|

) <

The University of Osaka
Institutional Knowledge Archive

Tale AUTOMATIC INFORMATION RETRIEVAL BASED ON GRAPH-
THEORETICAL CONCEPTS

Author(s) | Rk, IHER

Citation |KFRKZ, 1978, EHEHwX

Version Type|VoR

URL https://hdl. handle. net/11094/943

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



AUTOMATIC INFORMATION RETRIEVAL
BASED ON
GRAPH-THEORETICAL CONCEPTS



AUTOMATIC INFORMATION RETRIEVAL
BASED ON

GRAPH-THEORETICAL CONCEPTS

By

Tetsuro ITO

March, 1978



iii

ACKNOWLEDGMENTS

The author wishes to express his thanks to Professor Makoto
Kizawa who has guided him into the field of information retrieval
studies, and has given the continuous advice and encouragement
through the conduct of this thesis. Similar acknowledgment is
also due to Assistant Professor Junichi Toyoda.

He expresses the special appreciation to Professor Masamichi
Shimura (presently with Tokyo Institute of Technology) for his
instructive criticisms during his residence in Prof. Kizawa's
Laboratory.

He would also like to thank Professor Kokichi Tanaka who has
conducted the author into the field of information sciences and given
excellent suggestions.

The author is indebted to Assistant Professor Shinichi Tamura and
Dr. Masaharu Mizumoto for the ideas in their enlightening papers.
Assistant Professor Tadahiro Kitahashi has willingly given the useful
advices from the beginning of this study.

It is with author's pleasure to express his gratitude to his
friends Drs. Yoshinori Ezawa (presently with Kansai University),

Kazuyoshi Mikami (presently with Mitsubishi Electric Co. Ltd.) and



iv

Shoji Tominaga (presently with Osaka Electro-Communication University)
for their helpful suggestion and cooperation.

The author would like to express his thanks to Messrs. Hiroshi
Makino, Kohei Hanatate, Hideo Kudo and the staffs and students of
Prof. Kizawa's Laboratory, and his special thanks to Dr. Riichiro
Mizoguchi (presently with Osaka Electro-Communication University)
for his useful discussions.

Final acknowledgment is due to the author's family for their

invaluable help from a spiritual point of view.



PREFACE

The explosion of stored document information and the wide spread
utilization of document data banks require that the computer aided
information retrieval systems should be designed to permit automatic
processing of a large amount of documents and various information
queries of non-expert users. The success of automatic data banks and
retrieval systems depends upon the accurate and consistent description
of the document data, which includes ill-structured or ambiguous proper-
ties of natural language. It is then important for the processing of a
large amount of documents to make fundamental studies of analyzing
conceptually the natural language document sentences, and retrieving
effectively the relevant document information to the various types of
submitted queries. Many of the existing retrieval systems utilizing
conventional library techniques of manual keyword indexing, however,
have been inefficient to permit such a flexible treatment of the stored
document information.

This thesis discusses, leaving information storage and retrieval
tasks under manual keyword indexing to the librarians, the automatic
method of obtaining document themes through the relevancy computation

between the stored information and the given queries. It is noted that
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the analysis, classification or description of textual information for
easy relevancy judging is scheduled so as to handle a large amount of
document data covering wide variety of specified topics, and to control
the future extension and changes of the document collection. An auto-
matic analysis and matching method of textual data is then presented
based on a predicate network for the document sentences.

After the drawbacks of conventional information retrieval (IR)
systems are indicated in Chapter 1, the methods of generating a word
usage dictionary and decomposing document sentences into predicative
expressions are discussed in Chapters 2 and 3. The relevancy of the
documents to the information queries is obtained by computing, via the
dictionary, the similarity between predicative expressions of the
document sentences and the queries. Since the automatic systems ig-
noring the prevalence of ill-structured information have seriously
failed to live up to their technological promise, the specification
of ambiguous property of document sentences might be important to the
contextual information analysis for natural language IR systems.

The method of organizing a structured file is discussed in Chapter 4
for the fast retrieval of the required information. The document infor-
mation retrieved from the structured file is arranged according to the
magnitude of relevancy coefficient to the submitted queries. When a
data bank of natural language documents is searched for answering effec—
tively the submitted queries, the specification of ambiguous data becomes

one of the important factors for the well-structuring of the document
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file.

Some of the other fundamental problems in IR tasks are stated in
Chapter 5, which is the concluding chapter. Finally in the Appendix
several algorithms, together with a new data structure for expressing
in the computer an undirected finite graph, are formulated for extract-

ing graph~theoretical concepts which are used in this thesis.

Toyonaka, Osaka, JAPAN Tetsuro Ito
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CHAPTER 1

Introduction

The basic function of an automatic information retrieval
system is discussed in comparison with the manual keyword
indexing systems. It is suggested that IR systems should be
designed so that it can treat the problem of which documents
are conceptually related to the given query. The notions of
an automatic dictionary construction and predicate network
representation for natural language text processing, and a
structured file organization for fast retrieval of required

documents are introduced using graph-theoretical concepts.



1.1 Information Retrieval in Laboratory Environment
The problems of retrieving document information in a laboratory

environment are classified into the following two types.

1) Selection of the documents which include the specified bib-
liographic elements used for recording such as the title of a book,
author's name, publisher and place of publica&ion, etc.

2) Selection of the documents whose information contents refer

to the subject fields of the submitted queries.

A descriptive cataloging technique employed in a conventional
library system provides the main file searching tool for the first
requirement. Another cataloging operation, i.e., subject cataloging,
which is defined as the systematic indexing of the documents by the
class numbers or keywords for representing the subject themes, has
also been used in IR systems to answer the second problem. Some éf
the classification schemes for subject cataloging, e.g., Universal
Decimal Classification (UDC), colon classification, or subject catalog
in alphabetic order, are well known to the librarians [3, 35]. The
set of index terms covering these schemes is called an authority
list of a controlled vocabulary of terminology.

From a historical consideration shown above, the authority list
designed in the manner tb cover a wide variety of specialized themes
seems to give an unsatisfactory solution to the content analysis of

professional journals, technological assessment reports, etc. The



manual analysis of such professional materials, however, needs time
consuming and costly perusal process of document classification or

subject heading assignmment, and most of the research workers use non-—
authorized vocabularies to index their documents and search requests.

Thus it is hard for information retrieval to use the subject cataloging
schedules of historical types. These defects come from the fact that the
strictly restricted or well-structured identifiers of discrete information
are used for the subject analysis of documents including complex subject
entities. Since any document in general has many aspects of information
contents showing high relevancy to various search queries, the success
of information retrieval systems depends upon the fundamental study of
analyzing contextually the document data and obtaining effectively the
relevancy between the documents and the queries.

This thesis presents a method of representing document sentences
in the network form of predicative primitives so that the relevancy
computation between two sentences could be automatically carried out.
The subject themes of documents are then interpreted by the "relevancy"
between the sentences of the documents and the search requests. Such
approaches to text processing will become more promising as both the
technology for handling a fast-accessible memory with a large capacity
and the method of knowledge representation studied mostly in the field
of artificial intelligence become more available.

Any sentence in the predicate network is expressed by the combination

of predicate patterns and word classes to show how the words are used



in the given document sentences. The predicate network is, by its
simple structure of representing conceptual relations between
sentences, useful for the processing of large textual data for document
retrieval. Further its flexibility of expressing content information
would contribute tc the high retrieval performance of IR systems.

The structured file organization, from which the required documents
are retrieved by arranging in the order of magnitude of relevancy to
the query, is also proposed for the effective searches of a document
file. Since the performance effectiveness of an IR system is heuris-
tically interpreted based on the user's experience, the arranged output
of the document list is useful for a direct evaluation of ranked posi-
tions of relevant documents. Also, the relevancy between two documents
should be properly formulated for the effective search of the structured

file.

1.2 Historical Survey

During the last decade many experimental or practical information
retrievel systems have been developed in various controlled environments.
But nowadays only limited systems employing manual or semi-automated
keyword indexing schedules are put into practice for handling "real
world" information. The SMART document retrieval system [46-52], among
others, designed at Harvard University, and operated at both Harvard

University and Cornell University by Salton, has provided a lot



of experimental tools for an automatic document processing method, and
has influenced on many other retrieval systems. This system can take
documents and search requests in English, i.e., natural language, by
fully automated manner, and can retrieve, utilizing feedback information
from the user population, the documents believed to be most relevant to
the submitted queries. Further several evaluation parameters for the
measurement of the system performance have been introduced for the ap-
propriate comparison of different types of analyses and search pro-
cedures [50]. Some of the theoretical studies have also been carried
out for language analyses including subject indexing and thesaurus
construction [1, 2, 7, 8, 16, 24, 36, 48, 59, 67], and for file organ-
izing and searching methods [11, 12, 32, 49, 56, 62].

The earlier study of computer aided information retrieval was
devoted to computerizing the already existing library systems [3, 35],
where documents were indexed using descriptive and subject catalogs,
and the required documents were selected by the set-theoretical matching
between descriptors. The preparation of an accurate and consistent
cataloging schedule by human endeavor, however, is too poorly accom-
plished and too time consuming. As the data processing ability of
computers increases, the researches have advanced into the statistical
study of indexing [8, 36, 46], abstracting [16] or analyzing the docu-
ments by the computer aids: The techniques based on the syntactic pro-
perty of sentences [2, 58] were also designed for automatic or semi-

automatic subject analyses. These ideas, however, are of no use when the



retrieval system is intended to work on the more general document data
base than the precisely defined one, for the prevalence of ill-struc-
tured or ambiguous properties of natural language document sentences
has prevented the IR system from the successful automation of storage
and retrieval tasks. Present-day studies of language analysis [6, 10,
17, 22, 53, 54, 55, 65] have been prosecuted by the formulation of

a semantic network model for representing conceptual comprehension
process of question answering, sentence paraphrasing, story under-
standing, etc.

Keyword indexing techniques (utilizing purely manual, machine or
man-machine combination means) intended to retrieve the bibliographic
information identical to the query indices have also been used for
organizing a document file. Burkhard [11], Jardine [32], Salton [49]
and Shapiro [56] have intended to solve the problem of searching effec-
tively the document file by constructing the groups of the related
documents. Filing methods now have been studied in relation to the
data base technology for dealing with the data availability, privacy,
security or independency [12, 13, 14, 37, 44].

When these new techniques are intended to be applied to the re-
trieval of document information, they should be modified so that a large
amount of specialized textual materials will be systematically processed.
The study of the evaluation method of system performances is also an
important problem. Ricchio and Keen [50] have presented, in this

connection, some of evaluation parameters in addition to the usual



recall and precision factors. Lancaster has evaluated thoroughly in [35]

the operational and economical performance of IR systems.

1.3 Graph-Theoretical Approaches to Information Retrieval

Fig. 1.1 outlines the formal tasks of information retrieval systems
using relevancy computation between the documents and the search queries
(the IR tasks generally are explained as the storage and retrieval process
of bibliographic data), where notation a (actual data) denotes the set
of data usable as an input to the detailed process p, and notation n
deﬁotes the description of another needed information for the execution
of p. As shown in Section 1.1, the success of the information retrieval
system depends upon how well the document information is analyzed and
then organized to obtain the conceptual relevancy between document
sentences.

This thesis describes a graph-theoretical scheme of analyzing docu-

W The nodes of Gw cor-

ment data using a similarity weighted graph G
respond to the natural language units (words, sentences, documents, etc.)
and the weighted lines to similarify values between those units.
Similarity weighted graphs were often used for analyzing various
problems related to IR studies [2, 7, 24, 58] because of its concise
expressing power of complicated relations in multivariate data.

It has been emphasized that the intensional characterization of

the words rather than the extensional one is needed to the semantic
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settling of a new information query
(1.2)

Fig.

1.1. Modeling of IR system.




processing of natural language sentences. Here, since the IR tasks
are explained as the relevancy computation process, any word is char-
acterized by relating it to the synonym word classes in which each
class corresponding to a word application area consists of the words
having similar usage experiences within the given document sentences.

Thus the similarity, i.e., line weight of G between two words x and

W’
y is obtained by their usage experiences as follows: Let F={z: Fxz}
and F'={z: Fyz} be classes (or class abstracts in Quine's notation [43])
for predicate F, which purport to designate the sets of all words z
such that Fxz and Fyz, respectively. Then the similarity between x
and y via F is given by the concretion of a relation abstract RF={(x,y):
x and y have the similar usage experiences with respect to F and F'} with
(x,vy) as: fRF(x,y) for xRFy (f: XxX » [0, 1]1). A set {G} of undirected
graphs is derived by considering a line of GW having a specified weight
to be a line of G.

Chapter 2 discusses, by assuming graph Gw for a word set is given,
methods of extracting synonymous word classes and ambiguous words
based on cliques and cut-nodes. Two types of complexities caused by
the ambiguous properties of the words are introduced to define multi-
ple meaning words. The notion of multiple meaning 'is important to
analyze formally the natural language document data consisting of a
mix of well-structured and ill-structured information. The clustering

schemes using cliques to obtain word classes have been believed to be

invalid when an input graph is large in node size. The computing speed
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for generating cliques increases in the order kn (k is an integer)
for n nodes. It is noted, however, the speed of a clique finding
algorithm mainly depends upon the line density rather than the node
size. Thus there is no problem from a computational viewpoint to use
cliques for analyzing graphs with a sparse matrix representation.

The contextual analysis of document sentences for obtaining simi-
larity between two words (or sentences, documents, etc.) is attempted in
Chapter 3 using a network representation of predicate patterns and word
classes, called a predicate network. An automatic method of constructing
a predicate network is an iterative procedure such that predicate pat-
terns for relating words (which appeared as the argument values of the
predicate patterns) are settled based on word classes, and conversely
words are grouped based on fhe similarities of their usage experiences
on the predicate network at the previous iteration. Thus both a predica-
tive expression of a sentence and a word usage dictionary are needed for
automatic natural language information retrieval.

Chapter 4 aimed at organizing hierarchically related document
files for the effective retrieval of required information covers a
method of arranging the document data in a decreasing order of similar-
ities between documents. The result of file searching is ranked output
of the document 1list, whiéh contributes to the performance efficiency
of an automatic IR system. Also well-structuring of ambiguous documents
is an important factor for the fast retrieval of required results. The

document files are shown to be placed on a storage hierarchy which is



one of the most desirable formulations for storing a large amount of
document data.

In Chapter 5, other important problems in the IR fields are briefly
outlined, and in the Appendix a new data structure for expressing graphs
GW or G is presented using a labeled similarity or adjacency matrix, and

several algorithms for extracting graph-theoretical concepts used in this

thesis are formulated based on a matrix rearrangement procedure.

11
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CHAPTER 2

Dictionary Construction
for

Natural Language Text Processing

A graph-theoretical method of constructing a word usage dic-
tionary is presented for an automatic content analysis of document
sentences. Fivst an algorithm based on the fuzzy transitive in-
equality is formulated for defiwning a graph from which all the
synonymous word pairs and ambiguous words of the given data are
extracted. It is shown that both synonym classes and ambiguous
words are specified by using cliques of the graph. Second two
types of complexities caused by the ambiguous property of the data
are defined to find multiple meaning words. The notion of multiple
meaning is used for obtaining application areas of any word within
the oiven data set. Experimental construction of a dictionary
operated on a set of verbs in the scientific documents is also

analyzed.
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2.1 Introduction

Natural language information retrieval systems have firstly been
developed at the aim of performing an automatic content analysis of
texts and search queries for determining the relevancy between them
[50]. Early computer aided information retrieval systems, most of
which were developed from manual library systems, utilized the already
established calssification scheduleg to decide which categories would
fit the given items most reasonably, and to search the file for the
required bibliographic information. The assignment of subject iden-
tifiers to the documents, however, are not suitable to discriminate
the underlying subjects of the stored items. The problem of automatic
content description and analysis of written texts would be solved by
establishing a computational method of representing syntax and seman-—
tics of natural language document sentences.

Various types of semantic dictionaries (including a semantic
network) have been concerned with the contextual analysis of natural
language. As explained in Chapter 1 (that the formal information
retrieval task is the relevancy or similarity computation process
between document sentences), the dictionary which correlates the
synonyms with one another based on the usage experiences in the given
documents is necessary in information analysis. The synonymous
property of the words, however, causes logically the ambiguous
property which brings the complexities or irregularities of the syn-

tactic and semantic relations of natural language. The specification
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of ambiguous words and, if possible, their proper application areas
or senses in a given context is therefore an important problem for
the automation of natural language information retrieval. The im-
proper specification of ambiguities is shown to cause an incorrect
recognition of the word senses. Further the efficiency of file search
algorithms is affected by the existence of ambiguous documents.

The establishment of an automatic method of constructing syno-
nym dictionaries has been attempted by various research workers.
Borko [8] and Anderson [1] used the principles of factor and latent
anglyses to find synonym classes from a similarity matrix of the
given data. Their techniques are only applicable to the analysis of a
word set rather small in size because of their complicated computations
and manipulations of the matrix. Other methods [2, 24, 59] based on
graph-theoretical concepts have also been presented for finding synonym
word clusters. The graph was introduced as a model of describing a
similarity relation on the data of multidimensional space. These
graph-theoretical techniques have defined graphs by setting a thresh-
old level or a nearest neighbor rule to the similarity matrix. Dic-
tionaries generated by using such automatic methods, however, do not
successfully handle ambiguity and synonymy in natural language, and
then seem not to be appropriate for the semantic processing of
natural language texts.

The graph-theoretical method developed here [27, 29], given a

usage similarity of every word pair, generates a dictionary to obtain



word application areas for the contextual analysis of textual data.
Note that the specification of word application areas is required even
when the words are disambigulated contextually in a specified sen-
tence. First an algorithm based on a fuzzy transitive inequality is
presented for determining a synonym graph G of a given word set. The
synonym graph G, from which synonymous word classes and ambiguous words
are extracted based on the cliques, is produced by corresponding a
word and a synonym indication between words to a node and a line of G,
respectively. Néxt a method of finding multiple meaning words is
proposed to treat the complexities or irregularities of the semantic
relations which are caused by the ambiguous property of the words.

The word application areas are, therefore, obtained by specifying the
synonym word classes of characteristic non-multiple meaning words.

The computational experiment operated on a set of verbs drawn from
ABSTRACTs of 100 documents in IEEE Transactions is made to show the

validity of the proposed methods.

2.2 Basic Concepts and Their Expressions

In this section, let us describe some definitions and notations
for the generation of a word usage dictionary. The notion of fuzzy
expression of a relation is first introduced to measure the similarity
of the usage experiences for any pair of words in a sentence collection.

A fuzzy expression of any relation in a given word set X is

15
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defined as follows [68, 69]:

Definition 2.1. Let R={(x,y): xRy} be a relation abstract [43]
which purports to designate a relation of all word pairs (x,y) such

that xRy. Then the fuzzy expression of R is a function fR such that:
fR(x,y) for xRy, fR: XxX - [0, 1] (=L) (2-1)

where L is a complete lattice ordered semigroup

We write aub for the least upper-bound of a and b (a,b€éL) and
a*b for the composition. When R is an "ordinary" relation, it is
written in the same notation as R. Hereafter the function fR(x,y)
is used to show the similarity of the usage situations for x and vy.

The natural language coding of semantic entities could, if it
had been devised logically and scientifically, have embodied the

"one name - one sense.'" Though such uniformity

well-structured rule of
would only be practicable within certain limitation, more than one
word is likely to be used to denote the specific entity in the given

discourse. These words, called synonyms, should be treated together as

a semantic unit for the processing of natural language. The synonymy,

+ Complete lattice L is called a complete lattice ordered semi-

group when L is a semigroup with identity under the operation *, which

satisfies a*VYa,=U(a*a.,) and (Ya,)*a=U(a.*a) for a, a.€L [21]. We can
idi i i i1 ii i

employ X(product) or mim in place of * for example.
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as we shall see, leads logically the other elasticity, i.e., ambiguity,
of natural language. The next is the definition of a fuzzy synonym

relation.

Definition 2.2. A synoymous word pair set {(x,y)} (=E) in any
similarity relation R is defined as a collection of the pair of words
x and y satisfying (2-2), (2-3) and (2-4) for (x,z),(z,y)eEUE.

Reflexive law:

LZ}(fRUﬁ(X’Z)) .S. fR(X,X) . (2_2)
Symmetric law:
fR(x,y) = fR(y,x). (2-3)

Transitive law:
LZJ(fR(x,Z)*fR(z,y)) < fo(x,y). (2-4)

Here x, y and z are in X, and R is the converse of R.

Thus the word pairs almost equal in similarity constitute a synonym
class.

The other complication, ambiguous property, is responsible for
the difficulty of a formal treatment of natural language words. Quine
[42] indicated that if word y is synonymousrwith some word X in one
sense of y and with another word z in another sense of y, then y may
be called to be ambiguous. Here, by a fuzzy expression, the ambiguity

is defined as follows:

Definition 2.3. Let (x,y) and (y,z) be synonymous word pairs

in R. Then y is said to be an ambiguous word with respect to R iff
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the following inequality holds:

fR(x,y)*fR(y,z) > fR(x,z). (2-5)

Thus the ambiguous property comes from the usage explications of a
word in various contextual situations. It would be impracticable
however to have separate symbolic expression (i.e., word) for every
referent‘situation.

Finally let us define the meaning of any word by introducing a
new reflexive and symmetric relation R* whose value of the fuzzy
expression fR* for the word pair not satisfying the fuzzy transitive
inequality is 0. Here the term "meaning' is used in the sense "alike

in meaning' [42].

Definition 2.4. The meaning M(y) of any word y in X is a synonym
class {x: xR*y} of y, and the fuzzy expression of M(y) is a function
such that:
B (y)
gM(y)(X) = fR*(x,y). (2-6)

Since the synonymous words should be treated as a semantic unit by the
likeness in their usage situatibns, the "meaning" of any word means
a set of semantic units to show how the word is used in relation to
the other words. Hereafter every word is considered as a conceptual
entities by relating the word with its meaning. Set X in which the
meaning is defined for any word is called a meaning space M(X), and
the meaning space in which the various semantic entities, e.g., syno-

nymy, ambiguity, multiple meaning, are specifiable for any word is
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called a word usage dictionary.

In the following section, the algorithm, called algorithm A, for
obtaining synonym relation R* is formulated by giving a fuzzy expression
fR of a similarity relation R. The similarity relation for word set

is practically computed based on the word usage experiences in the

document sentences.

2.3 Algorithm A

The input to algorithm A is a fuzzy expression fR of a similarity
relation R satisfying fuzzy reflexive and symmetric laws. Algorithm A
is intended to extract synonymous word pairs by the iterative execu-
tions of Steps 2, 3 and 4. 1In Step 2, it is examined whether a pair
in set Y, which is used to hold the synonymous word pairs, satisfies
the fuzzy transitive inequality or not. Any pair not satisfying the
transitive inequality is excluded from Y to note that this pair is
nonsynonymous in this iteration. In Step 3, word pairs which are
restored to Y as the synonymous pairs are selected based on the fuzzy
transitive inequality. The condition of the termination that the set
of synonymous pairs newly selected in Step 3 is the same as the set in
the previous iteration is tested in Step 4. Set Y is initialized,
since no synonymous pair is known beforehand, to the collection {(x,y)}
of all pairs in X2, and sets E and F, which is used to store the pairs

determined to be synonymous in Step 3, are initialized to empty.
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[Algorithm A] (Synonymous Word Pairs)
In: Symmetric similarity matrix R (any diagonal element is set to 1).
Procedure:

Step 1. Let Y be a set of all word pairs (xi,xj), 1<i<n, 1<j<n
(n=|X|), in X. Initialize both E and F to @.

Step 2. Delete from Y all pairs (Xi’xk) not satisfying the fol-
lowing inequality for some X, such that (xi,xj) and (xj,xk)eY,

fR(xi,xj)*fR(Xj,Xk) < fR(xi,xk). (2-7)

Step 3. If a pair (Xi’xk) in Y (the complement of Y) satisfies
inequality (2-7) for all Xj such that (xi,xj) and (xj,xk)eY, then
set Y=YU{(xi,xk)} and E=EU{(xi,xk)}.

Step 4. If E#F, then go to Step 2 setting F to E and E to §;
otherwise, continue to Step 5.

Step 5. Define the fuzzy expression of a new relation R* to be
f such that:

R*

fR(Xi’Xj) if (xi,xj)eY,

fo . (x.,x.) =‘{ (2-8)
* > -
R 1d 0 if (xi,xj)eY,

and terminate the algorithm.

Set Y in Step 2 is monotonically decreasing in the number of ele-
ments during the successive executions of Steps 2, 3 and 4. It is
possible to show that all of Y is synonymous word pairs in R and all

of Y is nonsynonymous word pairs.



i : cycle number

flow of synonymous word pairs
— —- : flow of nonsynonymous word pairs

Fig. 2.1. Timing expressions of sets Y, Y and E in
algorithm A.
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Theorem 2.1. Set Y in algorithm A converges, in a finite number
of steps, to the set of all synonymous word pairs in R.

Proof. Let the ith (i>1) cycle be the ith execution of Steps 2, 3

and 4, and let T (or F

24i+1 Zi+l) and T,. ., (F2i+2) be the timing expres-

sions of set Y (Y) in Steps 2 and 3 at the ith cycle, respectively (The

timing expression of set Y in Step 1 is written as Tz). Sets TZi+l

and T21+2 are said to be the sets of synonymous pairs, and F2i+l and

F21+2 the sets of nonsynonymous pairs. Further let Td2i+2 be the

timing expression of set E in Step 3 at the ith cycle (see Fig. 2.1).

If the sequences <F21+2> and <T21+1> of sets satisfy
Ceee C [P -
R L TR LTI (2-9)
Coee C cen -
Ty€lg st €Ty €Toy43 677 (2-10)
then there exists an integer N such that for n>N, F2n+2=F2n+4 and

d and Td

T2n+1=T2n+3' Since, by the definition, F2n+2=F2n+l_T A

o+l Lo
-T2n+l' We have that Td2n+2=Td2n+4’ thg copdltlon of the termination.

Next let us show that (2-9) and (2-10) hold.

Lemma 2.1. The sequences <T21+l> and <F21+2> are monotonically

increasing with respect to (shortly w.r.t.) set inclusion.
Proof. For an arbitrary pair (x,z) in T3, consider pairs

(x,y) and (y,z) in T Then we have that

5
fR(x,y)*fR(y,Z)s fR(x,Z). (2-11)

Since set T2 includes set T4, it follows that (2-11) holds for pairs

(x,y) and (y,z) in T)s and hence T3£§T5 and F3;2F5. Inequality (2-11),
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however, does not hold for any pairs (x,z)eF4 and (x,y),(y,z)e,T3 (We

describe this such that F4 is false w.r.t. T3). Therefore, since T

c .
F4’F6 and T42T6' Similarly, we have that T

3§T5’
294152543 (J<1) and F

C c
25-1ST2541 304 Fpi€F)uin-

25+2

by assuming that T Thus, by induction,

SF s+t

the proof is complete.
Lemma 2.2. There exists an integer N such that for n>N, every ele-

ment in T (or F2n+4) is a synonymous (nonsynonymous) pair w.r.t. R.

2n+4

Proof. Suppose that Td #0 for every n (>1). Then there must

2n+2

be at least one pair (s,t) in Td If ITd |, the number of the

2nt+2° 2nt+2

elements in Td 9 is 1, then (s,t)€¢F Otherwise, let us assume

2n+ 2n+3°

that every pair in Td is determined to be nonsynonymous in Step 2

2n+2

at the (n+l)th cycle. Then for any (x,y)eTd , we have that fR(X’Sl)

2n+2

*fR(sl,y)>fR(x,y) for some s.€X such that (x,sl) (and/or (sl,y)) is in

1

Td By the above hypothesis, we have that fR(X’SZ)*fR(SZ’Sl)

2nt2°

>fR(x,sl)>fR(x,y) for some s, in X. Then (SZ’Sl) (and/or (x,sz)) is

in Td 9 and (X,sl)%(x,y). Similarly for any s

oot exX (k>3), fR(u,sk)

k
* -
fR(Sk’V)>fR(u’v)> >fR(s2,sl)>fR(x,sl)>fR(X,y), where u,ve{x,y,sl,

It follows that (u,sk) (and/or (sk,v)) is in Td

Syt taSy_g)- 21+2

and (u,sk)¢{(x,y),(x,sl),°°-,(u,v)}{ Since the number of elements in

Td2n+2 is finite, there must be a synonymous pair (s,t)er2n+2_ Thus

(s,t)¢F2n+3, which contradicts T2n+l=T2n+3’ and hence Td =@.

2n+2

By Step 3, it is true that F is false w.r.t. Since

2442 Toit1

Td is empty for n>N, T

in F
9 Therefore, any element in

2n+3 L onts 20+

does not satisfy the transitive inequality for some element in T2n+4'
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Similarly, it follows that any element in T2n+4 satisfies the transi-
tive inequality for any element in T .
2n+4

By Lemmas 2.1 and 2.2, we can complete the proof of Theorem 2.1.

Since, by Theorem 2.1, any word pair (x,y) satisfying fR*(X,y)#O
(word pairs satisfying fR*(X,y)=O may be considered as nonsynonymous
pairs, for these represent a null relation) is mutually synonymous,
relation R* defines the synonym graph G(X) such that nodes and weighted
lines correspond to words and synonymous word pairs, respectively.

The meaning M(x) (gM(X)(y)#O for yeM(x)) of any word x is expressed
by the set of all nodes adjacent in G(X) to x. As every nonadjacent
pair is nonsynonymous, two words belonging to a clique, or maximal
complete subgraph, of G(X) are mutually synonymous and no other word
is synonymous with all words of this clique. The following two pro-
perties are used to specify the ambiguity of word x. Here W is an
ambiguous word set w.r.t. R*, and MCS(x) is a set of cliques of G(X)
containing x.

(III-1) Word x is a member of X-W iff the number m(x) of elements
in MCS(x) is equal to 1.

(III-2) Word x is a member of W iff m(x) is greater than 1.

Thus the cliques of the synonym graph are the semantic units for ob-
taining the ambiguous properties of natural language words. The algo-
rithms for finding all cliques of a graph are shown in [2, 9, 23] and

in Appendix A.7.
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2.4 Analysis of Ambiguity

The identification of the sense of a word in a given sentence is
one of the most important problems for the automatic content analysis
of natural language document sentences. Since, however, many words
having several senses, called multiple meaning words, are included in
the document sentences, the application areas of every word should
be distinguished beforehand to disambigulate contextually the words
in a given sentence. Here a computational approach to determining
multiple meaning words is discussed using the complexity of the seman-
tic relation. The set of word application areas is then settled by
cléutering the meanings of non-multiple meaning words so that the
semantic complexities should not be increased.

Ullmann [61] referred as multiple meaning to the complication of
semantic patterns such that more than one sense is attached to one
word and more than one word to one sense. The multiple meaning of a
word here is treated as one of the chief symptoms of causing compli-
cation of the semantic relations by its ambiguous meaning.

The number of cliques of G(X) containing a word w is shown to be
sufficient to determine whether or ﬁot w has ambiguity w.r.t. R* (see
(ITI-1) and (III-2)). It may be interesting for specifying multiple
meaning words, or words having multiple meanings, to formulate the com-
plexities of semantic relétions based on the cliques of the synonym
graph. Two types, i.e., static and dynamic, of complexities are defined

as follows:
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Static complexity caused by a word whose meaning consists of the
cliques with a small number of common words. The multiple meaning
word obtained by the static complexity is considered to have several
remote application areas.

Dynamic complexity caused by a word having a more ambiguous nature
in a new meaning space N(X) than in M(X). Space N(X) is obtained by the
execution of algorithm A on a relation S whose value of the fuzzy ex-
pression fS is given by (2-16). Since in N(X) ambiguity of word w is
measured by the number n(w) of cliques of the graph H(X) of N(X), a

multiple meaning word w having a dynamic complexity is one which meets
m(w) = n(w) (#1). (2-12)

The dynamic complexity is analyzed more explicitly as follows: Note
that each member of M{w) is in general a member of N(w). (GConsider

the inequality fs(x,k)*fs(k,w) §_fs(x,w) for xeéM(w) and kéX. Even if
the value of fs(x,w) becomes smaller than that of fR(x,w), the value of
fs(x,k) (and/or fs(k,w)) generally becomes smaller than that of fR(x,k)
(fR(k,w)), and hence the above inequality holds (the experimental ana-
lysis verify this fact).) Suppose first that every clique C of G(X)
containing w is homogeneous in H(X); The term "homogeneous'" is used

to note that clique C is included as a subgraph in only one clique of
H(X). 1If the transitive inequality w.r.t. S does not hold for every
nonsynonymous word pair in M(w), then the words in such a pair is not
adjacent in H(X). It follows that n(w) is equal to m(w). While if

some nonsynonymous word pair in M(w) satisfies the transitive inequality,
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then the words in that pair share at least one clique in H(X), and

hence n(w) is smaller than m(w). Thus, considering that every homo-
geneous clique corresponds to one sense of a word, w which meets (2-12)
is a word with several application areas or "polysemy" in the document
sentences. Secondly, suppose that the cliques of G(X) containing w

are not homogeneous, it is possible that, by a word or a synonymous

word pair in N(w) and not in M(w), n(w) is greater than or equal tom(w).
If the cliques having a common characteristic word are considered to

be one sense of a word, then word w which meets (2-12) possesses several
shades of application or "shifts in application."”

From the above consideration, it is shown that a multiple meaning
word obtained by the complexities has several application areas in the
document sentences (These sentences are used to give the similarity
relation R on X). The advantage of this method of specifying multiple
meaning words is its simplicity —-~- the method simply compares the
value of n(w) with that of m(w).

In the rest of this section, let us discuss the problem of group-
ing set X into the clusters for setting word application areas based
on the notion of multiple meaning Qords. Since every word pair in a
clique is mutually synonymous, each clique can be regarded as a cluster of
synonyms. Such clusters often overlap with each other for the sets includ-
ing many ambiguous words. Gotlieb and XKumer [24], in this connection, have
developed a procedure (called a merging procedure) for combining cliques

into diffuse classes. Their method of merging, however, does not assure
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that the number of nodes of a newly generated graph would not exceed
that of the original graph. In graph H(X), on the other hand, there
exists the same number of nodes as in G(X). Further it is possible

for merging cliques to use the following theorem.

Theorem 2.2. Let Z={xl, Xps "0t xk} (k<n) be a set of single

(non-multiple) meaning words not adjacent in H(X) with each other.

Then
m(Z) > n(Z), (2-13)

where m(Z) (or n(Z)) is the total number of cliques of G(X) (H(X))

containing at least one of Z.

Proof. By the property of the meaning, we have that

m({xi,xj}) m(xi) + m(xj) - m(xixj),

(2-14)

n({xi,xj}) n(xi) + n(Xj) - n(Xin),

for any xi,x.EZ, where m(xixj) (or n(xixj)) is the number of cliques
of G(X) (H(X)) containing both X and Xj' If both X, and Xj are

members of Z, thentn(xi)zn(xi), m(xj)zn(xj) and n(xixj)=0. Since, by
the previous assumption, any pair of nonadjacent nodes X, and Xj in

H(X) is not adjacent in G(X), we have that m(xixj)=0. Thus

m({xi,xj}) m(xi) + m(xj)

lv

n(xi) + n(xj) = n({xi,xj}). (2-15)

To complete the proof of Theorem 2.2, suppose that the theorem holds
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for any subset V (#Z) of Z. Since any word x in Z (x¢V) is independent
of any other word in V, n(Vu{x})=0 and m(VU{x})=0. It follows that
m(VU{x}) > n(Vu{x}), and hence m(Z)>n(Z). (This is an equation when

m(zZ)=|z|.)

The similar theéorem holds for a set of single meaning words not
adjacent in G(X) with each other. If the meanings of multiple meaning
words are distributed among those of single meaning words, then all words
in X are included in M(Z). Considering that the single meaning words are
the characteristic elements of the clusters, Theorem 2.2 gives the basis
for obtaining application areas for every word of X.

Section 2.5 goes on to show the experimental result of selecting a
set {w} of multiple meaning words in X based on the complexities speci-
fied by the following criteria:

(Iv-1) n(w)#l and w is a cut—node+ of G(M(w)), a subgraph of G(X)
whose nodes consists of M(w).

(Iv-2) m(w)>2 and n(w)>m(w).

2.5 Computational Experiments
The sample corpus X for the computational construction of a dic-

tionary consists of about 220 verbs selected from ABSTRACTs of 100

+ A set of cut nodes is found by using connected component and

fundamental cycle generation algorithms (see Appendices A.5 and A.8).
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documents in IEEE Transactions. The input to algorithm A is a matrix
representation of a fuzzy expression fR’ or a labeled similarity mat-

rix R, of a similarity relation R. A number of similarity measures

have been proposed by various authors [2, 7, 24]. Here a set-theoretical

measure is defined as:
fp (x,y)=((1+3) IMGNM(y) | )/ ([M(x) [+[M(y) |+ (+1) [M&EAM(y) |),  (2-16)

where |M(x)| is the number of words synonymous with x in the thesaurus
dictionary [64] (or in the space M(X) for fs(x,y)), and T, which takes
a large value when |M(x)nM(y)[ is small in comparison with IM(x)[ or
IM(3)|, is a factor for reinforcing |M(x)aM(y)| (t is set to 1 in the
experiment). The thesaurus dictionary used for obtaining fR(x,y) is
employed to give an objective standard for evaluating the computa-
tionally generated dictionary. (The similarity measure computed based
on the word usage experiences is presented in the next chapter.)

The efficiency of the proposed method of constructing a dictionary
can be measured by the retrieval factor for the semantic entities, i.e.,
synonyms, antonyms, multiple meaning words and homonyms, found in the
above thesaurus dictionary. ’Sincé, however, the codomain of the simi-
larity measure is [0, 1], synonyms and antonyms are not distinguishable
by the computational approach [36]. Further homonymy is regarded as
the same concept as multiple meaning without the support of a context.
The measures, recall R0 (or Rp) and precision Po (Pp) factors [50], of
retrieval effectiveness are then utilized for evaluating the retrieved

synonyms (multiple meaning words).



The previously proposed graph-theoretical methods have used the
threshold level (called method B) [2, 7, 24] or the nearest neighbor
rule (called method C) [33, 70] to produce a graph from the similarity
matrix. In method B, a line of the graph corresponds to a synonymous
word pair whose similarity value is not smaller than the threshold
value T, and in method C, it corresponds to a word pair, one of which
belongs to N nearest-neighbors of the other. Once the graph is pro-
duced, it is possible to find multiple meaning words based on criteria
(Iv-1) and (IV-2). A pseudo parameter SL’ to exclude unnecessary simi-

larity by setting any value smaller than the value of S. to 0, is

L
employed in algorithm A for the comparative studies with the others.
Fig. 2.2(b) shows the result of rearranging the similarity matrix
in Fig. 2.2(a) by algorithm TDSO (see Appendix A.2), which is formulated
for the compression of the similarity matrix R. The rearranged matrix
can be manipulated by subdividing it into the smaller matrices than
the original one.
The modified version of TDSO, where Step 2 of procedure ODSO in
TDSO is replaced by "If rL(i)L(s)~is not smaller than the valuekof T,

" can be

then exchange the contents of L(s) and L(t), and add 1 to t,
used to classify the word set X into the subclasses in which in-~class
words are connected by a path of lines having similarity values not
smaller than T. The cluétering result of X is shown in Fig. 2.3, where

Mc is the maximal size of clusters, and NC is the total number of clus-

ters except for l-element clusters. It is seen that the variances of
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the values MC and NC for T in (0, 0.15) and (0.4, 1.0] are relatively
small. This is an indication that the parameter value in those regions
has little influence on retrieving synonyms and multiple meaning words.

Table 2.1 presents the timing estimates for methods A and B. (The
cycle number for algorithm A is the number of executions of Steps 2, 3
and 4, and for method B the number of matrix products required until
any connected pair satisfies the transitive inequality.) The cycle
number of algorithm A is smaller than that of method B. This means
that in algorithm A the similarity matrix can be manipulated by sub-
dividing it in a smaller scale.

| Table 2.2 illustrates some of correctly retrieved, incorrectly

retrieved and non-retrieved correct multiple meaning words (mmw) fol-
lowed by their relevant synonyms. Correctly retrieved multiple meaning
word w has its two application areas each of which corresponds to the
cliques connected by a single meaning word chain in M(w). ' The word
bound, where m(pound)=n(bound)=2, is found by (IV-1). The mutually
synonymous multiple meaning words define and establish are selected
by (IV-2). When the adjective form (~ing) of a verb is considered as
a meaning element, the homonym cZosé is correctly extracted by (IV-1)
as a multiple meaning word. The retrieval effectiveness for synonyms
and multiple meaning words w.r.t. various values of S ., T and N is given
in Tables 2.3, 2.4 and 2.5. The behavior of algorithm A (product x is
employed in place of *) is generally superior to that of the others.

The low value of Po for method B indicates that simialrity does not



Table 2.1l. Cycle numbers before convergence.

method Algorithm A Method B
operation X min X min
sim. matrix R g R g R g R g

S1,T

0.00 1 2 3 L T 6 11 6
0.1 1 2 3 i T 6 11 8
0.16 1 1 3 3 T 6 10 | 12
0.2 1 1 3 3 7 6 1Lk | 13

* Every element indicates the maximal cycle number for 7
small matrices of size 58%58 words which are obtained by
subdividing similarity matrix R of size 220x220 words.



Table 2.2. Multiple meaning words and synonyms
(algorithm A (*=x, SL=O.1)).
Cr. mmw Synonymst

bound: 1. limit restrict 2. enclose include
calculate: 1. compute estimate 2. suppose assume

expect conceive

close: 1. conclude terminate complete 2. approach(ing)
reach(ing)

define:

1. explain describe formulate illustrate

2. fix establish base constitute
establish: 1. fix constitute define base 2. prove

extend:

demonstrate show represent
1. stretch increase magnify 2. give present

supply furnish provide deal
recognize: 1. know identify 2. allow accept receive

In. mmw Synonyms
estimate: calculate compute rank regard decide
indicate: show demonstrate represent denote express
suggest present imply
present: give offer extend indicate deliver express
restrict: 1limit bound control contain
Nr. mmw - Synonyms
deliver: 1. give provide furnish 2. express present
express: 1. present offer deliver 2. indicate
make: 1. form compose construct generate constitute

2,

cause
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Table 2.3(a).

Evaluation of structure concepts
(algorithm A (*=x)).

s R P R, P
0.00 0.92 0.77 0.71 0.1
0.1 0.91 0.77 0.71 0.k49
0.16 0.90 0.81 0.4k 0.5k
0.2 0.89 0.84 0.32 0.69
0.3 0.88 0.91 0.06
0.k 0.85 0.95 0.03
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Table 2.3(b). Evaluation of structure concepts
(algorithm A (*=min)).

0.00 0.8k 0.79 0.68 0.41
0.1 0.8k 0.80 0.65 0.h47
0.16 0.84 0.83 0.18 0.46
0.2 0.82 0.86 0.09 0.50

0.3 0.82 0.92 0.06

0.4 0.80 0.96 0.03




Table 2.4, Evaluation of structure concepts
(method B).

T Ro P(j Rp Pp
0.00 0.92 0.73 0.77 0.34
0.1 0.92 0.7k 0.53 0.k42
0.16 0.90 0.79 0.35 0.hbk
0.2 0.89 0.83 0.18 0.43
0.3 0.88 0.90 0.09 .
0.k 0.86 0.95 0.03
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Table 2.5. Evaluation of structure concepts
(method C).

N Rc Pc Rp Pp

9 0.91 07 0.68 0.38
8 0.90 .79 0.53 0.38
T 0.89 .80 0.h1 0.Lh1
6 0.88 .81 0.4t 0.43
L 0.78 .86 0.38 0.48
2 0.7k .93 0.21

41



always represent the degree of synonymy between words. That is, the
notion of ambiguity must be taken into account for the selection of
synonym clusters, i.e., the semantic processing units. The variance

of P (and R_) for S
o 0

L in (0, 0.1] is small in Table 2.3(a) as was pre-

dicted in Fig. 2.3. The low value of Pp for all cases is caused by
the words which are synonymous with correctly retrieved multiple
meaning words, and are regarded as single meaning words in the thesaurus
dictionary. If Pp is measured by assuming these words to be the cor-
rectly retrieved multiple meaning words, it becomes (0.72, 0.80, 0.83,
1.0) for SL=(0.00, 0.1, 0.16, 0.2) in Table 2.3(a). From the above
consideration, the most satisfactory dictionary for natural language
text processing may be obtainable when graph G(X) is generated based
on algorithm A,

An efficient procedure for updating the graph according to the
changes of similarity relations between words will be formulated by re-
moving the altered similarity values into a small matrix (TDSO can be

used for this purpose).

2.6 Conclusions

A graph-theoretical method of constructing a dictionary, given
the usage similarity between every two words, was discussed for the
purpose of contextual processing of natural language texts. The spec-

ification of synonym classes and ambiguous words, which was done by
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algorithm A, is needed for the construction of such a dictionary.
Further the notion of multiple meaning words was introduced using the
cliques of a synonym graph to treat computationally the irregularities
of semantic relations. The multiple meaning word is also disambigulated
by fixing one of its application areas in a given sentence.

The dictionary construction operation was examined on a set of
verbs extracted from ABSTRACTs of 100 documents in IEEE Tramsactions
and the results were compared with those of previously proposed graph-
theoretical techniques. It was shown that the proposed method was
superior to the others. This is due to the appropriate specification or
formulation of ambiguity as well as syonoymy in natural language words.

In the next chapter, a method of computing the similarity between
two words is discussed based on the exchangeability over the predicate
network of the document sentences. The predicate network is used to
decide the application area of the word in a given sentence as well.
Another treatment of ambiguity will be shown in Chapter 4, where the
document data including ambiguous elements is organized into a struc-
tured file for the fast retrieval of the relevant documents to the

information queries.
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CHAPTER 3

Contextual Text Processing
for

Autamatic Information Retrieval

An approach to the automatic content analysis of textual data
isltheoretically and experimentally discussed using a predicate
network of document sentences. The sentences in the predicate
network are expressed by the predicate patterns and the word classes
to which the word application areas are attached. The formation
of the mnetwork is an iterative procedure such that predicate patterns
for relating words are settled by using word application areas, and
word application areas are obtained by grouping the words having
similar usages in the predicate network at the previous iteration.
Several word grouping criteria are examined comparatively by con-
structing a predicate network for the sentences of scientific

documents.
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3.1 Introduction

The formulation of representing information contents of a document
based on the semantic analysis of natural language has been recognized
to be important for the design of an automatic information retrieval
system. Some of the advantages of natural language information re-
trieval are the availability of coping with a large user population of
nonspecialists, the flexibility of expressing the subject themes of
various documents, and the extensity for handling the changes of a
document collection for future use. It is also important for obtaining
the high recall system performance without reducing the precision to
diétinguish the substantial differences between the subject areas of
the documents.

The establishment of an automatic information retrieval system,
regardless of whether it employs a keyword indexing schedule or a
relevancy computation process, should start with providing a contextual
analysis method of natural language document sentences. The procedure
of constructing a dictionary for regulating the ambiguity or the com-
plexity of natural language was discussed in the previous chapter,
where the similarity between two wérds is assumed to be given. Here
the problem of computational treatment of document sentences is logically
and theoretically analyzed, and a predicate network for giving the
similarity between two sentences is proposed.

The semantic analysis of natural language sentences has mainly

been studied in the field of artificial intelligence (AI) as a model
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of the human psychological process of inference and deduction for lan-
guage understanding and translation. Schank [54, 55] and Quillian [41],
in this connection, have set up a conceptual dependency or semantic
network representation theory for a meaning understanding of natural
language sentences. (The similar studies were seen in [6, 10, 17, 22,
53, 57, 63].) They have been conducting the studies by posing manual-
ly settled semantic primitives from a conceptual level and allowable
inference process between these primitives. Such approaches to com-
putational semantics of natural language seemed not to be satis-
factory, when applied to the IR field, to deal with a large amount of
doéument data including complicated entitieé.

Quine [42] emphasized, as shown in Chapter 2, that the study of
semantic part of languages comes not to appeal to meaning but to con-
cern with synonymy in significant word sequences. That is to say, the
"meaning' of a word is fixed by the two contextual definitions "alike
in meaning (or synonymy)" and "having meaning (or significant)." The
present chapter develops, using a dictionary which specifies the words
similar in usages, a method of resolving sentences into a predicate
network for a computational approaéh to the semantic processing of
textual data.

It is shown in Section 3.3 that a predicate P of any sentence
should computationally be treated as an extensional entity except for
considering the symbol "p" is ameta expression by itself. A dictionary

for setting word application areas and for establishing predicate
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patterns (the predicate pattern provides semantic relations between
the words) is generated in Section 3.4 by rectifying recursively the
incorrect setting of application areas in the given sentence examples.
Spgrck-Jones [58] has set up a standard for classifying index terms
by noting that two words may be considered semantically equivalent or
synonymous if in a given context the words are interchangeable without
changing meaning. However, the resulting clusters of index terms are
unsatisfactory to process contextually the document data by its poor
definition of "without changing meaning.'" The grouping criterion
proposed here is such that a set of the words interchangeable with

a éingle meaning word without changing surrounding situations in a
predicate network provides one of the word clusters for specifying
word usages. The validity of the proposed method is shown in

Section 3.5 by the experimental construction of a predicate network

for the sentences of scientific documents.

3.2 Basic Assumptions

The analysis of a document coilection in an information retrieval
environment should be proceeded so as to establish automatically a con-
ceptual or net&ork representation of the document sentences. Such a
network, called a predicate network, is used for establishing relevancy

between two sentences or a sentence and an incomming query.



A method of analyzing the document sentences, which are considered

intuitively to be '"significant" in a document collection, is here discus-

sed by taking the following three assumptions for granted. These are
intended for the automatic processing of natural language document

data.

1) Any simple sentence S can be decomposed into the basic com-
ponents, several terms and a predicate for relating these terms.

2) The content of any S can be interpreted by relating the
components of S to those of other sentences, i.e., establishing a
predicate network for the document sentences.

3) The "interchangeability" for the basic components can be

tested based on their contextual positions in the network.

The basic components in the first assumption are commonly speci-
fied by the information for the part of speech, idiomatic phrases,
attribute indications, etc. The second assumption says that the
subject content of S is seized within a predicate network, and the
third one denoting interchangeability gives the standard for obtaining
similarity between the basic componénts. The interchangeability here
is formulated based on the fact that there are fundamental features
of the way of conceptualizing language contents and of specifying
synonym word classes. That is, two components observed in the simi-
lar relational situation in the predicate network differ only in

the symbolic forms and not in the conceptual indicatioms.
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In the following sections, a method of obtaining predicate net-
work for natural language document sentences is discussed based on

those three assumptions.

3.3 Predicate Network

The structural decomposition of natural language document sen-
tences is needed for the analytic understanding of the document con-
tents and the easy judging of semantic relevancy between the two
docﬁments. In the analysis of sentences, a phrase in the term showing
a fixed concept should be treated as a single indivisible word. Thus
by assumption 1 the predicative expression of any sentence is defined

as:

Definition 3,1, Let P and X = (Xl’ x N Xr)’ r>1, be a pre-

2,
dicate and a word vector (shortly word), respectively. Then a simple

sentence S is expressed by
S = PXx. (3-1)
(If the number of argument in X is 1, then P is often called an at-

tribute; otherwise called a relation-in-intension interconnecting all

X5 1<i<r.)
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An abstract or concrete singular term is eligible for every X5
and a general term for P. The following two attributes (in Russell's

circumflexed notation) for a simple sentence S (=Px) can be derived

by the definition.

PX, (3-2)

and Px. (3-3)

Expressions (3-2) and (3-3), respectively, mean the attributes
"having a relation P" and "relating the words in x." The content of
S therefore is interpreted by specifying these attributes such that
predicates and words having similar usage experiences are related
with each other in a network form. The attribute PX has been inten-
sionally realized at the AI field in conjunction with a modeling of
human psychological process for natural language understanding and
translation. The main defect of such a program is that the manually
decided (certainly, artificially-programmed intelligence) semantic
primitives and semantic relations between them are too complicated
to use for the processing of a large amount of document data.

The attribute PX can be explaiped extensionally, in addition to
intensionally, as a class such that {x: Px}. Extensionality is what

separates classes from attributes (i.e., classes are considered to be

identical when their members are identical). But attributes are unlike

mere classes in the capability of distincting from one another even

when relating extensively the same things. The distinction between
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them is referred to as Russell's theory of types [43]. Intensional
expression of P is computationally obtained only when it appears in
other sentences as the general term for P (The general term for P

differs from P in order or type).

Proposition 3.1. Let P be a predicate in a significant simple
sentence S. Then P could not be intensionally explained except for

the following two special cases.

(1) Symbol "P" itself shows an attribute of P.
(2) General term for P appears as the singular term in another

relation or attribute.

We can conclude by Proposition 3,1 that P should be treated as
an extensional entity for the computational construction of a predicate
network. The similarities h and f of two predicates P and Q, and two
words X and Y are given by the concretion of the abstracts V = {(P,Q):
P and Q give the similar relation to all words} and W = {(x,y): any

predicate relates X and y to the other words similarly} such that

hV(P,Q) for PVQ, (3-4)

£ (Xsy) for xWy . (3-5)

Hereafter Px and ﬁx, respectively, are called a predicate pattern
for P and word usage examples (or experiences) for X. Any predicate pat-
tern is settled by relating the words of the predicate to the word classes

which those words belong to. Thus the contextual expression of S is
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obtained by relating (i) the indivisible word to its application areas,
and (ii) the predicate to its predicate pattern. Incomming sentences
are thus predicatively analyzed by using a word usage dictionary and

a set of predicate patterns. The dictionary is, as shown in the previ-
ous chapter, generated by grouping the interchangeable (see assumption 3
word pairs in a predicate network. Predicate pattern is used to
predict the adequate individuals for the predicate arguments as well.
Thus both the predicate pattern and the dictionary are needed to dis-
ambigulate the word application areas in a given sentence, to find

the correct references of various pronouns, to decide the dependency
form of modifications, and to limit the number of arguments for a
predicate. When a word application area is expressed in the form of

a storage location which is connected with X by a pointer (called an
application pointer) from X to the locations, then PX is obtained
simply by pursuing pointers of X in the positive directions and Px

in the opposite directions. A predicate network thus is constructed
by giving a set of application pointers to the predicate arguments

and the words.

The predicative analysis result is exemplified in Table 3.1 for
the sentences drawn from several scientific documents. These ideas about
simple sentences can be used to analyze complex sentences and documents
by considering the basic cbmponents are simple sentences, modification

style, type of conjunction, several kinds of pronouns, etc.



Table 3.1. Sentence examples showing word usage experiences.

No. Sentences
1 A class of pictures is composed of line-like elements,
specifically, digitized bubble-chamber photographs.
2 Shaded regions in a class of pictures of human faces,
photographs of cloud formation.
3 Piecewise-linear classification iS replaced by edge de-
tecting preprocessings.
4 Edges between different texture regions are detected in
' a composite output.
5 Texture edges in digitized pZctures.
6 Digitized picture processing-operations are discussed with
Gestalt psychologists' laws of pictorial pattern-recognition.
7 Small regions of the film are scanned automatically in a
special-purpose bubble-chamber film measuring-device.
8 DAPR is a digital automatic pattern-recognition system.
9 DAPR is able to measure bubble-chamber films from photographic
development-process.
10 A digital abstraction of the information is contained in the
~ bubble-chamber film. .
11 A sequential-decision model selects feature subsets in pattern-
recognition.
12 A character-recognition experiment demonstrates the feasibility
of the feature selection strategies.
13 A graph-theoretical cluster detection is applied to the selection

of a good feature space for pattern-recognition.
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* Predicates and words for setting application pointers are
written in block letters and italics, respectively.
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3.4 Predicate Pattern and Dictionary Generation

The predicate network for an automatic analysis of document
sentences is constructed by establishing predicate patterns and word
application areas for the predicates and the words of those sentences.
An automatic method (and also a manual one) of obtaining intensional
expressions for the predicates is hard to establish, because in most
cases the singular term for a predicate would not be specified
computationally.

Here a lexicographic problem of obtaining application pointers
and predicate patterns is discussed. A predicate pattern, one of the
semantic primitives for the predicate network, is used to decide how
the words are conceptually related with each other. Any application
pointer corresponding to a word class is given by clustering synonym
classes. Synonyms are extracted by executing algorithm A on the
similarity matrix of the word set. The similarity measure is here
computed based on the interchangeability such that two words are
similar iff they are interchangeable in some contexts of a predicate
network without changing the surrqunding connections. The inter-

changeability is then defined as:

Definition 3.2 (Law of Interchangeability): Let X and Y be word
vectors for predicates {P} and {Q} such that PXx and QY (Pe{P}, Qe{Q}),
respectively. Then the interchangeability of the two words x in X
and y in Y is the similarity f(x,y) between the two situations which

are connected to x or y via {P} or {Q} in the predicate network.
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Definition 3.2 1is circular, i.e., the interchangeability for
defining the class of synonym words and the word application areas
are computed by using a predicate network, which is settled by re-
placing the arguments of the predicate patterns with the application
pointers. An iterative procedure, therefore, 1s employed for gene-
rating a predicate network, where intuitively correct applications
are firstly given as an input data, and the other correct ones are
successively decided based on the pointers and patterns at the previous
iteration. (Hereafter every iteration for setting application pointers
is called by the term "cycle.')

Let us next discuss about which word set gives a right cluster.
Though the interchangeability is considered to give an appropriate
approximation for synonymy, no right word cluster at cycle i (=1) is
unfortunately known beforehand. If the true clusters are obtained at
some cycle k (>0), then we can believe that the correct clusters at
cycle 1 (2k) are deducible iteratively. Let us now examine the
relationship between two similarity values fi(x,y) and fi+1(x,y)
for pair (x,y) at cycles i and i+l. If any word cluster at cycle i
has no word pair with different areas, then the application pointer

set Si at cycle i is included in the pointer set Si+ at cycle i+l1.

1
The similarity value fi(x,y) obtained by using Si is then not greater
than that of fi+l(x,y). Conversely, if fi+1(x,y)zfi(x,y) for all (x,v),

then any area at i+l is considered to include no ambiguous word.

Thus the clustering strategy is decided so that the similarity value
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f'+l(x’y) will become not smaller than that of fi(x,y) and the result-
i

ing clusters include no pair of words having different application areas.
[Algorithm D] (Dictionary Generation)

In: Initial (i=1) predicate network, i.e., initial word application
pointers and predicate patterns.

Out: All the application pointers.

Note: The following steps are formulated for cycle i (>1).

Procedure:

Step 1. Compute the similarity value f(x,y) for words x and y in
the predicate network.

Step 2. By algorithm A, extract all the synonym classes.

Step 3. Cluster the synonym classes for setting application point-
ers so that every application area will include at least one characteris-
tic word (see Theorem 2.2). Set fi(x,y) to max(f(x,y),fi_l(x,y)) to note
that (x,y) satisfying fi(x,y)E:fi_l(x,y) is a correctly interchangeable
word pair. 1If f(x,y) = fi_l(x,y) for any pair (x,y), then terminate the
algorithm.

Step 4. Update the predicatekpatterns based on the newly obtained

pointers, and go to Step 1 to enter the next cycle.

Algorithm D gradually selects the characteristic synonym classes
by examining the correctness of the settled application pointers

through the word usage examples in the predicate network. The updating
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of predicate patterns is intended to establish the right interrela-
tionships between the words. Though more than one application point-
ers are also able to be attached to any argument of the predicate
pattern, the disambigulation of the word could be attained contextually
by the preferred inference process [63]. The termination property of
algorithm D is proved by Theorem 2.1 and increasing property of fi (i>1).
After the termination of this algorithm, the fixed set of application
pointers are obtained.

In the next section, computational experiments will proceed by
taking word stems as one of the input application pointers. Several
criteria for clustering synonym classes are employed for the performance

evaluation of algorithm D.

3.5 Computational Experiments

An experimental system in Fig. 3.1 operated on a set of sentences
of scientific documents is designed for the construction of a predicate
network. The core of this experiment consists of the predicative sen-
tence analysis and the grouping of éynonym word classes.

The sample corpus consists of about 200 sentences extracted from the
ABSTRACTs of 40 documents in IEEE Transactions. Preprocessing of the
sentences is such that any pronoun is replaced by its designating noun,
any verb is changed into its present v or participle vp form, and com-

plex or compound sentences are decomposed into a set of simple sentences.
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Further auxially verbs are deleted, and nouns (including several
adjectives) are replaced by their word stems.

Any simple sentence is predicatively analyzed based on verbs (v0
and vp) and prepositions [27, 63]. The general form of a predicate
is considered to be an n-place predicate Pn having n terms (n>1). The
specification of 3-, 4-, etc., predicates, however, needs a priori
knowledge of semantic relations between‘the words in the terms. The
predicative sentence analysis proposed here treats any predicate as
the combination of 2-place predicates of the forms (i) v (or vp)
+ [preposition]+ (ii) is + Vo (including adjective) + [preposition],
or (iii) preposition only. Any predicate pattern (and necessarily a
predicate network) is then obtained simply by giving application pointers
to the two arguments of the predicate. Some of the 2-place predicates
are shown in Table 3.2. Other input data, the stop-words, are used to
prevent the inessential setting of associations between words. The
initial set of application pointers is a collection of the word stems
to which the final pointer segting is intended.

Application pointers at cycle i (1) is obtained by grouping the
words according to the usage closehess in the predicate network at
cycle i-1. The closeness between word w, in term t. and word w, in

1 1 2

term t, is given by Definition 3.2 as follows: Let us denote by

{P(tl,u)} or {Q(tz,v)}, the predicative expressions of sentences

+ [preposition] means that the preposition can be eliminated.
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Table 3.2.

Examples of 2-place predicates.

according-to
aimed (at)
applied (to)
associated (with)
assumed (to)
based (on)
compared (with)
composed (of)
concerned (with)
contained (in)
corresponding (to)
defined (by, to)
demonstrated (for)
derived (from)
detected (in)
described (by, for)
employed (for, in)
established (for)
expected (for)

found (for)
generated (by, for)
given (for, to)
ignored (in)
illustrated (by)
introduced (by, to)
make-use-of
obtained (by)
presented (for, to)

processed (by,with)

produced (for)
searched (for)
tested (on)
take-into-account
take-place

used (for, to)
with-respect-to
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including w, or Vo where P and Q are 2-place predicates, and u and v

1

are terms. The situations, where Wy and w, are used in the predicate
netwofk,are given by {(P,u)} (=Ul) and {(Q,v)} (=U2), respectively.

The similarity f(wl,wz) for words Wy and W, is then computed by modifving

equation (2-16) as

f(w )=(T+3).min(v(Ul[U2),v(U2|Ul))/ (3-6)

(v(Ul)+v(U2)+(T+l)-max(v(Ulle),v(U2|Ul))),

1°Y2

where v(Ulle) indicates the sum of the matches of Ul for U2. The

degree of the match of (P,u) for U, takes one of the values {1, 1/2, 0}

2, (i) P=Q’

and A(u)nA(v)#® (A(u) means a set of application pointers of the

according to the following three cases: For some (Q,v)EU

words in u), (ii) P#Q and A(u)nA(v)#@, and (iii) A(u)nA(v)=0.

A word set X required for setting application pointers consists
of about 50 words extracted from the input sentences. The similarity
matrix for these words is arranged similarly in Section 2.5 by TDSO
and divided into 4 small matrices. The extraction operation of synonyms
by algorithm A and the grouping operation of these extracted synonyms
by algorithm D are executed in turn. Also algorithm A constructs a
synonym graph G(X) of X.

Five criteria SL, ML, SW, MW and CQ for clustering word set X

are formulated and used in Step 3 of algorithm D.

SL: All the words in the cliques, each of which has a member in

common with some other clique,are given an application pointer.
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ML: All the words in the cliques, each of which has members in
common with some other clique except one member, are given a pointer.
SW: 1) All the words in the cliques including at least one
characteristic word are given a pointer (single meaning words belong-
ing to a small number of cliques are selected as candidates for the
characteristic words). 2) Every word with more than one application
areas, i.e., multiple meaning word, is given no pointer except the

word stem pointer.

MW: 1) All the words in the cliques including at least one
characteristic word are given a pointer. 2) Every multiple meaning
word is given the same pointer as the word closest to it.

CQ: All the words in a clique is given a pointer.

The result of algorithm D for these criteria at cycle ie{l, 2,
+, 6} is shown in Table 3.3 (the significance level SL of algorithm
A is fixed to 0.15). Every element of this table means (IAil/IXI,
|Bi]/|X|), where Ai={a set of application areas including more than
one word at cycle i} and Bi={x: xeX, Ai(x)=Ai_l(x)}.
The validity of the employed criterion is measured by the variance
of lBi[/[X|, so algorithm D+ is executed by excluding the statement "other-

wise, set fi(x,y) to max(f(x,y),fi_l(x,y)) to +++." in Step 2. It is

seen that incorrect pointers are initially settled for a large value of T.

t Algorithm D terminates when the present application pointers are

the same as the previous ones.
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Table 3.3. Comparisons of clustering abilities for setting
application pointers (r=-1).

cycle i 1 3 L 5
criterionﬁ a b a b a b a b a b
ST, 0.21 0.32 .13 0.7 0.13 1.00 * *

ML 0.31 0.40 .27 0.64 0.23 0.82 0.23 0.94 © 0.23 0.96
SW 0.35 0.68 .33 0.88 0.33 0.96 * *
MW 0.35 0.46 .31 0.72  0.27 0.78 0.29 0.86 0.29 0.96
cQ 0.56 0.48 .56 0.44  0.56 0.78 0.56 1.00 *

* Variable a (and b) shows the ratio of the number of application
areas consisting of more than one word at cycle i (the number of

application areas commonly occured in both cycles i-1 and i) to the
total number of words in X.



64

The criteria SL and ML, often used in graph-theoretical cluster-
ing algorithms, are intended to collect the words linked by ambiguous
words into one cluster. The linkage cluster analysis, however, has
a well known defect that two words having different application areas
are given more inclusive application pointers than required. Thus the
word clusters not suitably subdivided are obtained by the linkage
criteria SL and ML.

Other criteria SW and MW are formulated based on Theorem 2.2,
where the meanings of the characteristic words correspond to the
correct application areas. It is seen in Tables 3.3 and 3.4 that SW
gives the more preferable program to MW in the way of obtaining the
correct application areas. This is not unexpected, since only the
classes including no word pairs with different usage experiences are
selected at every cycle, and the words with different application
areas are decided to be multiple meaning words. When many pointers
are attached to those multiple meaning words (which cause multiplicity
via the usage examples in the document sentences), the settling of point-
ers becomes unstable by their ambiguous usages. According to the last
criterion C¢, the resulting word groups are not well clustered.

The larger size of clusters is obtained as the value of the similarity
increases. Table 3.4 shows the clustering result obtained by criteria
SW and MW for various values of T and i. Algorithm D employing MW re-

quires many cycles for fixing applicaticn pointers for the small value of T,



Table 3.4. Clustering statistics for various values of T
(criteria SW and MW).
cygle L 5
T \ a b a b a b a b a b
sW 0.66 0.82 0.66 0.96 * *
2 My 0.65 0.74 0.60 0.92 0.58 0.90 0.60 0.90 0.60 0.98
SW 0.35 0.68 0.33 0.88 0.33 0.96 * *
=L v 0.35 0.46 0.31 0.72 0.27 0.78 0.29 0.86 0.29 0.96
SwW 0.31 0.68 0.31 0.86 .31 0.98 * *
0w 0.29 0.28 0.27 0.88 0.25 0.96 % *
SW 0.25 0.64  0.25 0.92 .25 0.98 * *
1 vw 0.29 0.30 0.27 0.8k .27 1.00 * *
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Tables 3.5(a) and 3.5(b) show the transient application areas settled

by criteribn SW. Table 3.5(a) tells that the application area for the
word DAPR is the same as that of bubble, and different from that of edge.
By referring to Table 3.1 exemplifying the usage experiences for the

words in Table 3.5(a), the attribute for DAPR and/or bubble in area 1 is
explained contextually as "DAPR (which is a pattern-recognition system) for
selecting features of a bubble~chamber photograph, one of the digitized
pictures." Similarly, the attributes for edge in area 3 and graph in

area 2, respectively, are explained as '"Digitized pictures and photographs

' and "A graph-theoretical method selects features

include texture edges,’
(fdr pattern-recognition)."

Since the users' requests for the document information are sub-
nitted in various conceptual levels, the word application areas for
the contextual analysis of document sentences should be hierarchically
related such that the areas at the lowest level is used to obtain and
disambigulate the specific word usages, and the areas at the higher level
to show the more general ones. For example, areas 2 and 3 containing
picture could be grouped into one general application area to retrieve
the documents denoting a method of ﬁrocessing line-l1ike photographs or
detecting texture edges as the ones having the subject theme about
picture processing. Thus the final pointers settled by SW can be
grouped, by a linkage cluster criterion, into a new pointer showing a

general areas. It is hard, however, to divide the final areas obtained

by SL and/or ML into the subsets for the specific areas. The process for



Table 3.5(a).

Application areas versus cycles.
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cycle i 0 1 2 3
1. 1. 1. 1.
bubble bubble bubble bubble
2. DAPR DAPR DAPR
DAPR photograph* photograph¥* photograph*
3. 2. feature feature*
photograph feature picture picture*
. . 4, 3. 2. 2.
application feature photograph* photograph#* feature*
areas .
5. picture edge graph
picture edge 3. 3.
6. 4. graph photograph*
edge graph picture*
7. edge
graph

+ The asterisks are used to show multiple meaning words.



Table 3.5(b).

Application areas versus cycles.

cycle i 0 1 2
1. 1. 1.
decision decision decision
2. classg® discrimination®
correlation 2. class*
3. weight 2.
weight nonparametric weight
4. linear* nonparametric
application sequential discrimination¥® linear
5. class* discrimination*
areas .
nonparametric 3. class*
6. correlation 3.
linear class#* correlation
7. 4., class®
discrimination sequential 4,
8. linear#* sequential
class discrimination® discrimination¥*
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setting application areas, therefore, is to specify the synonym classes
of the characteristic words, and then to cluster those areas into

diffuse classes.

3.6 Conclusions

The method of predicative analysis of natural language was pre-
sented, using predicate patterns and word application areas, for the
easy relevancy computation between the document sentences. Conven-
tional techniques of text analysis in IR areas have exploited keyword
or‘class number indexing schedules for the cataloging of the document
contents. Then the main problem of automatic document processing is
not in the sentence analysis but in the indexing of documents.

The predicative expression of the document sentences was proposed
for the contextual processing of the document themes. That is, document
sentences are automatically analyzed by examining the usage experiences
of predicates and words in the network. Experimental experiences for
the construction of a predicate network have revealed that the appli-
cation areas for every word should be specified by the characteristic
single meaning words and the words similar to the characteristic words
in usage experiences are grouped into one cluster.

The established predicate network, which formally represents the
conceptual relations between sentences, is used for the relevancy com-

putation between two documents. The verbs appeared in the predicate
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should be treated as both special terms and general terms for the analysis
of complex and compound sentences. That is, the intensional explanation
and extensional understanding of the predicates will contribute to the
future researches of contextual text processing in the design of auto-

matic information retrieval systems.



CHAPTER 4

Structured File Organization
for

Fast Information Retrieval

An automatic real-time information retrieval system is expected
to.provide a fast file search algorithm for retrievimg the related
documents to the various submitted queries. In this chapter, a new
method of organizing a file, called a structured file, is discussed
based on the linear ordering of a document set. The document set
18 here arranged according to the similarity between two documents,
and is organized in a form of hierarchically networked structured
files. Fast file search algorithms which can access to the confined

small subsections of the document file are also presented.
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4.1 Introduction

The utilization of a computer system for various information pro-
cessings has become possible by the prevalence of data-base management
and computer networking techniques. An information retrieval system
working in a real-time operating environmment is then expected to process
many search queries against a large document file. The information
queries about the searching of the document file, which vary with the

user population, are classified into the following three basic types:

1) Determine whether or not the document identical to the incom-
ming query is in the file.
| 2) Obtain all the documents in the file having the closest or the
most relevant properties to the query.
3) Obtain the documents in the file showing high relevancy to
the query, or arrange these documents in such a way that their simi-

larities to the query are ordered into a decreasing sequence.

The type 1 query commonly occured in constructing symbol tables is
answered by conventional techniques of binary search, direct chaining
or key hashing methods [4, 5, 37, 38, 44]. On the other hand, it is a
typical problem in a document retrieval environment to search a file for
the documents which are appropriately related to, but not always identi-
cal to, the query. Also, an exhaustive search examining all the stored
items from one end to the other can answer such problems. Since, however,
the file to be searched is usually very large, it is hard to examine the

relevancy of the queries against the entire collection of the stored item.
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Salton et al. [32, 49, 50, 62], in this connection, have formulated
partial file search procedures by constructing groups of related docu-
ments. All the accesses to the file were made through the centroids of
the document groups. Burkhard et al.[11l, 56] have devised efficient
file search methods for the closest (or the best-match) key to the
query by subdividing the given set into subclasses based on the distances
on a set of index keys. Saltons' methods, however, do not always find
the closest documents to the queries, and Burkhards' methods are only
applicable to search the documents whose keys form a disatnce space.
Further those methods are inefficient to cope with the type 3 request
beéause of inadequacy of the definition of the term ''closeness' or
"relevancy." Considering that the given similarity is an index for
clustering the documents, relevancy should be measured by a new simi-
larity obtained after grouping the document set.

It is noted that the similarity between two documents would be
computed by using a predicate network which regulates the ambiguity
of the document sentences. Then the discussion here proceeds firstly
by assuming that a fuzzy transitive inequality holds for the given
document set. It is possible by a.Two—Dimensional Sorting Operation
to arrange the documents in a one-~dimensional storage space for a
hierarchical clustering, and to organize the document set into a
structured file so as to answer effectively the types 2 and 3
requests. Next, the discussion about structuring a file is made by

not assuming the transitive property of the document set. A new
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measure, intra-class similarity, is defined to show the relevancy of two
documents in a cluster as the minimum line weight of a path connecting
these documents in a maximal spanning tree of a similarity weighted graph.
All the documents are then grouped into a set of document clusters, each
of which constitutes a structured file, based on the newly obtained meas-
ure. The entire file is organized by placing the files for document clus-
ters and their abstracted forms on a storage hierarchy [45] in the form

of hierarchically networked structured files. The retrieval of the re-
quired documents from the storage hierarchy is attained by searching
iteratively the structured files at every storage level. Experimentally
thé proposed methods of file organizing and searching are shown to be

useful for answering the queries of the above three types.

4.2 Basic Observation

In this section, several characters of a maximal spannig tree (MST)
and a fuzzy equivalence relation are examined from a point of clustering
analysis.

The concept of an MST of an uﬁdirected finite graph was first
used to detect and describe the structure of a point cluster in
spark-chamber photographs, and then gradually becomes to be used for
various problems in cluster analyses. This is because the MST reflects
well the structure of the input data, and is obtained by the computa-
tionally simple procedures [70]. Zadeh [69] and Tamura [60] gave in-

dependently develobed based on a fuzzy equivalence relation a pattern



classification method which, as Dunn [15] proved, essentially con-~
structs an MST. One efficient procedure for obtaining an MST is shown
in Appendix A.6.

Let us observe the fuzzy classification schema in the light of
hierarchical cluster analysis. Consider f satisfying equations (2-2)
and (2-3) be a similarity measure defined on two members of a document
set D ([D,=n). The similarity f leads a reflexive and symmetric
relation R by Definition 2.1. Next donote by G(D) a graph whose
node d and weighted line dc correspond to a document d and a simi~
larity value f(d,c) between documents d and ¢ in D. Further let
g(d;c) be a concretion with a pair (d,c) of an n-step fuzzy relation
S [60, 69] obtained by the maxmin compositions of relation R,

Since S satisfies all of fuzzy reflexive, symmetric and transi-
tive laws, S is an equivalence relation. For each threshold value
7€[0, 1], define a new relation ST to be a set of document pairs
having the similarity value not smaller than t. Then the following

theorem holds [70].

Theorem 4.1. Let CT be an equivalence class of ST. Then any pair
of documents in CT is connected in an MST by a unique path of lines

whose weights are not smaller than T.

This theorem states that for d, ceC_ and e;éCT the similarity of

a pair (d,c) is greater than that of pairs (d,e) and (c,e). Since aclass

in {CT} is expressed by a finite union of nonempty classes {CT,}, <Tt',
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an m-level hierarchy of clusters is obtained according to a monotone
decreasing finite threshold sequence l=TO>Tl>T2>--->Tmzp, 1<m<n.
The notion of MST is also used for finding maximal capacity routes

in a weighted graph. The capacity of a path connecting two nodes in

weighted graph Gw is the minimum line weight of the path. Any path

in MST of G, is proved to be one of the paths with the maximal capacity.

W

Thus the intra-class similarity g(d,c) defined as the maximal capacity
of the path connecting d and c is identical to the concretion of fuzzy
relation S with (d,c).

Hereafter a document set D in which the similarity g(d,c) is given
for any pair (d,c) is called a transitive space. Whereas a set D in
which the distance for any (d,c) is given by a metric function is

called a distance space.

4,3 Document Ordering for Structured File Organization

In an information retrieval environment, where the order of hund-
reds of thousand of documents may be processed, a development of a fast
file search algorithm is an importént problem to obtain effectively
the related documents to every incomming query. The document collec-
tion, therefore, is organized so that thé searches could be restricted
to the desired subsections of the stored file.

A method of arranging the documents in a one-dimensional storage

space is presented from which the relevant documents to any query is
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effectively retrieved. The discussion here is made by assuming that
the given document set D constitutes a transitive space with respect
to the similarity measure g. The following algorithm, called MTDSO,

can be used to arrange all of D such that

g(di,dj)

| v

g(d,,d ), 1<i<j<ks<n,
i’k (4-1)
or g(diadj)

| A

g(d;»d ), 1<j<k<iz<n,

where di’ dj and dk are documents in D, and i, j and k are indices

for document ordering.

[Algorithm MTDSO] (Modified TDSO)
In: Assume that all of D are indexed by finite integers 1, 2, +--,

and n, which are stored in a one-dimensional array L (size n). The

similarity g(di’dj) is expressed by an element aij of matrix A (nxn).

Also matrix A is considered to be labeled by L.
Out: Ordering of L which satisfies inequality (4-1).
Note: A variable i is used for indicating a row of matrix A.
Procedure:
Step 1. Do Step 2 for i=1, 2, ---, n-1l.
Step 2. Rearrange the contents of [L(i+l1), L(i+2), -+-, L(n)]

so that a continued part [aL(i)L(i+l)’ aL(i)L(i+2)’ ey aL(i)L(n)]

in row L(i) of A will be ordered into a decreasing sequence. (The

row L(i) of A is expressed as [aL(i)L(l)’ aL(i)L(Z)’ ceey, aL(i)L(n)]')

Step 3. Renumber all the documents by a permutation
L(1) ~» 1, (4-2)

and terminated the algorithm.
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Fig. 4.1. Similarity allocation in Matrix form A.
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Theorem 4.2, Document set D can be arranged in a one-dimensional
space so as to satisfy inequality (4-1).

Proof. The following proposition is used to prove the theorem.

Proposition. Let g(d,c), g(c,e) and g(e,d) be three similarity
values for three documents d, ¢ and e in a transitive space. Then two
of them are equal, and the rest is not smaller than the other [60].

The proof of the theorem is made by induction on a size n of D
(see Fig. 4.1). Here aij means the element aL(i)L(j) of A. Clearly
the theorem holds for n=1 and 2.

For n=3, L can be rearranged by Step 2 of algorithm MIDSO such

(This is

that a123§13 holds. Then, by proposition, we have az3za13

an equation when a12>al3).
Next assume that this theorem holds for a value not greater

than i. Similar to the above, we can rearrange the set {312’ 313’ ..

als> al,i+l} into a monotone decreasing sequence a123§133;--3a1i3§1’i+1.
Now let us show by induction on j (1<j<i) that aj,i+1<aj+l,i+l
. . . 7 < i
<aj+l,i holds. When j is equal to 1, since 3123?1,i+1’ al,i+l“a2,i+l
There are two cases to be considered for a,., and a, .,,.
2i 2,i+1
Case (i). 1If ali=al,i+l’ then by Step 2 for row L(2), we obtain
that 321332,i+1‘
Case (ii). If ali>al,i+l’ then since 3123?11’ we have that a2,i+1

=3y, 41+17224°
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Generally, if the above inequality holds for k smaller than or

equal to j, then since ay 1>y $4+1° we have that a, j+1zaki’ and
] H]

For a, . and a , the following cases are

3441, i+12%9, 341" J+1,1 J+1,1+1

considered.

CASE 1. If a holds for all k (1<k<j), then by Step 2

ki 2k, i+l
for row L(j+1), we obtain that aj+1,i§aj+l,i+l°

CASE 2. 1If a,.>a holds for some k (1l<k<j), then by a

ki 2k, i+1 k,k+1

Zaki’ we have that a Therefore, a

k1, i+l Ok, i+l Fktl, i 41,17+, 441

Thus by induction the proof is complete.

" The speed of a file search algorithm is accelerated by avoiding
wasteful access to the subsections of a stored file not including
related items to the queries. The following theorem is used to
restrict the search process within a subfield which contains the

closest documents to query q.

Theorem 4.3. Let us denote by D=[d1,d2,°-~,di,~--,dj,---,dk,---,

dn] (1£i<j<k<n) the documents arranged by MIDSO. Then, if query q,

which will be a member of transitive space D, satisfies an inequality
8(q,d.) > g(q’d.), (4"3)
1 J
then we have the following inequality
g(q,d;) > glq,d,). (4=2)

The proof of this theorem is obtained by the above proposition.
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Theorem 4.3 shows the closest or best-match documents (shortly the
best-matches) to query q are located on the left half side in D of dj‘
The similar theorem holds for the documents located on the left half
side in D of di'

The next theorem, in addition to Theorem 4.3, can be used for

reducing the number of relevancy comparisons between the documents

and the query for obtaining the best-matches.

Theorem 4.4, Let BSt be a set of the best-matches for q. Then
all of BSt are in a continued part of D.

Proof. Suppose that di is the most left side document of Bst

, 5
in D, and dj and di+l (j>i+1) are a member and a nonmember of Bst’
respectively. Then, by the definition of the best-matches, it holds

that g(q,di)=g(q,d )>g(q,d,,.). This is a contradiction.

3 i+l
Thus, after one di of BSt is retrieved, all the other members of
Bst are found effectively by examining the document file in the order

[dis dypqs d5 70 Y490 9590 001

4.4 TFile Organization and Search Strategies

The efficiency of a file search algorithm varies with the division
strategies of document set D and with the selection criteria of repre-
sentative documents of subdivisions. When set D is divided into non-

overlapped subsets of an appropriately identical size, the efficiency



becomes maximum. The representatives should be selected so that the
required field of arranged set D could be specified simply by computing
the relevancy between the query and those representatives. Set D is

here divided in the following way:

[Division T] Let K be a continued part in D. The division of K
into a set of subdivisions Kl, K2, cee Kj’ «+« and Kt (1<35t) is

obtained by a monotone decreasing sequence of "thresholds" l=T0>T1
>--->Tj> "'>Tt>0 such that any document d outside Kj does not satisfy
Tj_lgsg(d,ks)sz (the equation in the parentheses holds only when j=1).

The representative ksfor subdivision K is generally set to the most

left hand element in K.

A structured file for set D is constructed by dividing first D
into a set of subdivisions, and in turn by applying division T to
each of the resulting subdivisions until the desired hierarchical
structuring is attained.

Fig. 4.2 shows a computer implementation of an m-level structuring
of D. Since every subdivision is in a continued part in D, the struc-
tured file is constructed by accomﬁanying each pointer with the repre-
sentative, and the positions of the first and the last documents in D
of its corresponding subdivision. The representative is generally
selected as the most left hand document of the subdivision.

Next let us describe the structured file search algorithms for

obtaining the best-matches Bs and better-matches Btr for query q

t
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Fig. 4.2. Pointer setting for an m-level structuring of D.
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(The better-matches here mean a set of documents arranged in the
order of similarity to q). An algorithm for finding BSt is first

formulated and an algorithm for Btr follows it.

[Algorithm BST] (Best-Matches)

In: Structured file SF and query q.

Note: The subdivision in D under searching is denoted by K. The
representative for K is the most left hand element ks. Further the
most right hand element in K is written by kr'

Procedure:

Step 1. Search K={Kl, K2’ ceey Kt} to find the subdivision Ki
such that Ti_léqg(ks,q)zji, 1<i<t (The equation in the parentheses
is for i=t). If Tt>g(ks,q) or |K|=l, then set kr to b, and go
to Step 3.

Step 2. If i=1 and g(ks,q)zg(ks,k ), then set kS to b, and

s+l
go to Step 3; otherwise, set K to Ki—{ks}, and go to Step 1.
Step 3. Let j be the position in D of b, and DS=[dl, ceey dj]

and Dr=[d ee, dn] be the two continued parts of D. Then, by

j+1°
theorem 4.4, the set BSt of the best-matches for q is located in the

contiguous parts DS and/or Dr to b. Terminate the algorithm.

The underlying idea of this algorithm is the same as the one in
a method of symbolic key addressing. Algorithm BST is intended to
decide the position of the query in a one-dimensional document space

by comparing the threshold values and the similarity of the query to
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the representatives.
The next algorithm is formulated to find the set BSt of better-

matches for q. After BSt is retrieved, the two sets of documents

in the left and right hand in D of BSt are merged into one document

sequence for Btr'

[Algorithm BTR] (Better-Matches)

In: Structured file SF, query q, and the best-matches BS for q.

t

Note: The set BSt is expressed as [di’ di+l’ ., dj] (l<i<j<n).

Variables Ds’ Dr and C are one-dimensional arrays.
Procedure:
Step 1. Set DS=[di—]’ dj—Z’

Step 2. Merge Ds and Dr into C so that the similarities between the

. dl] and Dr=[dj+l, dj+2’ ey dn].
members of C and query q will be arranged in a decreasing order.
Step 3. Merge BSt and C into Btr in the same manner as Step 2.

Terminate the algorithm.

The discussion in this section is about the file organization
and search methods for a document set consisting a transitive sapce
with respect to the similarity measure g. The next section is devoted
to develop these algorithms for structuring document data which do

not always constitute a transitive space.



4.5 Search Algorithms for General Document Space

A document collection of real world information, where the simi-
larity measure is given by f, in general includes ambiguous documents
having more than one subject themes. So the problem of searching a
document file for the best- or better-matches should be discussed
after the grouping of the documents into clusters. Namely, the
similarity between two documents is measured by an intra-class simi-
larity, and the search is made separately in every cluster of D. Let
us show by the following theorem that the modified version of algorithm
MIDSO in which documents are arranged according to £ can be used for

obtaining document clusters.

Theorem 4.5. Let C (|C|=m§n) be a subset of D rearranged so as
to satisfy f(di,dj)zf(di,dk), l<i<j<k<m (or f(di,dj)s_f(di,dk), 1<j<k<di<m)
for any di’ dj and dk in D. Then those arranged document pairs satisfy
inequality (4-1) with respect to g, an m-step fuzzy relation on C.

Proof. Denote by aij (1<i<j<m) the similarity value f(di’dj)’

2
= % -
and by aij ( l?ﬁém(aik akj))thevalue of the two-step fuzzy relaton

for di and dj (* is the composition). Then, since the documents in

D are rearranged with respect to f, it holds that

* * -
EES Tl Ph L M V3 I L 1 A LN

2 _ max * max *
and then 213 T 1<k<d ik akj)-zlfkfj(aik K, 541

) = max( man(a.

* = _max * imi
ak,j+l)’ai,j+l) l§k§j+l(aik ak,j+l)' Similarly, we have that

(a

2 =

max * = max %
a7 541 = 19kem @ik %k, 3410 T 1%he 541 @13k, g41) - Tt follows that
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2 -
aij is not smaller than a% Similar to the above, we have that

i, j+1°
a2 <a2
i3 =%1+1,3"
. . . m-1 _m , mtl _
Since g(di’dj) is given by aij = aij (—aij = ), by the

iterative process of the compositions, g(di’dj+s

)< g(di,dj)i g(di+t,dj),

O<s <m-j, 0<t<ij-i. Thus the proofyis complete.

This theorem states that all of the documents in C can be placed
on a transitive space without changing the indices for document order-
ing. The set C is considered by the discussions in Chapter 2 to be one
of the document clusters. -The intra-class similarity g for any document
pair in C is defined as an m-step fuzzy relation obtained by maxmin
compositions of £f.

Fig. 4.3 shows the rearranged similarity matrix for a document
collection drawn from the recent Comm. ACM contributions (100 docu-
ments). Every similarity value is computed by equation (2-16) (t=1)
in which M(x) means CR categories of document x. The documents which
constitute a cluster are located in a continued part of L in this
figure. The small matrix corresponding to one of the clusters is
enclosed with a rectangle+. The similarity information outside the
rectgngles-reveals the interrelationship between the clusters, and is

used for grouping the documents further for the hierarchical clustering.

+ Some of the similarity values in the small matrices do not
satisfy inequality (4-1) with respect to f, for a general document

space consists of documents with more than one subject theme.
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The following theorem holds between two similarity measures f and g.

Theorem 4.6. For any pair (d,c) in C, we have that
f(d,C) ig(d,C). (4-5)

If d and c are the most similar document pair with each other, then this
is an equation.

Proof. Since g(d,c) is the minimum weight of lines in a maxmin path
connecting d and ¢, inequality (4-5) holds for any pair (d,c). If d is
the closest document to c¢, then these are connected by a line (or path)

whose weight is equal to f(d,c).

Theorems 4.4, 4.5 and 4.6 state that the best-matches Bit (¢C) with
respect to g is in the continued part of arranged C, and the set BSt
with respect to f is included in Bit. Thus the sets Bit and BZt are
retrieved by using algorithm BST. The similarity measure in a general
document space D is given by f, so it is required for obtaining B%r to
compute the intra-class similarity g(d,q) between d and query q. Since
the similarity weight f(dL(k—l)’dL(k)) of any adjacent document pair

(dL(k—l)’dL(i)) in arranged C is the same as g(dL(k—l)’dL(k))’ the value

g(q,dL(j)) (called transient similarity) for dL(j) is obtained by com-
puting g(q,d (1)) =max(£(q,d; ) y)smin(E(d o 1354 (1)) 58(a5d) p 14))) fork,
1<k<j<m, iteratively, whenever row L(k) is selected for Step 2 in MTDSO.
Thus the set B%r of the better-matches for q, in which documents are ar-
ranged into a decreasing order of similarity g to q, is retrieved similarly

by algorithm BTR. (The problem of establishing an efficient method of



finding Bir is unsolvable, because no expected value is assumed for f.)
Next let us formulate an algorithm for obtaining the best-matches
in a file of the document cluster C. If any query is a member of C,
then the best-matches are obtained by using modified versions of algo-
rithm BST and division T such that the required subdivisions are
specified based on the values of f. On the other hand, if the above
assumption does not hold for a query, then the best-matches are re-
trieved in the following way: Document clusters arranged with respect
to g are divided into a set of subdivisions in which all of the docu-
ment pairs have the similarity values not smaller than a threshold
Vaiue T (0<t<1), and are organized into an entire document file. The
searching of the file is to specify in turn a smaller subdivision K
satisfying f(q,ks)jg(d,ks) for any de€K by computing the similarity
between query ¢q and a representative ks of the subdivision. Thus an
algorithm for finding the best-matches (which is not so efficient as

algorithm BST) is formulated as:

[Algorithm GBST] (Best-matches within a document cluster)
In: Structured file for a document cluster and query q.
Note: The continued part in C under searching and its representative

(if it exists) are denoted by K (initialized to C) and ks(initialized
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to the left side element in K), respectively. Further let s (initialized

to 0) be a variable to store f(q,ks). A document which will show the
best-match with q is stored in variable b.

Procedure:
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Step 1. If f(q,ks)>s, then set s to f(q,ks), and search K to find
the subdivision M such that a member d of this subdivision satisfies
g(d,ks)3§. Further set K to M—{ks}, and set b to ks to note that b is
one of the best-matches in the already examined documents. Otherwise,
set K=K—{ks}.

Step 2. If |K|=0, then go to Step 3; otherwise, set ks for a new
K to the left side element in K, and go to Step 1.

Step 3. Consider b to be one of the best-matches. Then all of
Bit are in a part contiguous to b in C. Search Bit exhaustively to

find all of Bit by examining £(q,d) for every d in Bit. Terminate

the algorithm.

When the condition "f(q,ks)>s" in Step 1 of this algorithm does not
hold for (q,ks), the area in K to be searched is the same as the one
in the former iteration except ks.

Algorithm BST (and GBST) is formulated to find the best-matches
within a cluster (Hereafter, since BitQBZt, the best-matches mean the
documents showing the highest similarity to q with respect to g). Next,
a method of determining which clusters are significant to be searched
for the best-matches in the entire.file is discussed by employing an
appropriate storage hierarchy (h level, h>1). The entire file is or-
ganized by placing document clusters on a storage at the lowest level,
and at the higher storage level the abstracted form of the bibliographic

items are allocated. The hierarchical data abstraction is obtained by

grouping the rearranged items into one stored item at the one higher
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storage level, which corresponds to a cluster C of documents. Algorithm
MTDSO is also usable for this purpose. Since the intra-class similarity g
is defined as the minimum line weight of MST, the similarity between two

document clusters, i.e., two items, Ci and Cj at this level is defined as:

= max -
f(Ci,Cj) dECi,CEij(d’C)‘ (4-6)

After the desired data abstraction is attained, the documents are indexed
by the category numbers reflecting the hierarchical structure. The

indexing process proceeds in the following way.

[Indexing I] Let {Cg, Cg, .-+, ¢? } be the document clusters at
, P 1 h, h+1
level p (1<p<h). (i) Index every document d by & cogPeg (ligpiip.
+
Eh 1 is a unique document number), called a category number. If documents d

and ¢ belong to the same cluster at level p, then d and ¢ give the same
values for 51,52,-'- and ip. (ii) If documents d and ¢ in different
clusters at level h give a line of MST, then d (or ¢) is further indexed

by the category number of c¢ (d).

The documents or their abstracted forms at every hierarchical level
are also stored in the form of a structured file. Note that the data
banks of ﬁhe higher storage level take much more compact forms than that
of the lower hierarchical storage level. The configuration of a storage
hierarchy is depicted in Fig. 4.4, where every document cluster correspond-
ing to a stored item at one higher level constitutes a document file DF,

The search process for the best-matches under the storage hierarchy

is firstly to specify in turn the lower level document file which will
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Fig. 4.4. Storage hierarchy configuration of document files.
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include related data to the incomming query. The search query could

be supposed to be suitably indexed by the automatically generated

category numbers, for the user's profile can be expressed and stored

in the abstracted form of the document data which were determined to

be relevant in the user's past history of retrieval experiences.

Next one of the best-matches within the selected document file DFh at

the lowest level h is retrieved by algorithms BST or GBST. Since this

document is not always a member of the best-matches in the entire file,

it is updated by searching the other files decided to include one of

the best-matches in a file of the upper level of DFh. After one of

the best—-matches is found, all of the best- and better-matches are

easily be retrieved by using the index or indices of this best-match.
The idea of storage hierarchy is intended for the fast searching

of a document file of real world information for the document subset

showing high relevancy to the submitted queries. The subdivision in

which most of the members satisfy (4~1) with respect to f is organized

into a structured file, and the documents in the different subdivisions

are grouped into a file at the higher storage level. Thus the file

structure for the general document data is composed of a hierarchically

networked structured file. A best-match search algorithm for the

storage hierarchy is formulated as:



[Algorithm HBST] (Best-matches in a storage hierarchy)

In: Hierarchical storage configuration with a structured document file
DFi at every storage level i (1<i<h), and search query q.

Out: One of the best-matches for q.

Note: Working variables i and j (initialized to 1) are used to show
the storage levels under searching. Variable b stores a best-match
document in the already examined files.

Procedure:

Step 1. Do Step 2 from level i=j to h-1l.

Step 2. Determine the document file DFi+l at level i+l which is
considered to have a related item to q (If q is indexed, this search
process can be accelerated).

Step 3. Set j=h-1. Search by algorithm BST (or GBST) the file
DFh for one of the best-matches to q in DFh, and set b to the best-
match document in the already examined files.

Step 4. Let DFj be a file at level j storing the abstracted form
of the previous document file DFj+l. Search DFj by algorithm BST (or
GBST) to obtain an unexamined file DFj+1 at level j+1 which shows the
similarity to the above abstracted form not smaller than f(b,q), and
go to Step 1. If no such file exists, then set j=j-1. If j<1, then

terminate the algorithm; otherwise repeat Step 4.
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A better-match search algorithm for storage hierarchy is formulated

as follows:
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[Algorithm HBTR] (Better-matches B%r in a storage hierarchy)

In: Hierarchical storage configuration, search query q for r better-
matches and best-match document b for q in a file DFh.

Out: One-dimensional array B%r (initialized to @) for storing r better-
matches.

Note: Variable BP? (8P=g for 1<p<h, and Bh=[b]) for every storage level p
is a one-dimensional array of size r. Working variable j (initialized
to h) indicates the storage level under searching.

Procedure:

Step 1. Extract from DFh the better-matches to the documents in Bh
using algorithm BTR, and merge them into B%r based on measure g until r
better-matches for q are stored in B%r, or DFh becomes empty. Further
store these extracted better-matches into Bh. Set j=h-1.

Step 2. Let DFj be a file at level j storing the abstracted form

r oy . .
of the previous document file DFJ 1. Merge B L and B into B’ based

j+1 . - .
on measure g, and clear BJ7". Set s to the intra-class similarity value

g

between g and the document placed at the r-th position in Btr'

Step 3. Search, by algorithm BTR, file DFj for an unexamined file
DFj+l whose abstracted form at the level of Step 2 has a similarity value
not smaller than s to the above abstracted form. If no such file exists, then
set j=j-1. If j=0, then terminate the algorithm; otherwise, go to Step 2.

Step 4. Select a file DFj+l (first, the file DFj+l at Step 3 is
selected) whose corresponding cluster contains a document with the same
"£%+l

index part Eé' as that of some document d in BJ (Also the document



showing greater similarity to q is apt to be selected as d). If file

DF1+1 does not exist, then go to Step 3. Otherwise, set BJ+l (QBJ) to
. 1,,..j+1 s .

a set of documents with index part EO EO , and set j=j+1. If j=h,

then go to Step 1l; otherwise, repeat Step 4.

The computer implementation of this hierarchical storage configu-~
ration consists of a memory hardware (as proposed by Salasin [45]) with

increasing data access time and data storage capabilities. This figure
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would be extended to a computer network for document information retrieval

by considering the hierarchical storage hardware as the computer hierarchy

with increasing facility of data processing and generality of application

areas.

4.6 Computational Experiments

Computational experiments for retrieving the best- and the better-
matches in a storage hierarchy are performed on a set D of 100 documents
drawn from the Comm. ACM contributions. The similarity matrix for set D
is shown in Fig. 4.3. A storage configuration for the document files
takes the form of an h-level (ljhj;) hierarchy. A cluster at every
storage level, which is obtained by algorithm MIDSO, is stored as an
indexed item in the storage at one higher level. The similarity values
for items are also stored after subdividing them into clusters at this
level. The stored information at the lowest level is a set of indexed

documents and the input and intra-class similarity values for every
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pair of adjacent documents. Since all the items in a cluster is stored
as an item at one higher level, the files at the higher storage level
require much smaller storage area. Also all items in a file at every
hierarchical level are arranged linearly so that the required items will
be retrieved effectively. The numbers of items at storage levels 1, 2, 3
and 4 are 9, 16, 35 and 100, and the average (or maximal) numbers of
documents in clusters+ at levels 1, 2 and 3 are 20.0, 8.3 and 3.2 (53, 22
and 7), respectively.

Algorithms HBST and HBTR are used to obtain the best- and better-
matches for every incomming query. Four kinds Ql, QZ’ Q3 and Q4 of
queries, each of which consists of 10 members exactly matched with the
stored documents, are prepared for a storage hierarchy (Hereafter the
h-level storage hierarchy is written as SHh). Any query in Qi (22i<h)
is indexed by the correct class numbers for hierarchy levels 1, +--
and i-1, and any query in Ql is given no class number. Class numbers
are used in Step 2 of algorithm HBST to specify the document file which
will include a best-match document b to query q. When no class number is
given for query q, any unexamined document file is first selected. Next,
this algorithm proceeds into Steps 3 and 4, and, if possible, returns to
Step 1 for searching an unexamined file with the class number of b. The
efficiency of file searching is largely reduced for the input data in-
cluding many ambiguous documents (which do not satisfy (4-1) with respect

to f), for many document files are determined to be searched in Step 4.

+ One—-element clusters are excluded.
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After one b of the best-matches is found by algorithm HBST, the better-
matches B%r (IB%r|=r, 2<r<6) are found by algorithm HBTR. In this ex-
periment a document in B%r having the same similarity value to q as a
document outside B%r is not retrieved, since it is hard to decide which
document is a required one.

Table 4.1 shows the average numbers of relevancy computations be-
tween the queries in {Qz,'-', Qh} and the documents at the lowest level
or between the stored items at the other levels until one of the best-
matches is retrieved from SHh. The files at the lowest level is searched
linearly in this case. Algorithm HBST searches about the half documents
in any storage hierarchy to obtain one of the best-matches for a query
in Q1+. On the other hand, the full search is required for the document
file being not organized hierarchically. The result of retrieving r
€{2, 4, 6} better-matches in SH4 is shown in Table 4.2.

The file search time for a storage hierarchy mainly depends upon
the numbers of relevancy computations at the lower storage level. Table
4.3 shows the retrieval result of algorithm HBST for SH2 and SH3, where
the searching of the files at the lowest level is done by algorithm BST
instead of the linear search process. Alsoc these files, i.e., structured
files, are organized by subdividing the document clusters into subdivi-
sions. The sequence of thresholds and the numbers of representatives

for division T are 0<0.2<0.4<1.0 and 18, respectively. Variable rp

+ When the files at the higher storage levels include the representative

documents, algorithm HBST can search the files more efficiently.



Table 4.1.

Number of items examined at level £ for
obtaining one of the best-matches in SHh,

h
é>\ 2 3 Y
1 1.0 1.0 1.0
2 15.5 1.4 1.2
3 * T.7 1.9
h * * 5.4
Table 4.2. Number of items examined at level £ for

obtaining r better-matches in SH'.

N 2 L 6
1 1.1 1.1 1.3
2 1.1 1.2 1.6
3 1.5 2.0 2.8
N 3.2 5.5 8.4

100
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Table 4.3. Number of items examined at level £ for
obtaining one of the best-matches in suh,

1 1.0 1.0
2.2 (=rp)
2 5.2 (=nrp) 1.k
3 % 1.7 (=rp)
4.1 (=nrp)

* The searching of the files at the lowest
level is done by algorithm BST.
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(or nrp) in Table 4.3 counts the number of representative (non-
representative) documents drawn in the executions of algorithm BST.

The relevancy computations between the query and the stored items in

the structured file are executed sequentially from the first item to

the last one in the specified subdivision of the cluster. Thus the
rearranged documents are placed on a sequential file with a key region.
The result for SH3 at the lowest level is superior to the other. This

is because the more confined subdivisions can be specified in SH3 than

in SH2. When the stored documents are accompanied by the similarities

to the other documents in a cluster, since every document is considered

to be a representative, the more prominent result is attained. Also in
this case much more area to store the similarity information is needed

for SH2 than for SH3. Algorithm HBST can be used to retrieve the best-
matches to the queries, none of which exactly matched any stored document,
at the élight deterioration of the retrieval effectiveness. The reductions
of the precision values for retrieving one of the best-matches to the
queries in Ql’ Q2 and Q3 are 0.21, 0.07 and 0.04, respectively.

The experimental experience reveals that algorithms HBST and HBTR
search effectively the files of document data in a real world. The stored
information in a storage hierarchy consists of the arranged items and the
similarity values for a set of clusters at every level. Therefore, the
storage requirement for hierarchically organized files is much less than

that for a file storing the entire data without structuring.
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4.7 Conclusions

As the studies of analyzing natural language texts proceed, the
establishment of a file searching method becomes important for obtaining
quickly the documents closely related to any natural language query. The
conventional inverted file organization techniques devised in a histori-
cal keyword indexing background seem to be inappropriate to manipulate
such a flexible problem. Here by ordering the documents linearly, the
structured file organization and its searching techniques under the
storage hierarchy are presented for obtaining the best- and the better-
match documents to any incomming query. The computational experiments
shéw that the algorithms HBST and HBTR search effectively the files of
large document data for these documents.

The files in a storage hierarchy are maintained, when a new docu-
ment ¢ is added, in the following manner. First, by algorithm HBST,
obtain a best-match document b in a file DF at the lowest level, aﬁd
next, store c¢ in the storage location adjacent to b in DF. The deletion
of a document is executed similarly. Since the documents at the lowest
level are arranged linearly according to their similarities, feed back
runs to updata the retrieval result under real-time information retrieval

systems can easily be performed by non-expert, and also expert, users.
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CHAPTER 5

Concluding Remarks

The basic function of information storage and retrieval tasks
has been explained based on the conceptual relevancy matching process
between the documents and the submitted search queries.

First, the methods of constructing a word usage dictionary and of
analyzing document sentences were given for the automation of document
retrieval process. The dictionary used for specifying the application
areas of the words was generated by grouping the words interchangeable
in a predicate network of the given document sentences. The predicate
network is obtained by relating the words and predicates of the
sentences to the application indications and predicate patterns,
respectively. The grouping method, which is an iterative procedure,
is such that only the meaning of a 'single meaning word constitutes one
of the correct application areas at every iteration. Thus the relevancy
of the submitted query to the document sentence or to the document is
obtained by examining'the'similarity between them in the predicate

network. Next a structured file organization technique for the fast
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retrieving of the relevant documents to any query is formulated by the
linear ordering of the documents according to the relevancy or simi-
larity between two documents. The extension of the structured file
organization for deciding which document data bases (or document groups)
are significant to be searched was to construct a storage or computer
hierarchy with increasing facility of data processing.

In the first chapter, it was indicated that the document retrieval
process under the laboratory environment is classified into two types,
and the most of existing computer information retrieval systems have
utilized manual indexing schedules to obtain the document having
the specified and formatted subject themes. The study in IR field,
therefore, was mainly believed to develop a mechanism of indexing
or cataloging the documents and organizing a inverted file. The IR
system, however, should be designed, regardless of whether it employs
indexing schedules or not, to manipulate the document data more
"intelligently" such that the information storage and retrieval
operation is made based on the relevancy computation between the
conceptual expressions of the document contents.

The grouping of information dueries or the specification of users
is also an important factor for the design of desirable IR systems.
That is, the users with refined profiles should be incorporated into

the suitable information files for the efficient and accurate document
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retrieval. It is probable by the great prevalence of mini or micro
computers as well as general purpose ones that the users' profiles
might be expressed and stored by the abstracted forms of the document
data retrieved to be relevant in the users' past history of the file
searching. Individual systems developed separately in various labor-
atory environments, which are intended to answer the specified infor-
mation queries of resident research workers, will be summarized into a
hierarchically networked system of a world scale for the extensive

retrieval of required information.
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APPENDIX

Matrix Rearrangement Procedure
and

Graph~Theoretical Algorithms



A.1 Preliminaries

The aims of this Appendix are twofold. One is to present a
new data structure for representing interrelationships between two
items of given data X (all items are here assumed to be indexed by
integers 1, 2, *** and n). The other is to formulate efficient algo-
rithms for finding graph-theoretical concepts, e.g., data compression,
spanning tree, connected component, maximal spanning tree, and clique,
used in this thesis. The "efficiency" of an algorithm is measured
by the computing speed and the extra storage requirement of the
algorithm, and the succinctness of its expression.

Two types of data structures, aneighbor-list and an adjacency
matrix, are generally well known to be useful to represent in a com-
puter the graph with a finite node set {1, 2, ---, n}. Also which
representation is more convenient depends on the question types being
asked in the algorithms. Here a new kind of data structure [30] is
presented for expressing a graph G(X), where every node and line
(weighted line) correspond to a data item and adjacency (or similarity)
information on X. The data structure consists of an nxn adjacency
(or similarity) matrix A=[aij] and a linear list L of size n. The
list L contains, as its value, row index of A corresponding to a node
of G(X). Adjacency or similarity information between two nodes L (i)
and L(j), 1<i<n, 1<j<n, is expressed by the element (L(i),L(j)) of A.
(If two nodes L(i) and L(j) are connected with each other, then the

value of aL(i)L(j) is set to 1; otherwise to 0.)
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One- and Two-Dimensional Sorting Operations (written by ODSO and
TDSO for briefness) on a newly proposed expression of a graph are
presented before the formulations of graph-theoretical algorithms.
These are operations which rearrange the contents of L according to
the adjaéency or similarity information of the specified row or rows
of A. Since any access to A is made by referring to L, A is considered

to be labeled by L.

A.2 Matrix Rearrangement Procedure

Let G be a finite undirected graph with nodes {1, 2, *+:, n} ex-
pressed in the form of a labeled adjacency matrix. Hereafter an ele-
ment of a labeled matrix in written as a (s .- First One-Dimensional

(DL G
Sorting Operation ODSO on a specified row of A is formulated.

Let a continued part of row L (i) =[aL(i)L(l)’ aL(i)L(Z)’ N
aL(i)L(n)] of A be denoted by K(l)=[aL(i)L(j)’ aL(i)L(j+l)’ aeey,
aL(i)L(k)]’ where j and k (1<j<k<n) are variables to indicate the
first and the last positions of K(i) in L(i), respectively. Then

operation ODSO on K(i) is defined as follows:

[Algorithm ODSO]

In: Array L and the continued part K(i) of row L{i) of A specified
by i, j and k.

Out: The position t of the last non-zero (or significant) element

aL(i)L(t) of K(i).



Note: Working variable s is used for binary sorting process in Step 2.

Procedure:

Step 1. Set s and t to the value of j.

Step 2. 1If aL(i)L(s)>0’ then exchange the contents of L(s) and
L(t), and add 1 to t.

Step 3. Set s=s+l. If s<k, then go to Step 2; otherwise, set

t=t-1, and terminate the algorithm.

Note that ODSO collects the nodes adjacent to L(i) into the conti-
nued part [L(j), L(§+1), +++, L(t)] of L. When all accesses to
matrix A are made through L, the rearrangement of L is reduced to

that of A itself: That is, we have that

A (DL AL @L )™ 2 A Gy (1) T T (1)L () O

after the termination of the algorithm.

The Two-Dimensional Sorting Operation [29] is defined as the se-

quences of ODSO on each row L(i), 1<i<n, 1<L(i)<n, of labeled matrix A,

[Algorithm TDSO]
Procedure:
Step 1. Set L=(1, 2, *+-,n). Set i to 1, and j to 2.
Step 2. Select row L(i) of A, and execute ODSO on (aL(i)L(j)’
Set j=t+1.

A DOLGHD)? T AL WL .
Step 3. Add 1 to i. If i is equal to j, then add 1 to j.

Step 4. If i is not greater than n, then go to Step 2; otherwise,

terminate the algorithm.
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A.3 Matrix Compressing Process

The graph obtained from data in a real world is known to become
sparse (A sparse graph is expressed by a matrix having small amount
of non-zero or significant elements). Table A.l shows some of the
statistics for the graphs obtained by applying thresholds to the
similarity matrix in Section 2.5. Parameters MCC and o, (=2m/MCC(MCC
-1): m is the number of lines of a graph), respectively, indicate the
size and the line density of a graph G, and pb the average line den-
sity of subgraphs of G. Table A.l tells us that these graphs are
totally sparse but locally dense. The similar situation is shown in
Fig. 4.3. (Sp;rck—Jones [58] indicated that the density of significant
elements in such a matrix is practically as low as 10 percent.)

One efficient way of representing a sparse graph is attained by
subdividing the matrix of the sparse graph into a set of small matrices,
each of which corresponds to one of subgraphs of that graph. Also the
matrix should be subdivided so that the interconnection between resulting
subgraphs would become smaller. An algorithm for compressing the matrix

of a sparse graph is given below:

[Algorithm MC] (Matrix Compression)

In: Labeled similarity matrix A.

Out: Arranged A and L.

Note: One-dimensional array LEV is used to specify the region of A

in which significant elements corresponding to lines of ST are stored.



Table A.1. Statistics for threshold graphs.

M. Py %%
100 0.05 0.28
88 0.0k 0.26
66 0.05 0.29
21 0.16 0.39
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Procedure:
Step 1. Set i to 1, and j to 2. LEV(1l)=1l.
Step 2. Select row L(i) of A, and execute ODSO on (aL(i)L(j)’

Step 3. Add 1 to i. If i is equal to j, then add 1 to j.
Step 4. If i is not greater than n, then go to Step 2; otherwise,

set LEV(i)=n, and terminate the algorithm.

Algorithm MC collects the significant elements into the upper
triangular part {[L(i), L(LEV(i+l))]!l§i§n} of matrix A. This rear-
ranged matrix can be divided into a set of small matrices by considering
{LEV(i+l)—i[l§i<n} to be an index for subdivisions. Algorithm MC is also
modifiable so that the more significant similarity information will be

collected into the nearer area to the diagonal elements (see Chapter 4).

A.4 Spanning Tree

Next, let us formulate based on ODSO two algorithms for finding
a spanning tree of a graph G. The concept of a spanning tree is used
to define connected component, maximal spanning tree, cycle, block,
and so on.

A spanning tree ST of G is constructed by expanding continuously
nodes of any subtree T of G until all nodes of G are incorporated intoT.
Two methods, called breadth-first BF and depth-first DF methods, are

well known in accordance with the way in which nodes are ordered
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for expansion [39]. The nexts are two spanning tree generation algo-

rithms for a connected graph G.

[Algorithm BF] (Spanning Tree)
In: The graph G is expressed by an adjacency matrix A with label L.
Out: Any line of T under expanding is expressed by the element (L(i),L(s))
50 i
of A such that aL(i)L(s) 0 in Step 2 of 0ODSO.
Procedure:
Step 1. Set i and j to 1.
Step 2. If j=n, then terminate the algorithm; otherwise, set j=j+1,
and execute 0DSO(i,j,n) considering L(i)L(s), which satisfies aL(i)L(s)
#0 in Step 2 of ODSO, to be a line of ST. Set j=t.

Step 3. Set i=i+l, and go to Step 2.

[Algorithm DF] (Spanning Tree)
In and Out: Same as algorithm BF.
Procedure:
Steps 1and 2. Same as algorithm BF.
Step 3. If no node L(s) satisfying aL(i)L(s)%O in Step 2 of 0DSO

exists, then set i=i-1; otherwise, set i=j. Go to Step 2.

Algorithm BF can easily be understood by viewing [L(i),L(i+1),---,
L(j)], 1<i<j<n, as a queue inwhich every element is a node waiting in
line for expansion [34]. After the expansion of L(i) by ODSO, node

L(i) is deleted from and its successors are inserted into that queue



by increasing the values of i and j. (Successors of L(i) are nodes
adjacent in ST to L(i). Node L(i) is called a parent of these suc-
cessors.) A row for ODSO in BF method, which corresponds to a node

for expanding the tree, is selected in the order [L(1), L(2), ---,

L(n)]. In DF method, however, a back-tracing procedure into L is needed

to find a row for 0DSO, and then many elements of A will be referred

twice or more.

A.5 Connected Component

Two nodes disconnected in G are also disconnected in a spanning
tree of G. An algorithm for finding connected components is then
formulated by adding only one conditional statement to Step 3 of

algorithm BF.

[Algorithm CC] (Connected Component)
Out: The node of every connected component are lined in a continued
part of label array L.
Procedure:
Step 1. Set i and j to 1. Let L(1) be the first element of a

connected component.

Step 2. If j=n, then terminate the algorithm by considering L(j)
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to be the last element of the connected component; otherwise, set j=j+l1,

and execute ODSO(i,j,n).

Step 3. If j=i, then let L(i) be the last element in L of the



connected component, and L(i+l) be the first element in L of a newly

generated connected component. Set i=i+l and j=t, and go to Step 2.

A.6 Maximal Spanning Tree

The spanning tree, where the sum of the line weights is maximal
of a line weighted graph (shortly weighted graph) GW’ is called a
maximal spanning tree MST. The concept of MST is used in Chapters 2, 3
and 4 for the graph-theoretical clustering schemes. Let T be a subtree
obtained by removing the lines of MST whose weights are not greater
than a given threshold value t. Then two nodes in T is connected by
at least one path (called a maxmin path) whose minimum line weight
is not greater than t. A node set of T, therefore, becomes one of the
single linkage clusters of GW' An MST generating algorithm is obtained

by modifying Prim's algorithm [70].

[Algorithm MST}] (Maximal Spanning Tree)
In: Labeled similarity matrix A of GW'
Out: Refer to algorithm ST.
Procedure:

Step 1. Set i=l.

Step 2. Exchange the contents of L(i+l) and L(k), where node
L(k) (i+l<k<n) shows the greatest similarity to L(3i).

Step 3. Set i=i+l. Let L(i)L(s) be a line of MST, where L(s)

(1£s<i-1) shows the greatest similarity to L(i).
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Step 4. If i=n, then terminate the algorithm; otherwise, go to

Step 2.

A,7 Clique

The most efficient clique finding algorithm in the previous works
has been proposed by Bron and Kerbosch [9]. Their method, however, is
not so useful for a sparse graph. Here a new clique finding algorithm
is formulated which works effectively for a sparse graph without any
extra two-dimensional storage. The next theorem is important to show

the correctness of any clique finding algorithm.

Theorem A.1: Let K (IK|=i—l, i>1) be a set of adjacent nodes
in G with each other. Further let Q be a set of nodes adjacent to all
of K, and R be any subset of Q. If any clique having, as its nodes,
all of K and some of R is already found, then a new clique having all
of K includes at least one node, which is a member of Q-R (=P) and
not adjacent with some of R. Hereafter R (or P) is denoted by R(i)
(P(i)) as the already examined nodg set (unexamined node’set) at

level i. Similarly K is expressed as K(i).

Each of K(i), R(i) and Q(i) can be expressed, by rearranging the
contents of L, as was shown in Fig. A.1(a). Here LIST(i) and ALDY(i)
denote the last and the first positions in L of the nodes of Q(d)

and R(i) at 1level i, respectively. Set S(i) is a collection of



i+l

ALDY (i) LIST(i)

Fig. A.1(b). Arranged pattern of L at level i+l.

—K(D) —¢ P(4) % R(1) ——) s —
£ Q1)
Fig. A.1(a). Arranged pattern of L at level i.
1 i+l ALDY (i+1) LIST(i+1) ALDY (i) pi,i+l LIST(i)
| )| -
F—K(i+1) —-)Ie;PSﬂ) —¥— R(i+1) = K R, (1+1)7) s, (1+1)-)
Q(i+l) ——

8TT
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nodes which are not in Q(i), and adjacent to all of K(i). If P(i)=0,
then a complete subgraph K with nodes K(i)VU{L (i)} can be considered
as a candidate for a clique. On the other hand, if P(i)#@, then K
should be expanded by adding to K a node adjacent to all of K (see
(IK1) and (IK2)). To do so, execute 0DSO on P(i)-{L (i)}, on R(i)

and on S(i) independently, and obtain Q(i+1), R(i+1) and S(i+1)
(=Ri(i+l)USi(i+l)). Set Ri(i+l) is a collection of nodes adjacent to
L(i). Set Si(i+l) is a collection of nodes which are adjacent to all
of K(i+l), and are members of already examined nodes at level j (<i).
More explicitly, Si(i+l)= ;E;Ri(i+l)' Set R(i+1) is initialized to
# by setting ALDY(i+l) to LIST(i+1)+1l. After all complete subgraphs
having K(i+1)U{L (i+1)} are found, node L(i+1) is incorporated into the
already examined node set R(i+l) at level i+l. The index pi,i+l’ ex~-

pressed by the sign bit of an element in {aL(i+l)L(Pj )[lfjfi}, is

i+l
used to indicate the position of the last element in £ of Ri(i+1),band
then the set Rj(i+l) (1<j<i) is located in a continued part [L(ALDY(j)),
RN L(pj,i+1)] of L. Thus node set K(i+1)U{L(i+1)} constitutes a clique
iff P(i+2), R(i+1l) and S(i+1)=p.

The selection of node L(i) for expanding K(i) is executed as:

(IK1) Let cy in R(i) be a node having the smallest connected number+

in SG whose nodes consist of K(i)UQ(i). Then select as L(i) a node

in P(i) not adjacent to cy in G (see Step 6).

+ A connected number of ¢y is a number of nodes connected to c; in SG'
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The following rule is applied in addition to IK1 for the graph
having a locally dense matrix.

(IK2) Execute ODSO on S(i) and select a level h (<i) such that
set P(h) contains at least one node useful for expanding a complete

subgraph K(h) (see Step 5).

[Algorithm CL] (Clique)

In: Labeled adjacency matrix A.

Note: Variables m and f used for indicating the levels satisfying
R(m)=@ and Rl(f)=~--=Rf(f)=¢, respectively. Note that K constitutes
a clique when m>f.

Procedure:

Step 1. Set i=0, m=n, LIST(1)=n, ALDY(1l)=n+1 and K=L(1).

Step 2. Add 1 to i. TIf i>n, then terminate the algorithm. Other-
wise, if i>m, i.e., P(i)=f, then go to Step 3; otherwise, execute ODSO
(i,it+1,n) to extend K by L(i+l) setting the signs of L (1)L (s) (and
aL(s)L(i)) for all s, itl<s<m, to (+). Set m to the value of t in
Step 3 of 0ODSO, and set LIST(i+l)=m and ALDY(i+1)=m+l.

Step 3. Execute ODSO for nonempty set Rh(i) with the highest
level h (l<h<i) setting the sign of A (1)L (s) (and aL(s)L(i))to (-) in
Step 2 of ODSO. At this time, for the value t in Step 3 of 0ODSO, put
the (-) sign to 3 (1+1)L (t+1) (and aL(t+1)L(i+1))’ and set f=1i.

Step 4. If Rh(i)=¢ for all h, and ODSO in Step 2 is not executable,

then go to Step 5; otherwise,go to Step 2.



Step 5. If m>f, then consider K to be a clique, and set i=m.

On the other hand if m<f, then select the greatest r (by rule IK2),
l<r<m+l, satisfying LIST(r)>f, and set r to i.

Step 6. Compare the disconnected numbers for cy and L(i) at
level i (ci=L(iL when R(i)=@), and select a new 4 based on rule IKl.
Further exchange L(i) for a node L(s) in P(i) disconnected from cy -

If one of the above disconnected numbers is 0, then set i=i-1, and
repeat Step 6 until both disconnected numbers are non-zero.

Step 7. Delete 1 from ALDY(i), and exchange L(s) for L(ALDY(i)).

Set m=ALDY(i)-1, and go to Step 2.

A.8 TFundamental Cycle

Finally, let us formulate a fundamental cycle finding algorithm
[30] to show how the matrix rearrangement procedure works effectively.
The formulation of such an algorithm is important to analyze various
graph~theoretical structures. Note that any line, called a chord, of
a graph G not in a spanning tree ST of G, will yield a fundamental
cycle. Any chord of ST can be expressed by 1l's element in area

R={lay (1) (a+1)*”
of the output parameter t of ODSO for L(i-1) (refer to algorithm BF).

.’aL(i)L(ti_l)]|1<l<n} of A, where t, 1 1is the value

The following theorem is used to compute a fundamental set of cycles.
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Theorem A,2. For any chord L(x)L(y) (x<y) in R, it is true that
the location z in L of the parent node of L(y) is not greater than that
of L(x).

Proof. Assume that the value of z is greater than that of x. Sup-
pose first that L(x) and L(z) are not adjacent in ST with each other,
then ODSO for L(x) 1is executed before ODSO for L(z), and we have z>y.
On the other hand, suppose that L(x) and L{(z) are adjacent, then the
line L(z)L(y) of ST becomes a chord of G. Both cases lead to the con-
tradiction, and then we have z>x. Similarly, it is true that the

location in L of the parent of L(x) is not greater than =z.

[Algorithm CY] (Fundamental Cycle)
In: Same as algorithm BF.
Note: Steps 1, 2 and 3 generate a spanning tree ST of G, and Steps 4, 5
and 6 find a set of fundamental cycles through ST. A one-dimensional
array PARENT stores a pointer PARENT (i) (1<i<n) to indicate the position
in L. of the parent of its successor L(i).
Procedure:

Step 1. Initialize i and j to 1.

Step 2. If j=n, then go to Step 3; otherwise, set j=j+1, and
execute ODSO(i,j,n) setting PARENT(s)=i for s such that aL(i)L(s)%O'
Set j=t+1.

Step 3. If i=n, then go to Step 4; otherwise, if i=j, then set

j=j+1 and i=i+l1. Go to Step 2.
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Step 4. Select a new chord L(x)L(y) (l<x<y<n) from C={[L(i+1),---,
L(ti_l)]}. If no new chord exists, then terminate the algorithm; other-—
wise, go to Step 5 to generate a new fundamental cycle C by putting L(x)
and L(y) as the members of C.

Step 5. Set z to PARENT(y), and add L(z) to C. Set y=x and x=z,
and repeat Step 5 until x=y.

Step 6. Go to Step 4.

An efficient cycle finding algorithm CY, which is coded into a PL/I
procedure, is seen in [30], where algorithm CY and algorithm BGENERATOR
ptoposed by Gibbs [20, 40] are compared. Some of the reasons for the
superiority of CY over BGENERATOR are: (i) CY needs, as the extra-
storage requirement, two linear lists L and PARENT, and some variables.
No copy of the input graph is necessary, for adjacency matrix A is not
destroyed in the process of CY; (ii) Any element of A is referred only
once in CY, but in BGENERATOR many elements will be referred twice or
more; (iii) CY is coded succinctly, and is available for a disconnected

graph as well as a connected graph.
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