

Title	Extending modules over commutative domains
Author(s)	Kamal, A. Mahmoud; Müller, J. Bruno
Citation	Osaka Journal of Mathematics. 1988, 25(3), p. 531–538
Version Type	VoR
URL	https://doi.org/10.18910/9405
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kamal, M.A. and Müller, B.J.
Osaka J. Math.
25 (1988), 531-538

EXTENDING MODULES OVER COMMUTATIVE DOMAINS

MAHMOUD A. KAMAL AND BRUNO J. MÜLLER

(Received June 15, 1987)

1. Introduction

A module is extending (or has the property (C_1)) if every complement submodule is a direct summand. We prove that a module over a commutative domain has this property, if and only if it is either torsion with (C_1) , or the direct sum of a torsion free reduced module with (C_1) and an arbitrary injective module. The torsion case is dealt with in [6], where we also give some background and references. Here we show that a torsion free reduced module is extending if and only if it is a finite direct sum of uniform submodules, each pair of which is extending. As an application we obtain a description of all extending modules over Dedekind domains. In a subsequent paper [7] we shall discuss the extending property for direct sums of pairs of uniform modules in general.

Throughout this paper R will be a commutative domain with quotient field K . $X \subset M$ and $Y \subset {}^\oplus M$ denote that X is an essential submodule, and Y is a direct summand, of M .

A submodule N of a module M has no proper essential extension in M , if and only if there is another submodule N' such that N is maximal with respect to $N \cap N' = 0$. Such submodules N are called closed, or complements.

2. Reduction to Torsionfree Reduced Modules

Theorem 1. *Let M be a right module over an arbitrary ring R , and let $Z_2(M)$ denote its second singular submodule. Then M is extending if and only if $M = Z_2(M) \oplus N$, where $Z_2(M)$ and N are extending and $Z_2(M)$ is N -injective.*

Proof. Since $Z_2(M)$ is closed in M , by (C_1) , we have $M = Z_2(M) \oplus N$, where N is non-singular. Since (C_1) is inherited by direct summands, $Z_2(M)$ and N have (C_1) .

To show that $Z_2(M)$ is N -injective, let $\phi: X \rightarrow Z_2(M)$ be a homomorphism from a submodule X of N . Consider $X' := \{x - \phi(x): x \in X\}$. By (C_1) , there exists $X' \subset X^* \subset {}^\oplus M$. Write $M = X^* \oplus Y$. Since $X' \cap Z_2(M) = 0$ and since $X' \subset X^*$, it follows that X^* is non-singular and that $Z_2(M) = Z_2(Y)$. Hence, by

(C_1) for Y , $Z_2(M) \subset^{\oplus} Y$, say $Y = Y' \oplus Z_2(M)$. Let $\pi: X^* \oplus Y' \oplus Z_2(M) \rightarrow Z_2(M)$ be the projection. It is easy to see that $\pi|N$ extends ϕ .

Conversely, let $M = Z_2(M) \oplus N$, where $Z_2(M)$ and N have (C_1) , and $Z_2(M)$ is N -injective. Let A be a closed submodule of M . By a straightforward calculation one can show that $Z_2(A)$ has no proper essential extensions in $Z_2(M)$. By (C_1) for $Z_2(M)$, we have $Z_2(A) \subset^{\oplus} Z_2(M)$, and hence $Z_2(A) \subset^{\oplus} A$. Write $A = Z_2(A) \oplus B$, where B is a non-singular submodule of A . Since $B \cap Z_2(M) = 0$ and $Z_2(M)$ is N -injective, there exists a homomorphism $\psi: N \rightarrow Z_2(M)$ such that $\psi\pi_{2|B} = \pi_{1|B}$, where π_1, π_2 are the projections of M onto $Z_2(M)$ and N respectively. Consider $N^* := \{n + \psi(n): n \in N\}$. It follows that B is contained in N^* , and hence B is closed in N^* . Since $N^* \cong N$ has (C_1) , we have $B \subset^{\oplus} N^*$. It is clear that $M = Z_2(M) \oplus N^*$; therefore $A \subset^{\oplus} M$.

Corollary 2. *Let R be a commutative integral domain, and let M be an R -module which is not torsion. Then M is extending, if and only if its torsion submodule $t(M)$ is injective and the factor module $M/t(M)$ is extending.*

Proposition 3. *Let M be a torsion free R -module, and let $D(M)$ be its largest divisible (injective) submodule. Then M has (C_1) if and only if $M/D(M)$ has (C_1) .*

Proof. Let M have (C_1) , and write $M = D(M) \oplus C$, where C is reduced. Hence $M/D(M) \cong C$ has (C_1) .

Conversely, let $C \cong M/D(M)$ have (C_1) . Let A be a closed submodule of M . Let $D(A)$ be the largest injective submodule of A , and write $A = D(A) \oplus B$ with B reduced. It is clear that $B \cap D(M) = 0$.

Now let π, π' be the projections of M onto C and $D(M)$ respectively. There exists a homomorphism $\phi: C \rightarrow D(M)$ such that $\phi\pi(b) = \pi'(b)$ for all $b \in B$. Let $C^* := \{\phi(c) + c: c \in C\}$. Then $C^* \cong C$ has (C_1) , and $M = C^* \oplus D(M)$. Since B is closed in C^* , we have $B \subset^{\oplus} C^*$. Since $D(A) \subset^{\oplus} D(M)$, we conclude $A \subset^{\oplus} M$.

3. Decomposition into Uniform Submodules

Lemma 4. *Let $M = \bigoplus_{i \in I} M_i$, with all M_i being R -submodules of the quotient field K of R . Then A is a closed submodule of M if and only if $A = [\bigoplus_{j \in J} a_j K] \cap M$, for some K -linearly independent subset $\{a_j\}_{j \in J}$ of $\bigoplus_I K$. In particular A is a uniform and closed submodule of M if and only if $A = \{(q_i x)_{i \in I}: x \in K, q_i x \in M_i \text{ for all } i\}$ for some $0 \neq (q_i)_{i \in I} \in \bigoplus_I K$.*

Theorem 5. *Let M be a torsion free reduced module over a commutative integral domain R . If M is extending, then M is a finite direct sum of uniform submodules.*

Proof. By (C_1) , if $M \neq 0$, then $M = M_0 \oplus U_0$ with M_0 uniform. Again by

(C₁) for U_o , if $U_o \neq 0$, we have $U_o = M_1 \oplus U_1$ with M_1 uniform, and hence $M = M_o \oplus M_1 \oplus U_1$. Continuing in this manner we get $M = \bigoplus_{i=0}^n M_i \oplus U_n$ as long as U_{n-1} is non-zero. If M is finite dimensional, then $U_n = 0$ for some n and $M = \bigoplus_{i=0}^n M_i$, as claimed.

If M is infinite dimensional, we shall derive a contradiction. In this case U_n is infinite dimensional for all n , and hence $M \supset \bigoplus_{i=0}^{\infty} M_i$. We first show that $\bigoplus_{i=0}^{\infty} M_i$ is closed in M (and hence is a direct summand of M). Let $\bigoplus_{i=0}^{\infty} M_i \subset 'M^* \subset M$; then $M^* = \bigoplus_{i=1}^n M_i \oplus (U_n \cap M^*)$. By a straightforward calculation one can show that $U_n \cap M^*$ is essential over $\bigoplus_{i=n+1}^{\infty} M_i$. Since, in the case of torsion free modules, injective hulls are unique, and direct sums of injective modules are injective, we have $E(M^*) = \bigoplus_{i=0}^{\infty} E(M_i)$. Now let $\pi_i: \bigoplus_{i=0}^{\infty} E(M_i) \rightarrow E(M_i)$ be the projections. For each $n \geq 0$ we have $\pi_n(M^*) = M_n + \pi_n(U_n \cap M^*)$. Since $\bigoplus_{i=n+1}^{\infty} M_i \subset 'U_n \cap M^*$, it follows that $\pi_n(U_n \cap M^*) = 0$, and hence $M^* = \bigoplus_{i=0}^{\infty} M_i$.

Since the quotient field K of R is divisible hence injective, we have $E(M_i) \cong K$ for all i . Since $M_i \supset y_i R \cong R$ for $0 \neq y_i \in M_i$, without loss of generality, we may assume $R \subset M_i \subset K$ for all i , and therefore $\bigoplus_{i=0}^{\infty} R \subset M = \bigoplus_{i=0}^{\infty} M_i \subset \bigoplus_{i=0}^{\infty} K$.

Now let $0 \neq r \in R$ be an arbitrary element. Let $a_n := e_o - e_n r^n$ ($n \geq 1$), where $e_n = (\delta_{ni})_{i=0}^{\infty} \in \bigoplus_{i=0}^{\infty} K$. It is easy to see that $\{a_n\}_{n=1}^{\infty}$ is a linearly independent subset of $\bigoplus_{i=0}^{\infty} K$. By Lemma 4, $A := \bigoplus_{n=0}^{\infty} a_n K \cap M$ is a closed submodule of M . By (C₁), $M = A \oplus B$. Let f be the restriction to M of the homomorphism: $\bigoplus_{i=0}^{\infty} K \ni (k_i)_{i=0}^{\infty} \rightarrow \sum_{i=0}^{\infty} \frac{k_i}{r^i} \in K$. It follows that $\ker f = A$, hence f embeds B into K . Since $e_o \notin A$, B is non zero and thus uniform. As B is a direct summand and hence closed in M , $B = bK \cap M$ for some $0 \neq b = (b_i)_{i=0}^{\infty} \in \bigoplus_{i=0}^{\infty} K$, by Lemma 4. Since $e_m \in M$ for

all $m \geq 0$, we have $e_m = \sum_{n=1}^{\infty} a_n k_{nm} + b k_m = \sum_{n=1}^{\infty} (e_o - e_n r^n) k_{nm} + \sum_{i=0}^{\infty} e_i b_i k_m$, where k_{nm} , $k_m \in K$ and $\sum_{n=1}^{\infty} a_n k_{nm} \in A$, $b k_m \in B$. Comparing components, and using the abbreviation $D = \sum_{i=0}^{\infty} \frac{b_i}{r^i}$, we deduce $D k_m r^m = 1$ for all $m \geq 0$. Since $b_i k_m \in M_i$ for all i, m , we obtain, for $m = i + 1$, that $\frac{b_i}{Dr^{i+1}} = b_i k_{i+1} \in M_i$. It follows that $\frac{1}{r} = \frac{1}{rD} \sum_{i=0}^{\infty} \frac{b_i}{r^i} \in \sum_{i=0}^{\infty} M_i$. Since $0 \neq r$ was arbitrary in R , we get $K = \sum_{i=0}^{\infty} M_i$.

Now let $g: \bigoplus_{i=0}^{\infty} M_i \ni (m_i)_{i=0}^{\infty} \rightarrow \sum_{i=0}^{\infty} m_i \in K$. It is easy to see that $\ker g$ is closed in M . Thus, by (C₁), $M = \ker g \oplus X$. Therefore $K \cong X \subset M$, which contradicts

the fact that M is reduced.

4. Reduction to Pairs

Proposition 6. *A torsion free reduced module, over a commutative domain R , has (C_1) if and only if it has $(1-C_1)$ and is finite dimensional.*

Proof. Let M have (C_1) . By Theorem 5, M is finite dimensional. Obviously M has $(1-C_1)$. We show the converse by induction over the dimension of M . Assume that it holds true for dimension $< n$, and let M be a module with $(1-C_1)$ of dimension n . Then $M = \bigoplus_{i=1}^n M_i$ with all M_i uniform. Let A be a closed submodule of M with $1 < \dim(A) < n$. It follows that $A \cap \bigoplus_{i=1}^{n-1} M_i \neq 0$ is closed in $\bigoplus_{i=1}^{n-1} M_i$. By induction $\bigoplus_{i=1}^{n-1} M_i = A \cap \bigoplus_{i=1}^{n-1} M_i \oplus X$, where $\dim(X) \leq n-2$. Then $M = A \cap \bigoplus_{i=1}^{n-1} M_i \oplus X \oplus M_n$, and hence $A = [A \cap \bigoplus_{i=1}^{n-1} M_i] \oplus [A \cap (X \oplus M_n)]$. Since $A \cap (X \oplus M_n)$ is closed in $X \oplus M_n$, again by induction $A \cap (X \oplus M_n) \subset \oplus X \oplus M_n$, and therefore $A \subset \oplus M$.

From now on we consider each torsion free uniform module over a commutative integral domain R as an R -submodule of K (the quotient field of R) containing R .

Let $M_i (i=1, 2, \dots, n)$ be R -submodules of K . By $O(M_i)$ we mean the set of all $x \in K$ such that $xM_i \subset M_i$. If $M_i \neq 0$, then $O(M_i)$ is an over ring of R isomorphic to $\text{end}_R(M_i)$.

Theorem 7. *Let M be a torsion free reduced R -module. Then the following are equivalent :*

- 1) M is extending
- 2) $M = \bigoplus_{i=1}^n M_i$ with all M_i uniform, and for all $q_1, q_2, \dots, q_n \in K$ (not all zero) there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in K$ such that $\sum_{k=1}^n \alpha_k = 1$ and $\alpha_k q_i M_k \subset q_k M_i$ for all k, i .

Proof. (1) \Rightarrow (2): Let M have (C_1) . Then by Theorem 5, $M = \bigoplus_{i=1}^n M_i$ with all M_i uniform. Now let q_1, q_2, \dots, q_n be arbitrary in K , not all zero. Then, by Lemma 4, $A := \{(q_i x)_{i=1}^n : x \in K \text{ and } q_i x \in M_i \text{ for all } i\}$ is a uniform and closed submodule of M . By (C_1) , $M = A \oplus B$ where B is an $(n-1)$ -dimensional submodule with (C_1) . Hence $B = \bigoplus_{j=1}^{n-1} B_j$ where B_j are uniform. By Lemma 4, $B_j = \{(t_{ij} x_j)_{i=1}^n : x_j \in K \text{ and } t_{ij} x_j \in M_i \text{ for some } i\}$ for some $t_{ij} \in K$ not all zero.

Now $A \oplus B = M$ implies that for each $c \in M_k$ the system of equations $\sum_{j=1}^{n-1} t_{ij} x_j$

$+q_i x_n = c \delta_{ik}$ ($i = 1, 2, \dots, n$) has a unique solution, with $t_{ij} x_j \in M_i$ and $q_i x_n \in M_i$. Therefore the determinant Δ of the system is non-zero. Then by Cramer's Rule, $x_n = \frac{(-1)^{n+k} \Delta_{kn}}{\Delta} c$, where Δ_{kn} is the (k, n) minor of Δ . If we write $\alpha_k = (-1)^{k+n} q_k \Delta_{kn}/\Delta$, we have $\sum_{k=1}^n \alpha_k = 1$. Moreover since $q_i x_n \in M_i$, we obtain $\alpha_k q_i c = q_k q_i x_n \in q_k M_i$, thus $\alpha_k q_i M_k \subset q_k M_i$.

2) \Rightarrow 1): The proof will be by induction on n . Assume that $\bigoplus_{i \in L} M_i$ is extending for all proper subsets L of $\{1, 2, \dots, n\}$. By Proposition 6, it is enough to show that each uniform closed submodule A of M is a direct summand. By Lemma 4, $A = \{(q_i x)_{i=1}^n : x \in K \text{ and } q_i x \in M_i \text{ for all } i\}$.

Let $F := \{i : q_i \neq 0\}$. If $|F| < n$, then $A \subset \bigoplus_{i \in F} M_i$ and hence, by induction, $A \subset \bigoplus_{i \in F} M_i \subset \bigoplus M_i$. If $|F| = n$, then by condition 2), there exist $\alpha_1, \alpha_2, \dots, \alpha_n \in K$ such $\sum_{i=1}^n \alpha_i = 1$ and $\alpha_i q_i^{-1} M_i \subset q_i^{-1} M_i$. Let $\Delta_{i1} := \alpha_i q_i^{-1}$; then $\sum_{i=1}^n q_i \Delta_{i1} = 1$. It is clear that not all Δ_{i1} are zero. Without loss of generality assume that $\Delta_{11} \neq 0$. Let $B := \{\Delta_{21} y_2 + \sum_{i=3}^n \frac{\Delta_{j1}}{\Delta_{11}} y_j, \Delta_{11} y_2, y_3, \dots, y_n : y_j \in K \text{ and } \Delta_{21} y_2 + \sum_{j=3}^n \frac{\Delta_{j1}}{\Delta_{11}} y_j \in M_1, \Delta_{11} y_2 \in M_2 \text{ and } y_i \in M_i (i \geq 3)\}$. We have:

$$\begin{vmatrix} q_1 & -\Delta_{21} & -\Delta_{31}/\Delta_{11} & -\Delta_{n1}/\Delta_{11} \\ q_2 & \Delta_{11} & 0 & 0 \\ q_3 & 0 & 1 & 0 \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ q_n & 0 & 0 & 0 \end{vmatrix} = \sum_{i=1}^n q_i \Delta_{i1} = 1$$

Then, for each k , the following system of equations has a unique solution, for all $m_i \in M_i$:

$$\begin{aligned} q_1 x - \Delta_{21} y_2 - \dots - (\Delta_{n1}/\Delta_{11}) y_n &= \delta_{k1} m_1 \\ q_2 x + \Delta_{11} y_2 + 0 + \dots + 0 &= \delta_{k2} m_2 \\ q_3 x + 0 + y_3 + 0 + \dots + 0 &= \delta_{k3} m_3 \\ \dots & \\ \dots & \\ q_n x + 0 + \dots + 0 + y_n &= \delta_{kn} m_n \end{aligned}$$

Let $\{x_k, y_{2k}, \dots, y_{nk}\}$ be the solution set of the k^{th} system. Since, by Cramer's Rule, $x_k = \Delta_{k1} m_k = q_k^{-1} \alpha_k m_k \in q_k^{-1} M_i$, we have $q_i x_k \in M_i$ for all k, i . It follows that $\Delta_{21} y_{2k} + \sum_{j=3}^n (\Delta_{j1}/\Delta_{11}) y_{jk} \in M_1$, $\Delta_{11} y_{2k} \in M_2$ and $y_{ik} \in M_i (i \geq 3)$ for all k . Then

$M = A + B$. Since the above determinant is non zero, we have that each $m \in M$ has a unique representation $m = a + b$ with $a \in A$, $b \in B$. Therefore $M = A \oplus B$.

Corollary 8. *If $\bigoplus_{i=1}^n M_i$ is extending and reduced, then each M_i can be embedded into every M_j .*

Proof. Each pair $M_i \oplus M_j$ ($i \neq j$) is extending and reduced. Therefore, by Theorem 7, for each $0 \neq q \in K$, there exists $\alpha_1, \alpha_2 \in K$ such that $\alpha_1 q M_1 \subset M_2$ and $\alpha_2 M_2 \subset q M_1$. If M_1 is not embedded into M_2 , then we obtain $\alpha_1 = 0$, hence $\alpha_2 = 1$, for every $0 \neq q \in K$. Then $M_1 = K$, in contradiction to reduceness.

Lemma 9. *Let M_i ($i = 1, 2, 3$) be R -submodules of K . If $M_i \oplus M_j$ has (C_1) for all $i \neq j$, then $M_3 \oplus q_1 M_1 \cap q_2 M_2$ has (C_1) for all $q_1, q_2 \in K$.*

Proof. Without loss of generality assume $q_1 \neq 0$, $q_2 \neq 0$. Let $0 \neq k \in K$ be given arbitrarily. Since $M_1 \oplus M_2$ has (C_1) , by Theorem 7, there exist $\alpha_{12}, \alpha_{21} \in O(M_1) \cap O(M_2)$ with $\alpha_{12} + \alpha_{21} = 1$ such that $\alpha_{12} q_1 M_1 \subset q_2 M_2$ and $\alpha_{21} q_2 M_2 \subset q_1 M_1$.

Similarly, since $M_3 \oplus M_i$ has (C_1) , there exist $\alpha_{i3}, \alpha_{3i} \in O(M_i) \cap O(M_3)$ with $\alpha_{i3} + \alpha_{3i} = 1$ such that $\alpha_{i3} k M_3 \subset q_i M_i$ and $\alpha_{3i} q_i M_i \subset k M_3$ ($i = 1, 2$).

Now let $\gamma_1 = \alpha_{12} \alpha_{31} + \alpha_{21} \alpha_{32}$ and $\gamma_2 = \alpha_{12} \alpha_{13} + \alpha_{21} \alpha_{23}$. It follows that $\gamma_1 + \gamma_2 = 1$.

We show that $\gamma_1 \gamma_2 \in O(M_3) \cap O(q_1 M_1 \cap q_2 M_2)$: $\gamma_2 = \alpha_{12} \alpha_{13} (\alpha_{23} + \alpha_{32}) + \alpha_{21} \alpha_{23} (\alpha_{13} + \alpha_{31}) = (\alpha_{12} + \alpha_{21}) \alpha_{13} \alpha_{23} + \alpha_{12} \alpha_{13} \alpha_{32} + \alpha_{21} \alpha_{23} \alpha_{31} = \alpha_{13} \alpha_{23} + \alpha_{12} \alpha_{13} \alpha_{32} + \alpha_{21} \alpha_{23} \alpha_{31}$.

$\gamma_2 M_3 \subset \alpha_{13} \alpha_{23} M_3 + \alpha_{12} \alpha_{13} \alpha_{32} M_3 + \alpha_{21} \alpha_{23} \alpha_{31} M_3 \subset M_3 + (1 - \alpha_{21}) \alpha_{13} \alpha_{32} M_3 + (1 - \alpha_{12}) \alpha_{23} \alpha_{31} M_3 \subset M_3 + \alpha_{21} \alpha_{13} \alpha_{32} M_3 + \alpha_{12} \alpha_{23} \alpha_{31} M_3 \subset M_3 + \alpha_{13} \alpha_{21} (k^{-1} q_2 M_2) + \alpha_{12} \alpha_{23} (k^{-1} q_1 M_1) \subset M_3 + \alpha_{13} k^{-1} q_1 M_1 + \alpha_{23} k^{-1} q_2 M_2 \subset M_3$.

$\gamma_1 (q_1 M_1 \cap q_2 M_2) \subset \alpha_{12} \alpha_{31} (q_1 M_1) + \alpha_{21} \alpha_{32} (q_2 M_2) \subset q_1 M_1 \cap q_2 M_2$. Since $\gamma_1 + \gamma_2 = 1$, we have $\gamma_1, \gamma_2 \in O(M_3) \cap O(q_1 M_1 \cap q_2 M_2)$. We show that $\gamma_1 k M_3 \subset q_1 M_1 \cap q_2 M_2$ and $\gamma_2 (q_1 M_1 \cap q_2 M_2) \subset k M_3$: $\gamma_1 k M_3 \subset \alpha_{12} \alpha_{31} (k M_3) + \alpha_{21} \alpha_{32} (k M_3) \subset \alpha_{12} (q_1 M_1) + \alpha_{21} (q_2 M_2) \subset q_1 M_1 \cap q_2 M_2$.

$\gamma_2 (q_1 M_1 \cap q_2 M_2) \subset \alpha_{12} \alpha_{13} (q_1 M_1 \cap q_2 M_2) + \alpha_{21} \alpha_{23} (q_1 M_1 \cap q_2 M_2) \subset \alpha_{13} (q_1 M_1 \cap q_2 M_2) + \alpha_{23} (q_1 M_1 \cap q_2 M_2) \subset k M_3$.

Therefore, by Theorem 7, $M_3 \oplus q_1 M_1 \cap q_2 M_2$ has (C_1) .

Corollary 10. *Let M_i ($i = 1, 2, \dots, n$) be R -submodules of K . If $M_i \oplus M_j$ has (C_1) for all $i \neq j$, then $M_n \bigoplus_{i=1}^{n-1} q_i M_i$ has (C_1) for all $q_1, q_2, \dots, q_{n-1} \in K$.*

Proof. We proceed by induction over n . Since $M_n \bigoplus_{i=1}^{n-2} q_i M_i$, $M_n \bigoplus_{i=1}^{n-2} q_i M_i \oplus q_{n-1} M_{n-1} \cong M_n \oplus M_{n-1}$, $\bigcap_{i=1}^{n-2} q_i M_i \oplus q_{n-1} M_{n-1} \cong \bigcap_{i=1}^{n-2} q_i M_i \oplus M_{n-1}$ all have (C_1) , by assumption of induction, Lemma 9 implies that $M_n \bigoplus_{i=1}^{n-2} q_i M_i \cap q_{n-1} M_{n-1}$ has (C_1) .

Theorem 11. *Let M be a torsion free reduced R -module. Then M is ex-*

tending if and only if $M = \bigoplus_{i=1}^n M_i$, where the M_i are uniform and $M_i \oplus M_j$ is extending for all $i \neq j$.

Proof. Let $M = \bigoplus_{i=1}^n M_i$ with M_i uniform and with $M_i \oplus M_j$ extending. By induction on n , let $\bigoplus_{i \in L} M_i$ be extending for all proper subsets L of $\{1, 2, \dots, n\}$. Let A be a closed and uniform submodule of $\bigoplus_{i=1}^n M_i$. By Lemma 4, $A = \{(q_i x)_{i=1}^n : x \in K, q_i x \in M_i \text{ for all } i\}$. Let $F := \{i : q_i \neq 0\}$. By induction $A \subset \bigoplus_{i \in F} M_i \subset \bigoplus M$, if $|F| < n$. Now let $|F| = n$; it follows that $A = \{(q_i x)_{i=1}^n : x \in \bigcap_{i=1}^{n-1} q_i^{-1} M_i\}$. Let $\pi : M \rightarrow \bigoplus_{i=1}^{n-1} M_i$ be the projection. By Lemma 4, $B := \{(q_1 x, q_2 x, \dots, q_{n-1} x, 0) : x \in \bigcap_{i=1}^{n-1} q_i^{-1} M_i\}$ is a closed uniform submodule of $\bigoplus_{i=1}^{n-1} M_i$ containing $\pi(A)$. By induction, $B \subset \bigoplus_{i=1}^{n-1} M_i$, and hence $M_n \oplus B \subset \bigoplus M$. Since $B \cong \bigcap_{i=1}^{n-1} q_i^{-1} M_i$, we have, by Corollary 10, that $M_n \oplus B$ is extending. As A is closed in $M_n \oplus B$, $A \subset \bigoplus M_n \oplus B \subset \bigoplus M$. Therefore M is extending, by Proposition 6.

5. Dedekind Domains

Lemma 12. *Let $M = M_1 \oplus M_2$ be a torsionfree reduced module over a Dedekind domain R , where the M_i are uniform. Then the following are equivalent:*

- 1) M is extending,
- 2) M_i can be imbedded M_j ($i \neq j$),
- 3) there is a fractional ideal I of R such that $M_2 I = M_1$.

Proof. 1) \Rightarrow 2) clear by Corollary 8.

2) \Rightarrow 3): Without loss of generality assume that $R \subset M_1 \subset M_2 \subset K$. Let $B := \{x \in K : M_2 x \subset M_1\}$ and $S = O(M_1) \cap O(M_2)$. By assumption B is a non-zero ideal of S . Now if $M_2 B \subsetneq M_1$, then $(M_2 B)_P \subsetneq M_{1P}$ for some prime ideal P of S . Since S_P is discrete rank one valuation ring, it follows that $(M_2 B)_P \subset M_{1P} P_P = (M_1 P)_P$. For each prime ideal Q of S , $Q \neq P$, we have $(M_2 B)_Q \subset M_{1Q} = (M_1 P)_Q$. Hence $M_2 B = \bigcap (M_2 B)_Q \subset \bigcap (M_1 P)_Q = M_1 P$, where Q runs over all prime ideals of S . It follows that $M_2 B P^{-1} \subset M_1$, i.e., $B P^{-1} = B$ which is a contradiction. Therefore $M_2 B = M_1$. Since any overring of R is a localization R_* of R a set of prime ideals of R , we have $S = R_*$. It follows that $B = I_*$ for some ideal I of R . Now $M_2 B = M_2 I_* = M_2 I R_* = M_2 I S = M_2 I$, and hence $M_2 I = M_1$.

3) \Rightarrow 1): First we show that $J \cap R + J^{-1} \cap R = R$ for any fractional ideal J or R . If $J_P, J_P^{-1} \subsetneq R_P$ for some prime ideal P of R , then $R_P = J_P J_P^{-1} \subset J_P \subsetneq R_P$ which is a contradiction. It follows that $J_P \cap R_P = R_P$ or $J_P^{-1} \cap R_P = R_P$, and hence $(J \cap R)_P + (J^{-1} \cap R)_P = R_P$, for all prime ideals P of R . Therefore $J \cap R + J^{-1} \cap R = R$.

Now let $M_1 = M_2 I$ where I is a fractional ideal of R . Let $0 \neq q \in K$ be arbitrary, and $J := q^{-1} I^{-1}$. Since $J \cap R + J^{-1} \cap R = R$, there exist $\alpha_1 \in J \cap R$, $\alpha_2 \in$

$J^{-1} \cap R$ such that $\alpha_1 + \alpha_2 = 1$, and that $\alpha_1 qM_1 \subset M_2$, $\alpha_2 M_2 \subset qM_1$. Therefore, by Theorem 7, M is extending.

Corollary 13. *If R is a principal ideal domain and M_1, M_2 are uniform torsion free reduced R -modules, then $M_1 \oplus M_2$ is extending if and only if M_1 is isomorphic to M_2 .*

Proof. R is a Dedekind domain, and every fractional ideal of R is principal.

The following is an immediate consequence of Corollary 2, Proposition 3, Theorem 5, and Lemma 12.

Theorem 14. *Let M be a module over a Dedekind domain R . Then M is extending if and only if either :*

- i) M is torsion and has the structure described in ([6], Corollary 23); or
- ii) M is non-torsion and $M = F \oplus E$, where E is injective and $F \cong \bigoplus_{i=1}^n NI_i$, where N is a proper R -submodule of the quotient field K and the I_i are fractional ideals of R .

References

- [1] F.W. Anderson and K.R. Fuller: *Rings and Categories of Modules*, Springer Verlag, New York (1973).
- [2] W. Brandal: *Commutative Rings whose Finitely Generated Modules Decompose*, Springer Lecture Notes in Math. **723** (1979).
- [3] A.W. Chatter and C.R. Hajarnavis: *Rings in which every complement right ideal is a direct summand*, Quart. J. Math. Oxford **28** (1977), 61–80.
- [4] L. Fuchs, A. Kertesz and T. Szele: *Abelian groups in which every serving subgroup is a direct summand*, Publ. Math. Debrecen **3** (1953), 95–105.
- [5] M. Harada: *On modules with extending property*, Osaka J. Math. **19** (1982), 203–215.
- [6] M. Kamal and B.J. Müller: *The structure of extending modules over noetherian rings*, Osaka J. Math. **25** (1988), 539–551.
- [7] M. Kamal and B.J. Müller: *Torsion free extending modules*, Osaka J. Math. [to appear].
- [8] I. Kaplansky: *Commutative Rings*, Univ. of Chicago Press, Chicago (1974).
- [9] B. Stenstrom: *Rings of Quotients*, Springer Verlag, New York (1975).