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It is well-known that Grothendieck categories need not have projective
objects (e.g. [12], 18.12). However, projective objects can be obtained from
certain finiteness conditions. By a theorem of Nastasescu, a Grothendieck
category with an artinian generator has a finitely generated projective generator
(see [10], [1]). His proof refers to the Gabriel-Popescu theorem as well as to
the theory of A-injective modules. In this paper we give direct proofs of more
general statements.

After preliminary results in section 1 we prove in section 2: Assume U is a
generator in a Grothendieck category € and the endomorphism ring of U is right
perfect. Then there exists a projective generator in €. If the generator U is a
coproduct of small objects U, in € and S, the ring of all endomorphisms of U
with (U,)f=0 almost everywhere, is right perfect, then there exists a projective
generator in € which is a coproduct of small objects, and € is equivalent to a
full module category over a ring with enough idempotents.

In section 3 we obtain a new characterization of QF categories (in the sense
of Harada [5]) by observing: In a locally finitely generated Grothendieck cat-
egory € an object U is a noetherian injective generator if and only if U is an
artinian projective cogenerator.

A result of Auslander on categories of finite representation type ([3], The-
orem 4.4) is generalized in section 4: A Grothendieck category € of bounded
representation type has a projective generator and is equivalent to a full module
category over a ring with enough idempotents of bounded representation type.

Finally, in section 5, we interpret our results in a special case: For a left
module M over an associative ring R denote by o[M] the full Grothendieck
subcategory of R-Mod subgenerated by M. Assume M= M,, with finitely
generated M,’s, is a generator in ¢[M] and the ring S of all f<Endg(M) with
(M,\)f=0 almost everywhere, is right perfect. Then there exists a projective
left S-module P which is a direct sum of local modules, such that M Q4P is
a projective generator in ¢[M], and o[M] is equivalent to ﬁndg(P)—Mod. The
observation on QF categories in section 3 yields new descriptions of quasi-
projective noetherian QF modules in the sense of Hauger-Zimmermann [7],
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which are exactly quasi-projective noetherian strongly quasi-injective modules in
the sense of Menini-Orsatti [9].

1. Preliminary results

& will always denote a Grothendieck category and we write morphisms in
€ on the right side of the objects. Recall that an object V' of € is said to be
small in € if the functor Homg(V, —) commutes with coproducts.

For U= U, with small U,’s in € and N €D define

ﬁom@(U,N) = {f€Homg(U,N)|(U,)f = 0 for almost all AEA}.

For N=U we write }Alom@( Uu ):ﬁnd@( U)=: S. Thisisa subring and right
ideal in S=Endg(U).

Sisa ring with enough idempotents and we denote by S-Mod the category
of all left S-modules X with X=SX. This is exactly o[sS], the full sub-
category of S-modules subgenerated by $ (e.g. [12], 49.1). S is right perfect
if and only if it has dcc on cyclic (finitely generated) left ideals (e.g. [12], 49.9).
In this case, since S is (left and right) semi-perfect, every simple (finitely gen-
erated) module in S-Mod has a projective cover.

Let us collect some information about the functor Homg(U, —):

Lemma 1.1. Assume U= \U,, with small U,’s, is a generator in €.
Then
(1) The functor

F: = Homg(U, —): €— S-Mod

is full and faithful and commutes with products and coproducts.
(2) F has a left adjoint G: S-Mod—€, i.e. for K&S-Mod and L€
there exist ( functorial) isomorphisms

yr: Homg(K, F(L))=Homg(G(K), L),

and G is an exact functor which commutes with coproducts.

(3) There are functorial morphisms (for N €€, L& S-Mod)
wy: GF(N)—>N, v,: L—>FG(L).

wy s an isomorphism for every N <€ and v, is an isomorphism for every projec-
tive L& S-Mod.

(4) If U is projective, then ﬁom@( U, —): €— S-Mod is an equivalence of
categories.

Proof. (1), (2) This is shown in [8], Theorem 2.11. It can also be
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derived from the proofs of [12], 51.7.

(3) The first ismorphism is given in [8], Theorem 2.11. Since v} is
obviously an isomorphism and F and G commute with coproducts, », is also
an isomorphism for any projective L (compare [12], 51.6, (2)).

(4) This is shown in [8], Corollary 2.12 and also by the proof of [12],
51.11.

For our main result we will need the following

Lemma 1.2. Assume U=® \U,, with small U,’s, is a generator in €. If
gzﬁnd@( U) is a right perfect ring, then the class

T = {X €S-Mod |G(X) = 0}

is a hereditary torsion class (i.e. is closed under direct sums, submodules, factor
modules and extensions) and there exist an injective module Q and a projective
module P in S-Mod with the properties

0) T = {X=S-Mod |Homy(X, Q) = 0}
= {X&S$-Mod |Hom}(P, X) = 0}.

(#8) P is a direct sum of cyclic local S-modules, G(P) is a direct sum of small
objects in €, and Endg(G(P))=End3(P).

Proof. Since G is an exact functor, the assertions about £ are easily verified.

({) Let € denote a representative set of all simple modules in S-Mod not
contained in ¥ and denote by Q the injective hull of the direct sum of all ob-
jects in €.

Note that in general @ is an infinite set. If E=¢ then Q=0 all simple S-
modules are in T and we conclude T=S$-Mod: Indeed, for X eS-Mod denote
by X’ the greatest submodule of X belonging to £. If X'+X, then X/X’
contains a simple submodule Y/X’'. Applying the exact functor G to the
sequence

0-X'->Y—->Y/ X' -0

we conclude Y €&, contradicting the choice of X’. This implies X=X'&g.

Hence assume €3=¢. Suppose 03 f € Hom3(X, Q) for some X&&. Since
O has an essential socle we find a submodule X' X with (X')f=E for some
E€E@. Since (X')f €% this is a contradiction and hence

g {X =S-Mod|Hom4(X, Q) = 0}.

Now assume Hom§(X, Q)=0 for a non-zero S-module X. X has non-zero
socle and, by definition of Q, Soc(X) belongs to .
Consider the ascending Loewy series {s,(X)} 4o of X with s,(X)=0, 5,(X)=
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Soc(X) and so on (see [11], p. 182).

If s(X)#+X, then Hom(X/s,(X), O)=0 and, as above, we see that
Soc(X/s,(X))=s,(X)/s,(X) belongs to &. Since ¥ is closed under extensions we
conclude s,(X)E&. By transfinite induction, we obtain that s (X)EX for all
ordinals @. Since $ is right perfect, we know that X=sy(X) for some ordinal v,
hence X ¥ and the first equality is established (compare [11], Chap. VIII, 3.3
and 6.3).

Every module in & has a projective cover in S-Mod and we denote the
direct sum of all these projective covers by P.

Assume 0= feHomy(P,X) for some X €S$-Mod. Then (P")f =0 for at
least one of the local summands P’ of P. For a maximal submodule K C(P’)f
we have an epimorphism

P'—(P)f—>(P)f|K.
Since a local module has only one simple factor module (see [12], 19.7), (P')f/K
cannot be in & (by construction of P) and hence is isomorphic to a submodule
of Q. This yields a non-zero morphism P—(P")f—Q.
Finally, consider 0+ ge=Homs(X,0) for Xe S-Mod. Then for some
simple submodule ECQ, we find a submodule X'cX with (X')g=FE and we
have the diagram with exact line

P

!
X - E—-0.

By projectivity of P, this can be extended commutatively by a (non-zero) mor-
phism P—X'C X, establishing the second equality.
(%) If 3P’ is small, we see from

Homy(P', F(L))=Homg(G(P"), L)

and Lemma 1.1 that G(P') is small in €.
Since G commutes with coproducts, G(P) is a coproduct of small objects.
3P being a direct sum of finitely generated projectives we have, by Lemma 1.1,

Homg(G(P), G(P))=Hom§(P, Homg(U, G(P)))=End3(P) .

2. Projective generators in €

With the foregoing preparation we are now able to prove:

Theorem 2.1. Assume U= \U,, with small Uy’s, is a generator in € and
S= ﬁnd@( U) is a right perfect ring.

Then there exists a projective left S-module P which is a direct sum of local
modules such that G(P) is a projective generator in € and
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Homg(G(P), —): €—Ends(P)-Mod
is an equivalence of categories.

Proof. For the projective S-module P as defined in Lemma 1.2, we first
show that G(P) is a generator in €.

For LeS$-Mod consider the canonical morphism a: P®—L with Q=
Homy(P,L). Then Homj(P,Coker &)=0 and hence Coker e =¥ (Lemma 1.2).
By definition of ¥ and exactness of G, we get an epimorphism

G(P®)=G(P)®—G(L).

Since every object in € is isomorphic to some G(L), this implies that G(P) is a
generator in €.

To prove that G(P) is projective we have to show that any diagram in €
with exact line

G(P)

(%) Vf
K5L-0

can be extended commutatively by some morphism G(P)—K (compare [1],
Proposition 8.6):

With the morphism (isomorphism) v, (see Lemma 1.1) the functor F
yields the diagram

P 2 FG(P)

(#%) VE(f)
F(K)— Im F(p) C F(L)— Coker F(p).

From the lower line of (*) we get, by Lemma 1.1, the exact commutative
diagram
GE(K) — GF(L) — G(Coker F(p)) — 0

V= =
K - L - 0

This yields G(Coker F(p))=0, so Hom3(P, Coker F(p))=0 by Lemma 1.2,
and hence the image of v, composed with F(f) lies in Im F(p). Since P is
projective, we find a morphism P— F(K) yielding a commutative diagram. Ap-
plying the functor G to the completed diagram (**) we regain the diagram
(%) (up to isomorphism) extended in the desired way.

Now by Lemma 1.1, (4), I:Iom(g(G(P), —) is an equivalence.

For an arbitrary generator U (not necessarily a coproduct of small objects),
we replace S=Endg(U) by S=Endg(U) and obtain the following version with
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literally the same proof. Observe that in this case Homg(G(P), —) need not be
an equivalence:

Theorem 2.2. Let € be a Grothendieck category and U a (finitely generated)
generator in € with right perfect endomorphism ring S. Then € has a (finitely
generated) projective generator.

Since an artinian generator in a Grothendieck category has finite length, its
endomorphism ring is semi-primary and we obtain Nastasescu’s result in [10]

(also [1], 12.12):

Corollary 2.3. Let € be a Grothendieck category with an artinian generator.
Then € has a finitely generated projective generator and hence is equivalent to a
full module category over a unital ring.

3. QF categories

In Harada [5], a Grothendieck category with a generating set of small ob-
jects is called QF category if every projective object is injective in €.

As noted in [5], in general this property is not equivalent to all injectives
being projective in €. For example, the category of torsion modules over Z
has no non-zero projectives (e.g. [12], 18.12) and hence trivially is QF without
injectives being projective.

However, in special cases we have many characterizations of QF categories
known for OF rings. For this we need a Lemma which is shown with the
proof of [12], 48.10, combined with results on semiperfect objects in Grothen-
dieck categories (see [4]):

Lemma 3.1. Let € be a Grothendieck category with a set of finitely gen-
erated generators. If & has a projective cogenerator with finitely generated socle,
then

(1) there exists an injective and projective generator in € ;

(2) every cogenerator is a generator in € ;

(3) every generator is a cogenerator in €.

We can now essentially follow the proof of [12, 48.14] to show:

Theorem 3.2. Let € be a Grothendieck category with a set of finitely gen-
erated generators. For any object UE € with S=Endg(U), the following proper-
ties are equivalent :

(@) U is a noetherian, injective generator in € ;

(b) U is an artinian, projective cogeneraior in € ;

(¢) U is a noetherian, projective cogenerator in € ;

(d) U is a projective cogenerator in € and S is artinian ;
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(e) U is an injective generator in € and S is artinian ;
(f) Homg(U,—): €—=S-Mod is an equivalence and

(?) S is a noetherian QF ring, or

(#%) every projective object is injective in €, or

(#i%) every injective object is projective in €.

Proof. (a)=>(b) Since S®™=Homg(U, U™) is injective in S-Mod, S is a
semi-primary ring (see also [5], Corollary 1), and by Theorem 2.2, there exists
a finitely generated projective generator U’ in €. Since U’ is U-generated, it
is a direct summand of a finite direct sum of copies of U and hence U’ is also
injective in €. S’=Endg(U’) is left noctherian and semi-primary and hence,
by Hopkins theorem, left artinian. Since Homg(U’,—): €—S’-Mod is an
equivalence, U’ and U are artinian. Therefore U'=E,®---®E, with simple
objects E; and E; the injective hull of E; in €. Without restriction we may
assume E;7~E; for i=j. Denoting the Jacobson radical of an object V' by
J(V) (e.g. [4]) we have

UlJ( U,):@izkéi/.j(ﬁi) .
This implies that every simple object in € is of the form £;/J(£;). Hence
cither of the sets {£,/J(£), -+, B/J(E)} and {E,, -, E;} is a representative set
of all simple objects in €. Therefore U’ is a projective cogenerator in €.
Since U’ is a subobject of a finite coproduct of copies of U, U is a cogenerator
in € Also, U is a direct summand of a coproduct of copies of U’ and hence
it is projective.

Observe that under the given conditions S is left noetherian and left self-
injective, i.e. S is a (noetherian) QF ring (e.g. [12], 48.15).

(b)=(c) By Lemma 3.1, U is a generator in € and hence it is noetherian
by the general Hopkins-Levitzki Theorem (e.g. [1], 7.6).

(c)=(d) By Lemma 3.1, there exist injective generators in € and hence
U is an injective and projective generator and Homg(U, —): €—S-Mod defines
an equivalence. Therefore S is left noetherian and self-injective, i.e. a QF
ring.

(d)=(b) Since S is semiperfect, we may assume U to be a finite coproduct
of projective objects with local endomorphism rings. By [4], Proposition 1 with
Corollary 1, these objects are finitely generated and hence U is finitely generated.

Since U is a cogenerator, every subobject of U is an annihilator subobject
(see [5]). By the order reversing bijection between the annihilator subobjects
of U and the annihilator submodules of Sg (compare [12], 28.1), we obtain that
U is a noetherian object.

(b)=>(a) follows from the proof of (b)=>(c).

(a)=>(e) is clear from the above implications (S is a OF ring).

(e)=>(a) As a left artinian ring, S is left noetherian. It is obvious that,



302 T. ALBU AND R. WISBAUER

for a generator U, acc on left ideals in S implies acc on subobjects of U.
(a)e(f) (i) follows from the proof (a)=>(b).
The equivalence of (i), (ii) and (iii) in (f) is clear from the characterization
of noetherian QF rings (e.g. [12], 48.15).

4. Categories of bounded type

A Grothendieck category € with a family of generators {U,}, of finite
length is called of bounded representation type, if there exists a finite upper bound
for the length of finitely generated indecomposable modules. As a consequence
of the Harada-Sai Lemma ([6], Lemma 12), in this case l::nd@(ea aU)) is a semi-
primary ring (e.g. [12], 54.1) and we obtain from Theorem 2.1:

Corollary 4.1. A Grothendieck category € of bounded representation type
has a projective generator and is equivalent to a full moaule category over a ring
with enough idempotents and of left boundea representation type.

A Grothendieck category € with a family of generators of finite length is
called of finite representation type, if there is only « finite number of non-iso-
morphic finitely generated indecomposable objects in €. For these categories
the above Corollary is well-known (e.g. [3], Theorem 4.4, [12], 54.2). In general,
bounded reptesentation type does not imply finite representation type for Gro-
thendieck categories (e.g. [12], Section 54).

5. Categories of type o[M]

In module categories the adjoint functor considered in Lemma 1.1 can be
described by an ordinary tensor product and hence our previous results can be
somewhat refined in this case. We also describe some conditions which ensure
right perfect endomorphism rings.

Let R be an associative ring with unit and R-Mod the category of unital
left R-modules. For a left R-module M, denote by o[M] the full subcategory
of R-Mod whose objects are submodules of M-generated modules. Morphisms
of left modules are written on the right (and vice versa). For basic definitions
see [12]. Since o[M] is a Grothendieck category we get from Theorem 2.1:

Theorem 5.1. Assume M =@ aM,, with M,’s finitely generatea R-modules,
is a generator in o[M]. If S=End (M) is a right perfect ring, then there exists
a projective left S-module P, which is a direct sum of local modules, such that
MQ 3P is a projective generator in o[M] and

Homg(M® 3P, —): o[M]—End3(P)-Mod
is an eyuivalence of categories.

The module M is called semi-projective if for every f € S=Endj(M), Sf=
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Homg(M,(M)f). A finitely generated, semi-projective module with dcc on
cyclic or M-cyclic submodules has a right perfect endomorphism ring (e.g.
[12], 31.10, 43.10) and hence

Corollary 5.2. Assume the R-module M is a generator in o[M]. If M is
finitely generated, semi-projective with dcc on (M-)cyclic submodules, then o[M]
has a finitely generated projective generator.

M is called semi-injective if for every f €S, fS=Homg(M/Ker f,M). Sub-
modules of M which are intersections of kernels of endomorphisms are called
annihilator submodules. A semi-injective module M with acc on annihilator sub-
modules has a semi-primary endomorphism ring (e.g. [12], 31.12) and we get

Corollary 5.3. Assume M is a generator in o[M]. If M is semi-injective
and has acc on annihilator submodules, then o[M) has a projective generator.

OF modules (Quasi-Frobenius modules) were defined in Hauger-Zimmermann
[7] (also [12], 48.2). In particular, a noetherian module M is a OF module if
it is an injective cogenerator in ¢[M]. Modules M which are injective cogen-
erators in o[M] are also called stromgly quasi-injective and characterized in
Menini-Orsatti [9], Theorem 6.7.

It is known that a finitely generated M-projective module M is a noetherian
OF module if and only if M is noetherian, injective and generator in o[M]
(e.g. [12], 48.14). By our Theorem 3.2, we obtain new characterizations of
noetherian QF modules.

Recall that, for finitely generated M,M-projective is equivalent to projective
in o[M].

Corollary 5.4. For awy R-module M and S=Endg(M), the following are
equivalent :

(@) M is a noetherian, injective generator in o[M];

(b) M is an artinian, projective cogenerator in o[M];

(¢) M is a noetherian, projective cogenerator in o[M];

(d) M is a projective cogenerator in o[M] and Ss is artinian ;

(e) M is an injective generator in o[M] and S is artinian.

Let {V,} » be a representative set of the finitely generated modules in o[M].
Then V=@ ,V, is a generator in ¢[M] and if o[M] is of bounded representa-
tion type, then EA)ndR(V) is a semiprimary ring. The following version of Corol-
lary 4.1 extends (a)«(g) in [12, 54.2] from modules of finite representation type
to modules of bounded representation type:

Corollary 5.5. For an R-module M the following are equivalent :
(@) o[M] is of bounded representation type;
(0) o[M] is equivalent to a full module category over a ring with enough
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tdempotents and of left bounded representation type.
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