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                                Synopsis 

      Possible ground-state spin configurations in normal cubic spinels having 

  magnetic ions on B-sites only are studied with the assumption of four superexchange 

 interactions. Spin configurations are constructed using one wavevector or 

  two wavevectors restricted along one of  [001] , [110], and [111], and their 

  stability is studied with respect to wavevectors in the whole Brillouin zone . 

  It is shown that a helix with a wavevector (0,0 ,k) is stable in a certain region 

  in the exchange-parameter space. Two helices, with  (k,k,0) and (k ,k,k), and 

  the Yafet-Kittel type configuration have lower energies than all other constructed 

  configurations in certain regions, but they are not the ground state . A  cone-

  helix along [110] having a conical structure in two sublattices and a coplanar 

  structure in the other two sublattices has the lowest energy in a large region 

  of the parameter space among all the configurations constructed with two wave-

  vectors. Relevant observed spin structures in chromium chalcogenide spinels , 

 MgV204' GeCo204'and GeNi204, are discussed. 

     Spin configurations with the wavevector  (2111a,0,Tda) of the neutron diffraction 

 pattern for ZnFe204 are also constructed with the assumption of five different 

 superexchange interactions, and their stability is studied . It is shown that 

  three types of degenerate antiferromagnetic configurations are the ground spin 

  state on a straight line in the two-dimensional exchange-parameter space at 

 fixed values of the other two parameters. Magnetic dipole-dipole interaction 

 stabilizes four particular noncollinear antiferromagnetic configurations and 

 gives a width to the line of stability. These four configurations give the 

 same neutron diffraction line intensities  which are in fairly good agreement 

 with the observed intensities due to  Konig et  al ..
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                             INTRODUCTION 

         Normal cubic spinels with nonmagnetic cations on A-sites and magnetic cations 

    on B-sites are of interest in the study of B-B interactions. Early in 1956, 

 Anderson showed that nearest-neighbor interactions alone cannot produce any long-

     range order  on B-sites. Subsequently, Hastings and Corliss observed a complicated 

    neutron diffraction pattern for  ZnFe204 at 2.7 K whose main peak corresponded 

 to  a  vavevector  (21da,O,Wa), but the spin structure was not determined due to 

    lack of resolution. Recently  Kiinig et al. observed well-resolved magnetic 

    peaks up to high diffraction angles for  ZnFe204 at 4.2 K, and these peaks again 

    corresponded to  (27r/a,0,7r/a). Up to the present time numerious experimental 

    investigations have been done on the spin structures of the spinels having magnetic 

    cations  on :B-sites only, especially those of chromium chalcogenide spinels, 

    by magnetic measurments and neutron diffraction observations. The compounds 

 CdCr2S4,  CdCr2Se4, and HgCr2Se4 have been found to be ferromagnetic. Neutron 

    diffraction studies showed that the compounds ZnCr2Se4 and  HgCr2S4  have spin 

    arrangements of the  (O,O,k) type helix and that the compounds  MgV204, MgCr20„ 
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 GeCo204' and  GeNi204 have complicated antiferromagnetic spin structures. For 

    the  (O,O,k) helical ground state in ZnCr2Se4Dwight and Menyuk made a theoretical 

    analysis on the basis of nearest-neighbor and five distant-neighbor interactions. 

    They used the method of  Lyons and Kaplan to delineate the stability region of 

    the  (0,0,k) helical ground state in the exchange-parameter space, using two 

    relations that were determined from experimental data among five exchange ratios. 

        In the situation mentioned above  we  study in the present work various 

    theoretically possible  ground-state spin configurations at T = 0 in normal 

    cubic spinels having magnetic cations on B-sites only. The contents of this 

    work are divided into two parts: 

         Part [001], [110], and [111] Spin Configurations, 

          Part II: Theory of Magnetic Structure of Zinc Ferrite.
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    In Part I we construct spin configurations having one wavevector or two 

wavevectors restricted along one of  [001],  [110], and  [111], under the assumption 

 of  four different superexchange interactions, and we study their stability with 

respect to all wavevectors in the whole Brillouin zone. The Lyons-Kaplan 

 theory; described concisely by Nagamiya, is used. Relevant observed spin 

structures are discussed. 

    In Part II we construct spin configurations with a wavevector  (2ff/a,O,Tr/a) 

found  in  the  neutron diffraction pattern for ZnFe204'under the assumption of 

five different superexchange interactions,  and  we study their stability. We 

find new degenerate antiferromagnetic configurations. We further study the 

effect of magnetic dipole-dipole interaction stabilizing  particular ones of 

these antiferromagnetic configurations.
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 Part  I 

 [001]  ,  [110]  ,  and  [111] Spin Configurations
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 L. Introduction 

          The magnetic properties of the normal cubic spinels having nonmagnetic 

       cations on A-sites and  magnetic cations on B-sites, especially chromium 

 chalcogenide spinels, have been investigated by several workers. It was 

      found that  ZnCr2Se41),2) has a spin arrangement of the  (0,0,k) helix type, 

      with a turn angle of 42° at 4.2°K, and a positive asymptotic paramagnetic 

       Curie temperature of  115°K. Lotgering accounted for these properties 

       assuming a strong ferromagnetic nearest-neighbor Cr-Se-Cr superexchange 

       interaction, with positive  J0, and relatively weak antiferromagnetic second, 

 third, and fourth neighbor superexchange interactions via anions, with 

 negative  J1,  J2,  J3. Plumier considered only three interactions assuming 

       J3 = 0 and determined the other constants uniquely from experimental results 

       as J0= 24.9°K, J1 = 7.8°K, and  J2 = -10.65°K. 

          The compounds  CdCr2S4, CdCr2Se4, HgCr2S4, and  HgCr2Se43)'4) were found to be 

       ferromagnetic, with Curie temperatures of 84.5, 129.5, 36.0, and  106°K, respect-

      ively. All these materials except HgCr2S4 are ferromagnetic at least down to 

       4.2°K, whereas HgCr2S4 was observed to be metamagnetic below 25°K. Neutron 

       diffraction experiment by Hastings and Corliss5) showed, however, that the 

       spin structure of HgCr2S4 at low temperatures is a (0,0,k) helix,with a 

       turn angle of 22° at 6.5°K, which decreases with increasing temperature, 

       reaching a value  of 10° at 30°K, beyond which it shows little variation 

       up to 60°K, the  Neel point observed by this experiment. For the  ferro-

       magnetic  spinels, Baltzer et  a1.4) made a theoretical analysis under the 

       assumption that antiferromagnetic distant-neighbor interactions occur 

        exclusively via the A-site cations. 

          A rigorous analysis of the (0,0,k) helical ground state for ZnCr2Se4 

       was made by Dwight and  Menyuk6) on the basis of nearest-neighbor and
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 five distant-neighbor interactions. They used the method of Lyons and 

 Kaplan7) to delineate the stability region of the  (0,0,k) helical ground 

 state in the exchange-parameter space, using two relations, determined 

 from experimental data, among the five exchange ratios. They pointed 

 out that the model proposed by Baltzer et al. for chalcogenide spinels is 

 not justifiable. 

     In addition to chromium chalcogenide spinels, neutron diffraction 

 studies have been made for  ZnFe204'8)  GeCo204'9)  GeNi204'10)  MgV204'11) 

 and MgCr204'12),13) for which some complicated antiferromagnetic spin 

 configurations have been inferred from the experimental results. 

     In the situation mentioned above, we study in the present Part I 

 various theoretically possible ground spin configurations at  T=0 in the 

 normal cubic spinel having magnetic cations on B-sites  only. We  restrict 

 ourselves to four superexchange interactions via two anions, with exchange 

 constants J0'Jl'J2, J. andWe neglect the interaction B-anion-A-

                             anion-B, the inclusion of which would require the division  of.  J2 into J2 

 and  J2"' and also neglect interactions via three or more anions. The 

 Lyons-Kaplan theory, described concisely by  Nagamiya,14) is used.
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 §2. Formulation 

           We consider a  normal  .cubic spinel whose A-sites are occupied by 

 .nonmagnetic ions and B-sites by magnetic ions. We can choose a 

       rhombohedral unit cell which contains four B-site  ions, 

 1.-(0,0,0), 2.  (0,a/4,a/4), 3.  (a/4,a/4,0),  4.  (a/4,0,a/4), 

        described in cubic  coordinates,  where a is the lattice constant; see 

       Fig.l. Let  Smv  be the classical spin vector of the  with magnetic ion 
       in the nth unit cell and  R

mv its position. The exchange energy can 

        be written as 

                  E = - J(Rmp
,nv)Smp-Snv(Rmp,nv= Rmp- Rnv). (2.1)  m

,p n,v 

       Using the Fourier  transforms  of J(Rmp
,nv) and Smp' 

               Cpv(q)  =-I J(Rmp,nv)exp(-iq.Rmp,nv), (2.2) 

                                -1 r 
           0310Smpvitexp(-i), (2.3) 

 where S is the magnitude of the spin vector on  each .B-site and N the number 

   of unit cells,  Eq.(2.1) becomes • 

       E/NS2 = C(0,0Tq(2.4) 
                             pvp-.-qv                                q

,p,v 

           -We may consider exchange interactions of six kinds , particularly for 

       chalcogenide spinels in which the crystalline binding may involve a large 

       covalency:  Jo between nearest neighbours,  between (0,0,0) and  (a/2,-a/4,a/4) 

       (and for  equivalent  pairs),  J2' between  (0,0,0) and (a/2,a/2,0), J2" between 

       (0,0,0) and (a/2,-a/2,0), J3between (0,0,0) and (3a/4,-a/4,0),and J4                                                            4 

 between (0,0,0)  and  (a,0,0); see  Fig.l. If we write - 

               J'=J2(1-y)andJ2''= J (1 + y), (2.5)   22
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then y is a quantity that represents the degree of covalency of the A-site 

 cations. However, for most part  of the present Part I we put y = 0 and 

J4=  O. These quantities, T and J4, will appear only in our qualitative 

discussion. Different notation for the interaction constants due  to 

various investigators is listed in Table 1. We also write  t = Jo/J2, 

 n  =  J1/J2, =  J3/J2, and measure q in units of 4/a. 

    The diagonal elements of the matrix  [C4qx,qy,qz)] can be written as 

    C11(qx'cly'qz) = C22(qx'cly'qz) = C33(qx'cly'qz) = C44(cix'cly'qz) 

 =  -2J21cos2(q
x +  qy)  +  cos2(qy  +.qz) +  cos2(qz +  qx) +  cos2(qx -  qy) 

             + cos2(q
y-qz) + cos2(qz- qx)1, (2.6) 

 and the off-diagonal elements are as follows: 

    C12(qx,qy,qz) =-2J2[tcos(qy + qz)+rilcos(2qx+ qy- qz) 

         +  cos(2q
x -  qy +  qz)1 +  “cos(3qy -  qz) +  cos(qy -  3qz)1], (2.7a) 

 C13(q
x,qy,qz)  =  C12(qz,qy,qx), (2.7b) 

   C14(q
x'cly'qz) =  C12"(gy'clx'clz)' (2.7c) 

 C23(q
x,qy,qz) =  C12(qy,qx,-qz), (2.7d) 

 C24(q
x'cly'qz) =  C12(qz'-cly'clx)' (2.7e) 

   C34(q(qq
y,qz) = C12(qx,qy'-qz).  (2.7f) 

                                   The matrix is  symmetric: 

              Cpv(qx,qy,qz) = Cvp(qx,qy,qz) (2.8) 

     Our mathematical problem is to look for the lowest minimum of the 

 exchange energy given by Eq.(2.4) subject to the  condition 

               Snv2 = S2  for  all  n  and  v.
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  This condition can be written as 

 q a qv a-qv = 1 (v =  1,2,3,4), (2.9a) 

            q a qv a q,-qv =0 for all q' 4 0. (2.9b) 

      In the following we sketch the method described in  Ref.14, since it 

  forms the basis of the present study. We introduce arbitrary parpmeters 

  kly and  consider  in place of (2.9a) the following condition: 

          vqk,2aqva -qv=-2. (2.10)                             v v 

  Introducing the Lagrange  multiplier)'., we minimize the exchange energy 

  (2.4) subject to the condition (2.10). Then we have the eigenvalue 

   equation: 

         1.1cill                C(q) a= xf3-2qv                          a(v= 1,2,3,4) (2.11) 

           v 

  from which we obtain eigenvalues and eigenvectors for given q and k. 

   If we take a spin configuration represented by a pair of inequivalent 

  wavevectors q and  -q  and take account of the condition (2.9b), then 

   we have 

 1  A  A 
           a

qv =-2-(i -  ij)uqv'(2.12) 

   whereiand j  are  orthogonal unit vectors which are independent of v .*) 

  From (2.9a) it follows that 

                luI = 1.     qv(2.13) 

  *) When q and -q are equival
ent to each other, a

qv takes the form 

    a
qv = uqv with luqv I=  1.
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The ratio of  u
qv is determined from the same equations as (2.11), i.e., 

from 

           p 
             C v(q)u(NI=13v2)uqv (v = 1,2,3,4). (2.14) 

                             The parameters hare  so chosen  that  the condition (2.13) is satisfied for 

all  v. The lowest eigenvalue is denoted by  A0(Q), q being written as Q. 

It then follows that the corresponding spin configuration gives the 

absolute minimum of the exchange energy. It was  proved15) that, if the 

 eigenvalue of a coplanar configuration is not the lowest of all eigenvalues 

 including those for  (M (but with  fixed), this configuration is locally 

unstable and cannot be the ground spin state. Eq.(2.4) can be written as 

     E/NS2  =0(Q)1v  p:2. (2.15) 

    When we fail to find a solution with  + Q only, we may take another 

wavevector Q' besides Q. If Q is a general wavevector, Q' must be one 

of 0, K/2, and K/4 in order that the condition (2.9b) be satisfied, where 

K is a reciprocal vector. Besides  Eq.(2.12), we have 

                       A 

        aQ'v=uQ'vk if Q' = 0  or  K/2, (2.16) 

                                                                  A where  uQ'v is determined from  Eq.(2.14) with Q' in  place of Q and k is the 

              A A 

unit vector perpendicular to both i and j. Furthermore the condition 

(2.9a) can be written as 

      luQvI2 + lucltvl2 = 1. (2.17) 

The parameters  areso chosen that the  eigenvalues for the two wavevectors 

are the same and the lowest, and that the condition (2.17) is satisfied 

for all v.
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§3. (0,0,k) Spin Configurations 

    We consider first spin configurations having only one wavevector 

q  = (0,0,k), measuring k in units of 4/a as before. The matrix  [Cpv(k)], 

where we  abbreviate  C
pv(0,0,k) as  Cpv(k), has the  symmetry  C12(k) = C14(k) = 

C23(k) = C34(k) and  C13(k) = C24(k). In this case we can choose  61 = 

62 =  63 =  64 = 1. Under a unitary transformation 

           X1 = (u1 + u2 + u3 + u4)/2, X2 = + u2  - u3 - u4)/2, 

                                                            (3.1) 

           X3 =  (u1  -  u2 + u3  - u4)/2, X4 =  (u1 u2 - u3 + u4)/2, 

the  eigenvalue equation (2.14) can be put into diagonal form. 

    For X1we obtain 

                             + Ci3(k) + 2C12(k),ul=u2=u3=u4, (3.2)          11[001](k) = C(k)                      11 

for X2 and  X4 we have 

         12[001](k) = X4[001](k)=C11(k)                                                C13(k), u1=-u3,  u2=-u4, (3.3) 

and for X3we have 

          A[001](k) = C(k) + C (k)2C(k),u =-u =u =-u . (3.4)   31112            131 2 3 4 

However, the configuration for A3 is equivalent to that for  Al as k may 

be  replced by  n - k. Looking for the minimal eigenvalues of the above 

A's, we obtain following six possible configurations: 

    (a) Ferromagnetic configuration (k = 0,  u1 = u2 = u3 = u4) 

 A[001](0) = -  6J2(  2n  +  2c+  2). (3.5) 

 (b) [001] helical  configuration-1  (0<k<7/2, u1 = u2 = u3 =  u4)
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    X1[001]             (k) =  -2J2[E - 2n +  2c - 2 +  2(E + -  2c)cosk 

                   + 4(n + 2)cos2k +  8ccos3k],(3.6) 

where the turn angle k is determined from dX1[001](k)/dk = 0, i.e., from 

 cosk =  [-(n + 2)  ;  ^{(n + 2)2 -  3c(E  +  2n -  24)}]/6c for  c 0. (3.7) 

Here the minus sign corresponds to  J2 > 0 and the plus sign to  J2 < 0. 

 For  c =  0 we have 

   cosk =  (E +  2n)/[4(n + 2)]. (3.8) 

 (c) [001] helical configuration-2  (n/2<  k<n, u1,= u2= u3= u4) 

Formulas  are the same as those in (b). 

    (d) Degenerate antiferromagnetic configuration 

 (d-1) Verwey order type (k =  n, u1= u2= u3= u4) 

           [0°1](w) = -2J
2(-E - an - 2c +  6).  X1(3.9) 

The spins on each (001) plane are ordered ferromagnetically, but spins on 

adjacent planes are antiparallel. 

    (d-2) Uncorrelated antiferromagnetic structure (k = 0,  ul = - u3, u2 = - u4) 

 2[001](0) =  X  [001](0) = -  2.12(-E - 2n -  2C + 6). (3.10) 

The spins on sublattice 1 and those on sublattice 3 are antiparallel and 

the spins on 2 and those on 4 are also antiparallel; in each sublattice 

the spins are parallel. The spin axis of  (17.3) and that of (2, 4) are, 

however, uncorrelated. 

    The ground spin state  (d) is indeterminate in cubic spinels,  but as 

was pointed out by  Aiyama,16) the two accidentally degenerate  eigenvalues
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of  (d-1)  and  (d-2)  split  if there is a tetragonal distortion. He also 

pointed out that the ground state of  ZnMn204 (c/a = 1.14) is the uncorrelated 

antiferromagnetic structure. 

     (e) Uncorrelated antiferromagnetic [001]  configuration-1 

                                      (k =  IT/2,  ul = u3, u2 = u4) 

    A1[001](7/2) = X3[001]0/2) = - 2J 2( + 2c - 2).                                                             (3.11) 

 The spins on each (001) plane are parallel, but  in  the pair of sublattices 

 (1, 3), as well as in the pair of sublattices (2, 4), the spin direction 

 alternates by an angle  lc in going along the [001] axis. The spin axis 

 In (1, 3) and that in (2, 4) are uncorrelated. We shall call this 

 configuration  UA1. 

     (f) Uncorrelated antiferromagnetic [001] configuration-2 

 (k  =  w/2,  u1  =  -  u3'  u2  =  -  u4) 

 X2[001]0/2)  =  A  4[001](v/2) = -  2J2(-E +  2n —  2c  - 2). (3.12) 

 The spins 1 and 3 on each (001) plane are ordered antiparallel and these 

 spins alternate with a turn angle  w along the [001] axis. The same is 

 true for the spins 2 and 4, but the spin axis in (1, 3) and that in (2, 4) 

 are uncorrelated (see Fig.2). We call this configuration UA2. 

     We show in Figs.3, 4, 5 for  c =  J3/J2  = 1/2,  0,  -1/2 the regions in 

 the  41 plane  (E =  J0/J2,r1 =  J1/J2) in which the above six configurations 

 take their respective lowest eigenvalues. Bold lines represent the 

 boundaries of the configurations (a),  (b),  (c), (d), and  (f), excepting (e). 

 The  UAl  configuration is represented by a straight line (e). Dashed lines 

 in the helical regions (b)  and  (c) represent loci of k =  Tr/3 and k =  2ff/3. 

 Dwight and  Menyuk6) studied mainly the stability of the helix (b)  in  ZnCr2Se4' 

 so that they assumed  J0 to be positive and the largest of all J's. We do



                                                         13 

not confine ourselves to such a case and find the possibility of a new  spin 

state  UA2. 

    Next we study the stability of all these configurations, comparing their 

eigenvalues with eigenvalues for all the wavevectors in the Brillouin zone. 

Because of the symmetry of [C
pv(q,qy,qz)], only  1/48 of the first Brillouin 

         x zone may be considered. We have investigated the stability with respect 

to eigenvalues for wavevectors along [110], [111], and [210], and special 

wavevectors at 22 points shown in Fig.6. We carried out numerical 

calculations  by  using a NEAC 2200 computer, and we find the shaded regions 

in Figs. 3, 4, 5 for the instability of the present [001] configurations. 

The main features of the stability and instability are as follows. 

 1) The stability of the ferromagnetic configuration. 

    In the region where all superexchange constants are positive the  ferro-

magnetic configuration, (a), is stable. When there are negative  super-

exchange constants, this configuration is unstable in a certain small region. 

For example, in the case of  c = 0 and  J
2  ›' 0 in Fig.4, this configuration 

is unstable in a small belt-like region  (.a part of the shaded region above 

the line k = 0 in the  quadrant > 0,  11 < 0) with respect to q =  (Tr/4,w/4,w/4). 

We may therefore anticipate there a new spin configuration having two 

wavevectors, q = 0 and q' =  (ir/4,w/40114). This problem will be treated 

in §5. 

2) The stability of the helix  [001]-1. 

    In the case of = 1/2 shown in Fig.3, this configuration is unstable 

everywhere. In the case of  C = 0 and  J2  <0, however, a small region in 

 <  0,  <o remains the stability region as can be seen in Fig.4 (the white 

region for (b)). A larger stability region is  obtained in the case of 

    -1/2 and  J
2  <0, as shown in Fig.5. It can be concluded that J2 

must be negative in order that the helix  [001]-1 is the ground spin configuration ,
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   and also that positive values of  J3 tend to stabilize it = J3/J2). 

 Plumier2) found by neutron diffraction that ZnCr2Se4 has a spin 

   arrangement of the helix  [001]-1 type, with a turn angle k=42°. Point P 

 in the stability region in Fig.4 corresponds to exchange constants determined 

    from experimental data by Plumier for ZnCr2Se4. Dwight and  Menyuk6) 

    concluded, from the Goodenough-Kanamori rules of superexchange that  J2 < 0 

    and  J3 > 0 for Cr3+ in B-sites. Hence the helix  [001]-1 can be expected 

    for chromium  spinels, and in fact it was  observed in ZnCr2Se4 and HgCr2S4. 

        Furthermore, there is an evidence that the ground spin state of CdCr2S4 

    is  ferromagnetic3),4) In CdCr2S4 and HgCr2S4 the lattice parameter a 

    and the asymptotic  paramagnetic Curie temperature 0 are a = 10.244,A,0= 152°K 

    and a = 10.237 A, 0 = 142°K, respectively, and the u parameter is the same. 

    To explain the difference of the spin structures of CdCr2S4 and HgCr2S4, 

    we expect the following inequalities to hold: 

                Cd 
                  < EH

g'i.e.(J0/IJ2I)Cd>0/1,121)Hg(3.13) 

              nCd<Hg'i.e. (J1/IJ2I)Cd>(J1/IJ2I)Hg,  (3.14) 

                Cd 
                  <i.e. (J3/IJ2I)Cd> (J3/IJ2I)Hg. (3.15) 

          eu 

    Here the negative slope  of the boundary between (a) and (b) in the case 

    of  J2 < 0,  E  <  0  and a shift of the boundary in going from = 0 to 

      = -1/2 have been considered. The inequality (3.13) is qualitatively 

    understood from the fact that a chromium chalcogenide spinel having a larger 

    lattice parameter has a larger positive value 0 which is determined 

    mainly by J4). It might also be that  IJ2I takes a larger value in 

            0 

    Hg-compound. The inequality (3.14) is understood from another point 

    of view that, in the case of  c = -1/2 and  J2 < 0  (Fig.5),,a change in n (=J1/J2) 

    near n = 0 at a  fixed- negative value of  E gives rise to  the transition
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• from the ferromagnetic configuration, (a), to the helix  [001]-1 configura-

tion, (b). A small difference in  Q for CdCr2S4 and  HgCr2S4  can be 

expected by taking into account their different degrees of A-site covalency. 

The  covalency effect for J3 might also account for the inequality (3.15). 

Dwight and  Menyuk6) pointed out that negative values of  r tend to stabilize 

the helix  [001]-1. 

3) The stability of the UA2 configuration. 

 This configuration is unstable for  J2 > 0 in the three cases  of = 1/2, 

0, -1/2. For = 1/2, J2 < 0 and for = 0,  J2 < 0, this configuration 

is stable in the unshaded part of the region marked (f). Hence for the 

stabilization of the UA2 configuration J2 must be negative, and J0 ( =  EJ2) 

and J3 (=2) prefer negative values. Plumier and Tardieu11) found 

by neutron diffraction that  MgV204 at 4.2°K has a correlated antiferro-

magnetic spin arrangement of a wavevector q =  (0,0,7/2) shown in Fig.7. 

This compound is tetragonally distorted at low temperatures  according to 

X-ray  diffraction17). Within our  assumption  of cubic crystal and four 

isotropic exchange interactions the ground spin state of  MgV204 must be 

UA2. Even by taking  Y and  J4 into account, we still obtain  UA2 (Appendix C). 

Hence, the observed correlated configuration should be due to an anisotropy 

energy and the tetragonality.
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§ 4.  (k,k,0) Spin Configurations 

    Next we take a wavevector along [110], and we write q = (k,k,0). The 

off-diagonal elements of the matrix  [Cpv(k)],  Cuv(k,k,O) being abbreviated 

as C
Pv(k), have the symmetry  C12(k) = C14(k) = C23(k) = C34(k). We 

choose  a
v in such a way that the matrix [8 avC(k)] retains the symmetry 

                                           of  [C  (k)], i.e., a1=3=  a and  82 =  a4 = 1. Under a unitary 
 Pv 

transformation 

          X = (u1 +  u3)  /I,  X' =  (u1 u3)/Vf, 

                                                      (4.1) 
           Y  =  (1'12  u4)//' Y'  = (u2 - u4)/1/2", 

The matrix  [a  a  C  (k)] is partially diagonalized into a two-dimensional 
 P  v  Pv 

matrix and two one-dimensional ones. For the former we have the following 

eigenvalue equation for X and Y: 

          C11(k) +  C13(k) - A/82                                         2C12(k) 

                                                               = 0. (4.2) 

             2C12(k) C11(k) + C24(k.)- A 

Solving  Eq.(4.2), we obtain two eigenvalues, of which the lower one is 

      1[110](k) =2      A(C11(k)+ C13(k))+ C11(k) +  C24(k) 

            2                + C
13(k)) -  +  18s2C12(k)2 (4.3) 

       - J[113 (C
11(k) C11(k) C24(k)12 

For this we have u1 = u3 and u2 = u4. From a one-dimensional matrix for 

X' we have 

      2[110](k)•R2(                     C11(k)- C13(k)), u1 = -u3, u2 = u4 = 0. (4.4) 

From the other one-dimensional matrix for Y' we have - 

     A3)[110](k.                •C11(k) - C24(k),  ul = u3 = 0, u2 = - u4. (4.5)
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    We construct the  (k,k,0) configurations in the shaded regions  of. 

Figs. 3, 4, 5. The details of these configurations are shown in Appendix A. 

First we consider the following case (g). 

   (g) Helix [110] 

 Here:  the spins on each  (110) plane are parallel and the helix propagates 

in the [110] direction with a turn angle k. We determine k from 

 cAl[110](k)/dk = 0, using Eq. (4.3). We can choose  0 so as 

                X/Y = u1/u2= 1, i.e.,  ul = u2 = u3 =  u4 

is satisfied. 

   At first we compare the exchange energy of the helix [110] with 

those of the unstable [001] configurations in the shaded regions  of. 

Figs. 3, 4, 5. The result turns out to be that the helix [110] 

has a lower energy in  a  region of mostly  <  0 shown in Fig.8 in the case 

of  r = 1/2 and  J2 < 0. Next we study its stability. When we calculate 

eigenvalues for q = (k,k,k) from Eq.  (2.14) using the present values of 

8's, we find that some of them are lower in  the-whole (g) region. Hence, 

unfortunately, the coplanar helix [110] cannot be the ground spin state. 

    In order to fill the shaded regions of Figs. 3, 4, 5, we try to find 

other solutions. When k is equal to  7/2, we have  C12(7/2)  = 0, and 

hence from Eq. (4.2) we obtain two  eigenvalues . 

   Ax[110](7/2) = - 2J282(-E +  2n -  2c - 2),  ill = u3, u2 = u4 = 0, (4.6) 

   XY     [110]           (7/2)= - 2J2(E -  2n + 2c - 2),u1= u3= 0,u2= u4.(4.7) 

Furthermore, we have from Eq.  (4.0 

    X2[110](7/2)  = -  2J2a2( -  2n +  2 - 2),  ul =  T- u3, u2 =  u4.= 0, (4.8) 

and from Eq. (4.5)
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     [110]     X
3(7/2) = -  2J2(-E  +  2n - - 2), u1 = u3 = 0, u2 = - u4. (4.9) 

It is impossible to construct in each case a real configuration  with .a. 

single wavevector q =  (7/2,7/2,0), because the condition (2.13) cannot be 

satisfied. However, we can construct spin configurations with two 

 wavevectors, Q =  (k,k,0) for  X1[110](k) of Eq. (4.3), with  dx1[110]  (k)/dk = 0, 

and Q' =  (7/2,7/2,0) for one of X[110](7/2) ( j= x, y, 2, and 3).*) 

Q' is equivalent to  (0,0,7/2) and it is one of  K/2's. Among four possible 

configurations, two for j =  2 and 3 have lower energies than the unstable 

[001] configurations in most part of the shaded regions as described below. 

    (h) Cone-helix  [110]-A 

    We force degeneracy of two eigenvalues X1[110](k), with u1(k) = u3(k) 

and  u2(k) = u4(k), and  X2[110](7/2), with  u1(7/2) = -  u3(7/2) and  u2(7/2) = 

 u4(7/2) = 0. In order to satisfy the condition (2.17), we require 

 lu2(k)I = 1,  Iu1(k)I2  +  lu1(T/2)12 = 1. (4.10) 

The superposition  of  the  eigenvector{av(k)} based on (I,I) as in Eq. (2.12) 

                                           A and the  eigenvector{ov(7/2)}based on  k as in Eq. (2.16) yields a cone-

helix  [110]-A shown in Fig.  9,  in which spins on  sublattices  1 and 3 have 

a conical structure and spins on 2 and 4 form a planar helix. 

 (i) Cone-helix  [110]-B 

    We force degeneracy of two eigenvalues  X1[110](k) and  X3[110](7/2). 

From the condition (2.17), we require 

 lu1(k)1 = 1, lu2(k)I2 + Iu2(71/2)12 = 1.  (4.11) 

We show this cone-helix  [110]-B in Fig. 10, in which  spins on sublattices 

 1 and 3 have a planar helical structure and spins on 2 and 4 form a cone. 

*) It is also possible to construct a spin configuration represented by 

two wavevectors Q =  (k,k,0) and Q' = 0, but this configuration has a high 

energy.
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    By computer calculations theenergies of the cone-helices  [110]-A and B 

were compared to those of the unstable  [001] configurations in the shaded 

regions of Figs. 3, 4, 5. It  was found that the cone-helix  [110]-A has 

a lower energy in most part of the unstable regions for the helix [001] (b) 

and (c). The cone-helix  [110]-B has a lower energy in most part of the 

unstable regions for UA2, that is (f). The boundaries of the regions of 

lower energy are shown by chain lines in Figs. 8, 11, 12. 

    Next we study the stability of these configurations. Since eigen-

values of the matrix [13 a C
pv(qx,qy,qz)1, with  a1 =  a3 =  H,  H2 =  a4 = 1, 

   v are not affected by reversing the sign of any of  q
x,  qy,  qz and by  exchanging 

 qx with qY'it is  sufficient  to  consider only 1/16 of the first Brillouin 

zone as shown in Fig. 6. 

The results are as follows: 

    (1) The  eiienvalue of the cone-helix  [110]-A is higher than the eigen-

value for  q=(ii/2,n/4,0), which is one of K/4, in the (h) region of Fig.8 

for =1/2, J2<0 and in the corresponding region for =-1/2, J2>0, not shown 

in figures. We have the same situation for the cone-helix  [110]-B in 

the cases of  c=1/2, J2>0 and  =-1/2,  J2<0. The instability against 

 (ff/2,ff/4,0)  suggests, the construction of a configuration having a single 

wavevector  0/2,ff/4,0) or two wavevectors of which one is this. Hastings 

and Corliss8)observed a complicated neutron diffraction pattern for 

                                                                    * 

 ZnFe204 at 2.7°K whose main peak corresponds to0/2,n/4,0).)/2,n/4,0).In 

 MgCr204 the observed low-temperature reflections correspond to  0/2,ff/4,0) 

and  (ff/4,ff/4,0).13) 

*) In a recent experiment, well resolved magnetic peaks were observed for 

 ZnFe204 at 4.2K (U.  Venlig et al.: Solid State Communications 8 759 (1970)). 

We discuss the corresponding structure in Part  ].
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        (2) The eigenvalues of the  cone-helices [1101-A and B having  (k
,k,0) for 

    the helical part are higher than those for wavevectors q in the vicinit
y of 

 (k,0,k) and in the vicinity of  (n/2,k,k) in the remaining regions of their lower 

    energies, i.e., the (h) region for =1/2 , J2>0 and for  -=-1/2,  J2<0, the  (i) 

    region for  c=1/2,  J2<0 and for =-1/2 ,  J2>0 (see Fig.  11), and both the (h) 

    and  (i) regions for  c=0,  J
2>0 and  J2<0 (see Fig.  12). "Bad" wavevectors 

    that  upset the stability of the cone-helix [1101-B, for example at points 

 (-6.0.,  2.0)  and  (-6.0,1.5) in the  y plane in  the  -case of  -=0 and  J2>0 , are 
    shown in Fig. 13. However , "good wavevectors", including zero wavevector, 

 all of  K/2, and all of  K/4 , that stabilize the cone-helix [1101-A or B fill 

 -mast part of the Brillouin zone . 

        In the case of non-coplanar cone-helices [1101 -A and B, the existence  of 

   lower eigenvalues does not necessarily exclude the possibilit
y of their being 

   the ground state, although their stability is not ensured
. Kaplan's  ferri-

   magnetic cone structure for the normal cubic spinels having m
agnetic  cations 

    on both A and B sites is in a similar situation
, in that "bad wavevectors" 

   exist in the vicinity of  <110>.15)
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 E5. Construction of (k,k,k) Spin Configurations 

      In this section, we restict the wavevector to q=(k,k,k). The matrix 

  [Cv(k,k,k)], abbreviated as  [C (k)], has  the symmetry C12(k) =  C13(k) = 

                         = C
34(k), so that we can choose1 = a and S2 =  C14(k), C23(k) = C24(k) 

  a3 =  a4 = 1. Under a unitary transformation 

       x = (u1 + u3 +  u4)  //, 

 Y =  (u2 +  u3 +  w2u4)/ITS,  w =  exp(i2Tr/3) (5.1) 

       z = (u2 + w2u3 + u4)/15-, 

  the  matrix  a  c  (k)] is  partially  diagonalized into a two-dimensional 
 p  v  pv 

  matrix and  two  one-dimensional matrices. We have the eigenvalue equation 

  for1and x: 

      C11(k) x/a2                          15c12(k) 
                          = 0. (5.2) 

 V-Jc12(k) C11(k) + 2C23(k) - A 

  The lower one of the two eigenvalues from Eq. (5.2) is 

    A [111](k) =111(k) + 2C23(k) + a2C11(k)        2 

                   11                      (k) + 2C23(k) - 02C11(k))2  + 12a2c12(k)21], (5.3) 

  for which u2  = u3 = u4. For either y or z we have 

 A2[111](k) = C11(k)- C23(k), (5.4) 

  with u1= 0 and u2+ u3+ u4= 0. We consider (k,k,k) configurations in 

• the shaded regions of Figs . 3, 4, 5 (for details, see Appendix B). First 

 we consider the following case (j).
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    (j) Helix [111] 

 Here spins on each  (111). plane are parallel and  the helix propagates along 

 the [111] axis with a turn angle 2k. We determine k  from1[111](k)/dk = 0, 

 using  Eq. (5.3). We can choose  8 so that 

 u1/x  =  u1/1/5112 =  1/1/5,  i.e.'  ul = u2 = u3 = u4 

 is satisfied. 

     Comparing the energy of the helix  [111] with the energies of the cone-helix 

 [110] A and B and those of the unstable  [001] configurations, we find that the 

 helix  [111] has a lower energy in the case of = 1/2 and  J2 < 0 in a region 

 shown in Fig. 8. With regard to its stability, we calculated eigenvalues for 

 q =  (0,0,k) varying k and found some bad wavevectors in the whole (j) region 

 in Fig. 8. Therefore the coplanar helix  [111] cannot be the ground state. 

     For k =  w/4 we have  C12(Tr/4) = 0 in  Eq. (5.2) and hence we have 

   X[111](n/4) =  82C11(n/4) = 0 (5.5) 

 for u1  t 0, u2 = u3 = u4 = 0. Also, we have 

 A
x[111](w/4) =  -4J2(E  -  20 (5.6) 

 for u1 = 0, u2 = u3  =  u4 4 0. Evidently it is impossible to construct a real 

  configuration for each of these  eigenvalues. 

      In order to fill the regions in which the  [001] configurations are unstable 

 with respect to q =  (.lr/40114,w/4) (for example, the shaded parts of  (a),  (b), 

 and (d)  (E > 0,  n < 0) in Fig. 4 for = 0  J2 > 0), we construct a configuration 

                                                    *) 
 having two wavevectors Q = 0 and Q'= (7/4,w/4,w/4) as follows. 

 *)  Q' is one of K/2 . The configuration having Q = (k,k,k) = 0 and Q' = 

 71/4,7V4) has a higher energy than the unstable  [001] configurations in Figs.  3 ,4,5
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    (k) Yafet-Kittel-like  [111] configuration 

   We force degeneracy of  X1[111](0) from Eq. (5.3) and X[111](n/4) from 

Eq. (5.6). From the condition (2.17), we require 

 Iu1(0)  I = 1,  It12(0) 12 +  lu2(n/4) 12 = 1.  (5.7) 

Then we have the  Yafet-Kittel-like  [111] configuration in four (111) layers as 

shown in Fig. 14. 

 The  region of  lower energy of this configuration is shown in Figs. 11 and 12. 

In the study of the stability of this configuration we note that the axis  [111] 

is not equivalent to the axes  [ill],  [111], and  [111] because of the symmetry 

of [00 C
Pv(q)]  forS1=  0  andR2=3  =4 = 1. By computer calculation it was    Pv 

found that this configuration is unstable with respect to wavevectors around 

q = (k,  -k,  K) and in particular to q =  (n/4,  -n/4,  n/4). Hence, this coplanar 

configuration is not the ground state. 

    Bertaut and his  co-workers found for  GeCo2049) and  GeNi20410) by neutron 

diffraction at 4.2°K that in the structure of alternating  (111) planes, consisting 

of (1) and (2, 3, 4), the spins on each  (111) plane are parallel but they turn 

by  n in going to every other (111) plane, and the spin axis of (1) and that of 

(2, 3, 4) are not correlated. This configuration  may  be called the uncorrelated 

antiferromagnetic  [111] configuration. In order to obtain this configuration, 

we take a wavevector q =  (Tr4,1114,114) and force degeneracy of two eigenvalues 

A[111](n/4) for u10 and X[111](10. However, since C110/4) = 0 by Eq.  (5.5), 

the exchange energy is zero and hence is  high.. Thus, in our approximation of 

y =  J4 = 0 the uncorrelated  antiferromagnetic [111] configuration cannot be the 

ground state. If, however, the Ge2+ ions on A-sites have a large covalency 

and we may take nonzero y and J4. Then we obtain following equations (see 

Appendix C):
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    A[111] (1r/4) = -6132(2J2yJ4) (u10),  (5.51) 

                        [111](n/4) =  -4J2(E -  2c - y) +  6J4,  (5.6') 

          2J2(E - 2c - y) + 3J4  
 132 - (5.8) 

 3(2J21 - J4) 

The corresponding uncorrelated antiferromagnetic [111] configuration could 

 possibly be the ground state.
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 §6. Summary 

    We have assumed the Heisenberg model with four different superexchange 

 constants for normal cubic spinels having nonmagnetic ions on A-sites and 

magnetic ions on B-sites. We first constructed [001] spin configurations 

having only one wavevector q = (0,0,k) and studied their stability with 

 respect to wavevectors in the whole Brillouin zone. It was shown that 

 for the stability of a helix with  0<k<n/2, which has been observed in some 

 chromium chalcogenide spinels, J2 must take negative values and for J3 

 positive values are preferred. For uncorrelated  antiferromagnetic 

 configuration  UA2,  described  in  (f) of Sec.3, J2 must be negative, and for 

 J0and J3 positive values are preferred. Itwas shown that within our 

 treatment the ground spin state of  MgV204 cannot be but the UA2 configura-

 tion, although actually the spins are correlated (Fig.7), possibly due 

 to a tetragonal distortion. Next we constructed, in the regions of the 

 instability of the [001] configurations in the exchange-parameter space, 

 other configurations which have one wavevector or two wavevectors restricted 

 along [001], [110], and [111] and whose energies are lower than those of 

 the  [001] configurations. It was shown that three coplanar configurations, 

 helix [110], helix [111], and a Yafet-Kittel-like  [111] configuration, have 

 lower energies than those of all other constructed configurations in certain 

 limited regions. But it was shown that they cannot be the ground state. 

 We could not obtain the uncorrelated antiferromagnetic [111] configuration 

 observed in  GeCo204 and  GeNi204 as the ground spin state, probably because 

 we neglected two more parameters  y:  and. J4. We have obtained also cone-

 helices  [110]-A and B, shown in Fig.9 or 10, respectively, which have the 

 lowest energy among the configurations that we constructed with one wave-

 vector or two wavevectors along [001], [110], and [111], in regions denoted 

 by (h) and  (i), respectively, in  Figs.11 and 12. It was found, however,
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that the eigenvalues of these cone-helices are higher than either the 

 eigenvalue for q  =  (IT/2,7r/4,0) or eigenvalues for q's in the vicinity 

of  (k,O,k) and  (7112,k,k), so that their stability has not been warranted. 

The observed low-temperature structure of  MgCr204 seems to contain 

 wavevectors  (rr2014,0) and  (ir40r/4,Q) and that of  ZnFe204 a wavevector 

 (n/2,7r/4,0). It would therefore be interesting to construct such 

 _structures and study their stability in the regions in which the stability 

of the cone-helix  [110]-A or B was not warranted with respect to  (n/2,x/4,0).
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 Appendix A: Construction of the  (k,k,0) Spin Configurations in §4 

    First we determine k from dXl[110](k)/dk = 0, takingf3as constant. We                          1 

can choose  8to satisfy one of following two equations: 

 X/Y =  ul/u2 = 1, X' =  Y' = 0, i.e.,  ul = u2 = u3 = u4,  (A-1) 

   X/Y =  ul/u2 = -1, X' =  Y' = 0, i.e.,  u1 = -u2 = u3 = -u4. (A-2) 

   From  (A-1), we obtain the helix  [110], denoted by (g), with following 

equations: 

         C11(k) + C24(k) + 2C12(k) 
82_ (A-3) 

        C11(k) +  C13(k) +  2C12(k) 

   A,l[110](k) = C11(k) + C24(k) + 2C12(k). (A-4) 

The corresponding energy is 

 E/NS2  1[110]  (k) (2 +  2/8). (A-5) 

This configuration has a lower energy in a region of < 0 in the case of 

  = 1/2 and  J2 <0 (see Fig. 8), provided k is in the interval (0,  n/2). 

    From  (A-2) we obtain another helix  [110] for which k in the above is 

replaced by  Tr - k, i.e.,  C12(k) by -  C12(k), but the corresponding energy 

for k in the interval (0,  n/2) is found to be high in the shaded regions of 

Figs. 3, 4, 5. 

    Next we construct spin configurations with two wavevectors, Q =  (k,k,O) 

and Q' =  (n/2,  17/2, 0) as follows: 

    (h) Cone-helix  [110]-A 

    We force degeneracy of two  eigenvalues X[110](n/2). We then                                    1(k) and X2[110] 

obtain  82 as
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• 

   02  =  {C11(k) + C13(k) - A(7/2)}{C11(k) + C24(k)1 - 4C12(k)2                                                                 (A-6) 
                 A(7/2){C                       {C11(                            k)  C13(k)1  -  A(7/2)2 

where 

 A(7/2) =  -2J2( - 2n +  2z -  2). (A-7) 

 From  Eq. (4.2) we have 

                      C11(k) + C24(k) -2[110](/2) 
 X/Y = u1(k)/u2(k) = -(A-8) 

                              2C12(k) 

and we must have 

 lu1(k)/u2(k)I  <  1 (A-9) 

in order to satisfy (4.11). The corresponding energy is 

   2[110]2   E/NS
-A(7/2)(2 + 2/0).. (A-10)          2 

   

. 
_ 

 (i) Cone-helix  [110]-B 

    We  fOrce degeneracy of two eigenvalues A[110](k) and A3[110](7/2). Then         13 

we have 

         A3(111)1(712)-(C11(k) + C24(k)} - A3[110](7/2)2 
 S2  (A-11) 

 {C11(k) +  C13(k)}{C11(k) +  C24(k)} -  4C12(k)2 

                      C11(k) + C24(k) -  A[110](7/2) 
 X/Y =  u1(k)/u2(k) = - (A-12) 

                             2C12(k) 

 lu1(k)/u2(k)I> 1. (A-13)
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The corresponding energy is 

 E/NS2  =  X3[110]  (ff/2)(2 +  2/132).  (A-14)
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 Appendix B: Construction of the (k,k,k) Spin Configurations in §5 

       We first consider the configurations having one wavevector q = (k,k,k). 

  From Eq. (5.3) we have the  eigenvalue  Al[110](k) with  ul, u2 = u3 = u4. We 

 determine k from  dA1[111](k)/dk = 0. We can choose  S to satisfy 

 u1/x =  u1/i3u2 =  1/13, i.e.,  u1 = u2 = u3 = u4,  (B-1) 

  or 

 ul/x =  u1/j3u2 =  -1//3,  u1 = -u2 = -u3 =  -u4. (B-2) 

 From  (B-1) we obtain a helix  [111], with 

     $2  =C11(k) + C12(k) +  2C23(k)                                                             (B-3) 
              C11(k) + 3C12(k) 

 A  [111](k) = C11(k) + C12(k) + 2C23(k). (B-4) 

                                         The exchange energy is 

    E/NS2 = A1[111](k)(3 +  1/02). (B-5) 

 The helix  [111] has a lower energy in the case of  c = 1/2 and  J2 < 0, as shown in 

  Fig. 8. 

      From (B-2) we obtain another helix [111], with 

           C11(k)-C12(k) + 2C23(k) 
 62  = (B-6) 

               C11(k) - 3C12(k) 

 [111]  (k) = C
11(k) C12(k) +  2C23(k)• (B-7)
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The change of sign of  C12(k), as compared with the  former case, means that k 

has been replaced by k. Here  C12(k) must be positive in order that this 

 eigenvalue is lower than that given by Eq.  (B-4). But the corresponding energy 

 is  found to be very high in the shaded regions of Figs. 3,4,5. 

    Next we construct configurations having two wavevectors Q = 0 and Q' = 

 (7/4,  7/4,  7/4) and obtain a Yafet-Kittel-like  [111] configuration by forcing 

degeneracy of two eigenvaluesl[111](0) and Ax[111](7/4), with                         1 

    2          [111]        .x(7/4)(C11(0) +  2C12(0))  -x[111](7/4)2    0 -  
 2(B-8)         C

11(0)(C11(0) + 2C12(0) - Ax[111](7114)) - 3C12(0) 

From Eq. (5.2) we have 

                                 ,i3C12(0) 
   x/^3u1= u2(0)/u1(0) =                           [111] (B-9) 

 C11(0) +  2C12(0) -A(7/4)                                         1 

and from the condition (5.7) we require 

   1u2(0)/u1(0)1_s 1. 
 (B-10)
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Appendix C: Effects of y and J4 

 If we take y and  J4 into account, we have additional terms 

 2J2y[cos2(q
x +  qy) +  cos2(qy +  qz) +  cos2(qz +  qx) 

 -cos2(q
x -  qy) -  cos2(qy  qz)  cos2(qz  qx)]  (C-1) 

 2J4(cos4q
x + cos4qy+ cos4qz) 

to  Cli(q
x,qy,qz). Other diagonal elements are related to this by equations. 

       C22(g
x'cly'qz) = C11(-gx'cly'qz)' (C-2) 

 C33(q
x'qy'qz) =  C11(qx'qy'-qz), (C-3) 

       C44(g
x'cly'qz) = C11(gx'-qy'qz).(C-4) 

The  off-diagonal elements do not contain y and J
4. 

    (1) The case of q =  (0,0,k) 

The matrix elements have the symmetry  C
11(k)  =  C22(k) = C33(k) = C44(k),  C12(k) 

= C
14(k) = C23(k) = C34(k),  C13(k) = C24(k). Thus, we can use transformation 

(3.1) and obtain four  eigenvalues, of which the degenerate  eigenvalues for X
2 

and X4 are 

 A2[001](k) = A4[001]             (k) = C11(k)C
13(k),(C-5) 

with  u1 =  -u3' u2 = -u4. The UA2 configuration has the eigenvalue 

 A2[001](7112) = A4[001](x/2) = -2J2(-E + 2n --2) -  6J4.  (C-6) 

   (2) The case of q = (k,k,k) 

The matrix [C
liv(k)] has the symmetry C11(k)C22(k) = C33(k) = C44(k).,C12(k) 

= C
13(k) = C14(k), C23(k)  =  C24(k) = C34(k). Thus, we can use transformation 

 (5.1) and obtain the following eigenvalue equation for  u
l and x:
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   C11(k)  -  X/02  ^3C12(k) 

                            =  O.  (C-7) 

 ^3C12(k) C22(k) +  2C23(k) - 

When k is equal to  it/4, we have  C120/4) = 0, and hence we have two eigenvalues 

  A[111]0/4)  =  -632.(2J2Y - J4), (C-8) 

   X[111](7/4) -=-4J2( - 24 y)  +-6J4, (C-9) 

with  ul  * 0, u2 = u3 = u4 = 0 and  ul = 0, u2 = u3 = u4 4 0, respectively.
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         Table  I. Difference in notation used for the interaction constants 
                                 due to various investigators. 

   Interaction* Distance Present paper DM6) BWRL4)  LP1)' 2) 

  B-O-B4j0= EJ2 W
0. 

 B-0-0-B  ^e:A  J1 =  nJ2 WJ                                                              W
1 

 B-0-0-B  J2' =  (1  -  y)J2  UJ  =  UJ(1  -  y) W
2 

 B-0 -0-B /BA J2" = (1 +  y)J2 U'J = UJ(1 + y)W
2 

                                       v 

 B-0-0-B /0-4J3 =02  VJ       ‘A! 

 B-0-0-0-B IffEAJ4  U
2J *0000                 4 

          B: magnetic cation in B-site 

          0: anion 

          A: nonmagnetic cation in A-site

 Interaction* Distance Present paper  DM6)  BWRL4)  LP1)' 2)

 B  -0  -B
4 Ej0j2 J J  wo

 B  -0  -0  -B J1= To'2  WJ K  wi

 B  -0  -0  -B
. 4

J2'  = (1  -  y)J2  UJ  =  UJ(1  -  y)  W2

 B  -0  -0  -B
•ki 4

J2" = (1 + y)J2 U'J =  UJ(1 + y) W2

 B  -0  -0  -B

 A
4

J3  = 02  VJ K

 B  -0  -0  -0  -B  J4 U2J
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   Fig. 1. Positions of anions (open circles), nonmagnetic cations in  A-sites 

 (latched circles), and magnetic cations in B-sites (black circles) in 

        a part of the spinel lattice. The paths of six superexchange interactions 

        are as follows: 

            J0'•1,-c-3;  1-d-3. 

            J1:  1-a - j-2';  1-d-j-2'; 1-d-e-2';  1-d-k-2';  1-i-j-2'. 
                                               NA' 

 J2'':  1,c-f-1';  1-d-g-1'. 

                  1-a -  b-1";  1-d -  e-l". 

       J3- e-3'.          3'
NA1 

          J•e-h-1"1;  1-d-g - h-1'v.          4' NA' 

   Fig. 2. Uncorrelated antiferromagnetic [001] configuration-2. The axis of 

        (1, 3) and that of  (2,.4) are  not_correlated. 

   Fig. 3. Regions of the [001] spin configurations in the  En plane, in the case 

       of  c = 1/2. Here  E =  J0/J2,  n =  J1/J2,  c =  J3/J2. The boundaries of 

 their stability regions are represented by bold lines. The ferromagnetic 

       configuration is denoted by (a), helix  [001]-1 by (b), helix  [001]-2 

 by' Cc), degenerate antiferromagnetic  configuration by (d), and uncorrelated 

       antiferromagnetic  [001] configuration-2 by (f). Straight lines  (e) for 

        J2 > 0 and for  J2 < 0 represent the uncorrelated antiferromagnetic 

 [001]  configuration-1. Bold lines and dashed lines in the (b) and  (c) regions       

• d
enote curves of constant Q = (0,0,k). Shaded regions are unstable regions. 

   Fig. 4. The case of  c = 0, similar to Fig. 3. 

   Fig. 5. The case of  t = -1/2, similar to Fig. 3. 

  Fig. 6. The eighth of the first Brillouin zone. The forty-eighth of the 

       zone for the  [001] configurations is shown by bold lines. The stability 

        of the [001] configurations is investigated with  respect to a number of 

 ci  vectors, in particular those along [110],  [111], and 1210], and special
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     q vectors at 19 points on the zone face marked by x and 3 points 

     within the zone marked  bye. The sixteenth of the first Brillouin 

     zone for the [110] configurations in §4 is represented by chain lines . 

     The part of  q
z > 0 of the twelfth of the first Brillouin zone 

     for the [111] configurations in §5 is shown by bold and fine lines . 

Fig. 7. Observed correlated antiferromagnetic  [001] configuration in  MgV
204. 

Fig. 8. Regions of lower energy for helix [110], helix [111] , and cone-

     helices  [110]-A and B in the case of = 1/2 and  J
2 < 0. Their boundaries 

     are marked by chain lines. 

Fig. 9. Cone-helix  [110]-A (0 <  u
l(k)/u2(k) < 1) 

Fig. 10. Cone-helix  [110]-B  (ul(k)/u2(k) < -1) 

 Fig. 11. Regions of lower energy for  cone-helices[110]-A and B in  the  case of 

       N 0. The boundaries of their regions are shown by chain lines . Dashed 

 lines denote curves of k =  37/8. As regards the Yafet-Kittel-like  [111] 

 configuration, see  §5. 

Fig. 12. Regions of lower energy for  cone-helices  [110]-A and B in the  case of 

       = 0, similar to Fig . 11. 

Fig. 13. Bad wavevectors on the plane  q
z =  7/2 in the zone for the cone-helix 

 [110]-B, in the case of = 0 and  J2 >  O. Bad wavevectors are represented 

     by x for the case of  E = -6.0 and  n = 2.0 and  bye for both of  E = -6 .0, 

       = 2.0 and  E =  -6 .0,  n =  3.5. 

Fig. 14.  Yafet-Kittle-like  [111] configuration.
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    §1. Introduction 

       The spin structure of the normal cubic spinel  ZnFe204 was first studied 

   by Hastings and Corliss1) by neutron diffraction at 2.7K using powder sample. 

   A complicated pattern was observed whose dominant peaks corresponded to a wavevector 

   Q =  (7112,0,m/4) (measured in units of 4/a, where a is the lattice constant) but 

   the structure was not determined due to lack of resolution. A recent experiment 

   by  Kiinig et  al.,2) also using powder sample, showed well-resolved magnetic peaks 

   up to high diffraction angles, and these peaks again corresponded to Q =  (ff/2, 

 0,m/4) and could be indexed with a tetragonal magnetic unit cell of a = b = 

             0 

   8.43A and c =  16.861. Two possible models were proposed for the spin structure, 

   one being a collinear spin configuration and the other a noncollinear spin  confi-

    guration. 

       In Part I (quoted as  I)  we have theoretically studied possible ground spin 

   configurations at T = 0 in the normal cubic spinel having magnetic cations on 

   B-sites only. On the assumption of four different superexchange interactions 

   we constructed spin configurations having one wavevector or two wavevectors 

   restricted along  [001], [110], and [111] and we studied their stability with 

   respect to all wavevectors in whole Brillouin zone. It was shown among others 

   that cone-helix  [110]7A (see Fig. 9 in I) with two wavevectors  (k,k,O) and 

 (0,0,7112) has the lowest energy among all the constructed spin configurations 

   in a certain region of the exchange-parameter space but that this configuration 

   is unstable with respect to a wavevector  (ff/2,0,7114) in a certain part of that 

   region. The same situation was found for cone-helix  [110]-B (Fig. 10 in I). 

   In Part IL we therefore construct spin configurations with a  wavevector.  (w/2, 

 0,1174) and study their stability. We extend our previous treatment in §2 and 

   find new degenerate antiferromagnetic configurations . In §3 we study the 

   effect of magnetic dipole-dipole interaction stabilizing particular ones of 

   these antiferromagnetic configurations. In §4 we show that our results can 

   be compared favorably with the spin structure observed for  ZnFe
204'
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   §2. Spin Configuration with a Wavevector  (7112,0,7r/4) 

       We choose a rhombohedral unit cell containing four B-sites which are at 

   1.  (-1/2,-1/2,-1/2), 2. (-1/2,1/2,1/2), 3.  (1/2,1/2,-1/2), 4.  (1/2,-1/2,1/2) 

   in cubic coordinates measured in units of a/4. The exchange energy is written as 

     E
ex/NS2 = EqE Cpv(q)aqp-a'(2.1)          p,vqv 

   where  a
qv and  C  (q), given by eqs. (2.3) and (2.2) of  I, are respectively the 

   Fourier transform of the classical spin vector  S
nv (of magnitude S, at the  with 

   site in the nth unit cell) and the Fourier transform of the exchange constants 

   J(R - R ) (R being the position of S), and N is the number of unit cells. 
 mp nv nvnv 

   We measure q in units of 4/a. We consider  exchange interactions of four kinds: 

   J0between nearest neighbors  J1 between second  neighbors J2'and  J2" between 

 third  neighbors  and  J3 between  fourth  neighbors (see Fig. 1 in I, where J4 was 

   also included). We write  J2' =  J2(1 -  y)  and  J2" =  J2(1 + y), where y is 

   a measure of the degree of covalency of the A-site cation which lies on the 

   superexchange path. Further, we write  E =  J0/J2' n =  J1/J2, and = J3/ 

      The explicit form of the matrix [C
pv(qx,q,qz)] was given in I. For                         y 

   q =  (2k,0,k) we have following expressions for Cpv(2k,O,k),abbreviated as Cpv(k): 

        C11(k) = C44(k)  =  -2J2[cos6k + 2cos4k + 3cos2k - y(cos6k - cos2k)],  (2.2a) 

        C22(k) = C33(k) = -2J2[cos6k + 2cos4k + 3cos2k + y(cos6k - cos2k)],  (2.2b) 

        C12(k) = C34(k)  =  -2J2[Ecosk +  n(cos5k + cos3k) +  (cos3k + cosk)], (2.2c) 

        C13(k) = C24(k)  =  -2J2[cos2k +  n(cos4k + 1) +  ?(cos6k + cos2k)], (2.2d) 

       C14(k)  =  -2J2[Ecos3k +  2ncosk +  r(cos5k +  cosk)],  (2.2e) 

       C23(k)  =  -2J2[Ecosk +  2ncos3k +  t(cos7k +  cos5k)], (2.2f) 

       We shall confine ourselves to k =  7r/4, i.e., to Q =  (r12,0,7r/4) which is 

   one of K/4's, a quarter of a reciprocal lattice vector. Then, we have relations
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C11(r/4) = C220./4) = C33(T/4) = C44(T./4)  =4J2' C
120./4) = C23014) = C34(7114) 

 =  -C
14(ff/4)  = -  2J2(E -  2n),  C13(ff/4) =  C24(71./4) = 0. We denote by  eQ the 

exchange energy terms of (2.1) with q = Q and q = -Q: 

   eQ = E
p,vCpv(ff/4)ap+ c.c., (2.3) 

 v and minimize (2.3) under the condition  S
nv2 = S2 for all n and v, which can be 

written as 

    [avexp(iQ-Rnv) + c.c.]2= 1 for alln  and  v. (2.4) 

Rhv = R + Rv, where Rn is a lattice translation vector and Rv the position of 
one of the four B-sites, and for  convenience we use  izs) =  exp(iQ.B.)av in place of  ay. 

av' may be written as a complex combination of two real vectors,  u
v and  v: 

  a v = (uv- ivv)/2 (2.5) 

Then we can write (2.4) as 

      (uvcosQ•Rn + vvsinQ•Rn)2 

   1
v212        =-u(1+ cos2Q•Rn) +v(1 - cos2Q•Rn) + uv-vvsin2Q-Rn 

                      = 1 for all n and v. (2.6) 

Since sin2Q•R
n = 0, uv and vv need not be orthogonal to each other, but since 

 cos2Q•R1 = +1 or  -1 depending on  Rn, they have to be unit vectors. We can 

also write the exchange energy (2.3) and the condition (2.4) or (2.6) as follows: 

 Q        =4YC11V(u/4)exp[-iQ-(R-  R  )1a  '-a* + c.c., (2.7) 

 2avv'-a'* = 1, (2.8a) 

 0
vt2 +  av = 0. (2.8b) 

 Under a unitary transformation 

     x1 =  (511 a2+ a3' + a4')/2, x2= (a+ a2' -a3' -a4')/2, 

 (2.9) 

 x3= (01-102+ a3' -(54')/2,  x4 =11 -  02' - 03' +  a4')/2,
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   eq. (2.7) becomes 

       * * * * 
 sQ= 2C11(7/4)(xlx1 + x2x2 + x3x3 + xx)                                        44 

           +  2i2C12(7/4)(x1x1* +  ix2  x4 - ix2x4 -  x3x3  ). (2.10) 

   We see that the variables are separated into three sets: x(xx)x                                                                 1,2'4'x3.. 

   For x1 we obtain an eigenvalue 

 X1[201](7/4) =  C11(7/4) +  V2-C12(7/4) =  -2J2(E -  211 - 2), (2.11) • 

   and, putting x2 =  x4 =  x3 = 0, we have the corresponding eigenvector 

          -^ v1_vA       U1 = u2 =u3=u4=u,=v2=v3=v4=. (2.12) 

   Here  u and are are independent unit vectors. We call this spin pattern Type 1; 

   Fig. 1 represents a special case of uxy=u=vxy=v= 1/2, uz = vz = 1/42, 

   which give antiferromagnetically arranged pairs of parallel-spin layers perpen-

   dicular to the x axis. For  x2 and  x4 we have 

                      72-iC12(7/4)          C11(n/4) - X 
           = 0 (2.13) 

 -V2iC
12(7/4)  C11(7/4)  - X 

   and hence 

        [201]    X  (7/4) =  X
1[201](7/4) (2.14) 

   AA 

       U1 = -v2 = -u3 = v4 =u,, v1 = u2 = -v3 = -u4 =v,, (2.15) 

   where  IP and are also independent unit vectors, and 

 X  [201](7/4) =  C11(7/4) -  V2C120/4) =  -2J2(- +  2n -  2), (2.16) 

      u1 = v2 = -u3 =  -v4, v1  = -u2 = -v3 =  u4. (2.17) 

      We call the spin pattern of eq. (2.15) Type 2. Since the eigenvalue of 

   the Type 1 pattern is equal to that of the Type 2 pattern, it is possible to 

   superpose the eigenvectors (2.12) and (2.15) with  arbitrary  amplitudes  al and a2.
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We express  av  (v = 1,2,3,4) of eq. (2.5) as a linear combination of  (uv - ivv)/2 

given from (2.12) and those given from (2.15) and assume nonvanishing real  al 

and a2,*)with a12+ a22 = 1. Then it follows from conditions (2.8a) and  (2.8b) 

that  a,  ;,  at,- are restricted in one of the following four ways: 

  (a) uAAVAUtUAAVtAu=v,,u, (2.18a) 

        AAAtAAtA 

  (b)u= -v,uu,vu, (2.18b) 

    (c) At At A At A At       U =17,11.1.11,VIU, (2.18c) 

     A^AA^ 

    (d)      u= -v,A,v 1.u. (2.18d) 

   We call the above linearly combined spin patterns Type 3. The spin patterns 

of the three types may be called degenerate antiferromagnetic configurations  

and will be abbreviated as DAC. 

    Next, for x3 we have 

   X [201](n/4) =  X  [201](n/4). (2.19) 

 u1 = -u2=u3=-u4'V1=-v2= v3=  -v4° (2.20) 

The eigenvalue (2.19) is identical with (2.16) and is lower than (2.11) when 

 -J
2(E -  2n) > 0, i.e., J0< 2J1. But this case will not be considered further 

for the following reason. 

    In I we constructed spin configurations having one wavevector or two wavevectors 

*) It is not possible to construct a real spin configuration with complex 

(neither real nor imaginary) amplitudes  al and a2. If one of a1 and a2 is 

assumed real and the other imaginary, then we can show that the resulting spin 

configurations are identical with those for real a1and a2; if one of a1and 

a2 is assumed real or imaginary and the other complex (neither real nor imaginary), 

then we have spin configurations of  (2.18a) and (2.18b) with a restriction of 

AtAtAA 
Uvoruv           those of (2.18c) and  (2.18d) with  arestriction of. Thus, 

the assumption of real a1and a2 is quite general.
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   restricted along [001], [110] and [111], assuming y = 0 and taking parameter 

   values =  J3/J2 = 1/2, 0, -1/2. We studied stability regions for these confi-

   gurations in the  n plane, but we could not find ground spin configuration in 

   certain regions, especially in regions where the cone-helices  [110]-A and B are 

   unstable with respect to q = Q. In such  unstable  regions we may compare the 

   energies of  [110]-A and B with the energies eQ= 41+[201](1114) and eQ= 4X-[201](ff/4), 

   assuming y = 0 and = 1/2, 0, -1/2. After numerical calculations we find that 

 +[201](ff/4) is lower in the case of = 1/2 and J2< 0, and only inthis case, 

   in the (m)-region shown in Fig. 2. On the other hand, 41[201](ff/4) does not 

   become lower in any case. 

       For this reason we confine our study to the stability of DAC in the (m)-region, 

   and in fact its stability with respect to all wavevectors in the Brillouin zone. 

   At first we shall solve the eigenvalue problem for the matrix  [C  (k)], restricting 

   ourselves to wavevectors along [201]. Using eigenvector  av in place of  av', 

   where 

       v = ii)uv' 
- (see eq . (2.12) of I) and performing unitary transformation 

 X1 =  (u1 +  u2 +  u3 +  u4)/2,  X2 =  (u1 +  u2 -  u3 -  u4)/2, 
                                                                     (2.22) 

        X3 =  (u1 - u2 + u3 - u4)/2, X4 =  (u1 u2 - u3 + u4)/2, 

   we find that the marix  [C  (k)] is reduced into two, corresponding to two sets: 

 (X1'X4)'  (X2,X3). For  (X1'X4) the lower eigenvalue and the corresponding 

   eigenvector are 

 X1-[201](k) =1-[C11(k) +  C14(k) +  C22(k) +  C23(k)          2 

                   - 'QC
11(k) +  C14(k) C22(k) -  C23(k))2 

               +  4(C12(k)  +  C13(k))2}], (2.23) 

 uu(2.24)         14'U2:=u3.
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Similar ones for  (X2,X3) are 

                1      X2-[201](k) =-2[C11(k) - C14(k)+ C22(k) -  c23(k) 
 /{ (C11(k)C14(k)  C22(k)  C23(k))2 

              + 4(C12(k) - C13(k))2}], (2.25) 

  u1= -u4, u2 =  -u3. (2.26) 

In order that either  dX1-[201](k)/dk = 0 ordX2_[201](k)/dk = 0 at k =  ¶/4, the 

following relation must hold: 

 E+ n = 2y + (2.27) 

Thus, the stability of DAC is confined to a straight line (2.27) in the  n plane 

for fixed values of y and r. 

    It may be mentioned in passing that the spin configurations expressed by 

(2.24) and (2.26) are no real configurations. Using eqs. (2.23) and (2.24), 

we have 

     X1/x4= (u1+ u2)/(u1- u2) 

       C11(k) + C22(k) + 2C12(k) + 2C13(k) + C14(k) + C231 -(k)-22[201](k) 
- - (2 .28)                C

11(k) -  C22(k) +  C14(k) -  C23(k) 

from which it follows that 

  iu1/u21 1 for 0 < k <  7. (2.29) 

This implies that the configuration is not real. We have the same situation 

for (2.26). For the special case of k =  7/4, however, the eigenvalues Xi _[201](k) 

and  X2-[201](k) are degenerate and hence by superposition of the corresponding 

eigenvectors we obtain real spin configurations. In order to construct a real 

helix [201] for a single eigenvalue, we must introduce parameters  8
v such  that 

01 =  84 =  8,  82 =  83 = 1, which keep the symmetry of  [C  (k)] expressed by eq. (2.2), 

and study [8 8 C
pv(k)]. We determineso as to satisfy the condition  luvl= 1         pv
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for  v = 1,2,3,4. After numerical calculations we find , however, that such 

a helix has a higher energy in the  (m)-region for y = 0, = 1/2, J
2 < 0. 

    Next, we study the stability of DAC with respect to other wavevectors. 

Because of the symmetry of [C
pv(q)], only 1/48 of the Brillouin zone may be 

considered. By computer calculations we have compared the DAC eigenvalue with 

those for wavevectors at 125 points in the vicinity of Q. These 125  points 

were taken at intervals of 0.1 radian along the  q
x,  qy,  qz axes around Q =  (r/2,0,ff/4). 

 Moreover,  we have  studied the stability with  respect  to wavevectors along  [001], 

[110], [111] and special wavevectors at 22 points shown in Fig. 6 of I. As the 

final result we obtained the stability lines as shown in Fig. 3, where the assumed 

parameter values were y = 0.25, 0, -0.25 and = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.
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 §3. Effect of Magnetic Dipole-Dipole Interaction 

     In order to find the most stable configuration, we calculate magnetic  dipole-

 dipole energy for the degenerate  antiferromagnetic configurations of Type 1, 2, 3. 

We determine the directions of the unit vectors  a,  {is,  qt, and  -cr", minimizing the 

 dipolar energy. The dipolar energy is written as follows: 

              = E
I + EA'       Edipole 

where  EI and EArepresent the isotropicand anisotropic parts, respectively, 

 given by 

    1 S•S 
 EI =EEmpnv3(Rmu-Rnv) (3.1) 

          2S2moin,vIRR1 
                    mpnvi 

 and 

            3  {S°(R - Rnv)3{Snv-(Rmp- Rnv)1 
 mp  mp  

  EA=--EE (R*R
nv). (3.2)                                  ,,       2S2 mp n,vIR - R 15 mu                      mp  nv 

Here we measure  Rnv in units of a/4 and the dipolar energy in units of 

 (gp  S)2/(a/4)3 =  1.162cm1 (gS = 5, a  =  8.4161). 

     The configuration of Type 3 is given as a superposition of the eigenvector 

 (2.12) fpr Type 1 and the eigenvector (2.15) for Type 2, with arbitrary real 

 amplitudes a1 and a2. The corresponding spin vectors are expressed as 

 Snl =  S[a1(.1cosQ-Rn  +n)  a2(illcosQ•R1  +n)3, 

 Sn2 = S[a1(ticosQ•Rn + + a2(40sin(1•12n + )3,  (3
.3) 

 Sn3 =  S[a1(ficosQ•Rn  +h)  +  a2(40cosQ-Rn1)3, 

 Sn4 =  S[a1(ticosQ•R  +n) +  a2(G'sinCI•R.n -  1-iiicosQ•Rn)1. 

Type  1  corresponds  to a1 = 1, a2 = 0 and Type 2 to a1 = 0, a2 = 1. For (3.3) 

the energies given by eqs. (3.1) and (3.2) are represented as linear combinations 

of following lattice sums:
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      I(c) =  E cosQ.111 
  mpv nIRR13  '(3.4a) 

               mp nvI 

              sinQ•R
n   I(s)  = E 

 mpv nIR R 13  '                                                                     (3.4a) 

  mp nv 

 (R - R  )(R - R )cosQq2     (c) mpa nva  mp8 nv8 n                                                                      (3
.5a)     A = -3E     muvan 

                     IR-1115  mp nv 

               (R - R )(R- R )sinQ•R  (s)mpanva mp8 nv8 

                                                    n  

 2(3.5b)      AMpva8 = -3En1R
mp -Rnv 15 

where a and  8 represent  cartesian components. We  choose a magnetic unit cell 

 having basis vectors of lengths a, a, 2a (i.e., 4, 4, 8 in units of  a/4) along 

 the x, y, z axes. This  unit cell contains eight rhombohedral chemical unit cells. 

The origins of these eight chemical unit cells are chosen at 

      (0,0,0), (2,2,0),  (2,0,+2),  (0,2,42), (0,0,4), (2,2,4). 

Correspondingly, we have eight R
m(=Rmp-  ROp) in eqs. (3.1) and (3.2) as well as 

in eqs. (3.4a)  ,,-(3.5b). In carring out summations in eqs.  (3.1) and (3.2) 

we at first take sum over eight vectors and then multiply the result by the 

number of magnetic unit cells. Writting  R
m = (0,0,0)  s  Ra, we have relations 

given by eqs.  (A.1)  n,  (A.13) in Appendix A for I(c),I(s),A(c)and A (s)                                         apv apv                                           apva8 aPvar 

Furthermore, writting  R
m = (0,2,2)  m Rb, we obtain following relations: 

     (c)(s)                        I(s) = I(c)      L(c)=-I ,     apvbpvapv'(3.6) 

  A (c) (s)A (s)  (c) (3 .7)       -bpva8= -A"Ibpva8  = Aapvar 

The lattice slims  I(c)I(s)A Afor other m's  are  related to those 
                  mpv'mpv'(c)mpva8'(s)  mpva8 

for a or b in the way shown in Appendix A. After calculations we  obtain the 

following expression for the total dipolar energy: 

                                               1  E
dipole/4N = I + al2[2A/(ux2+ u2+ vx2+ v2) +yk2(uz2 +  vz  )] 

                  ,2 1 .2                  4-a224y111:2+1112+-172c12.4.17) + 1-A2(uz'2 + vz' )]
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              1              +
a1a22[-A3(u

xuzl-uxvzt+vxuzi+vxvzt+uzux'-uzvx'+vzux'+vzvx' 

       u uu                   +v' -vu' +vvi +uuT +uv-vu' +vvI))(3.8) 
 y  zy z  y  z  yz  zy  z  y  z  y  z  y' 

  where 

           )    I = -1(I
l+ 2I(l2c)), (3.9)       2ala 

          1,A(c)  (c)A(c)                                                                  (3
.10)        l   A=''                            al2xx  + .9,12yy" 

       1 (c) (c)         A =- 
   2 2(Aallzz+ 2Aal2zz),(3.11) 

       1 (s) (c)       A =- 
   3 2(A(3.12)al3xz+ 2Aal2yz). 

      We carried out computer calculations and obtained following numerical results: 

   I = 0.178  (= 0.207  cm  1),  (3.13) 

        Al= -0.051 (= -0.059  cm 1), 

 A2  =  -0.453 (= -0.526  cm  1), (3.14) 

        A3 = -0.677  (= -0.787  cm  1). 

     We minimize the dipolar energy (3.8), subject to conditions a12+ a22 = 1 

  and 

    22
z      u+u+u2= 1,vx2y+v2+v •xyz2= 1, (3.15) 

      u
x,2 + u,2+ uz,2=1, vx,2+ v,2+ vz,2 = 1. (3.16) 

 At first we put either  al = 1, a2 = 0 or  al  =  0, a2 = 1  (Type 1 or Type 2) and 

 obtain the same minimum dipolar energy 

 Edi
pole/4N =  I + A2 = -0.320  cm-1. (3.17) 

 The corresponding eigenvector is 

    u =u =v =v = 0,u2 = 1,v2 = 1. (3 .18)   x y x yzz 

  or
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    u
x° = uy= vx' = vy=0'u,2=1vz2 = 1. (3.19)                z, 

Hence, in both cases the spin axis in the minimum energy configuration is parallel 

to the z axis. Next we consider Type 3  (a
l  k 0, a2 k 0) which must satisfy 

one of the four conditions  (2.18a)  A,(2.18d) . We show in Appendix B the details 

of solving the minimum problem for example in the case of (2 .18a) =  v,  q°1.. 

  , AA 
vu). 

Case (a) 

    In the case of  (2.18a) we obtain the minimum dipolar energy as 

 Edi
pole/4N = I + 0.642A2 + 0.358A1 + 0.959A3 

      = -0.906 cm1 ,  (3.20) 

with amplitudes  a
l = 0.802 and a2 = 0.598 for the eigenvectors 

     U =u =v =v = 0, u=v= 1, 
 x y x yzz 

    ux° = v° = 1, u ° = u ° = vXz° = v' = O. (3.21a)            y z 

In the remaining three cases we obtain the same dipolar energy as (3 .20), with 

following amplitudes of the  eigenvectors: 

Case (b) 

    a1 = 0.802. a2 = 0.598 for 

     u
x=uy=vxy=v= 0, uz = -vz = 1, 

    u
y= -vx° = 1, ux° = u=y' = vz° = 0. (3.21b) 

Case  (c) 

    a1 = 0.598, a2 = 0.802 for 

     u = v
x = 1, ux = uz = v y = vz = 0, 

   u
x° = u = vx° = v= 0, uz° = vz° = 1. (3.21c) 

Case (d) 

   a1 = 0.598, a2 = 0.802 for
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     u = -v = 1, u = u
z = vx = v = 0, 

 u-'  =u' = v
x'  =  v =  0, uz= -vz= 1. (3.21d) 

    We have shown above that the four noncollinear configurations of Type 3 have 

the same lowest dipolar energy given by (3.20). In the case of  ZnFe204 there 

may be an anisotropy energy due to crystalline field. The cubic spin Hamiltonian 

for Fe3+ (S = 5/2) is represented by 

 6 x44           + S+ Sz4), 

where a  = 2.0 x  10-2  cm-1.3) This anisotropy energy is by two orders of magnitude 

smaller  than (3.20) and hence can be neglected. 

    The four spin configurations of the lowest dipolar energy are shown in Fig. 4 

(a), (b), (c), and (d), respectively; (a) and  (b) are related by a mirror plane 

 (110), as are (c) and  (d).
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 VI. Discussion 

      Assuming a special wavevector Q =  (27r/a,0,n/a) we have obtained degenerate 

 antiferromagnetic configurations (DAC) of Type 1 and Type 2, and their super-

  position Type 3. It was shown that these configurations are stable on that 

  part of the line (2.27) in  then plane  (F =  Jo/J2,  n =  J1/J2) which is within 

  the region denoted by  (m) in Fig. 2 (which is for the case of  c = 1/2) for y 
        j• 11 -    2 2  

        2J)  = const and c(= J3/J.2) = const. Our numerical computations         2 

  predicted that this line exists only for  c > 0 and  J2 < 0, or  J3  < 0 and  J2 < 0; 

  cases other than  c = 1/2 are shown by Fig. 3. The stability was proved by checking 

  that for these configurations the eigenvalue of exchange matrix is the lowest of 

  all  eigenvalues of the  matrix with  wavevector  varying over the whole Brillouin 

  zone. This provides a sufficient, but not  necessary  condition for the stability. 

      We have made an  attempt  to construct a helical spin configuration having 

  a single wavevector q of arbitrary magnitude along [201] and corresponding to 

  a single eigenvalue. It was found that such a helical spin configuration has 

  a much higher exchange energy at q = Q and  q= Q than the degenerate antiferro-

  magnetic configurations having q  = Q. This situation arises from the fact 

  that we  obtain  degenerate  eigenvalues only for q = Q but not for q 4 Q, so that 

  we obtain real spin configurations for q = Q without introducing parameters gi
v 

  into the exchange matrix, whereas for q  N Q we have to introduce  13
v and determine 

  them so as to obtain a real helical spin configuration. 

      There exist two kinds of helical spin configuration  for .q =  (2k,0,k) with 

  k  4  n/a which tend for k  ->u/a to one of the degenerate antiferromagnetic  confi-

  gurations that we have found for q = Q. They are as follows: 

     (1) Helix  [201]-1 

 Sn = S[acos(2kRnx + kRnz)  + ilsin(2kRnx + kRnz)], (4.1) 

 where  u  1  fi. The exchange energy is written as
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 Eex/NS2 = 2[C11(k) +  C22(k) + 2C12(k)cosk + 2C13(k)cos2k 

         + C14(k)cos3k + C23(k)cosk]. (4.2) 

Helix  [201]-1 tends to Type 1 with  it  J_  17 for k  -I1r/4 (in units of 4/a). 

    (2) Helix  [201]-2 

     S
n1 = S[illcos(2kRnx+ kRhz) + v'sin(2kRnx + kRnz)], 

• 

      Sn2 = SI-fa'sin(2kRnx + kRnz) + 0'cos(2kRnx + kRnz)], 

  AA       S
n3 = S[-u,cos(2kRnx + kRnz) -v,sin(2kR + kRhz)], 

                                       A 

     Sn4 = S[t'sin(2kRnx + kRnz) -v'cos(2kRnx + kRhz)], (4.3) 

 where  0'. The exchange energy is 

 Eex/NS2 =  2[C11(k) +  C22(k) + 2C12(k)sink - 2C13(k)cos2k 

         - C
14(k)sin3k +  C23(k)sink]. (4.4) 

Helix  [201]-2 tends to Type 2 with II' J. 0' for k  --)7114. 

    The exchange energies (4.2) and (4.4) have a minimum value at k =  w/4 which 

agrees with the exchange energy of DAC, not only on the straight line (2.27) but 

also out of it. It is therefore possible that DAC has stability in some region 

which includes the straight line, although we could not give a rigorous proof 

for this expectation. By looking for the configuration of the lowest dipolar 

energy out of the degenerate antiferromagnetic configurations we may expect at 

least that this configuration of the lowest dipolar energy will have stability 

that contains the mentioned straight line. 

    The spin configuration of the minimum dipolar energy will be the spin confi-

guration of  ZnFe204 at T = 0. We expect that the exchange constants of  ZnFe204 

will approximately, if not exactly, satisfy the relation (2.27), or  J0 +  JI + J2' 

 =  J2" +  3J
3, as well as inequalities  J2  0,  J3 0, and J02J1-  2n < 0); 

more specifically, we expect that the exchange constants will fall near one of 

the finite lines shown in Fig. 3. By a neutron diffraction study of  ZnFe204



                                                        54 

 Kiinig et al. proposed three possible spin configurations. One is a collinear 

antiferromagnetic configuration with ux=u =vX=v = 1/2 and uz= vzV2                                                                 = 1/ 

(Fig. 1). The second is a noncollinear antiferromagnetic configuration of 
            AAAA,A,A our Type 3 havingu=v=z,u=x,v=y, and a1 = a2 =  1/12-. For these 

two configurations the equantity 

  R = Eliobs — IcalI/ZIobs' (4.5) 

which measures the deviation of the calculated line intensities from those observed, 

takes a value of 5.5%. This value was obtained for a low magnetic moment value 

                                                                                       A of  3.9PB at 4.2K. The third configuration corresponds to our Type 2 with=x 

  A
yA andv' =, for which the R value is  6.2%  and the magnetic moment value is 4.2pB 

at 4.2K. (They argued that the low magnetic moment values are due to covalency 

            AAzA 
effect  and  that ifu=v= is assumed in the Type 1 configuration, then R will 

 amount to 11%.) The second spin configuration proposed by  Kiinig et al. comes 

close to one of our spin configurations of the minimum dipolar energy which is 

expressed by (3.21a). Our four possible spin configurations give the same 

powder line intensities listed in Table 1. It may be mentioned that the 

magnetic form factor we obtain from the calculated line intensities of  KOnig 

et al. for the first and second configurations do not agree with that we obtain 

from those for third configuration, and hence our R value for the  four configurations 

is 8.45% using the former form factor and 8.12% using the latter form factor 

(a low magnetic moment  3.9PB is assumed).
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Appendix A: Relations Among Lattice  Sums 

   Relations among the lattice  sums defined by eqs. (3.4a), (3.4b), (3.5a), 

and  (3.5b) for Rm = (0,0,0) E Ra are as follows: 

 I(c) = I(c), = 0, for p=1,2,3,4.  (A.1) 
     app all' al-111 

     (c) (c)    I = I I(s) -_ -I(s) for p  k  v  . (A.2) 
     apv avp ' apv avp ' 

     1(c)  =  1(s)  = 1(c)  .  -I(s).= 1(c)  .  _1(s)  .  _1(s)  = 1(c)                                                                (A.3) 
    al4  al4 a23 a23 a34 a34 al2 a12. 

  I(c)(s)(c)(s)= 0. (A.4) 
      a13= I(s)= I(c)= I(s)  

     A 

      (c)= A(c)= A(c)(c)= A(c) 
     appxxappyyallxx, Aappzzallzz' 

      (c)     A= 0 (a t 8)
,A(s) = 0, for p = 1,2,3,4. (A.5)   appa8appa8 

   A(c) (c)(s)(s)                     = -Afor a 4 $, p t  v. (A.6) 
      apva8= Aavilaa'Aapva8 avpa8'- 

   A(c)(c) (s)(s)                          for a, p v. (A.7) 
    apva0= AA                apv8a'apva8= Aapv8a' 

    A (c)= A (s)= A (c)(s) (c)= -A(s)= -A= A                                            (s)(c) 
     al4yyal4yya23yy = -A= A                            a23yya34xxa34xxal2xxal2xx.(A.8) • 

    A(c)= A (s)= A (c) = -A= A (s) (c) =(s)=(s)(c)                                                      -A-A=Aal2yy.(A.9) 
     al4xx al4xxa23xx a23xx a34yy 

    (c)(s)(c)(s)(c)(s)(s)(c)                                         = -A(c)= A
a34yz= -A(s)= Aal2yz. (A.1°)       Aal4xz=Aal4xz=-A(c)=Aa23xz 

    A  (c)= A(s)= A(c)= -A(s)= A (c)= -A= -A  (s) (s)= A (c)  (A.11) 
     al4zz al4zza23zza23zza34zza34zzal2zzal2zz. 

    A(s)= A(s) = -A= A        (s)(s) (A.12) 
     a24xza24yzal3yzal3xz. 

     A(c)= A(s)= A(c)= A(s)                                        = 0,for a = x,y,z, 
     al3aaal3aaa24aaa24aa 

     A (c)= A(s)                      = 0, for all p and v, 
      apvxyapvxy 

   A(c) (s) (c)= A (s)= A= A= A  (c)(s)(c)= A(s) 
     al2xz= A= A             al2xza34xza34xz al4yzal4yza23yza23yz 

     = A (c)= A(c)= A(c)(c)           = A= 0. (A.13) 
       al3xzal3yza24xz a24yz 

    For R= (2,2,4) we have 

        m 

     I(c) =  /(c)           'I(s) =  I(s)  - 
 mpv apv' mpv apv 

  A(c) (c) (s) (s)  (A.14) 
       mpva8= Aapva8'A =.A(s)
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For R
m= (2,0,-2) we have similar relations with suffix b in place of a. For 

R = (2,2,0) and  (0,0,4) we have 

     I(c)  = -I(c)                       (s) = -I(s)     mpv apvmpvapv' 

                                 = -A  Ain(c) (s) (s)=-A A (A.15) 

m 

 mpvap  alwar 

For  R
m = (0,2,-2)  and (2,0,2) we have similar relations with suffix b in place 

of a.
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Appendix B: Method of Finding Minimum of Dipolar Energy 

    In the case (a) in  §3 the following conditions must be  satisfied: . 

    A A 

 U =v,  (B.1) 

   AlAAtA 
 Uu,VU, (B .2) 

      2 
  u

x+ u2 + uz2 = 1, (B.3) 

     ux,2 + uyI2 + uz,2 = 1, vx,2 + y'2 + vz,2 = 1, (B.4) 

 a12+ a22 = 1. (B.5) 

Using eq. (B.1), we  have  the dipolar energy 

    22 2  1,2,2      E
dipole/4N = al[Al(ux+ u2                             y) +A2u2                               z] + a2  [Al(ux,2+ uy,2) 

                  + 2A2(u
z,2 + vz12)] + ala2A3(uxuz' + uzux' + uyvz' + uzvy'). (B.6) 

Neglecting  (B.2) for a moment, we confine ourselves to conditions (B.3) and  (B.4). 

We introduce a set of Lagrangian multiplies  {1  },  (I) = u,u',v' , and put  (1) 

  u =  X,  A =  Av, =  Ag2. (B.7) 

Then, for minimizing (B.6) we obtain eigenvalue equations as follows. 

    For  (u z,ux',vy') the equation is 

      2a12A2 - 21 a1a2A3 a
1a2A3 

                   a22Al-  2A/62   a1a2A30 = 0.  (B.8) 

     a1a2A3 0  a22Al - 21/62 

The lowest root is 

        122 
      1=--4[(Sa2Al+ 2al2A2-if(S2a22A1- 2a12A2)2 + 862a12a22A321], (B.9) 

and the next root is 

 12 =2a22Al/2.  (B.10) 

For (u
x,uzI) or (uy,vzI) we have
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       2a12A1- 2X a1a2A3 
 =  0  (B .11) 

                   a22A2- 2A/62  a1a2A3 

whose lower root is 

        122      A3=e6a2A2+ 2a12A1- i{(62a22A2°-2al2Al)2 + 462a12a22A32}]. (B.12) 

Furthermore, for u ' or v
x' we have 

  A4 =A2  = 62a22A1/2. (B.13) 

    If we take the eigenvalue  Xi, then we have to put 

   ux= uy= uy= uz' = vx= v:= °,  (B  .14) 

which means that the condition (B.2) is satisfied. Furthermore, we choose 

 62 in such a way that equations (B.3) and (B.4) are satisfied, i.e., 

  u
z= ux' = v= 1, (B.15) 

is satisfied. Then it follows that 

    62 =  2(a12A2 +  ala2A3)/(a22A1  +  ala2A3)•  (B.16) 

Using this 62, we minimize  Al of eq. (B.9) with respect to amplitude  al or a2 

which are subject to condition (B.5). After  numerical calculations we obtain 

  a1= 0.802, a2 = 0.598, (B.17) 

and the corresponding minimum dipolar energy 

 Edi
pole/4N = I + 0.642A2 +  0.358A1 + 0.959A3 = -0.906  cm  1, (B.18) 

    For  A3 we have 

  u
z=ux'=u'=vx'=v'= 0, (B.19) 

so that (B.2) is again satisfied. We then choose  62 in such a way that 

   u
x= uy= 1/12-, uz' = vz' = 1 (B.20)
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are satisfied. Numerical calculations show that the corresponding dipolar 

energy is higher than (B.18). The configuration with the eigenvalue (B.13) 

also has a higher dipolar energy.
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                   Table 1. Magnetic Intensities 

                                        Calculated Intensities 

         Observed  Konig et al. present paper 

  h k  1A)              Intensities  secondB)  thirdC) M.F.F. from  M.F.F. from 

                        (Type 3) (Type 2)  secondro third 

                                          3  3.9pB 4.2pB.9pB  3.9pB  

  001 7400 7611 7406 7923 7923 

 211 500 453 365 491 491 

 213        1700 1638 1902 1628 1628 

   015 J 

 031 650 605 475 658 658 

   233  A 
      500 596 557 626 626 

   035  J 

 037       400 238 427 199 199 

 019  431] 
 051       360 377 308 399 367 

 237 

 219 

   251 

 417 250 243 320 233 235 

   039 

 R=E IIobs-IcalI/EIobs 5.5% 6.2% 8.45% 8.12% • 

  A) Indices h, k, 1 refer to the magnetic unit cell (a,a,2a). 

  B) Calculated line intensities for the second configuration,  uz  =  vz = 1, 

     X'= Yv' = 1, a1 = a2 = 1NY. 

  C) Calculated line intensities for the third configuration, ux' =vY' = 1. 

  D) Calculated line intensities for the four configurations of the  lowest dipolar 

     energy using the magnetic form factor  (11.F.F.) recalculated from line 

     intensities of the second configuration. 

  E) Same as D) but using the magnetic form factor recalculated from intensities 

     of the third configuration.
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Fig. 1. The spin configuration of Type 1. The case of  ux =  u = vx =  v = 1/2, 

 u z =  vz =  1/VY is shown. Open circles mean +z components and full circles 
     -z components . A translation  (0,0,a) reverses all spins. 

Fig. 2. Region of lower energy of the degenerate antiferromagnetic configurations 

     (DAC),  denoted by (m), in the case of y = 0, =  J3/J2 = 1/2,  J2 <  O. 

    Here  E =  J0/J2,  n =  J1/J2. The helix  [001]-2 is denoted by (c), uncorrelated 

     antiferromagnetic configuration-2 by (f) (see Sec. 3 of I). Shaded region 

     mean the regions of unkown ground state spin configurations. 

Fig. 3. Stability lines of DAC for fixed values of y and in the case of 

     J2 <  O. Assumed parameter values are y = 0.25, 0, -0.25 and = 0.1, 0.2, 

     0.3, 0.4, 0.5, 0.6. 

Fig. 4. The four spin configurations of Type 3 of the lowest dipolar energy, 

    which are predicted as spin configurations in  ZnFe204.
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