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SPIN CONFIGURATIONS OF MAGNETIC IONS
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Toshiro Akino



Synopsis

Possible ground-state spin configurations in normal cubic spinels having
‘magnetic ions on B-sites only are studied with thevaseumption of four.snperexchange
,interactions.'r ‘Spin configuretions are constructed using one waveveCtor or
two wavevectors restricted along one of [001], [110], and [111], and their
stability is studied with respect to Wanevectors in the whole Brillouin zone.

It is shown that a helix’with a wavevector (0,0,k) is stable in a certain region
in the exchange—parameter space. Two heiices, with (k,k,0) and (k,k,k), and
-the Yafet-Kittel type»COnfiguration have lower energies than all other,constructed
configurations in certain regions;rbut they are not the ground state. A cone-
helix along [110] hav1ng a conical structure in two sublattices and ; coolanar
,structure in the other two sublattlces has the 1owest energy in a large reglon

of the parameter space among all the configurations constructed with two wave-
vectors. Relevant observed spin structures in chromium chalcogenide épinels,
LMgV204, GeCo 04, and GeNi 04, are discussed.

Spin configurations w1th the wavevector (2n/a O,ﬂ/a) of the neutron dlffractlon
rpettern for ZnFe2 4 are also constructed with the assumption of flve dlfferent
snperexchange~interactlons, and their stability is studied. It is»shown that
"three tynes of degenerate antiferromagnetic configurations are the ground‘spin
._state on-a straight-line in the'twofdimensional‘exchange—parameter space at
fixed values of the other two parameters. . Magnetic dipoleQ&ipole interactiOn
.stabilizes,four particular noncollinear antiferromagnetic configurations and
gives a width to the line of stability. These four configurations give the.
‘same neutron diffrection"line intensities which‘are in fairly good agreement

with the observed intensities due to Kdnig et al,.
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INTRODUCTION

- Normal cubic spinels with nonmagnetic cations on A-sites and magnetic cations
-on B-sites are of interest in the study of B-B interactions. Early in 1956,
-Anderson showed fﬁat nearest-neighbor interactions alone cannot produce any long-
range order on B-sites. Subsequently,_HéStings and Corliss observed a complicated
aneptroq diffraction pattern for ZnFeZO4 at 2.7 K whose main peak corresponded
to -a wavevector (Zn/é;o,m/a),'but,the spin structure was not determined due to
-lack of resolution. Récéntly Kénig et al. observed well-resolved magnétic

~peaks up to high diffraction angles for ZnFe at 4.2 K, and these peaks again

2%
-corresponded to.(Zﬂ/a,O,n/a).‘ Up to the present time numerious experimental-
investigations have been done on the spin structures of the spiﬁels havingrmagnetic
cationé on B-sites only, especially those of éhroﬁium éhalcogenide spinels;'

by magnetic measurments and neutron diffraction observations. The\cbmpounds
—chrZSA,

-diffraction studies showed. that the compounds ZnCr

'CdCrZSe4, and HgCrZSe4rhavé been found to be ferromagnetic. .Neutron

and HgCr have spin

, 2%%, 25
arrangements of the (0,0,k) type helix and that the compounds MgV204, MgCrzoa;
GeC0204, and GeNiZOA have complicéted antiferromagnetic spin structﬁres; For

the (0,0,k) helical ground state in.ZnCrZSe Dwight and Menyuk made a'tﬁeoreticalr

4. . . .

analysis on the basis of neérest—neighbor and five distant-neighbor interactions.

They used the method of Lydns.énd Kaplan tordelineate the stability region of

the (0,0,k) helical ground state in the exchange-parameter space, using tWO.

relations that were determined from experimental data among five exéhﬁnge ratios.
In the situation mentioned above we-study in the present work vafious |

theoretically possible ground-state spin configuratioﬁg‘at T = 0 in normal

cubic spinels having magnetic cations on B-sites only. The contents of this

work are divided into two parts:r
Part I: [001], [110], and [111] Spin Configuratioms,

Part II: Theory of MagneticAStruéture of Zinc Ferrite.



In Part I.we construct spin configurations having one wavevector or ﬁwo
wavevectors reétriéted along one of [001], [110], and [111], under the aésumption
: 6f.four different superexchange interactions, and we study their stability with
respect ‘to all wavevectors in the whole Brillouin zone. The Lyons-Kaplan
theory, described concisely by Nagaﬁiya, is used.  Relevant observed spin
 structures are discussed.

In Part II we construct spin configurations with a wavevector (Zn/a,O,ﬁ/a)
,found inn£h£,neutron diffractiop.pattern for ZnF¢204’ under the assumption ofv
five different supérexéhange interactions, and we study their stability. We
find new degenerate antiferromagnetic configurations. We further study fhe
effect ofAmagnetic_dipole—dipole interaction stabilizing particulgr_ones of

these antiferromagnetic configurations.



Part 1

[ooi], [11l0], and.[lll] Spin Configurations



g§l. Introduction

The maghetic properties'of the normal cubic spinels having nonméghetic
-cations on A-sites and magnetic cations on B-sites, especially chromium
chalcogenide spinels, have been investigated by several workérs. - It was

-found that ZnCrZSeAI)’Z) has a spin arrangement of the (0,0,k) helix type,

with a turn angle of 42° at 4.2°K, and a positive asymptotic paramagnetic
.Curie temperature of 115°K.- Lotgering accounted forvthese propefties
-assuming é strong ferromagnetic nearest—neighbor Cr—SeACr superexchange -
’”interaction,vwith positive JO’ and reiatively weak antifefromagnetic sécond,
third, and fourth mneighbor superexchange interactions via anioms, with

-negative J J Plumier considered only three interactions assuming

1* I I3

J3 = 0 and determined the other constants uniquely from experimental results

as 3, = 24,9§K; J, = 7.8°K, and J, = -10.65°K.

.The compounds CdCrzsé, CdCrZSeA, HgCr284,

‘ferromagnetic, with Curie temperatures of 84.5, 129.5, 36.0, and 106°K, respect-

3),4)

and HgCrZSe4 ‘'were found to be

ively. All these materials except,HgCrZS4 are ferromagnetic at least down to

'4.2°K, whereas HgCr was observed to be metamagnetic below 25°K. ~ Neutron

254
A 5)

diffraction experiment by Hastings—and'Corliés_ showed, however, that the -

spin structure of HgCrZS4 at 1owﬂtemperatu:es is a (0,0,k) helix,with a
turn angle of 22° at_6.5°K, which decreases with increasing témperatuxe,
reaching a vaiue of 10° at 30°K, beyond which it shows little'variation
up to 60°K, the Néel poiht observed by this experiment. For the fgrré-r

4)

magnetic spinels, Baltzer et al. ' made a theoretical analysis under the

‘assumption that antiferromagnetic distant—neighbor interactions occur
exclusively via the A-site cations.
A rigorous analysis of the (0,0,k) helical ground state for ZnCrZSe4

6)

was made by Dwight and Menyuk ° on the basis of~nearest—neighbor.and



five distant-neighbor interactions. They used the method of Lyons and

7 to delineate the stability region of the (0,0,k) helical ground

Kaplan
state in the exchange-parameter space, using two*reiations, determined
. .from experimental. data, among the five exchangé ratios. ‘_ They poihted'
out that the model proposed by Baltzef et al. for chalcogenide spinels is
-not justifiable.

In addition to chromium chalcogenidé spinels, neutron_diffraction,
10) 11)

. L . 8) 9) .
studies have bgen made for ZnFe204, GeC0204, GeN1204, 204,
12),13)

for which some complicated antiferromagnetic spin

MgV
vand>MgCr204,
cohfigurations have been inferred from the_experimental results.

In the situation mentioned above, we stﬁdy in the present Part I
,various_theoretically possible ground spin configurations at T=0 in-the.
normal cubic spinel havihg magnetic cations on B-sites only. We restrict
ourselves to four superexchange'interaétions'via two anions, with exchange
copstants JO"Jl’ Jz; and J3.'v We neglect the interaction B-anion-A-
anion-B, the inclusion-of which would require the division Of'JZ into'JZ'
and J‘", and also neglect interactions via three:or-more anions.  The

2
14)

Lyons-Kaplan theory, described concisely by Nagamiya, is used.



82. Formulation
‘We consider a normal cubic spinel whose A-sites are occupied by
nonmagnetic ions and B—-sites by magnetic ioms. We can choose a

rhombohedral unit cell which contains four B—site_idns,
1. (0,0,0), 2. (033/4a3/4)9 3. (3/433/4’0):~4' (3/4,093/4)’

described in cubic coordinates, where a is the lattice constant; see
Fig.1. Let Snv_be the classical spin vector of the vth magnetic iomn
in the nth unit cell and an its position. The exchange energy can

be written as

-3 2 )S_ -8 (R =R _-R ). (2.1
oy 1,V mu nv myp v mu,nv My nv’ .

Using the Fourier transformsof J(R ) aﬁd S
- - My , IV u

Cuo(@ =1 Iy, )P CATR, ), @D

- syl i : |
Sgu= M E SpueXP(-iaR )y . (2.3)

‘where S is the magnitude of the spin vector on each B-site and N the number

of unit cells, Eq.(2.1) becomes

E/NS“ = ] C (@S & . o (2.4)
' Q,H,v MV T

"We may consider exchange interactions of six kinds, particularly for
chalcogenide spinels in which the crystalline binding may involve a large

covalency: J, between nearest neighbouré, J

between (O 0,0) and (a/2 -al4,alsd)

0 1

(and for equivalent pairs), 2' between (0,0,0) and (a/2 a/2,0), J2" between

(0,0,0) and (a/2,-a/2,0), J _between (0 0,0) and (3a/4,-a/4,0), and J4

between (0,0,0) and (a,0,0); see>F1g.l. If we write o .

v - - "o Y R o i i
JZ Jz(l Y) and J2 J2(l + y)? . (2.5)



" then Yy is a quantity that represents the degree of covalency of the A-site
-cations. However, for most part J6f the present Part T we put Y'= 0 and
.J4= 0. These quantities, T and J4,'will appear'only in our qualitétive
discussion. Diffefenf notation for the'interaction constants due to.
various investigators is listed in Table 1. We also write g = JO/JZ,

n ='J1/J2, g = J3/J2, and measure q in units of 4/a.

The diagonal elements of the matrix [CFN(q ,qy,q )] can be written as

C110929y59,) = C9y(ay2dy59,) = C45(,5d059,) = €,y (a,5q59,)
= —2;]2{c052(qx + qy)'+ cosZ(qy +-qz) + cosZ(qz + qx) + cosZ(qx - qy)

+ cos2(qy -q,) + cos2(q, - qx)}, (2-6)

and the off-diagonal elements are as follows:

2(q 24,5, ) = -2J2[£cOS(qy +q,) +n{cos(2q_+ 9, - q,)

+ cos(2qx - qy + qz)} + z;{cos(3qy - qz) + cos(qy - 3qz)}1, (2.7a)

C13(a0ay09,) = SPCHTRTI I - @)
C14(ay>9,59,) = Cp51a059,59,)5 - ’ } (2-7C)
(qx,qy,q ) = Clz(qy,qx,-q;)s" | | : I (257d)
Cpu(8,00,50,) = Cpp(a5ma05a)s ) o @79
Ca4(2,50,54,) = C15(a,59.579,) o | | (2.7£)
The matrix is symmetric: |
C v (2 9ye9,) = G (a,5a059,) ‘ (2.8)

Our mathematical problem is to look for the lowest minimum of the
exchange energy given by Eq.(2.4) subject to the condition -

2 = S2 for all n and v.
nv



This condition can be written as

L oquloq =1 O =1234, 7 (2.92)

= 1
Zqoqch._qv 0  for all ¢’ % 0. | (2.9b)

In the following we sketch the method described in Ref.l4, since it
forms the basis of the present study. We introduce arbitrary'parpmeters"

@y and considerin place of (2.9a) the fbllowing condition:

-2 _ -2
Ll 8 0o =1Ly & (2.10)

Introducing the tagrange multiplier A, we minimize the exchange energy
(2.4) subject to the condition (2.10). Then we have the eigenvalue
equation:

" Cw(q) Squ AR % qv (v=1,2,3,4) (2.11)

from which we obtain eigenvalues and eigenvectors for given q and %ﬁ
If we take a spin configuration represented by a pair of inequivalent
wavevectofs q and ~-q -and take account of the condition (2.9b), then

we have .

I RN
cqv = 2(1 - 1j)uqv, . (2.12)

A A
where i and j are worthogonal unit vectors which are independent of v-*)

- From (2.93) it follows that

= 1.

lug, ! (2.13)

* ‘ i ' ] .
) When q and ~-q are equivalent to each other, g takes the form
v .

s =u b
Qo = uqvl with quv]= 1.



The ratio of uqv'is determined from the same equations as (2.11), i.e.,
from

u Cuv(q)uqu (2\ B\) )uqv (V 192,314)- | (2014}

The parameters g,are so .chosen that the cdndition (2.13) is satisfied for
all v. The lowest eigenvalue is denoted by AO(Q), q being written as Q.
It then follows that the corresponding spin configuration gives the

15) that, if the

absolute minimum of the exchange energy. It was proved
eigenvalue of a coplanar configuration is not the lowest of all eigenvalues

-including those for q%Q (but with fixed Bv), this configuration is localiy

unstable and cannot be the ground spin state.  Eq.(2.4) can be written as
2 : -2 ' ST
E(Ns = }O(Q)Zv B, - | | (2.15) -

When we fail to find a solution with + Q only, we may take another
wavevector Q' besides Q. If Q is a general wavevector, Q' must be one

of 0, K/2, and K/4 in order that the condition (2.9b) be satisfied, where

K is a reciprocal vector. Besides Eq.(2.12), we have
= ﬁ if Q' =0 K/2 2.16
Tq'v T Uy if Q' = 0 or K/2, : (2.16)
o . . A
where uQ'v is determined from Eq.(2.14) with Q' in place of Q and k is the
, A A ' '
unit vector perpendicular to both i and j. = Furthermore the condition

(2.9a) can be written as

‘2

|uQv|2 + Jugiyl? = 1. | . (2.17)

The parameters § are so chosen that the eigenvalues for the two wavevectors
are the same and the lowest, and that the condition (2.17) is satisfied

for all v.



83. (0,0,k) Séin Configurations

We consider first spin configurations having only one wavevector

10

q = (0,0,k), measuring k in units of 4/a as before. The matrix [Cuv(k)]’

'where we abbrev1ate_Cuv(0,0,k) as Cuv(k)’ has thg ‘symmetry Clz(k) = Cl4(k) =

.C23(k) = C34(k),and Cl3(k) = C24(k). In this case we can choose E&'= .

82 = ﬁj»= 84 = 1. Under a unitary transformation

]
|

X3 = (u1 - u, +.u3 - u4)/2, X

the eigenvalue equation (2.14) can be put into diagonal form.

For Xl we obtain

1

forvX2 and X4 we have

xl (u1 + u, + uy + u4)/2, 'Xz = (ul + uy, = uy - u4)/2,

4 = (u1 - u, - u, + u4)/2,

[001l ., _ ' , S
A (k) = Cll(k) + ClB(k) + QClz(k), Uy Su,TugT,

(3.1)

(3.2)

4 [001] 0y o 5 [OOL] oy _ = -
X, (k) = X, (k) = €y (k) - Cralk), u =mug, uy=-u,,  (3.3)

4

and for X, we have

3
[001] .,y _ ' - 2c. i I
Ay TH(R) = Cpy(k) + Cpa(k) 2c12(k)3 U, =u,Su=y, (3.4)

However, the configuration for_)\3 is equivalent to that for Al as k may
be replaced by m - k. Looking for the minimal eigenvalues of the above
A's, we obtain following six possible configurations:

(a) Ferromagnetic configuration (k = O, u) = u, = ué = u4)

A% 0y = - 61, (g+ 20 + 20+ 2). (3.5)
(b) [001] helical configuration-1 (0k<n/2, u) = Uy T ug = ﬁé)



11

A 0% ) = -23,06 - ; +20- 24 25 + 7 - 20)cosk

2 - (3.6)

+ 4@ + 2)cos’k + 8rcosok],

where the turn angle k is determined from dxl[OOI](k)/dk =0, i.e., from
cosk = [-( +2) F /{G +2)% - 3z(E+ 2 - 20)}1/60 for ¢ ¥ 0. (3.7)

Here the minus sign corresponds to J2 > 0 and the plus sign to Jz < 0.
"For 7 = 0 we have

cosk = - (E+ )/[4 + 2)]. (3.8)
(c)»tOOl] helical configuration-2 (m/2< kgn,

Y27 % T

Formulas are. the same as those in (b).
(d) Degenerate antiferromagnetic configuration

(d-1) Verwey order type (k = T, u, =u, = u

e I Y

20 = 25, - ;- 20+ 6). (3.9)

The spins on each (00l1) plane are ordered ferromagnetically, but spins on
adjacent planes are antiparallel.

(d-2) Uncorrelated antiferromagnetic structure (k = 0, u, = -u,, u -u

32 Y T na

[001] 4y . , [001

A . Teoy = - 23,(-E = 2 - 2C + 6). (3.10)

2
The spins on sublattice.l and those on éublattice 3 are antiparallel and
the spins on 2 and those on 4 are also antiparallel; in each sublattice -
the spins are parallel. The spin a#is of (1, .3) and that of (2, 4) are,
however, uncorrelated.
Tﬁe ground spin state (d) is indeterminate in cubic spinels, but as

16)

was pointed out by Aiyama, the two accidentally degenerate eigenvalues
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of (d-1) and (d-2). split if there is a tetragonal distortion. He alSo_ '
.-pointed out that the ground state of ZnMn204 (c/a = 1.14) is the uncorrelated

.. antiferromagnetic structure.

(e) Uncorrelated antiferromagnetic [001] configuration-1

(k = 1/2, uy = vy, Uy = u,)
1M 2y =0 a2y« m2r g - b 2e - . (GaD

“The spins on each (001) plane are péraliel, but in the pair ofvsublattices
(1, 3), as well as in the pair of sublattipes (2, 4), the spin direction

_alternates by an angle |t in going along the [001] axis. The spin axis
in (1, 3) and that in (2, 4) ére uncorrelated. We shall call thié

configuration UAl.

{£f) Uncorrelated antiferromagnetic [001] éonfiguration—Z

“(k=7/2, u, =~u

1 3 U T T )

Az[oo;] (n/2) = )\4[001_](_”/2) =" 2‘12(_‘E +h -2 -2). (3.12)

The spins 1 and 3 on each (001) plane are ordered antiparallel énd these
spins alternate with a turn angle 7 along the [001]‘aXis.r The-same-ié
true for the spins 27and 4, but tﬁe sﬁin axis in (1, 3) and that in 2, 4)
.are uncorrelated (see Fig.2). We call thié configufaﬁion UA2.

~ We show ih'Figs.B, L, 5 for ¢ = J3/Jé.= 1/2, 0,'—;/2 the regions in
thev§1 plaﬁe (E = JO/JZJT =_jl/J2) in which the above six configuratioﬁs
take théir respective lowest eigenvalues. Bold lines represent the
boundaries of the configurations (a), (b),.(c), (d),'and (f), excepting (e).
Thé'UAl configuration is represented by a straight line (e). bashed lines .
in the helical regions (b) and (c) represent loci of k = /3 and.k ='2n/3.
Dwight and Menyuk6) studied mainly thé stability of the hélix_(b) in.ZnCrZSeA,

so that they-assﬁmed J0 to be positive and the 1argesﬁ'of all J's. We do
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‘not confine ourselves to such a case and fipd the pbssiﬁility of a new spin
state UA2.

" Next we study the stability of all these coﬁfigurations, cbmparing their
,éigthalues with eigenvalues for all the Wavévectors in the Brillouin zdnef

-Because of the symmetry of [Cuv(qx’qy’qz)]’ only 1/48 of the first Brillouin -

zone may be considered. We have investigated the stability with respect
to eigenvalues for wavevectors along [110], [111l], and [210],.and special
‘wavevectors at 22 points shown in Fig.6. ‘We carried out numerical
~calculations by using a NEAC 2200 computer, and we find the shaded regions
in Figs. 3, 4, 5 for the instability of the present [001] configurations.
The main features of the stability and iﬁstability are as follows.

1) The stability of the ferromagnetic configuration,

In the region where all superexchange constants are'positivé the ferro-

: magnétic configuration, (a), is staBle. When there are negative super-—
exchange constants, this configuration is unétable in a certain small region.
For example, in the case of £ = 0 and Jz > 0 in Fig.4, this'configuration‘

is unstable in a small belt—like region ( a part of the shaded region above
the line k = 0 in the quadrant.§ > 0, n < O) with;respgct to‘q =,(n/4,n/4,n/4).
We may therefore anticipate there a newispin configuration having two - |
wavevectors, q = 0 and q' = (ﬂ/4,w/4;w/4). | This problem will be treated

in §5. | | ‘ ‘

2) fhe stability of the helix [001]-1.

In the case of y = 1/2 shown in Fig.3, this configuration is unstable
~everywhere. In the case of 7= 0 and J2 < 0, however, a small region in
£<0,n <0 remains the stability region.as can be-seén in Fig.4 (the whité
region for (b)). A larger stability region is obtained in tﬁe case of

= -1/2 and J, <O, as shown in Fig.5. It can be concluded that J

2 2

must be.negative in order that the helii [001]-1 is the ground spinV¢onfiguration,
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and also that positive values of J3 tend to stabilize it (g = J3/J2).
Plumierz) found by neutron diffraction that ZnCrz-Se4 has a spin
arrangemeht of the helix [001]-1 type, with a turn angle k=42°. - Point P

in the stability region in Fig.4 corresponds to exchange constants determined

from experimental data by Plumier for ZnCrZSeé. Dwight_and-Menyuke)

concluded, from the Goodenough-Kanamori rules of superexchange that J2 <0

and J3 > 0 for Cr3+ in B-sites.  Hence the helix [001]-1 can be expected

- for -chromium spinels, and in fact it was ohser#ed in ZnCrZSe4 and HgCrZS4.
Furthermore, there is an evidence that the ground spin state of CdCr2 4

3),4)

is ferromagnetic In CdCr S, and HgCrZS4 the lattice parameter a

274
and the asymptotic paramagnetic Curie temperafure 0 are a = 10.244,A,O= 152°K
and a = 10.237 2, © = 142°K, respectively, and the u parameter is the same.

To explain the difference of the spin»strﬁctures of CdCrZS4 and HgCrZSA,

we expect the following inequalities to hold:

Ecq < Eng ice. (Jo/13,D0¢q 2 (Jo/|J2|)Hg, . (3.13)
Ned X Mg i.e. (J1/|J2|)Cd 2 (Jl/‘le)Hg’ : (3.14)_
Zea < Cmg? 1oe I3/ 1350 cq 2 O3/ 195Dy N (3.15)

Here the mnegative slope of the boundary between (a) and (b) in the case

of J2

¢z = -1/2 have been considered. The inequality (3.13) is qualitatively

"< 0, £ < 0 and a shift of the boundary in going from ¢ = 0 to

understood from the fact that a chromium chalcogenideAspinel having a larger

lattice parameter has a larger positive value O which is determined

mainly berOA). It might also be that IJZI takes a larger value in
Hg~compound. The inequality (3.14) is understood from another point
of view that, in the case of ¢ = -1/2 and J2 < 0 (Fig.5), a change in11(=Jl/J2)

near n = 0 at a fixed negative value of £ gives rise.to the transition



from the ferromagnetic configuration, (a), to the helix [001]-1 configura-

"and HgCr can be

tion, (b). A small difference in n for CdCrZS4 ZSAA

expected by taking into account their different degrees of A-site covalency. o

© The covalency effect for J
6)

3

pointed out that negative values of Y tend to stabilize.

might also account for the inequality (3.15).
.,Dwight and ‘Menyuk | ‘
the helix [001]-1.

3) The stability of the UA2:configuration.

This configuration is unstable for J, > 0 in the three cases of g = 1/2,

2

0, -1/2. For £ = 1/2, J, < 0 and for £ = 0, J, < 0, this configuration

2 2

is stable in the unshaded part of the region marked (f). Hence for the
stabilization of the UA2 configuration J2 must be negative, and JO (= ng)

and J3-( = CJZ) prefer negative values. Plumier and Tardieull) found’

by neutron diffraction that Mgv,0, at 4.26K has a correlated antiferro-

274

--magnetic spin arrangement of a wavevector q = (Q,O,ﬂ/Z) shown in Fig.7.

This compound is tetragonally distorted at low temperatures according to

17)

X-ray diffraction . Within our assumption of cubic crystél-and four

isotropic exchange interactions the ground spin state of MgVZO4 must be

UA2. Even by taking Y and J, into account, we still obtain UA2 (Appendix C).

4

- Hence, the observed correlated configuration‘should'be due to an aﬁisotropy

energy and-thé tetragonality.
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8§ 4. (k,k,0) Spin Configurations

Next we take a wavevector along [110], and we write q = (k,k,0). The
-fo—diagonal elements of the matrix [Cuv(k)]’ Cuv(k,k,o) being abbreviated
as Cuv(k)’ have the symmetry ClZ(k> = ClA(k) = C23(k) = C34(k). We
choose Bv in such a way that the matrix [Busvcpv(k)] retains the symmetry

ofv[Cuv(k)], ife., Bl = 83 = B and 82 = 64 = 1. , Under a unitary

transformation
X = (u1 + u3)//f, X' = (ul - u3)//§,
: (4.1)
Y =A(u2 + u4)//§, Y' = (u2 - u4)//§,

« The matrix [BquCuv(k)] is partially diagonalized into a two-dimensional
matrix and two one—-dimensional ones. For the former we have the foilowing'v

feigenvalue'equation for X and Y:

. 2 ]
Ci (k) + Cl3(k) - )/8° 2C,, (k)

: : = 0. (4.2)
2¢, , (1) B OB RN ORES)

Solving Eq. (4.2), we,obtéin two eigenﬁalues, of which the lower one is
[110] I .
'11,  (k) = 2[@ (Cll(k).+-cl3(k))+ Qll(k) + C24(k).

= JUEP(Cyy () + Cp) = ¢ () - €y (0} + 1687, (0711, (4.3)

For this we have u, = u, and u, =

u, . From a one—dimensional matrix for
1 3 2 4 n : _ -

X' we have:

 ;2[1101(k) = sz(cil(k) - ¢ 3, u; = -ug, w, =u, = 0. (4.4)
‘From the other one~dimensional matrix for Y' we have
‘ A3[110](k) = ¢y () = Cp (), w =u, =0, uw, =-u,. (4.5)
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We coﬁstruct the (k,k,0) configurations in the shaded regioﬁs of
Figs. 3, 4, 5. The details of - these éonfigurations are shown in Appendix A.
First we consider the following case (g).
(g) Helix [110]
Here: the spins on each (110) plane are parallel and the helix propagates
in the [110] direction with a turn anglévk. We determine k from

dAl[llol(k)/dk = 0, using Eq. (4.3). We can choose B so as

X/Y = ul/t.;_2 =1, i.e.,'u1 =
is satisfied.

At first we compare the exchange energy of the helix [110] with
those of the unstable [001] configurations in the shaded regioﬁs of .
Figs. 3, 4, 5; - The resqlt_turns out to be that the helix [llb]
has a lower energy in a.region of mostly ¥ <0 shown in Fig.8 in the case

of £ = 1/2 and J 0. Next we study its stability. When we calculate

2<
eigenvalues for q = (k,k,k) from Eq. (2.14) using the present values of1
B's, we find that some of them are lower in the whole (g)_region. Hence,
unfortunately, the coplanar helix [110] cannot be the ground spin state.
"In order.to fill the shadéd regions of Figs. 3, 4, 5, we try to find

other solutions. When k is equal to w/2, we have Clz(w/Z)_= 0, and

hence from Eq. (4.2) we obtain two eigenvalues_'

u, =u, =0, (4.6)

a0 /2y = - 20,88 e v m -2t - ), up =

AY[].].O] (11_/2) _ ZJZ(E -2n+ 2z - 2), u, = u, = 0, u =4, . (4.7)

Furthermore, we have from Eq. (4.4)

157 U Uy = u4.= 0,  (4.8)

| )\2[110](“2) - - 2J262(-g -2n+2;-2), u

and from Eq. (4.5)
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[;10](n/2) =~ ZJZ('E +2n -2 -2), u,=u,=0, u =-u

A 17 Y3

3

It is impossible to comstruct in each case a real configdration with a.
single wavevector q = (v/2,7/2,0), because the condition (2.13) cannot be
.satisfied. However, we can construct spin configurations with two

wavevectors, Q = (k,k,0) for Al[llol(k) of Eq. (4.3), With(ill[llo](k)/dk.= 0,

‘and Q' = (n/2,7/2,0) for one of A [llol(ﬂ/Z) (j=x, vy, 2, and 3).*)

3

Q' is equivalent to (0,0,m/2) and it is one of K/2's. ~ Among four possible

configurations, two for j = 2 and 3 have lower energies thaﬁ the unétable

[001] configurations in most part of the shaded regions as described below.
t“(h) Cone-helix [110]-A - |

We force degeneracy of two eigenvalues Allllel(k), with ul(k) = u3(k)

and‘uz(k) = u4(k);_and Az[llol(ﬂ/Z), with ul(w/Z) = - u3(ﬂ/2) and uz(ﬂ/Z) =
u4(n/2) = 0. . In order to satisfy the condition (2.17), we require
2 2 .
lo, (k)| = 1, lo, ) [ + |u (/2) |7 = 1. © (4.10)

The superposition of the eigenvectbr{cv(k)} based on (2, 3) as in Eq. (2,12)'
and the eigenvectof{Ov(ﬁ/z)}based on ® as in Eq. (2.16) yields a';one—

helix [110]-A shown in Fig. 9, in which spins on sublattices 1 and 3 have

a conical structure and spins on 2 and 4 form a planar helix.

(i) Cone—helix.[llO]?B

We force degeneracy of two eigenvalues Al[llol(k) and A3[110](ﬂ/2).
From the condition (2.17), we require |
12 2
lu, 0] = 1, lu, () |7 + Ju,(n/2) |7 = 1. (4.11)

We show this come-helix [110}-B in Fig. 10, in which épinsron sublattices

1 and 3 have a planar helical structure and spins on 2 and 4 form a cone.

*) It is also possible to construct a spin configuration represented by
two wavevectors Q = (k,k,0) and Q' = 0, but this configuration has a high

ehergy.
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By coﬁputer calculations theenergies of the cone-helices [110]-A and B
'ﬁere compared to those of the unstable [001] configurations in thé shaded
regions of Figs. 3, 4, 5. It was. found that the cone-helix [110]-A has
a lower energy in most part of the uﬁsﬁable regions for the helix [001] (b)
and (c). The cone~helix [110]-B has a lower enefgy in most part of the
unstable regions for UA2, that is (f). The boundaries of the-régidns of
lbwer energy are shown by chain lines in Figs. 8, 11, 12.

Next we study the stability of these configurations.  Since eigen-

values qf the matrix [Busvcuv(qx’qy’qz)]’ with Bl = 33 = g, 52 = 84 =1,

are not affected by reversing the sign of any of Qs qy, q, and by exchanging
9, with qy, it is sufficient to consider only 1/16 of tﬁe first Brillouin .
zone as shown in Fig. 6. o
The results are as follows:

(1) The eigenvalue of the cone-helix [110]}-A is higher than the eigen-
value for q=(n/2,n/4;0), which is one éf K/4, in the (h) region of Fig.8

for z=1/2, J.<0 and in the corresponding region for z=-1/2, J2>O, not shown

2

in figures. We have the same situation for the cone-helix [110]-B in

the cases of r=1/2, J_>0 and z=-1/2, J,<0. The instability against

2 2

(n/2,m/4,0) sﬁggegts,the construction of a configuration having a single

wavevector (v/2,n/4,0) or two wavevectors of which one is this. Hastings

8)

and Corliss ' observed a complicated neutron diffraction pattern for

*
ZnFeZO4 at 2.7°K whose main peak corresponds to (ﬂ/2,ﬁ/4,0).») In

MgCr204 the observed low-temperature reflections correspond to (n/2,n/4,0)

and (n/4,7/4,0). 13

*) In a recent experiment, well resolved magnetic peaks were. observed for
ZnFe,0, at 4.2K (U. Ronig et al.: Solid State Communications 8 759 (1970)).

We discuss the corresponding structure in Part J.
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(2) The'eigenvalues of the cone-helices [ilO]—A and ‘B having (k,k,O) for_
the helical part are higher than thése for wavevectors q in_the vicinity of
(k,0,k) and in the vicinity of (H/Z,k,k) in the remaiping regions of their lower
energies, i.e., tﬁe (h) region for z=1/2, J2>O and for r=-1/2, J2<0, the (i)
region for ¢=1/2, J2<O and for g=-1/2, J2>0 (see Fig. 11), and both the (h)

. and (i) regiomns for ¢=0, J2>0 and z=0, J2<O (see Fig. 12).. = "Bad" wavevectors
that upset the stability of the cone-helix [110]-B, for example at.points
(-6.0,n2,O)Aand (—6.0,345) in the Eﬁ plane in the case of =0 and Ji>0, are
shown in'Fig,v13. However, "good wavevectors", including éero wavevector,
all of K/2, énd all of K/4, that stabilize the cone-helix [110]-A or B fil1

~most part of the Brillouin zone.

In the case of non-coplanar cone-helices.[llO]—A and B, the existence of.
lower eigenﬁalues does not necessarily exclude the possibility of their being’ 
thevground state, although their stability is not ensured. Kaplan's fefri-
magnetic cone structure for the normal cubic spinels having magnetic cations .
on'Both_A and B sites is in a similar situation, in that "bad ﬁavevectors"

exist in the vicinity of <110>.15)'
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In this section, we restict the wavevector to g=(k,k,k). The matrix

[Cﬁv(k,k,k)], abbreviated as [Cﬁv(k)]’ has the symmetry Clz(k) = Cl3(k) =

C14(k), 023(k) = CZA(k) = C34(k)’ s0 that.we can choose Bl = B and 82v='

,83 = B4 = 1. Under a unitary transformation -
X = (u1 + ug + u4)//f,
y = (uz +,u3 +,w2u4)//§, w = exp(i2n/3)

z = (u2 + w2u3 + u4)//§;

(5.1)

- the matrix [BUB C. (k)] is partially diagonalized into a two-dimensional

VOV

-matrix and two one-dimensional matrices. We have the eigenvalue equation

for uy and x:

Ci (k) = 2/8 , Eclz(l;) o
/§C12(k) Cy1(K) + 2C,,(k) = &

The lower one of the two eigenvalues from Eq. (5.2) is

[111] py _ 1 | 2
A9 = 3103 () + 26360 + 870 (1)

2

: 2. .2 9.
- /{Cll(k)-+ 2C23(k) -8 Cll(k))f + 128 Clz(k) 11,

for which u, = u' =

2 3 = Uy For either y or z we have

[111] 4y -
@ = e 0 - ey,

(5.2)

(5.3)

(5.4)

with uy = 0 and u, + Uy + u, = 0. We qbnsider (k,k,k) configurations in

the shaded regions of Figs. 3, 4, 5 (for details, see Appendix B).

we consider the following case (j).

First
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(§) Helix [111]
Here spins on each (111) plane are parallel and the helik propagates along
the [111] axis‘with a turn angle 2k, We determine k from dlllllll(k)/dk = 0,

using Eq. (5.3). We can choose B so that

ul/x = ul//§u2 = 1/V3, i.e., uy é

» is satisfied.

‘Comparing fhe enefgy of.tﬁe helix [111]‘with the enérgieé of the cone-helix
[110] A and B and those of the unstable [001] configurations, we find that the
ﬁelix'[lll]_has a lower energy in the case of ¢ = 1/2 and J2 < 0 in a region
shown in Fig.'8. With regard to its étability, we calculated eigenvalueé for
é = (O,O,k)Avafying k and found some bad wavevectors in the whole (j) region
in Fig. 8. Thérefore the coplanar helix [111] cannotvbe the ground state.

For k' = n/4 we have C12(n/4) =0 in Eq;’(5.2) and hence we have

A sy = 6% /) = 0 | (5.5

fqr uy ¥ 0, u, =uz;=u, = 0. Also, we have
A /sy = —a1,(6 - 20) | - (5.6)
for u, = o, u, = ug =u, £ 0. Evidently it is impossible to construct a real

configuration for each of these eigenvalues.
In order to fill the regions in which the [001] configurations are unstable
with respect to q = (n/4,n/4,n/4) (for example, the shaded parts of (a), (b),

and (d) (¢ > 0, n < 0) in Fig. 4 for £ = 0 J, > 0), we construct a configuration

2
*
having two wavevectors Q = 0 and Q' = (n/4,n/4,7/4) as follows. )

*) Q' is one of K/2. The configuration having Q = (k,k,k) = 0 and Q' = (W/4,

. T/4,T/4) has a higher energy than the unstable [001] configurations in Figs. 3, 4,5,
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(k) Yafet-Kittel-like [111] configuration

We force degeneracy of A [111](0) from Eq. (5.3) andllx[llll(w/A) from

1
Eq. (5.6). From the condition (2.17), we require

|u1(b) | =1, |u, (0) |2 + u, (n/4) |2 =1, (5.7

Then we have the Yafet-Kittel-like [111] configuration in four (111) layers as
shown in Fig. 14. |

‘The region of lnwerrenergy of this configuration is shown in Figs. 11 and 12.
In thé study of the stability of this configuraiion we note that:the axis.[lllj
is not equivalent to the axes [111], [lil], and [111] because of the symmetry
of [BﬁBvCﬁv(q)] fof Bl = B and 82 = 83 = B4 = 1. By computer Caiculation it was

found that this configuration is unstable with respect to wavevectors around
q = (K; -K, K) and in particular to q = (n/4, -n/4, ©/4). Hence, this coplanar

configuration is not the ground state.

Bertaut and his co—workérs found for GeC02049) and GeNiZO4lo)

diffraction at 4,.2°K that in the structure of alternating (111) plénes, consisting

by neutron

of (1) and (2, 3, 4), thévspiﬁs on each (111) plane are parallel but they turn
by 7 in going to évery other (111) plane, and the spin axis of (1) and that of
(2,»3, 4) are not correlated. Thié configuration may be called the uncorrelated
antiferromagnetic [111] configuration. In order tb obtain this configuration,
we take a wavevector q = (w/4,n/4,ﬂ/4)band-force degeneracy of two eigenvalues
A[llll(n/4) for uy % Orand A#[lll](ﬂ). However, since Cll(n/4) = OIby Eq. (5.5),
the exchangevenergy is zero énd hence is high.. Thus, in our approgimation of

Y = J4 = 0 the uncorrelated antiferromagnetic [111]»con£iguration cannot be the
ground state. 'FIf, howevef, the Ge2+ ions on A—sites/have a 1arge covalency

and we'may take nonzero Yy and J4. . Then we obtain following equations (see

Appendix C):
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AP ay = e @iy -3y @ ro, (55"

A sy = a3, - 20 - ) + 63, (5.6")
23,(5 - 20 = y) + 37

g2 o2 4. - (5.8)

3(2J2Y - JA)

The corresponding uncorrelated antiferromagnetic [111] configuration could

. possibly be the ground state.
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86. éummary.

We have assumed the Heisenberg model with four different Sﬁpefexchange
constants for normal cubic spinels having nonmagnetic ions on A-sites and
_magnetic ioné on B-sites. We first comstructed [001] spinvconfigufations
- having only one wavevector q = (0,0,k) and studied their stability with
respect to wavevectors in the whole Brillouin zone. It wés shown that
for the stability of a helix with Os<k<w/2, which has been observed in some
chromium chalcogenide spinels, J2 must take negétive valueé and for J3
-positive values are preferred; For ﬁncorrelated antiferromagnetic
-configuration UA2, described in (£f) of Sec,..3,‘J2 must be negative,,and'for
Jorand J3-positivé values are preferred. Itfwas shown that within our
treatment the ground spin state of’MgV_ZO4 cannot be but the’UAZ configufa—
tion, although actually the spins‘are correlated (Fig.7), possibly due
to a tetragonal distortion. Next we constructed, in the regions of the
instability of the [001] configﬁrationsbin'the exchange—parameﬁer space,
other configurations which have one wavevector or two wavevectors restricted
aloﬁg»[OOl], [110], and [111] and Whése energies are lowér than those of

the [001] configurations. It was shown that three coplanar configurations,

helix [110], helix [111], and a Yafet-Kittel-like [111] configuration, have
lower energiés thanAthose of all other constructed configurations in ceftain>
limited regions. "rBut it was shown that they cannot be the ground state.
We could not obtain the uncorrélated antiferromagnetic [111] configuration
observed in GeCOZO4 and GeNi204_as the ground spin state,.pfobably because
we neglected two more parameters y;aﬁd.i4. We have obtained also cone-
helicés [110]-A and B, shown in Fig.9 or 1O,Arespe¢tively, which have the
lowest energy among the configurations that we constructéd withvone wave-

vector or two wavevectors along [001], [110], and [111], in :egidns denoted

by (h) and (i), respectively, in Figs.ll and 12. It was found,'howeVef,



.26

that the eigenvglues of these cone—helices‘arerﬁighér than either the
eigenvalue for q = (n/2,%/4,0) or eigenvalues for q's in the vicinity

of (k,0,k) ana (n/2,k,k), so that their stability has not been warranted.
The observed low-temperature structure of MgCr204 seems ‘'to contain
‘wavevectors (w/2,7/4,0) and (n/4,7/4,0) and £hat of ZnFeZO4 a wavevector
(r/2,7/4,0). It would therefore be interesting to construct such
.structures and study their stability in the régions in which the stability

of the cone-helix [110]-A or B was not warranted with respect to (5/2,5/4,0).
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Appendix A: Constructionldf the (k,k,0) Spin Configurations in 54

First we determine k from dX [llo](k)/dk = 0, taking B as constant. We
1 , .

can choose B to satisfy one of following two equations:

XY =u/u,=1, X' =YY" =0, i.e., u, = u, = uy =y, (A-1)

1 72 1 2
= = - L v = i = - = = = -
X/Y ul/u2 1, X Y 0, i.e., uy u, = Uy U, (A-2)

From (A-1), we obtain the helix [110], denoted by (g), with following
-equations:
Cll(k)'+ C24(k) + ZClz(k)

g = ’ ’ o (A_3)
Cll(k)v+ ClB(k) + 2C12(k) ‘ : '

. [110],,. _ | - ,
Al (k) = Cll(k) + C24(k) + zclz(k). . . (A-4)

The corresponding energy is
ems? =1, M wae+ 2. | )

This configuration has a lower. energy in a region of & < 0 in the case of
t = 1/2 and J2 <0 (see Fig. 8), provided k is in the interval (0, w/2).
‘From (A-2) we obtain another helix [110] for which k in the above is
replaced by 7 - k, i.e., C12(k) by - Clz(k), but the corresponding energy
- for k in the interval (0, 7/2) is found to be high in the shaded regions of
Figs. 3, 4, 5. |
' Next we construct spin configurations with two wavevectors, Q = (k,k,0)
and Q' = (n/2, %/2, 05 as follows: .
(h) Cone—hélix [110]-A . _
Wé force degeneracy of two eigenvalues Al[llol(k) and Az[llol(n/Z). We then

obtain 82 as
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2. Cy (1) + €50 < A/ HC, () + G, (0) = 4C, (7 a6
- 2 H] .
_ A(r/2){C 1 (k) + C 5K} — A(n/2)

where

A(n/2) = <23,(E - 2n + 2C - 2). ' (A-7)

. From Eq. (4.2) we have

@ = 2,1 2y

: c..(k) +C _ o
XIY = u (1) fu, (k) = ~ —E 24 N )
| A 2¢., ., (k)
12"
~énd we must have
, A-9
Iul(k)/uz(k)|/é=l - (A-9)
in order to satisfy (4.11).. The corresponding ehergy is
ems? e, M+ 28t o (A-10)

(i) Cone-helix [110]-B

. We force degeneracy of two eigenvalues Al[llo](k) and A3[110](n/2). Then
we have
v [110], ., . [110] 2
82 _ Ag (ﬁ/Z){Cll(k) + Cza(k)} = A “(n/2) (A-11)
. 2° _
{c;; Gy + 013(3)}{cll(k) + €y, ()} = 4Gy, (k)
[110]
: C. (k) +C,, (k) -2 (n/2)
XY = w300 fuy () = - 11 24 3 . . 12

2C12(k)

lu, (0 /6,0 | 2 1. | o (’A_—13)



‘The corresponding energy is

g/ns? = 2,110 /2y (2 + 2782y,

3

(A-14)
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- Appendix B: Construction of the (k,k,k) Spin Cohfigurations in §5

We first consider the configurations having one wavevector q = (k,k,k).

[llol(kj with u,, u, = u, = u,. We

1 1° 72 3

From Eq. (5.3) we have the eigenvalue A
determine k from dkl[llll(k)/dk>= 0. We can choose B8 to satisfy

ul//3u2

u1/x = = 1//3, i.e., u1 =.u2 =ug =u,, (B-1)
or
_”ul/x = ul/{guZ'; -1/v3, i.e., U = -u, = -ug = -y, (B-2)
From (B-1l) we obtain a-heiix [111], with
C, (k) + C.. (k) + 2C. (k) .
g2 . 11 12 "2 | (3-3)
Cll(k) + 3C12(k)
Al (k) = Cll(k) + Clz(k) +‘2023(k). | (B.A)
The exchange energy is
E/Ns2 =7A1[111](k)(3 + 1/32). o , ' (B-5)

The helix [111] has a lower energy in the case of [ = 1/2 and’J2-< 0, as shown in
~Fig. 8.

From (B-2) we obtain another helix [111], with

Cor (k) = Con(k) + 2C..(K)
2. 1 12 2370 | s
ey () - 3e, () o

[111},,, _ - _ ' : '
Ay (k) = Cp (1) = € , () + 2C,, (). (B-7)
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. The change of‘sign of C12(k)’ as compared with the former case, means that k
‘has been replaced by_%-— k. Here C12<k) must be positive in order that this
- elgenvalue is lower than that given by Eq. (B-4). But the corresponding energy
is . found to be very high in the shaded regions of Figs. 3,4,5.
Next we construct configurations having two wavevectors Q = 0 and Q' =
(r/4, n/4, w/4) and 6bfain a Yafet—Kittel—like [111] configuration by forcing

degeneracy of two eigenvalues A [lll](O) and Xxilll](ﬂ/4), with

1

) .._xx[.l_l.l_],(nm) (€41 (0) + 2¢,,(0)) - ,*x[lll] (/42

B = - v . (B'S)
, [111] 2
Cll(O)(Cll(O) + 2C12(0) - Ax S (n/4)) - 3C12(0)
From Eq. (5.2) we have
: - «3012(0)
x/¢3u1 = uz(O)/ul(O) = - (8-9)

[111] ?
C;1(0) + 2¢,,(0) - A M /s

and from the condition (5.7) we require

|u2(0)/ul(o)l < 1. (B-10)
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Appendix C: Effects of 'y and J4

If we take v and J4 into account, we have additional terms

ZJzy[co§2(qx + qy) + cosZ(qy + qz) + cosZ(qz + qx)
e-c052(qx -'qy) - qosZ(qy - qz) - cosZ(qz - qx)] (c-1)
9.2J4(cos4qx +.cos4qy + cos4qz),

to Cll(qx’qy’qz)' Other diagonal elements are related to this by equations.

sz(q.x,qy’qz) = Cll(_qx’qy’qz)_’ . - (C=2)
CBB(qx’qy’qz) = Cll{qx’qy’yqz)’ - : BN
044(qx,qy,qz)_ cll(qx,v qy,qz)_. (Cc-4)

The off-diagonal elements do not contain vy énvaa.

(1) The case of q = (0,0,k)

The matrixvelements,have the symmetry Cll(k) = sz(k) = 033(k) = C44(k), C,,(k)

12
= 014(k) =’C23(k) = 034(k), C13(k) = C24(k).v Thus, we can use transformation

(3.1) and obtain four eigenvalues, of which the degenerate eigenvalues for X

2
and X, arg
| Aztoon © .‘-= M[oou (k)_=‘¢11(k) - o, | ' D) |
with u; = —ug, u, =’—u4.i The UAZ cogfigytation has the eigenvalue
A2[°°1] (f/z)' - x4[°°1] (n/2) = “21)(-E + 20 - 26 -2) - 63, (c-6)

(2) The case of q = (k,k,k)
»The matrix [Cuv(k)] has the»symmetry Cil(k) % sz(k) =‘C33(k) =_C44(k), Clz(k)
= 013(k) = Cl4(k)’ 023(k) =‘CZ4(k) = C34(k). Thus, we can use tréﬁsformation

(5.1) and obtain the following eigenvalue equation for uy and x:
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Cll(k) - X/B /SClz(k) :
= 0. ' (c-7)
/3012(k) sz(k) + 2023(k).— A

When k is equai to ©/4, we have Clz(n/4) = 0, and hence we have two eigenvalues

A Gy = ces® 2,y - 3y, (c-8)
A shy = -3 (8 - 20 = y) + 63, (c-9)
b 4 2 4
. with uy % 0, u, = uy =u, = 0 and u, = 0, u, = u3 =u, % 0, respectively.
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-Table 1. Difference in notation used for the interaction constants

.due to various

investigators.
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Interaction* | Distance| Present paper DM6) BWRL4) LPl)’ 2)
a
B-0-B /iz I = &9, J J W,
a ,

B-0-0-B /—62 3, =nd, WJ K W,
B-0-0-B /‘&4— | 3, (1 y)Jz‘ Uy = UJ(1 y? W,
-0 a u 'y ' '
B—qu B fez 3, a+vJ, vU J=UJ(1+v)| X W,

_ , R B}
B-0-0-B ,’/1_0— Jy=1J, vJ K | .....
A .
a .
B-0-0-0-B 16 I, L
*
B: magnetic cation in B-site
0: anion
A: nonmagnetic cation in A-site
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1. Positions of anions (open circles), nommagnetic cations in A-sites
(hatched circles), and magnetic cations in B-sites (black circles) in

a part of the spinel lattice. The paths of six superexchange interactioms

-are as follows:

JO: 1?!(3*3; 1-d4-3.

It lea = §=2'; 1-d—j=2"; 1-d - e-2'; 1-d—k-2'; 1-i-j-2'.

1 \A/ . \A/

Jz‘: lec—£-1'; 1-d—g-1'.

32": 1-a —’b-l"; 1-d —;e—l“.

- \A \A

J - l'\?d - e_'3'—o
-3 \A/ 7

34t 1sd = e~h~1"'; 1-d-g - h-1"'.

A SA

2. Uncorrelated antiferromagnetic [001] configﬁration~2. The axis. of
(1, 3) and that of (2,-4) are not.correlated.
3. Regions of the [001] spin configurations in the &n plane, in the case

of ¢ - 1/2. Here £ = JO/JZ,jn = Jl/JZ"C = J3/J2. The boundaries of

“theﬁr'stability regions are represented by bold lines. The ferromagnetic

configuration is‘denoted by (a), helix [001]-1 by (b), helix [001]-2

by (c), degenerate antiferrémagnetip configuration by (d), and uncorrelated
antiferromagnetic [001] configuration-2 by (f). .~ Straight lines (e) for

Jz > 0 and for J2 < 0 represent the uncorrelated éntiferromagnetic |
[001]'configurétion—1.' Boid lines and dashed lines in the (b) and (c) regions

denote curves of constant Q = (0,0,k). Shaded regions are unstable regions.

4, The case of ¢t = 0, similar to Fig. 3.

5. The case of ¢ = -1/2, similar to Fig. 3.

6. The eighfh of the first Brillouin zone. The forty-eighth of the
zone for the [001].c0nfigurétions is shown by bold lines. 'Thg stability

of the [001] configurations is investigated with respect to a number of

q vectors, in particular those along [110], [111], and [210], and special
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q vectors at 19 points on the zZone face marked by x and 3 points
within the zone marked by'o.‘ The sixteenth of the first Brillouin
zone for the [110] configurations in §4 is represented bj chain lines.b
The part of q, >>O of the twelfth of the first Brillouin zone

for the [111],configurétions in §5 is shown by bold aﬁd fine'lines;
7. Observed correlated antiferromégnetic [001] configuration in Mgvzoa.

8. Regions of lower energy for helix [110], helix [111], and cone-

< 0. Their boundaries

helices [110]-A and B in the case of £ = 1/2 and J2

are marked by chain lines.

9.  Cone-helix [110]-A (0 < u;(K)/u,(k) < 1)

10.  Cone-helix [110]-B (u,(k)/u,(k) < -1)

11. Regions of lowe: energy for cone-helices [110]-A and B in the case of

; % 0. The boundaries of their regions are shown by chain lines. Dashed

lines denote curvés of k¥ = 3n/8. As regards the Yafet-Kittel-like [111]

réonfiguration; see §5.

12, . Regions of lower energy for come-helices [110]-A and B in the case of
=0, similar to Fig. 11.

13. Bad wavevectors on the plane q, = m/2 in the zone for the cone~helix
[110]—B,'in the cése of £ =0 and J2 > 0. Bad wavevectors afe represented
by x for the case of £ = -6.0 and n = 2.0 and by ® for both of £ = -6.0,
n=2.0and £ = -6.0, n = 3.5.

14. Yafét—Kittle—like [111] configuration.
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81. Introduétion

The spin structure of the normal cubic spinel ZnFe204_was first studied
by Hastings and Corlissl) by neutron diffraction at 2.7K using powder sample.
A complicated pattern was observed whose dominant peaks corresponded to é wavevectdr»
Q = (7/2,0,7/4) (measured in units of 4/a, where a is the lattice constant) but
the structure was not determinéd_due to lack of fesolution. A recent egpériment
by Konig ef al.,z) also using powder sample, shdwed well-resolved magnetic peaks
up to high diffraction angles, and these peaks again corresponded to Q = (u/2,
0, m/4) and could be indexed With.a tetragonal magnetig unit cell of a=b =
8.43& and ¢ = 16.862. Two possible models were proposed for the spin structure,
one being a collinear spin gonfigufation and the other a noncollinear spin confi-
guration. -

In Part I (quoted as I) we have theoretically studied pbssible ground spin

configurations at T = 0 in the normal cubic spinel havingrmagnetic cations.on
B-sites only. On the asstmption of four different superexchange interactions
we constructed spin configurations having one wavevector or two wavevectors
restricted along [001], [110], and [111] and we studied their stability with
respeét to all wavevectors in whole Brillouin zone. It was éhown among othérs‘.
that cone-helix [110]-A (see Fig. 9 in I) with two wavevectors (k,k,0) and
(0,0,7/2) has the lowest energy among ali the constructed spin configurationsv
in a cértain region of the exchange-parameter space but thaf this cdnfigufation
is unstable with respect to a wavevector (m/2,0,7/4) in a certain part of that
region. The same situation was_foﬁnd for cone-helix [110]-B (Fig. 10 in I);
In Part I we therefore construct spin configurations with a wavevector. CF/Z;

0,7/4) and study their stability. We extend our previous treatment in §2 and

find new degenerate antiferromagnetic configurations. In §3 we study the
effect of magnetic dipole-dipole interaction stabilizing particular ones of
these antiferromagnetic configurations. In 84 we show that our results can

be compared favorably with the spin structure observed for ZnFezoé.
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§2. Spin Configuration with a Wavevector (w/2,0,7/4)
We choose a rhombohedral unit cell containing four B—sités which are.at
1. (—1/2’—1/29—1/2)’ 2. (-1/2’1/231/2), 3. (1/231/23—1/2), 4‘ (1/2’-1/231/2)

in cubic coordinates measured in units of a/4. The exchange emergy is written as

' 2 .
=5
E_ /NS % Q)

* ' ’
c: 2.1
[ ERTIRVARTYY ’ . , 2.1

o g
qu gV
where qu and Cuv(q)’ given by eqs. (2.3) and (2.2) of I, are respectively the
Fourier transform of the classical spin vector Snv (of magnitude S, at the vth
site in the nth unit cell) and the Fourier transform of the exchange constants
J(R_ - R _) (R being the position of S ), and N is the number of unit cellé.
mp nv nv ~ nv ,
We measure q in units of 4/a. We consider exchange interactions of four kinds:
JO between nearest neighbors J1 between seéond neighbors J.' and J," between .

2 2

third neighbors and J, between fourth neighbors (see Fig. 1 in I, where J

3

also included). We write J

was

4

"= J,(1- 1) and J," = J,(1+7), where v is

.a measure of the degree of covalency of the A-site cation which lies on the

2

superexcﬁange path. Further, we write § = JO/JZ’ n= Ji/JZ’ and ¢ = J3/J2.

The explicit form of the matrix [Cuv(qx’qy’qz)] was given in I. For

q ='(2k,0,k) we have following expressions for Cuv(Zk,O,k); abbreviated as Cuv(k):

Cll(k) = 044(k) = —2J2[c036k + 2cos4k + 3cos?k - Y(cbé6k - cosZk)], (2.2a)

it

sz(k) = C33(k) —2J2[c056k + 2cosbk + 3cos2k + y(cosbk - cos2k)], (2.2b)

Clz(k) = C34(k) = —2Jé[£cosk + n(cos5k + cos3k) + z(cos3k + cosk)], (2.2¢)

ClB(k) = 024(k) = —2J2[£c052k + n(cosbk + 1) + z(cosbk + cos2k)], (2.24)
C14(k) = -2J2[£cos3k + 2ncosk + z(cos5k + cosk)], - A _ . (2.2e)
023(k) = ~2J2[£cosk + 2ncos3k + z(cos7k + cos5k)], (2.25)

We shall confine ourselves to k = w/4, i.e., to Q = (n/2,0,7/4) which is

one of K/4's, a quarter of a reciprocal lattice vector. Then, we have relations



41

Gy (R/4) = Cpp(n/4) = Cyy(x/4) = C,,(n/4) =41y, €1, (n/4) = C,(n/4) = Cyy (n/4)

= f014(“/4)'= = 23,(8 = 2n), C;,(n/4) = 024(ﬂ/4) = 0. We denotg by % thg
exchange energy. terms of (2.1) with q = Q and q = -Q:
=z 4 * | @3
€ = Zuiv w(ﬂ/ )c g, ceces . (2.3)

and minimize (2.3) under the conditidn Snvz = 82 for all n and v, which can'be

written as
[Uvexp(iQ-xhv) + c.c.]2 =1 for all n and v. , (2.4)

th = R.n + Rv, where R.n is a lattice translation vector and Rv the position of

one of the four B-sites, and for convenience we use GG = exp(iQ°Rv)ov in place of 9,-

cv' may be written as a complex combination of two real vectors, u, and Vv:

= (v - ivv)(Z _ 2.5
Then we can write (2.4) as

. . .2
(gvcosQ Rn + vv31nQ Rn)

_ 1 2 1 2
= 3u, (1 + cos2Q°R ) + S (l cos2Q-R ) + u vv51n2Q R ,

1 for all n and v. : (2.6)

' Since'sinZQ'Rh = 0, u, and v, need not be orthogonal to each other, but since
cosZQ-Rn = 41 or -1 depending on Rh’ they have to be unit vectors. We can

‘also write the exchange energy (2.3) and the condition (2.4) or (2.6) as follows:

* . N
= - _ Veom 17 - :
eQ }‘yCuv(ﬂ/4)exp[ iQ- (R R_v)]cu g, + c.c., 7(2.7)
Varr Vs —
20v_ 9, * =1, | €2.$a)
* . .
a'2+c '2=0. _ (2.8b)
v v s

Under a unitary transformation

= . t v v =
X (01 + 02 + o4 + 04 )y/2, X,

|
~~
Q
fod
+
Q

(2;9)
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~eq. (2.7)‘becomes

3 2‘ /4 e S
= Cll(ﬂ )(xlx1 + x,.x, + x.x, + X%, )

€Q 2%2 3%3
x . ox % T % )
+ 2/2012(ﬁ/4)(xlx1 + 1z, X" = 1%,%X,  ~ XaX, ).' (2f10)
We see that the variables are separated into three sets:‘xl, (xz,x4), X5-
For X, we obtain an eigenvalue A
[201] _ o ' .
AT /8) =y (n/h) + /Eclz(n(a) = =23,(¢ = 2n - 2), (2.11)
and, putting Xy = X, = X3 = 0, we haﬁe the corresponding eigenvector
= = = = { = = = = - ‘ S
U = U, =uy=u, =4, V) SV, S V3TV, RN o (2.12)
Here 4 and v are independent unit vectors. We call this spin pattern Type 1;
Fig. 1 represents a speglal case of u = uy =V, = vy = 1/2, u =v, = 1/J§,

which give antiferromagnetically arranged pairs of parallel-spin layers perpen-

dicular to the x axis. For X, and X4 we have
C, (/&) -\ v2ic, . (m/4)
11 12 =0 ' (2.13)
-/Eiclz(w/a) Gy (x/4) = A :

and hence

A+[201](w/4) = 11[2011(ﬂ/4) ' o (2.14)
u, = -v =A—u =v,=4', v, =u, =-v,=-u 9 (2>15)
1 2 73 4 ’ 1 2 3 4 s | - 7

A ] A . .
where u' and v' are also independent unit vectors, and

A 20U /4y = ¢ (u/8) = VEC, (n/8) = 23,5 + 20 - ), (2.16)
Up =V, = tug = -y, Vp oS Uy = -vg S . | ,‘ (2.17)
We call the spiﬁ pattern of eq. (2.15) Type 2. Since the eigenvalue of

the Type 1 pattern is equal to that of the Type 2 pattern, it is possible to

and a2.

superpose the eigenvectors (2.12) and (2.15) with arbitraryamplitudes a,
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We express Gv‘ v = 1,2,3,4) of eq. (2.5) as a linear combination of (uv - ivv)/2

given from (2.12) and those given from (2.15) and assume nonvanishing real a;
*)

and ays with a,” + a,” = 1. Then it follows from conditions (2.8a) and (2.8b)

that 4, v, ﬁ',‘e' are restricted in one of the following four ways:

() uw=7%, 818 914, N (2.18a)
(b) 4=, 804, ¥ L4, - (2.18b)
(© a'=3,u.L%, VL0, (2.18c)
(@ §' =%, 000, vaan. , (2.184)
We call the above 1inear1yfcombined spin patterﬁs Type 3. The spin patterns

of the three types may be called degenerate antiferromagnetic configurations

and will be abbreviated as DAC.

Next, for Xy we have
2P sy =2 PO @y, o (2.19)
U = tu, = ug = -, V)=V, =V, f Ve | (2.20) -

The eigenvalue (2.19) is identical with (2,16) and is lower than (2.11) when

—JZ(E -2n) > 0, i.e., Jo < 2J1. But this case will not be considered further

for the following reason. .

In I we constructed spin configurations having one wavevector or two wavevectors

*) It is not possible to construct a real spin configuration with complex
(neither real nor imaginary) amplitudes a, and az; If one of a; and a, is

assumed real and the other imaginary, then we can show that the resulting spin

configurations are identical with those for real a. and a2; if one of a, and

1 1

a, is assumed real or imaginary and the other complex (neither real nor imaginary),
then we have spin configurations of (2.18a) and (2.18b) with a restriétion of
8' L ¥' or those of (2.18c) and (2.18d) with arestriction of aLv. Thus,

the assumption of real a; and a, is quite general.
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restricted along [N01], [110] and [111], assuming y = 0 and taking parameter
values ¢ = J3/J2 = 1/2, 0, -1/2. We studied stability regions for tﬁese confi—
éuratiqns in the &n plane, but we could not find ground spin configuratidh in
certain regions, especially in regions where the cone-helices [110]-A and B are
ustable with respect to q = Q. In such unstable regions we may‘compare the -

energies of [110]-A and B with the energies e = AX+[201](W/4) and ¢ ='4X_[201](n/4),

Q Q
assuming vy =0 and ¢ = 1/2, 0, -1/2. After numerical calculations we find that
5 < 0, and only in this case,

4X+[2011(ﬂ/4) is lower in the case of £ = 1/2 and J »
in the (uo—region shown in Fig. 2. | On the other hand, 4i_[201](ﬂ/4) does not.
become lower in any case.

For this reason we confine our study to the stability of DAC in the (m) -region,
.andrin fact its stability with respect to all wavevectors in the Brillouin zdné‘:
At first we shallsolvethe eigenvalue problem for the matrix [Cﬂv(k)]’ restricting

ourselves to wavevectors along [201]. Using eigenvector 9 in place of Gv',»

-where
1.4 N
g, = 5(1.—-1J)uv,

(see eq. (2.12) of I)Vand performing unitary transformation

X

il

(ul + u, + u, + u4)/2, X

(u, +u, —u, - u )/2, :
» 2 3 2 1 2 3 4 (2.22)

X - u, +u, - u4)/2, X

3 (Ul 2 3 - U + u4)/2,

4= (8 m Yy
we find that the marix [Cﬁv(k)] is reduced into two, corresponding to two sets:

(Xl’X4)’ (XZ’XS)' For (Xl,X4)'the lower eigenvalue and the corresponding

eigenvector are

-, [201] 1
Mo (k) = 50C ;@) + €, (k) + Cpy(k) + Cyq(k)
: 2
- /T(cll(k) + 014(k) - sz(k) - 023(k)) |
' 2 .
+ 4(C, () + C 47N, | (2.23)

u = u,. (2;24)
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Similar ones for (XZ’XB) are

. [2011,,. _ 1 o | _
2, Mo = Tre 0 - om0 + 6,00 - ¢yp0

. ' 2
- /{(cll(k) = €, (k) — Cyy (k) + c23(k))
. 5 |
+ 4(C1, (k) = C 4TI, | | ;2.25)
Uy = -y, ué = -u,. | - (2.26)

In order that either dkl_[201](k)/dk =0 ordkz_[201](k)/dk =0 at k = 7/4, the

following relation must hold:
E+n =2y + 3C. ' 2.27)

fhus, the stability of DAC is confined to a straight line (2.27)vin the &n plane
for fixed values of y and zZ.

It may be mentioned in passing that the spin configurations expressed by
(2.24) énd (2.26) are no real configurations. Using eqs. (2.23) and (2.24),

we have
X1/X4 =V(u1 + uz)/(u1 - u2)
| N e e ey o [2011,
Cp1(B) + Cyp (k) + 2C 5 (k) + 2C;4(k) + Cp (k) + Cya(k) = 23, (k)

23
Cll(k) - sz'(k) + Cll,(k) - 023(k)

(2.28)

from which it follows that
boy/uy [ 1 for 0 <k <. , (2.29)

This implies that the configuration is not real. ' We have the same situation

for (2.26). - TFor the special case of k = /4, however, the eigenvalues Al_[ZOl](k)

and 12_[201](k) are degenerate and hence by superposition of the corresponding
eigenvectors we obtain real spin configurations. In order to comstruct a real
helix [201] for a single eigenvalue, we must introduce parameters Bv such that.

=B, = B, BZ = 83

and study [BﬁBvCﬁv(k)]. We determine B so as to satisfy the condition luvl =1

= 1, which keep the symmetry of [Cﬁv(k)] expressed by eq. (2.2),
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for v = 1,2;3;4. After numerical célculations we find, however; that such
a heli& has a higher energy in the (m)-region for y = 0, ¢ = 1/2, J2‘< 0.
Next; We.étudy the stability of DAC with respect to other wavevectors.
Becauge of the symmetry of [Cﬁv(q)], only71/48 of the Brillouin zone may be
considered. By computer calculations we ha?e compared the DAC eigenvalue with
those for wavevectors at 125 points in the vicinity of Q. These 125 points
were taken at intervals of 0.1 radian along the qxf qy, q, axes around Q = (7/2,0,7/4).
Moreo#er,—wg have studied the stability with respect to wavevectors along [001],
[110], [111] and special wavevectors at 22 points shown in Fig. 6 of I. As the

final result we obtained the stability lines as shown in Fig. 3, where the assumed

parameter values were Y = 0.25, 0, ~0.25 and ¢ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.
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.§3; Effect of Magnetic Dipole-Dipole Interaction

In order to find the most stable configuration, we calculate magnetié dipole;
" dipole energy for the degenerate antiferromagnetic configuratibns of Type 1, 2, 3.
' We determine the diregtions of the unit vectors ﬁ; 9; ﬁ'; and 0'; minimizing the

~dipolar energy. The dipolar energy is written as follows:

Edipole =EptEps

where E_ and E, represent the isotropic and anisotropic parts, respectively,

1 A
given by
1 Smu. nv
= e R %R .
EI 2 zm,uzn,v L 3 ( my- nv) _ (3.1
28 R & = \
my nv
and
3 {s_ (R _-R )HS (R =R
E, ==-—23 I S By ~ Fwd HO0” Ry, = By R_*R ). (3.2)
A 2SZ m,y n,v lR - R |5 my nv _
mp nv

Here we measure th in units of a/4 and the dipolar energyvin units of
(guBS)Z/(a/A;)‘3 = 1.162cm T (g8 = 5, a = 8.4164).
Ihe configuration of Type 3 is given as a superposition of the eigenvector

(2.12) for Type 1 and the eigenvector (2.15) for Type 2, with arbitrary real

amplitudes a; and a,. The corresponding spin vectors are expressed as
A A, A ) A .
Snl = S[al(ucosQ°Rn + vs1nQ°Rn) + az(tvst'cosQ'Rn + v'san‘Rn)],
Sn2 = Sl:al(ﬁcosQ-R.n + GsinQ-Rh) + az(-a's:i.nQ~Rn + 9‘cosQ°Rn)],v :
, ' (3.3)
= 4 . Do+ ° —A' . _'\' 1 . ‘ V
Sn3 S[al(ucosQ R.n + V?an Rh) + az( u gosQ R.n ~ v'sinQ Rh)]’
= oy . Saq . g P . _A' .
Sn4 S[al(ucosQ Rn f vsinQ Rn) f gz(u sinQ Rn v'cosQ Rn)]'
Type I.correspondsto ai =1, a, = 0 and Type 2 to a; = o, a, = 1. For (3.3)

the énergies given by eqs. (3.1) and (3.2) are represented as linear combinations

of following lattice sums:
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(@ _, %% | | 340
muv n l R 13 > -a
my nv
‘R
(s) _ sinQ |
,Imuv =z | _ |3 ’ (3.4a)
my nv
) _ (Rmpa - tha)(RmuB - )cosQ Rh .. ‘
A - —32 . ’ - (3‘53)
muvaf n |R _ IS
my nv
4 (9 3% Fowo ~ Rave? Roug ~ )sinQ-R
= - , (3.5b)
mpvaB |R - R lS
my nv
where o and B represent cartesian ccmponents. We choose a magnetic unit cell

having basis vectors of lengths a, a, 2a (i.e.; 4, 4, 8 in units of a/4) along
-the x, y, z axes. This unit cell gontains eight rhombohedral chemicai ﬁnit cells.
rThe origins of these eight chemical unit cells are chosen at

(0,0,0), (2,2,0), (2,0,42), (0,2,42), (0,0,4), (2,2,4).
Correspondingly, we have eight R.m‘(=Rmu - ROu) in egs. (3.15 and (3.2) as we}l as
in eqs. (3.4a) ~ (3.5b). In carring out summations in eqs. (3.1) and (3.2)
we at first take sum ovér eight vectors and then multiply the result by the
number of magnetic unit cells. Writﬁing Rm = (0,0,0) = Ra’ we have relations
given by egs. (A.1) ~ (A.13) in Appendix A for Igﬁg,-liﬁi, AaiﬁiB and Aaﬁils'

Furthermore, writting R.m = (0,2,2) = Rb, we obtain following relations:

(&) _ _{(s NONRROE | - |
w o auv Tow = , Lauv? R : - (3.6)
() _ _, (s) ., (@ .

AbuvaB auvaB’ Abuqu N auvaB ’ - 3.7

() 1(s) (C) A (s)

s for other m's are related to those
muv muv muqu muvel

The lattice sums
for a or b in the way shown in Appendix A. .After calculations we obtain the
v

following expression for the total dipolar energy:
_ 2.1 2 2 2 2 1 2 2
[4N =T + a; [2A1(ux + uy + v, + vy ) + EAZ(uz + v, )]

34 (o,

Edipole

2 ' 2 1 2 420
v '+ v&_ )y + zAz(uz + v, )]
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+ a,a, [ (Wu'-uv'+vu'+vv'4+uun'—uv'+vu'+vv'
2°2"3 xz . x=z Xz X z z X z x zx . zX

+uu'+uv'-vu'+vv'+tuu'+uv'-vu'+vv D], (3.8
Lz zy zy :

y z vz yz zy z'y
where
2(I(c) £ar(), | a9
& =5 ﬁix + At af;?_iy% | | | (3.10)
A = %(Aa](E;z 28 {50 ) . | | (3.11)
Ay = }(Aaigiz 2Aa§§) e | ' | D (.12)

We carried out computer calculations and obtained following numerical results:

I=0.178 (= 0.207 ecu V), (3.13)
-1
A1 = -0.051 (= -0.059 cm ),
Ay = =0.453 (= =0.526 cm 1), (3.14)
-1
A3 = -0.677 (= -0.787 cm 7).
o . ' . . e 2 2
We minimize the dipolar energy (3.8), subject to conditions a; + a, = 1

and

u 2 + u‘2 + u 2 1, v 2 + v 2 + v 2 1, 7 (3.15)

x y z b4 y. z v

u 2 +u ' +u 2 1, v 2 + v 2 + v 2 1. v : (3.16)

b4 z X z
At first we put either a; = 1, a, = 0 or a; =0, a, = 1 (Type 1 or Type 2) and
obtain the same minimum dipolar energy

-1

Edipole/4N =71+ A2 = -0.320 cm - | . (3.17)
The corresponding eigenvector is

u =u =v =v_ =0, u 2. 1, v 2. 1. : ) (3.18)

x y x vy Cz z

or
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u '=u'=v'=vy'=0, u =1, v = 1. (3.19)

Hence, in both cases the spin axis in the minimum energy configuration is parallel
‘to the z axis. Next we consider Type 3 (al ¥ 0, a2>#'0).ﬁhich.must satisfy

one of the four conditions (2.18a) A~(2.18d)f We show in Appendix B the details
of solving the minimum problem for example in the case of (2.18a) (4 - ¥, u' 1 4,
1), |

Case (a)

In the case of (2.18a) we obtain the minimum dipolar energy as

Egipote/4N = I + 0.6424, + 03584 + 0.9594,
= -0.906 cm L, - - | (3.20)
with amplitudes a, = 0.802 and a, = 0.598 for the eigenve‘ctéfs
u = uy =V, = vy =0, u, = v, = 1,
ux' = vy' =1, uy' = uz' = VX' = vz' = 0. (B;Zla)

In the remaining three cases we obtain the same dipolar emnergy as (3.20), with

following amplitudes of the eigenvectors:

Case (b)
a; = 0.802.7a2 = 0.598 for
u = uy =v. = vy =0, u, = -v, = 1,
uy' = -Vk' =1, ux' = uz' = vy' = vz' = 0. » (3.21b)
Case (c)
a; = 0.598, a, = 0.802 for
uy =v, = 1, u =u = vy =v, = o,
ux' = uy"= vx' = vy' = 0, uz' = vz' = 1. . (3.21¢0)
Case (d)
a; = 0.598, a, = 0.802 for
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u. =-v._=1, u =u =v_=v_ =0,

X vy y z X z

u'su'=v'=y'=0, u'=-v'=1, - (3.214)
X y X y z z

We havé shown above that the four noncollinear configurations of Type 3 have

the same lowest dipolar energy given by (3.20). In the case of ZnFeZO4 there

-may be an anisotroPy energy due to crystalline field. . The cubic spin Hamiltonian

for Fe3+ (S = 5/2) is represented by

a,, 4 4 4
'g(Sx o+ Sy + Sz R

where a = 2.0 X 10—2‘cm_1;3) . This anisotropy energy is by twé orders»of magnitude
smaller than (3.20) and hence can be neglected.

| The four spin configurations of the lowest dipolar energy are shown in Fig. 4
(a), (b)), (c), and (d), respectivély; (a) and (b) are related by a mirror plane

(1105, as are (c¢) and (d).
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§4. Discussion

- Assuming a special wavevector Q = (2r/a,0,m1/a) we have obtained degenerate‘
-antiferromagnetic configurations (DAC) ofrType 1 and Type 2, and their super-
position Type 3. It was shown that these configurations are stable on that
part of the line (2.27) in the &n plane (& = JO/JZ’ n = JllJé) which is within

the region denoted by (m) in Fig. 2 (which is for the case of z = 1/2) for y
Jr -, : .
—Z—F-z—-)'= const and ¢ (= J3/J2) = const. Our numerical computations
2 _ v _ ‘
predicted that this line exists only for ¢ > 0 and J2 < 0, or J3 <0 and J2 < 03

(=

cases other than ¢ = 1/2 are shown by Fig. 3. The stability was proved by checking
that for these configurations the eigenvalue of exchange matrix is the lowest of
all eigenvalues of the matrix with wavevectpr.vérying over the whole Brillouin
zone. This provides a sufficient, but not necessary, condition for the‘stability.
We have made an attempt to construct a helical spin configuration having
a single wavevector q of arbitrary magﬁitude along [201] and corresponding to
a single eigenvalue. It was found that such a helical spin configuration has
a much higher exchange energy at q = Q and q ® Q than the degenerate antiférro-
:;agﬁetic configurations haviné q‘= Q.. | This situation arises from the faét
that we obtaindegeneréteeigenvalues only for q = Q but not for q ¥ Q, so that
we obtain real spin configurations for q = Q without introducing parameters Bv
into the exchange matrix, whereas fof q ¥ Q we ﬁave to intfoduce Bv and determine
them so as to obtain a real helical spin cpnfigpration.
There exist two‘kinds of helical spin configuration for . q = (2k,0,k) with
k % w/a which tend for k - m/a to one of the degénerate antiferromagnetic confi-
gurations that we have found_for q = Q. They are as follows:

(1) Helix [201]-1

_ A Y’V/\. .
Snv = S[ucos(ZkRnX + kan) + vs1n(2kR.nX f thz)]’ . (4.1)

vhere 4 1 ¢. The exchange energy is written as
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2. T
Eex/NS = Z[Cll(k) + C22(k) + ZClz(k)cosk + 2013(k)c052k
+ €y, () cos3k + Cy (k) cosk]. | (4.2)

‘Helix [201]-1 tends to Type 1 with & + ¥ for k » n/4 (in units of 4/a). |

(2) Helix [201]-2

S_; = S[8'cos(2kR _ + kR ) + V'sin(2kR__ + kR )1,

S, = $[—ﬁ'sin(2kRnx + kR ) + ’\}'éos (2kR__ + kR )1,

S 5= S[-8"cos (2kR __ + KR ) - ¥'sin(2kR__+ kR )1,

s, = S[A'sin(2kR__ + kR ) - G'cas(gkRnX + kR 1, : (4.3)
where §' 1L 9. The exchange energy is

, 2 .
Eex/NS = 2[Cll(k) + C22(k) + 2C12(k)51nk - 2013(1{) cos2k
- 014(k)sin3k + 023(k)sink]. ) ' 4.4)

Helix [201]-2 tends to Type 2 with 4'1 9 for k >1/4,

The exchange energies (412) and (4.4) have a minimum value at k = 7/4 which

. agrees with the éthange energy of DAC, not only on the straight line (2.27) but

also out of it. It is therefore possible that DAC has stability in some region
which includes the straight line, although we could not give a rigofous ﬁroof
for this expectation.. . By 100king'forbthé configuration of the‘lowest dipolar
energy out of the degenerate antiferromagnetic configufations we may expect at
least that this configuration of the lowest dipolar energy will have stability
that contains the mentioned straight line.

The spin configuration of the minimum dipolar energy will be the spin confi—
guration of ZnFe. 0, at T = 0. We expect that the exchange constants of ZnFeZO4

274

will approximately, if not exactly, satisfy the relation (2.27), or JO + Jl + JZ'

= 3" { X% o< < > - < .
I, + 3J3, as well as_;nequalltles J, 0, JB 0, and Jp > 2J1 (E- 2n < 0);

more specifically, we expect that the exchange constants will fall near one of

the finite lines shown in Fig. 3. By a neutron diffraction étudy of ZnFe204
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Kénig et al. proposed three possible spin configurations. One is a collinear

antiferromagnetic configuration with u_ = u =v =v =1/2 andu =v_= 1/vV2
X y X y z z

(Fig. 1). ‘The second is a noncollinear antiferromagnetic configuration of

our Type 3 having 4 = v=2,u =%, v = 9, and a, = a, = 1/V2. For these

two configurations the equantity

R=7I ;Obs - Ical|/210bs, ' (4.5)

which measures the deviation of the calculated line intensities from those observed,
takes a value of 5.5%. This value was obtained for a low magﬁetic momenf value
of 3.9ﬁB at 4.2K. The third configuration corresponds to our Type 2 with g =%
and V' = §, for which the R value is 6.2% and the magnetic moment value is 4.2uB

at 4.2K. (They argued that the low ﬁagnetic moment vélues are due to covalency
effect and that if i=9-= 2 is assumed in the Type 1 configuratiop, then R will
amount to 11%.) The secénd spiﬁ configuration proposed by Konig et al. comes

closé to one of our spin configurations of the minimum dipolar energy which is
expressed by (3.21a). Our four possible spin configurations give the same

powder line intensities listed_in Table 1. ‘It may be mentioned that the

magnetic form factor we obtain from the calculated line intensities of KSnig

et al. for the first and second configurations do not agree with that we obtain

from those for third configuration, and hence our R value for the four configurations
is 8.45% using the former form factor and 8.12% uéing the latter form factor

(a low magnetic moment 3.9u, is assumed) .

B



Appendix A: Relations Among Lattice Sums

Relations among

and (3.5b) for R.m = (0,0,0) = Ra are as follows:’
(c) _ (o) (s) _ _ .
(c) _ (c) (s) _ _{(s) '
Iauv avu Iauv Iav R foru ¥ v. (A.2)
€0 _ () _ () _1(8). () o (&) _ ;) _ ()
Tata 7 Tawa T Taz3 T a23 ” Tazs T Tasg = a2 = Tapoe (4.3)
1€ _ () _ () _ [ (&)
Ta13 = Ta13 = Tagg = Tapy = O (4.4)
A _ @ _, @ , a @ @ ,
-aUpuXx AuUuyy allxx auy 2z allzz
(C) _ ; (s) _ -
a]JUaB =0 (a ¥ B),s. Aa Lol o, for 1,2,3,4. (A.5)
@ _, @ A a )
Aauvas - awuaB auvaB avuaB for a %8, 1 kv (a.6)
A @ _, @ (s) _ , (s '
auvaB = auvsa AauvaB’ Aaqua’ fora £ B, 1t ¥ v. (A.7)
© _, 6 o, @ 6 _,© & e _, @
aldyy al4yy a23yy a23yy a34xx a34xx alex 12 )
O N O B O R C R (O N o (s) _, (@
al4xx aléxx a23xx . a23xx a34yy al4yy al2yy al2yy
(© _ 6 __,@ _ 06 __ @ _ 6 ) o, ()
alidxz aldxz _ aZsz a23xz a34yz albyz a12yz alZzz'
() _ 6 _ @ _ 06 _ @ (s) -, _,
aldzz = Talbzz a23zz a23zz al34zz a34zz al2zz al2zz
(8 _ () __, 6 _, ()
A'a24xz o a24yz - AalSyz ; Aa13xzf (4.12)
a @ _ (s) _ , (& ) _ o6 - .
a13aa " “al3ao AaZéaa T Ya2400 0, for a = x,y,2,
A8 A Lo for all y and v,
auvxy = auvxy
(@ _, G @ a6 @ 6 ), (s
al2xz al2xz a34xz al4xz  Talbyz al4yz a23yz - a23yz
_ o, ) _, (o) A @ _ () _ '
= A13xz T aldyz Adbxs T "a2b4yz 0. (4.13)
For Rm = (2,2,4) we have
1O L@ )
muv auv v auv
(c) A @ (s) (s)
_muvaB auvaB’ AmuvaB ~ “apvaB”® (a.14)
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the lattice sums defined by eqs. (3.4a), (3.4b), (3.5a),

(A.8)
. (A.9)
(A.10)

(A.11)



For Rm = (2,0,-2) we have similar relations with suffix b in place of a. .

Rﬁ = (2,2,0) and (0,0,4) we have

1© _ @ e ()
apuv muv a

myv U Hv
a e o, @ , a8 (8
muvoB alvoB muvoB auvaB
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‘For-

(A.15)

ForvR.m = (0,2,-2) and (2,0,2) we have similar relations with suffix b in place

of a.



‘Appendix B: Method of Finding Minimum of Dipolar Energy

In the case (a) in §3 the following conditions must be satisfied:

A ~
u= v,
4'1+ 4, AR
u 2 +u +u 2 =1,
X y z
u 2 +u ' +u 12 1, v 2 +v "+ v 2 1,
x y z y z
2 2
a; + a, = 1.

Using eq. (B.1l), we have the dipolar energy

Edipole

+ %Az(uz'2 + vz'z)] + a,a. A (uu

123 % z

_ 2. 2 2 2 2 l 2 2 2 :
/4N = a; [Al(ux + uy ) + Azuz ] + a, [2A1(uX + uy + v, +v ')
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(B.1)
(B.2)
(B.3)
(B.4)

(B.5)

2
J

'"+uu'+uv'+uv")., (B.6)
z X y z zy

Neglecting (B.2) for a moment, we confine ourselves to conditions (B.3) and (B.4).

We introduce a set of Lagrangian multiplies {A

¢

}s ¢ = u,u',v', and put
A=A Ay =2, = A/G2
u ’ “u' v' ‘

Then, for minimizing (B.6) we obtain éigenvalue equations as follows.

For (uz,ux',vy') the equation is

9
2al A.2 - 2 alazA3 alaZA3
2 2
alazA3 a, A1 - 2)\/8 0 = 0,
2 1.2
ala2A3 - 0 ay,"A; - 2)7/8

The lowest root is
1..2 2 2 e 2 2 2 2 2 2 2 2
11 = Z[G a, A1 +»2al A2-- V{8 a, Al - 2al'A2) + 88 a, a, A3 11,
and the next root is

2 2
AZ = § a, A1/2.

. ) ) T
For (ux,uZ ) or (u.y,vz ) we have

(B.7)

(B.8)

(B.9)

(B.10)
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2
2a. A, - 2) a a A
171 , 17273 =0 ‘ (8.11)
a,a,A, a,"s, - 21 /8
whose lower root is
1.2 2 2 22 2 .2 2 2 2, 2 |
Ay = zl8%a,%A, + 2a,7A) - /1872, "A, = 2a,7A))" + 4872 s, A7H. (B.12)
Furthermore, for uy' or vx' we have
X4 “'A 2 A1/2 : (B.13)

If we take the eigenvalue Al’ then we have to put

u =u =u'=u'=v'=v'=0, (B.14)
X y y 2 X z
which means that the condition (B.2) is satisfied. Furthermore, we chodse

62 in such a way that equations (B.3) and (B.4) are satisfied, i.e.,

= ' = L - ‘
u, =u vy »l, (B.15)
is satisfied. . Then it follows that
6% = 2(a, %A, + a,a,A,)/(a, %A + a a)A,). (B.16)
1 A 313,890 /(ay7A) + aja)A, :
Using this 62,_we minimize Al of eq. (B.9) with respect to amplitude a, or a,
which are subject to condition (B.5). After nuﬁerical calculations we obtain
a = 0.802, a, = 0.598, _ ' ' (B.17)
and the corresponding minimum dipolaf energy
i - -1 8.1
dlpole/4N I+0. 642A2 + 0. 358A1 + 0. 959A = 0.906»cm ’ (B.18)
For Xawehave
= ' = v = L ' =
u, = u uy Vo vy 0, (B.19)
so that (B.2) is again satisfied. We then choose §2 in such a way that

- = - ' _ ' _ A
u = u = V2, u'=v 1 _ . (3.20)
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- are satisfied. Numerical calculations show that the corresponding dipolar
energy is higher than (B;18). The configuration with the eigenvalue (B.13)

also has a higher dipolar energy. -
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Table 1. Magnetic Intensities

Calculated Intensities

Observed ' Konig et al. " present paper.
h k 1A) ‘Intensities secondB) : thirdc) ‘M.F.F. from M.F.F. from
(Type 3) (Type 2) secondD) thirdE)
3.9uB 4.2uB 3.9uB . 3.911B
001 7400 7611 7406 7923 ‘ 7923
211 500 453 . 365 491 491
213 } 1700 1638 1902 1628 1628
015 ¥ :
031 650 605 475 658 - - 658
233 } 500 596 557 626 626
035
037 ) 400 238 427 199 199
019 : : _
431 . ' .
051 360 377 308 399 367
237 : :
219 . '
251
417} » 250 . 243 320 233 o 235
039
R=X |Iobs-Ica1 |/ZIobS | 5.52 6.2% . 8.45% 8.12%
A) Indices h, k, 1 refer to the magnetic unit cell (a,a,2a).
B) Calculated line intensities for the sécohd configuration, u, = Vz =1,
u vy 1, a; = a, 1/v2.
C) Calculated line intensities for the third COnfiguration,‘ux' = vy' =1,

D) Calculaﬁed line intensities for the four configurations of the lowest dipolar
energy using the magnetic form factor (M.F.F.) recalculated from line
intensities of the second configuration.

E) Same as D) but using the magnetic form factor recalculated from intensities

of the third configuration.
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1. The spin configuration of Type 1. The case of ﬁx = uy = VX =vvy = 1/2,
u = v; % 1/V2 is shown. Open circles mean +z comgonents and full circles

-z components. A translation (0,0,a) reverses all spins.

2, Region of lower energy of the degenerate antiferromagnetic configurations
(DAC), denoted by (m), in the case of Yy = 0, ¢ =.J3/J2 =1/2, J2'< 0.

Here & = JO/JZ’ n = Jl/JZ' The helix [001]-2 is denoted by (c¢), uncorrelated
antiferromagnetic configﬁration-Z by (f) (see Sec. 3 of I). Shaded fegion
mean the regions of unkown ground state spin configurations.

3. Stability lines of DAC for fixed’values of vy and T in the caée of

J2 < 0. Assumed parameter values are vy = 0.25, 0, -0.25 and 7 = 0.1, 0.2,

0.3, 0.4, 0.5, 0.6.

4, The four spinvconfigurations of Type 3 of the lowest dipolar energy,

which are predicted as spin configurations in ZnFe204.
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