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TECHNICAL REVIEW

Role of Surface Tension in Fusion Welding (Part 2)*

— Hydrostatic Effect —

Akira MATSUNAWA * and Takay oshi OHII**

KEY WORDS:

1. Introduction

In the part 1 of this series article!? were described
an analytical solution of the surface profiles of two-
dimensional liquid bed placed on a flat plate or at the
corner of two plates intersected, and also their applica-
bility to actual weld beads. Other particular interests
relating to the static effects of surface tension in fusion
welding may be the self-supporting of the molten pool of
full penetration welding of thin plate or overhead position
welding, and the phenomena of liquid pendant drop
formed at the tip of electrode or filler wire. To the
former, a two-dimensional analysis is expected to be still
effective, while, to the latter, the three-dimensional
treatment is essentially necessary. The aims of this report
is, therefore, to review the theoretical approaches on
supporting liquid drops only by capillary pressure in the
gravitational field. Though there have been many theo-
retical or analogous methods available on the subjects, the
authors have mainly referred to the works conducted by
Bashforth and Adams?’, and Nishiguch and Ohji®).

2. Two-dimensional Analysis of Suspended Liquid by
Capillary Pressure

2.1 Static pressure balance and allowable width of liquid
for self-support
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Catastrophic collapse of molten pool, so called burn-
through, is a significant problem in full penetration
welding of root bead formation in flat position, and one
has to carefully control the bead parameters for a given
plate thickness or to employ some mechanical backing
system. Not only in the flat position, the situation is the
same in the overhead or any other positions. If no arti-
ficial backing equipment such as mechanical or electro-
magnetic method is employed, the capillary action is the
only possible mechanism to support the molten pool
steadily. However, there was no systematic research
found on this matter for a long time. In 1978, one of the
authors (T.0.) attempted to establish a criterion on this
matter by his previously settled mathematical model-
ling3). Here will be reviewed the results in case of full
penetration welding of horizontal plate.

Let us consider a two-dimensional molten pool of full
penetration welding as shown in Fig. 1. For the sake of
simplicity, the top surface is assumed to be flat. The basic
equation of pressure balance at the point P on liquid
surface are the same with those described in the previous
paper!)ie.,

R—Z - pey=—- )
_1__ (ay[ax?) )
R {1+ (y/dxP}" @
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Fig.1 Two-dimensional model of molten pool in full penet-

ration welding3)

From the above relations,

1 pg o 1 :
=— —_y+ 1 =P
{1 +(dy/dx)?}? 20 7 Roy )

3).

Therefore, the surface profile of backside pool is ex-
pressed by elliptical integral as

_ (Y P(y) .
x ifo T dy @)

Supposing 0, the contact angle between the liquid and
soled plate, the width of root bead is

_5(7a P(y)
v =2[ o)

and hence y, is readily obtained from the eq. (3) putting

dy ®),

dx/dy = tan 8, aty=ya.
I 1 20
— —(1—=cos @
\ARz ( 0)

(6)

Considering the force balance per unit length along pool
lengh, the cross sectional area C of hatched region in Fig.
1 can be obtained as

pg(Cy + wgh)=20sin b,

- Cy =2isin 00 — th

Q)
pg

where, % is the plate thickness.

Here, a flat top surface is supposed, and then the pressure
balance at the origin of coordinate is

@®.
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Substituting eq. (6) into eq. (8), one obtains

20\/ o
g~ 2p2R;

As derived in the above, one can calculate the critical self-
supporting condition of liquid from egs. (5), (7) and (9)
in the terms of bead width, plate thickness and cross
section of the root bead reinforcement.

—( 1 cos 0, ) o)
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Fig. 2 Effect of bead width and liquid volume on surface profile

of self-suspended bottom pool3)

Figure 2 shows the calculated results of allowable
conditions to support molten pool by capillary pressure
for various plate thickness. Here, all parameters relating
to distance and area are expressed in non-dimensional
form as

Wp =wp/~/20/pg
H =h/~/20/pg
Cp = cpl(20/pg).

In the figure, the solid lines show the Wp—C)) curve under
the constant contact angle, while the broken lines for the
constant plate thickness. For a given plate thickness, the
allowable width of back side pool changes with the con-
tact angle. In case of H=0.25, for example, the maxi-
mum allowable width is obtained at the angle around
50° and its value is 1.43 times of the capillary constant.
In the width range just below the maximum value, there
are two possible contact angles at a certain width.

The maximum allowable width decreases with the
increase in plate thickness and it tends to occur at the
angle near 90° for the thickness over H#=1.0. In such
situation, one can reasonably assume that the surface
profile of liquid becomes semi-circular shape due to small
value of wp compared with the capillary constant. Name-
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ly, Ry ~ wp/2, 0y = 90°,and wp <(20/pg) Therefore,
the eq. (9) becomes

N

174 PEWR

~ 20 20
N og N pgwi

and the maximum allowable width is approximated as

(10).
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Fig. 3 Relation between plate thickness and allowable root bead
width for self-support4)

As seen in Fig. 3, the relation (10) well fits to the
actual data of low current TIG arc, where arc pressure is
very low. While, in a key-hole process by plasma arc, the
relation does not hold in thinner plates than 5 mm in
thickness. The primary reason of extremely small value of
allowable width in plasma arc process has been discussed
from the view points of bridging phenomena of two
liquid drops at the rear part of key hole.)

The above were the cases that the liquid has a flat
surface at the top. If the top surface is dented, the
maximum allowable width of root bead for self-support
becomes wider for the same plate thickness as shown in
Fig. 4. However, the surface dented beads are generally
not desirable from the practical view point.

The maximum allowable width of root bead for
self-support of molten pool decreases inverse propor-
tionally with the increase in plate thickness. In case of
steel, for instance, the width becomes only about 2 mm in
order to support the pool of 10-12mm thick plate,
which is practically very hard to steadily maintain such a
narrow root bead by the conventional arc processes
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Fig. 4 Effect of surface profile of top-side pool on allowable
root bead width for self-support of molten pool3)

except EB or Laser welding. It is, therefore, necessary to
employ some supporting method, i.e., backing system, for
the one side - single pass welding of heavy section plate. -

There are several types of backing system available,
i.e., (1) solid backing, (2) flux backing, (3) gas backing,
and (4) their combination. But, even if a backing system
is adopted, one often experiences unstable root bead
formation when the width of back-side bead is too wide.
The phenomena are supposed to be associated by some
kind of fluidmechanical instability.

2.2 Rayleigh-Taylor instability of liquid membrane

In order to examine the stability of molten pool,
Ohji3) conducted an experiment to obtain an arc melted
liquid disc by gas backing process as shown in Fig. 5,
where the surface profile of backside pool can be con-
trolled by regulating the gas pressure.

Let d be the diameter of a circular liquid disk or

Base metal Molten pool
J i
77777 ¥ )
\W R A
4 Va [\2
ﬁ Gas
= L
Gas pressure
P = pgh J/
,\Observqtion
Gas |] window
-— l_ —) %
||: Water

Fig. 5 Gas backing system3)
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Fig. 6 Occurrence of Rayleigh-Taylor instability in large size
molten pool3)

membrane, then there could be no critical value of d for
static equilibrium if the surface were kept perfectly flat
by gas pressure. Now let us suppose a slight displacement
of surface from its equilibrium as illustrated in Fig. 6,
then the gravity head of pool at the position A becomes
higher than the gas pressure. If the wavelength of dis-
placement is small enough, the capillary pressure associ-
ated by a curved surface acts to recover the surface back
to equilibrium state and hence the pool is stable. While, if
the wavelength is large, no recovering effect is expected
and the liquid membrane collapses from the A part and
pool is unstable. Such unstable phenomenon that occurs
when a heavier fluid is supported by a lighter in opposi-
tion to the gravity is called Rayleigh-Taylor Instability.
As the characteristic wavelength is longer in larger mem-
brane, the Rayleigh-Taylor instability is likely to occur in
large pools. The capillary pressure affects to restrict the
instability, and then the higher the capillary constant the
larger the critical size becomes.

-Table 1 Maximum diameter of liquid membrance that can be
supported in gas backing process

Backing Plate Thickness (Mild Steel)
Gas h = 2.3 mm h =3.2mm h = 4.5 mm h = 6.0 mm
co, 22 mm 21 mm 22 mm 22 mm
Ar 27 mm 28 mm 28 mm 28 mm

Table 1 shows the measured maximum diameter of
liquid steel membrane before the instability took place in
gas backing experiment. It is obvious that the critical
diameter of stable membrane is larger in Argon atmos-
phere where the surface tension is higher than in oxidizing
gas (refer to Part 1), and there found no significant
differences in plate thickness. In case of the welding of
root bead in flat position, Ohji concluded after the
calculation and experiments that the Rayleigh-Taylor
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instability becomes significant when the root bead width
is more than 2.2 times of the capillary constant.

3. Pendant Drops of Liquid (Three-dimensional Analysis)
3.1 Calculated profile of hunging drop

We have so far described the two-dimensional analyses
of static capillary actions in relation to weld pool pheno-
In real weld puddle, the shape is not two-dimen-
sional and there exists complicated flow, and thus the
previous modelling has of course limitation of applica-
bility. = However, the two-dimensional analyses have
successfully brought one the clear sight of the welding
phenomena. In this sense, a mathematical analysis of the
three-dimensional liquid profile in general case would be
desirable, if it would be possible. Only the case of axi-
symmetrical liquid droplet has been well analysed. In
relation to metal transfer of electrode or filler wire in
welding, the shape analysis of pendant drop has been an
important subject. In 1883, Bashforth and Adams?
published an excellent book in which they described the
mathematical methods of solving the precise profile of
axisymmetric liquid drops in gravitational field. In the
following will be reviewed their method in case of a
hunging drop.

Suppose revolution of surface formed by uniform
surface tension at the boundary of liquid as described in
Fig. 7. Let z be the axis of revolution measured upward
and the point where it meets the free surface be the
origin. If R, and R, are the principal radii of curvature at
any point P(x, z) of the liquid surface, the capillary
pressure is

mena.

Fig. 7 Pendant drop of liquid and related parameters
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p= 0(—+—)

11),
R, R, (11)

and the gravity head of liquid at the same height with
point Pis

=—pgzt C (12)3
where, Cis constant.
The equilibrium condition is then
1 1 1
— +— =—(C - pgz) (13).
R] RZ g

If R; and R, are the radii of curvature in the profile plane
(medional plane) and that of the inscribed disc plane
respectively, they can be expressed as

1 d*z/dx*?
= 14
R, {1+ (dz/dx)* " (14)
_—1— - Sin¢i
R2 X
- dz/dx as),

x{1 + (dz/dx)* }'"*

where ¢ is the angle that the normal to the surface at
point P makes with the axis of revolution. (Fig. 7)
Let R, be the radius of curvature at the origin, then

R; =R, and lim (x/sing) = Ry atz = 0.
x>0

Hence, the constant C in eq. (13) becomes

127)
Introducing non-dimensional parameters as
R2
g = PERQ
o
A= Ry/Rq
£=x/Ry
§= Z/ROa
the eq. (13) becomes
1 sing
—_t = 2 —_ 17 s
AT B 17
or its equivalent differential equation of 2nd order as
g d{ 2y 1 dE _ 21372
— 4 {1+ (= (2- 1+
7 {1+ )}Sds B ( )}
. (18).

The two arbitrary constants which appear in the integral
of eq. (18) must be determined by the condition that

¢= 0and d¢/(§d§)=1 when & = 0.

As it is not able to find the general relation between £ and
¢ in the eq.(18), one must solve it by numerical or
graphical methods. In general, the objective curve is
determined in series proceeding according to ascending
powers of the increment of the chosen independent
variable. Namely, one can determine a small portion of
the curve starting from a known point, and one starts

C = (16) again from the end of this portion for determining an-
R, other small portion. Repeating this procedure, one can
5.0
Jl;
4.0t
Type I Type IL TypeIL
3.0 . 3.of - 3.0 .
(B=0.3) (B=0.5) (B=1.0) .
2.0p 2.0t 2.0t
o ol o
1.0t 1.0t 1.0f
0 1.0 2.0 0 10 20 30 0 10 20 30
g 3 g

Fig.8 Three typical profiles of pendant drops supported by cappillary pressure
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trace the curve that satisfies'the basic equation. Table 2 IIW classification of metal transfer

Bashforth and Adams conducted the precise calcu-
lations of eq. (18) by the above method for various-cases.
Figure 8 shows some results of the calculated profile of
hunging drops of liquid. There are three typical shapes of
pendent drops depending on the parameter 5. Each shape
will be called in this paper Type I, II and III respectively.
Bashforth and Adams did not comment on this character-
istic differences, but if their calculated results are gra-
phically represented, interesting features become ap-
parent.  Figure 9 shows the characteristic sizes of a
droplet when it is supported by capillary pressure. The
critical values of f§ that changes from Typel to II and
from II to III are about 0.35 and 0.62 respectively. In the
B-range where Type I and II appear, the height of drop §,
and its radius £, at the root changes continuously, but
their tendencies are quite different in the range of Type I.
If one pays an attention at the Type II region, the radius
of necked part &, decreases greatly with reduction of §
and on the contrary root radius £, increases remarkably.
Therefore, the distinctive change at = 0.35 seems to be
related to the character of ‘necking, but this has not been
clarified yet. '
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Fig. 9 Change of size parameters of pendant drops with g-index

3.2 Some investigations on metal transfer in arc welding
from the view point of capillary action

In arc welding processes, the mode of liquid metal
transfer from the electrode has been the subject for many
researchers.®~1%)  There are many forces governing the
transfer in complicated manners, but their detailed
interactions on a droplet formed at the electrode tip has
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Designation of Transfer Type Welding Processes (Examples)

1 Free Flight Transfer
1.1 Globular

1.1.1 Drop

1.1.2 Repelled

Low-current MIG
CO,-shielded MIG

1.2 Spray
1.2.1 Projected
1.2.2 Streaming
1.2.3 Rotating

Intermediate-current MIG
Medium-current MIG
High-current MIG .

1.3 Explosive MMA

2. Bridging Transfer
2.1 Short Circuiting Short-arc MIG

2.2 Bridging without Interruption Filler Wire Addition

3. Slag-protected Transfer
3.1 Flux Wall Guided SawW

3.2 Other Modes MMA, Cored Wire, Electro-slag

MIG: Metal-Inert-Gas, MMA: Manual Metal-Arc, SAW: Submerged-Arc

not been well clarified. The mode of metal transfer is,
therefore, classified by phenomenological aspect as
tabulated in Table 21! Among various transfer types,
the drop transfer and bridging without interruption are
usually thought to be affected dominantly by surface
tension under the influence of gravity. While, other
modes such as the repelled, spray (projected, streaming
and rotating) and shortcircuiting transfers are regarded to
be caused by electromagnetic effects.

Conventional definition of the globular and spray
transfer is based on whether the maximum diameter of
droplet is larger or smaller than the electrode diameter. In
the MIG arc, for example, the transfer mode changes from
drop transfer to projected or streaming transfer when the
current is increased. As the current is small in the drop
transfer mode, the electromagnetic effect may be neg-
lected as a first order approximation. Namely, the de-
tachment of droplet takes place when the weight exceeds
the supporting force by surface tension.

Greene®) conducted an analysis of the metal transfer in
MIG welding in 1960, in which he calculated the pre-
viously mentioned profile equation (eq. (18)) in graphical
method and discussed the size effect of electrode on
transfer mode and its critical condition. Figure 10 (a)
and (b) show the effect of electrode diameter on drop
size. The maximum diameter of droplet increases with
the increase in electrode radius up to about 0.85 and it
keeps constant over 0.85. While, when the electrode is
constant in radius, the drop size as well as the maximum
volume of droplet that can be suspended decreases with
the reduction of capillary constant. Greene defined the
quantity

y=LE (2_y (19)

2




Surface Tension Effect in Welding
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Fig. 10 Effect of rod diameter on maximum drop diameter?)

as Drop Size Index which is a non-dimensional area. As it
is obvious in Fig. 10, the transition from drop to pro-
jected transfer takes place when M = 0.72 (= 0.85%).

Here, it should be noted that Greene conducted
calculations mainly in case of Type II and partly Type III
mentioned in the previous section, but he put the condi-
tion that the largest drop which can be supported on the
rod end must be equal to the diameter of the neck,
namely, gradient of the liquid profile, d¢/d§ = o (90°) at
the position of liquid-solid junction of profile curve. He
also stated that if the neck diameter is less than the rod
diameter, the drop could grow to a greater size before
surface tension could no longer support it against gravi-
tational forces. He did not describe any theoretical reason
on this matter, but it is obvious from the Bashforth and
Adams’ calculation described in the previous section
that this argument cannot be derived from the static
pressure balance consideration. As already shown in
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Fig. 8, the drop can be suspended even if the contact
angle is 0. In a given profile, one can choose an arbitrary
height of drop from its bottom, which means that the rod
size and contact angle are not the restriction condition for
the static equilibrium, as far as the profile curve of droplet
intersects at the periphery of rod. '

However, Ando and Hasegawa stated in their book that
the hunging drop with a neck having smaller size than rod
diameter might not be possible to obtain in actual case
and nobody observed such shape in steady state during
welding.!?) The above contradiction may be possibly
resolved by considering an instability of cylindrical
liquid. Lancaster'® mentioned, in 1979, the importance
of pinch instability in metal transfer.

_L_j
2 Ra
|\

2r 2r, 2a
B8 i

1 /‘ JL

\ \_/

Fig. 11 Pinch instability of liquid cylinder

The simplest unstable phenomenon of self pinched
liquid cylinder is so called Sausage Type Instability as
shown in Fig. 11. If the free surface is displaced slightly
from its equilibrium state, the internal pressures at the
positions A and B are

1 1
P,=0 —
4 (’A RA)
1 1
Pp=0 +
5 (’B RB)

If Ma is very small, the radii of curvatures R4 and Ry are
small compared to liquid radius a, and both the negative
pressure at A (—o/R,) and positive pressure at B (0/Rp)
act so as to recover the distorted surface to the equili-
brium state. If A/a is very large, on the other hand, R
and Rp are large compared to @ and the pressure com-
ponents o/R, and o/Rp can be practically neglected.
Thus, the pressure at A becomes higher than that at B,
since 74<Rp. This pressure difference causes a liquid
flow in axial direction and the diameter at A-section
continues to decrease since there is no source of liquid at
the position A. The reduction of radius at A, as well as
the increase in radius at B, makes the pressure difference
greater and the axial flow is more accelerated, and thus
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the section A is finally pinched off. The pinch instability
or necking of drop hunged from solid rod is analogouse to
the above. However, when we consider the metal transfer,
we have to take into account the Lorentz force and
gravity as Lancaster has attempted.'3

4. Summary

In succession to the previous Part 1, here were re-
viewed the static pressure balance of hunging liquid and
its critical condition of self-support by capillary pressure.
The same equation of elliptical integral described in Part 1
was used in self sustaining of root bead in flat position,
and the method of Bashforth and Adams was briefed for
calculating the profile of three-dimensional pendant drop,
and its characteristic shapes were explained. In hunging
liquids, the allowable conditions of self-sustaining by
capillary action are intrinsically limited due to the gravi-
tational force, and moreover fluidmechanical instability
enhances the difficulty of supporting fluid. Two types of
instabilities, Rayleigh-Taylor type instability for liquid
membrane and pinch instability for pendant drop were
briefly explained.
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