (≥ 8-fold increase in antibody titer) the	
		baseline GMT for MSP1 ₄₂ was <3,000 vs. those with baseline GMT of >20,000, a <2-fold rise	
		was observed.	
FMP1/AS02	Phase 1	Highest rise in antibody responses was seen in those with low pre-existing antibody titers prior	[51]

	18-55 years-old	to immunization. However based on anti-MSP142 antibody titers at Day 90, FMP1/AS02S	
	Kombewa Division,	vaccinees with low and high pre-existing titers were boosted after 3 doses.	
	Western Kenya		
MSP3-LSP	Phase 1b 18-40 years-old Balonghin, Burkina Faso	Total IgG, IgG subclasses and IgM to MSP3 and MSP3-LSP were similar in vaccinees and control (vaccinated with tetanus toxoid vaccine). The absence of response to vaccination was attributed to high pre-existing antibody levels.	[52]
MSP3-LSP	Phase 1b 12-24 months old Balonghin, Saponé, Burkina Faso	IgG1 and IgG3 responses to MSP3-LSP were higher post vaccination than at baseline. Immunogenicity in young children with limited exposure to natural <i>P. falciparum</i> infection contrast with [52].	[53]
GMZ2/Al (OH)	(serum samples from 3 phase 1 clinical trials obtained on day 0 and	GMZ2 vaccination elicited increase in geometric mean antibody titers: 2.8-fold in Gabonese adults; 290-fold in Gabonese children and German adults compared to day 0 (D0). At D0, Gabonese adults have 50-fold higher anti-GMZ2 IgG than Gabonese children and 63.5-fold higher anti-GMZ2 IgG than German adults.	[54]
	4 weeks after the last vaccination): German,	There was a strong correlation between antibody titers after vaccination and pre-vaccination level.	
	Gabonese adults and		
	children		

GMZ2	Phase 2	Higher baseline level of naturally acquired antibodies in 3-4 years-old resulted to 5.7-fold	[55]
	12-60 months old	increase in anti-GMZ antibodies vs. 14-fold increase in 1-2 years old	
	Burkina Faso, Gabon,		
	Ghana and Uganda		