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PREFACE

     The explosion of stored document information and the wide spread

utilization of document data banks require that the computer aided

information retrieval systems should be designed to permit automatic

processing of a large amount of documents and various information

queries of non-expert users. The success of automatic data banks and

retrieval systems depends upon the aecurate and consistent description

of the document data, which includes i!1-structured or ambiguous proper-

ties'of natural language. It is then important for the processing of a
                                                                         'large amount of documents to make fundamentaZ studies of analyzing

conceptually the natural language document sentences, and retrieving

effectively the relevant document information to the various types of

submitted queries. Many of the existing retrieval systems utilizing

conventional library technlques of manual keyword indexing, however,
                                  '
have been inefficient to permit sudh a flexible treatment of the stored

document inforrnation.

     This thesis discusses, leaving information storage and retrieval

tasks under manual keyword indexing to the librarians, the automatic

method of obtaining document themes through the relevancy coTnputation

between the stored inforrnation and the given queries. It is noted that
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the analysis, classification or description of textual information for

                                                 'easy relevancy judging is scheduled so as to handle a large amount of

document data covering wide variety of specified topics, and to control

the future extension and changes of the document collection. An auto-

matic analysis and matching method of textual data is then presented

based on a predicate network for the document sentences.

     After the drawbacks of conventional information retrieval (IR)

systems are indicated in Chapter 1, the methods of generating a word

usage dictionary and decomposing document sentences into predicative

expressions are discussed in Chapters 2 and 3. The relevancy of the

documents to the information queries is obtained by computing, via the

dictionary, the similarity between predicative expressions of the

document sentences and the queries. Since the automatic systems ig-

noring the prevalence of ill-structured information have seriously
        '
failed to live up to their technological promise, the specification

of ambiguous property of document sentences might be important to the

contextual information analysis for natura! language IR systems.

     The rnethod of organizing a structured file is discussed inChapter 4

            '                                  +for the fast retri.eval of the required information. The document infor-
                                     '
rnation retrieved from the structured file is arranged according to the

magnitude of relevancy coefficient to the submitted queries. When a
                                                                       '
data bank of natural language documents is searched for answering effec-

tively the submitted queries, the specification of ambiguous data becomes

one of the important factors for the well-structuring of the document
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file.

     Some of the other fundamental problems in IR tasks are stated in

Chapter 5, which is the concluding chapter. Finally in the Appendix

severai algorithns, together with a new data structure for expressing

in the computer an undirected finite graph, are formuiated for extract-

ing graph-theoretical concepts which are used in this thesis.

Toyonaka. 0saka. efAPAAI Tetsuro Ito
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CHAPTER 1

lntroduction

     The hasae funetion of an automatie informatton ?etntevaZ

system is diseussed in eompardson with the rnanuaZ keywoTd

indexang systems. ft is suggested that fR systems shouZd he

designed so that it ean tpmeat the pyohZem of whioh doewnents

aTe eoneeptuaZZy reZated to the given query. The notions o'f

an antomatae dietiona?y constr)zxetaon and p?edieate netwo?k

                        '?epT?esentataon fo? natuTaZ Zanguage te:t ppoeessang. and a

stor?uetuveed fiZe o"ganigation fo? fast Tet?aevaZ of veequaor?edl

doewnents a?e intModueed using gyaph-theoTetieaZ eoneepts.



1.1 Znformation Retrieval in Laboratory Environrnent

     The problems of retrieving document information in a laboratory
                                               '                                                          'envirorment are classified into the following two types.

     1) Selection of the documents which inelude the specified bib-

liographie elements used for recording such as the title of a book,

author's name, publisher and place of publication, etc.

     2) Selection of the documents whose information contents refer

to the subject fields of the submitted queries.

     A descriptive cataloging technique employed in a conventional

library system provides the main file searehing tool for the first

requirernent. Another cata!oging operation, i.e., subject cataloging,

whidh is defined as the systematic indexing of the documents by the

class numbers or keywords for representing the subject themes, has

                                                                   'also been used in IR systems to answer the second prob!em. Some of

the classification schanes for subject cataloging, e.g., Universal

Decimal Classification (UDC), colon classification, or subject catalog

in alphabetic order, are well known to the librarians [3, 35]. The

set of index terrns covering these schemes is called an authority

list of a controlled vocabulary of terminology.

     From a historical consideration shown above, the authority list

designed in the manner to cover a wide variety of specialized themes

seems to give an unsatisfactory solution to the content analysis of

professional journals, technological assessrnent reports, etc. The

2
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manual analysis of such professional materials, however, needs time

consuming and costly perusal process of document classification or
                                          'subject heading assigrment, and most of the research workers use non-

                                'authorized vocabularies to index their documents and search requests.

Thus it is hard for information retrieval to use the subject cataloging

schedules of historical types. These defects corne frorn the fact that the

strictly restricted or well-structured identifiers of discrete information

are used for the subject analysis of documents including eomplex subject

entities. Since any document in general has many aspects of information

contents showÅ}ng high relevancy to various search queries, the success

of inforrnation retrieval systems depends upon the fundamental study of

analyzing contextually the document data and obtaining effectively the

relevancy between the documents and the queries.

     This thesis presents a method of representing document sentences

in the network form of predieative primitives so that the relevancy
                                              '
computation between two sentences could be autornatically carried out.

The subject themes of documents are then interpreted by the "relevancy"

between the sentences of the docdments and the search requests. Such

approaches to text processing will becorne more promising as both the

technology for handling a fast-aecessible memory with a large eapacity

and the method of knowledge representation studied mostly in the field
                                                        '
of artificial intelligence become more available.

     Any sentence in the predicate network is expressed by the combination

of predicate patterns and word classes to show how the words are used
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in the given document sentences. The predicate network is, by its

simple structure of representing conceptual relations between

sentences, useful for the processing of large textual data for document

retrieval. Further its flexibility of expressing content information

would contribute to the high retrieval performance of IR systems.

     The structured file organization, from which the required documents

are retrieved by arranging in the order of magnitude of relevancy to

the query, is also proposed for the effective searches of a document

file. Since the performance effectiveness of an TR system is heuris-

tically interpreted based on the user's experience, the arranged output

of'  the document list is useful for a direct evaluation of ranked posi-

tions of relevant documents. Also, the relevancy between two documents

should be properly formulated for the effective search of the structured

file.

1.2 Historical Survey

     During the last decade many experimentai or practical information

retrieve,1 systems have been developed in various controlled environments.

But nowadays only limited systerns employing manual or semi-automated

keyword indexing sehedules are put into practice for handling "real
                        'world" informatÅ}on. The Sl![ART document retrieval system [46-52], among

                                '
others, designed at Harvard University, and operated at both Harvard

University and Cornell University by Salton, has provided a lot
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of experimental tools for an automatic document processing method, and

has influenced on many other retrieval systems. This system can take

documents and search requests in English, i.e., natural language, by

fully automated rnanner, and can retrieve, utilizing feedback information

from the user population, the documents beiieved to be most relevant to

the submitted queries. Further several evaluation parameters for the
               '
measurement of the systern performance have been introduced for the ap-

propriate comparison of different types of analyses and search pro-

cedures [50]. Some of the theoretical studies have alsb been ,carried

ou,t for language analyses including subject indexing and thesaurus

construction [1, 2, 7, 8, 16, 24, 36, 48, 59, 67], and for file organ--

izing and searching methods [11, 12, 32, 49, 56, 62].

     The earlier study of computer aided information retrieval was

devoted to computerizing the already existing library systems [3, 35],

where documents were indexed using descriptive and subject catalogs,

and the required documents were selected by the set-theoretical matching

between descriptors. The preparation of an accurate and consistent

cataloging schedule by hurnan endeayor, however, is too poorly accom-

plished and too time consuming. As the data processing ability of

computers increases, the researches have advanced into the statistical

study of indexing [8, 36, 46], abstracting [16] or analyzing the docu-
                              '                                                                '
ments by the computer aids: The techniques based on the syntactic pro-

perty of sentences [2, 58] were also designed for automatic or semi-

automatic subject analyses. These ideas, however, are of no use when the
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retrieval system is intended to work on the more general document data

base than the precisely defined one, for the prevalence of ill-struc-

tured or ambiguous properties of natural language document sentences

has prevented the IR system from the successful autornation of storage
                        'and retrieval tasks. Present-day studies of language analysis [6, 10,

17, 22, 53, 54, 55, 65] have been prosecinted by the formulation of

                     'a semantic network model for representing conceptual comprehension

process of question answering, sentence paraphrasing, story under-

standing, etc.

  ' Keyword indexing technlques (utilizing purely manual, machine or

man-machine combination means) intended to retrieve the bibliographic

information identical to the query indices have also been used for

organizing a document file. Burkhard [11], Jardine [32], Salton [49]

and Shapiro [56] have intended to solve the problem of searching effec-

tively the document file by constructing the groups of the related
                                            '
documents. FUing methods now have been studied in re!ation to the

data base teehnology for dealing with the data availability, privacy,
                                  'security or independency [12, 13, 14, 37, 44].

     When these new techniques are intended to be applied to the re-

trÅ}eval of document information, they should be modified so that a large

amount of specialized textual materials will be systernatically processed.

The study of the evaluation method of system performances is also an
          '
important problem. Ricchio and Keen [50] have presented, in this

connection, some of evaluation parameters in addition to the usual
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recall and precision factors. Lancaster has evaluated t'horoughly in [35]

the operational and economical perforrnance of IR systerns.

1.3 Graph-Theoretical Approaches to Information Retrieval

     Fig. 1.1 outlines the fomnal tasks of information retrieval systerns

using relevancy computation between the documents and the search queries

(the IR tasks generally are explained as the storage and retrieval process

of bibliographic data), where notation a (actual data) denotes the set

of data usable as an input to the detailed process p, and notation n

denotes the description of another needed information for the execution
                      'of p. As shown in Section 1.1, the success of the information retrieval

system depends upon how well the document information is analyzed and

then organized to obtain the conceptual pmelevcrney between document
                                                                    '
sentences.

     This thesis describes a graph-theoretical scheme of analyzing docu--

ment data using a similarity weighted graph Gw. The nodes of Gw cor-

respond to the natural language units (words, sentences, documents, etc.)

and the weighted lines to similarity values between those units.
                '
Similarity weighted graphs were often used for analyzing various

problems related to IR studies [2, 7, 24, 58] because of its concise

expressing power of complicated relations in multivariate data.

     It has been emphasized that the intensional characterization of

the words rather than the extensional one is needed to the semantic
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Process Description

a)inputtexts,stopwordsandfunetionwords
11. p)storingofdocumentinformationinthe
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1 n)(llwnan)ÅÄ(3.l)+(3.2)
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accordingtosimilarityvalues.
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31.
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32.
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4REFINEMENT n)(llzanan)•(U.2)
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p)settlingofanewinformationquery
n)(l.2)

Fig• 1.1. Modeling of IR system.
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processing of natural language sentences. Here, since the IR tasks

are explained as the relevancy computation process, any word is char-

acterized by relating it to the synonym word classes in which each

class corresponding to a word application area consists of the words

having similar usage experiences within the given document sentences.

Thus the similarity, i.e., line weight of Gw, between two words x and

y is obtained by their usage experiences as follows: Let F--{z: Fxz}
                           'and F'={z: Fyz} be classes (or class abstracts in Quine's notation[43])

for predicate F, which purport to designate the sets of all words z

such that Fxz and Fyz, respectively. Then the similarity between x

and y via F is given by the concretion of a relation abstract RF={(x,y):

x and y have the similar usage experiences with respect to F and F'} with

(X,Y) aS: fRF(X,Y) fOr XRFY (f: XXX -> [O, 1])• A set {G} of undireeted

graphs is derived by considering a line of Gw having a specified weight

to be a line of G.

     Chapter 2 discusses, by assuming graph Gw for a word set is given,

methods of extracting synonymous word classes and ambiguous words

based on cliques and cut-nodes. Two types of complexities caused by

the ambiguous properties of the words are introduced to define multi-

ple meaning words. The notion of multiple meaning is important to

analyze formally the natural language document data consisting of a

mix of well-structured and ill-structured information. The clustering

schemes using cliques to obtain word classes have been believed to be

invalid when an input graph is large in node size. The computing speed
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for generating cliques increases in the order kn (k is an integer)

for n nodes. It is noted, however, the 'speed of a clique finding

algorithm mainly depends upon the line density rather than the node
      '                                                              'size. Thus there is no problem from a computational viewpoint to use

cliques for analyzing graphs with a sparse matrix representation.

     The contextual analysis of document sentences for obtaining simi-

larity between two words (or sentences, documents, etc.) is attempted in

Chapter 3 using a network representation of predicate patterns and word

          'classes, called a predicate network. An autornatic method of constructing

a predicate network is an iterative procedure such that predicate pat-

terns for relating words (which appeared as the argument values of the

predicate patterns) are settled based on word classes, and conversely
                            '
words are grouped based on the similarities of their usage experiences

on the predicate network at the previous iteration. Thus both a predica-

tive expression of a sentence and a word usage dictionary are needed for

automatic natural language information retrieval.

     Chapter 4 aimed at organizing hierarchically related document
  '          'files for the effective retrieval gf yequired information covers a

rnethod of arranging the document data in a decreasing order of similar-

ities between documents. The result of file searching is ranlced output

of the document list, which contributes to the performance efficiency
  '
of an automatic IR system. Also well-structuring of ambiguous documents

is an important factor for the fast retrieval of required resu!ts. The

docurnent files are shown to be placed on a storage hierarchy which is
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one of the most desirable formulations for storing a large amount of

document data.

     In Chapter 5, other Å}mportant problems in the IR fields are briefly

outlÅ}ned, and in the Appendix a new data structure for expressing graphs

Gpg or G is presented using a labeled similarity or adjacency matrix, and

several algorithms for extracting graph-theoretical concepts used in this

thesis are formulated based on a matrix rearrangement procedure.
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                 CHAPTER 2

         Dictionary Construction

                            for

Natural tanguage Text Processing

     A gTaph-tkeoi7etieaZ method of eonst?ueting a woor7d usage die-

tigna?y is pyesented foT an automatie eontent anaZysas of cioewnent

sentenees. M?st an aZgoyathm based on the fuggy tponsitave in--

equalaty is foorvnuZated fo? defining a g?aph from whieh aZZ the

synonymobls wo?d paiTs and crrnbiguous wo"ds of the given data a"e

extor?aeted. ft is shown that both synonym eZasses and ambaguous

wo"ds ave speeified hy usang eZaques of the graph. Seeond two

types of eomplexities eaused hy the crmhaguozas pmopeyty of the data

aTe defined to find nuZtapZe mecmaing wo?ds. The notaon of muZtipZe

meaning is used foT ohtaining appZieatZon czreas of any wo?d withan

the t"riven data set. impe"imentaZ eonst"uetion of' a dietionavy

opepated on a set of veyhs in the seientifae doewnents is aZso

anaZyged.



2.1 Introduction

     Natural language information retrieval systems have firstly been

developed at the aim of performing an automatic content analysis of
                                                '
texts and search queries for determining the relevancy between them

[50]. Early computer aided information retrieval systems, most of

which were developed from manual library systems, utilized the already

established calssification schedu!es to decide which categories would

fit the given itens most reasonably, and to search the file for the

required bibliographic information. The assigrment of subject iden-

ti.fiers to the doeuments, however, are not suitable to discriminate

the underlying subjeets of the stored items. The problem of automatie

content description and analysis of written texts would be solved by

establishing a computational method of representing syntax and seman-

tics of natural language document sentences.

     Various types of semantic dictionaries (including a semantic

network) have been concerned with the contextual analysis of natural

language. As exp!ained in Chapter 1 (that the formal information

retrieval task is the relevancy or sirnilarity computation process

between document sentences), the dictionary which correlates the

synonyms with one another based on the usage experiences in the given

documents is necessary in information analysis. The synonymous

property of the words, however, eauses logically the ambiguous

                                                             'property which brings the complexities or irregularities of the syn-

tactic and semantic relations of natural language. The specification

13
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of ambiguous words and, if possible, their proper application areas

or senses in a given context is therefore an important problem for

the automation of natural language information retrieval. The im-

proper specification of ambiguities is shown to cause an incorrect

recognition of the word senses. Further the efficiency of file search

algorithms is affected by the existence of ambiguous documents.

     The estabZishment of an automatic method of constructing syno-

nym dictionaries has been attempted by various research workers.

Borko [8] and Anderson [1] used the principles of factor and latent

an41yses to find synonym classes from a similarity matrix of the

given data. Their techniques are only applicable to the analysis of a

word set rather small in size because of their complicated computations

and manipulations of the matrix. Other methods [2, 24, 59] based on

graph-theoretical conceptshavealso been presented for finding synonym

word clusters. The graph was introduced as a model of describing a

similarity relation on the data of rnultidimensional space. These

graph-theoretical techniques have defined graphs by setting a thresh-

old level or a nearest neighbor rule to the similarity matrix. Dic-

tionaries generated by using such automattc methods, however, do not

successfully handle ambiguity and synonyrny in natural language, and

then seem not to be appropriate for the semantic processing of
                           '
natural language texts.

     The graph-theoretical method developed here [27, 29], given a

usage simi!arity of every word pair, generates a dictionary to obtain

14
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word application areas for the contextual analysis of textual data.

Note that the specification of mord application areas is required even

when the words are disambigulated contextually in a specified sen-

tence. First an algorithm based on a fuzzy transitive inequality is

presented for determining a synonym graph G of a given word set. The

synonym graph G, from which synonymous word classes and ambiguous words

are extracted based on the cliques, is produced by corresponding a

word and a synonym indieation between words to a node and a line of G,

respeetively. Next a method of finding rnultiple meaning words is

proposed to treat the complexities or irregularities of the semantic

relations which are caused by the arnMguous property of the words.

The word application areas are, therefore, obtained by specifying the

synonym word classes of characteristic non-multiple meaning words.

The computational experiment operated on a set of verbs drawn from

ABSTRACTs of 100 documents in IEEE Transactions is made to show the

validity of the proposed methods.

2.2 Basic Coneepts and Their Expressions

     In this section, let us describe some definitions and notations

for the generation of a word usage dictionary. The notion of fuzzy

expression of a relation is first introduced to measure the similarity

of the usage experiences for any patr of words tn a sentence collection.

     A fuzzy expression of any relation in a given word set X is



defined as follows [68, 69]:

                                '     Definition 2.1. Let R={(x,y): xRy} be a relatÅ}on abstract [43]

whieh purports to designate a relation of all word pairs (x,y) such

that xRy. Then the fuzzy expression of R is a function f                                                             such that:                                                          R

          fR(x,y) for xRy, fR: xxx + [o, 1] (=L) (2-1)

                                                ,where L is a complete lattice ordered semigroup .

     VJe write aub for the least upper-bound of a and b (a,beL) and

a*b for the cornposition. When R is an "ordinary" relation, it is

written in the same notation as R. Hereafter the function fR(x,y)

is used to show the similarity of the usage situations for x and y.

     The natural language coding of semantic entities could, if it

had been devised logically and scientifically, have embodied the

well-structured rule of "one name-one sense." Though such uniformity

would only be practicable within certain limitation, more than one

word is likely to be used to denote the specific entity in the glven

discourse. These words, called synonyms, should be treated together as

a semantic unit for the processing.of natural language. The synonymy,

t Cornplete lattice L is called a complete lattice ordered semi-

group when L is a semigroup with identity under the operation *, which

satisfies a* Y.aiY.(a*ai) and (Uiai)rka=-U.(a;a) for a, ateL [21]. We can

employ X(product) or min in place of * for example.

16



as we shall see, leads logically the other elasticity, i.e., arnbiguity,

of natural language. The next is the definition of a fuzzy synonym

relation.

           '
     Definition 2.2. A synoymous word pair set {(x,y)} (=E) in any

similarity relation R is defined as a collection of the pair of words

                                                            wx and y satisfying (2-2), (2-3) and (2-4) for (x,z),(z,y)GEUE.

Reflexive law:

               V(fRuR(X,Z)) S fR(X,x).                                                           (2-2)

Symmetric !aw:

  . fR(X,Y)=fR(Y,X)• (2-3)
Transttive law:

               V(fR(X,Z)"fR(Z,Y)) S fR(X,Y)#                                                           (2-4)

                             -.-Here x, y and z are in X, and R is the converse of R.

Thus the word pairs almost equal in similaritr constitute a synonym

                                    '

     The other complication, ambiiguous property, is responsible for

the difficulty of a formal treatment of natural language woTds. Quine

[42] indicated that if word y is synonymous with some word x in one

sense of y and with another word z in another sense of y, then y may
                                             '
be called to be ambiguous. Here, by a fuzzy expression, the ambiguity

                        'is defined as follows:

     Definition 2.3. Let (x,y) and (y,z) be synonyrnous word pairs

in R. Then y is said to be an ambiguous word with respect to R iff

17



the following inequality holds:

              fR(X,Y)ftfR(Y,Z) > fR(X,Z)• (2-5)

Thus the ambiguous property comes from the usage explications of a
                                                                '
word in various contextual situations. rt would be impracticable

however to have separate symbolic expression (i.e., word) for every

referent situation.

     Finally let us define the meaning of any word by introducing a

new reflexive and symmetric relation Rrk whose value of the fuzzy

expression fR* for the word pair not satisfying the fuzzy transitive

inequality is O. Here the term "meaning" is used in the sense "al-ike

in meaning" [42]. '
     Definition 2.4. The meaning M(y) of any word y in X is a synonym

class{x:xRrky} of y, and the fuzzy expression of M(y) is a function

gM(y) such that:
                                                           '                      gM(y) (X) = fR" (x,y)• (2-6)
       '

Since the synonymous words should be treated as a semantic unit by the

likeness in their usage situatibns, the "meaning" of any word means

a set of sernantic units to show how the word is used in relation to

the other words. Hereafter every word is considered as a conceptual

entities by relating the word with its meaning. Set X in which the

meaning is defined for any word is called a meaning space M(X), and
                                                                '
the meaning space in which the various semantic entities, e.g., syno-

nymy, ambiguity, multiple meaning, are specifiable for any word is

18
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calted a word usage dictionary.

     !n the followlng section, t'1)e algorithm, called algorithm A, for

obtaining synonym relatton Rkjs formttlated by giving a fuzzy expression

fR of a similarity relation K'. The simtlarity relation for word set

is practically computed bcased on the word usage experlences in the

document sentences.

2.3 Algorithm A

     The input to algorithm A is a fuzzy expression fR of a siinilarity

relation R satisfying fuzzy reflexive and symmetric laws. Algorithm A

is intended to extract synonymous word pairs by the iterative execu-

tions of Steps 2, 3 and 4. In Step 2, it is examined whether a pair

in set Y, which is used to hold the synonymous word pairs, satisfies

the fuzzy transitive inequality or not. Any pair not satisfying the

transitive inequa- lity is excluded from Y to note that this pair is

nonsynonymous in this iteration. In Step 3, word pairs which are

restored to Y as the synonymous pairs are selected based on the fuzzy

transitive inequality. The condition of the termination that the set

of synonymous pairs newly selected in Step 3 is the same as the set in

the previous iteration is tested in Step 4. Set Y is initialized,
            '
since no synonyrnous pair is known beforehand, to the collection {(x,y)}

                        '                 2of all pairs in X , and sets E and F, which is used to store the pairs
                 '
deterrnined to be synonymous in Step 3, are initialized to empty.



 [Algorithm A] (Synonynous Word Pairs)

                                                                     '                                                         .bi rn8cedSu)II:tl[triC SiMiiaritY MatiiX R (any diagonal eiement is set to i).

           '
     Step 1. Let Y be a set of all word pairs (x.,x,), ISisn, ls!jSn
                                                 IJ
(n=IXI), Å}n X. Initia!ize both E and F to Åë. .

     Step 2. Delete from Y all pairs (xi,xk) not satisfying the fol-

lowing inequality for some xj such that (xi,xj) and (xj,xk)GY,

            fR(Xi,Xj)*fR(Xj,Xk) .S fR(Xi,Xk)• (2-7)

     Step 3. If a pair (xi,xk) in Y (the complement of Y) satisfies

inequality (2-7) for all xj such that (xi,xj) and (xj,xk)GY, then

set Y=YU{(xi,xk)} and E"EV{(xi,xk)}•

     Step 4. If EIF, then go to Step 2 setting F to E and E to Åë;

otherwise, continue to Step 5.

     Step 5. Define the fuzzy expression of a new relation R* to be

f sueh that: • . R*
                                                                  '            fR* (xi,xj) =(f:(Xi'Xj) l.i :ll:lle6"i..] (2-s)

                                 .• .IJ
                                 '
and terminate the algorithm.

     Set Y in Step 2 is monotonically deereasing in the number of ele-

ments during the successive executions of Steps 2, 3 and 4. rt is

possible to show that all of Y is synonymous word pairs in R and all

   "                                                       'of Y is nonsynonymous word pairs.

20
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     Theorem 2.1. Set Y in algorithm A converges, in a finite number

                                                         'of steps, to the set of all synonymous word pairs in R. '

     Proof. Let the ith (i2:1) cycle be the ith execution of Steps 2,3

and 4, and let T2i+1 (or F2i+1) and T2i+2 (F2i+2) be the timing expres-

sions of set Y (Y) in Steps 2 and 3 at the ith cycle, respectively (The

timing expression of set Y in Step 1 is written as T2). SetS T2i+1

          are said to be the sets of synonymous pairs, and Fand T                                                                and     2i+2                                                           2i+1
F2i+2 the sets of nonsynonymous pairs. Further let Td2i+2 be the

timing expression of set E in Step 3 at the ith cycle (see Fig. 2.1).

     If the sequences <F2i+2> and <T2i+1> of sets satisfy

              F4 C- F6 C- ••• C. F2i+2 C- F2i+4 C- •••, (2-9)

              T3 9Ts g••t gT2i+lgT2i+3 g•••, (2-lo)

then there exists an integer N such that for n2N, F2n+2"F2n+4 and
                                       '
T2n+1=T2n+3. Since, by the definition, F2n+2=F2n+1-Td2n+2 and Td2n+1=T2

'T2n+1• We haVe that Td2n+2=Td2n+4, the condition of the termination.

     Next let us show that (2-9) and (2-10) hold.
                                                     -
     Lemma 2.1. The sequences <T2i+1> and <F2i+2> are monotonically

inereasing with respect to (short!y w.r.t.) set inclusion.

     Proof. For an arbitrary pair (x,z) in T3, consider pairs

(x,y) and (y,z) in T2. Then we have that

                 fR(X,Y)*fR(Y,Z)SfR(X,Z)• ' (2-11)

Since set T2 Å}ncludes set T4, it follows that (2-11) holds for pairs
                                                            '          '(x,y) and (y,z) in T4, and hence T3-C Ts and F3?Fs. Inequality (2-11),

22



                               '
                          '
however, does not hold for any pairs (x,z)EF4 and (x,y),(y,z)E,T3 (IJe

describe this such that F4 is false w.r.t. T3). Therefore, since T3ETs,

F4gF6 and T4?T6. Similarly, we have that T2j+IET• 2j+3 (jsi) and F2j+2

gF• 2j+4 by assuming that T2j-lgT2j+1 and F2j{iF2j+2. Thus, by induction,

the proof is complete.

     Lemma 2.2. There exists an integer N such that for n)N, every ele-

Ment in T2n+4 (or F2n+4) Å}s a synonymous (nonsynonyrnous) pair w.r.t. R.

     Proof• Suppose that Td2n+2IÅë for every n (!ll). Then there must

be at least one pair (s,t) in Td2n+2. If ITd2n+21, the number of the

elements in Td2n+2, is 1, then (s,t)ÅëF2n+3. 0therwise, let us assume

that every pair in Td2n+2 is determined to be nonsynonymous in Step 2

at the (n+1)th cycle. Then for any (x,y)C-Td2n+2, we haVe that fR(X,Sl)

*fR(sl,Y)>fR(x,y) for some slEX such that (x,sl) (andlor (sl,y)) is in

Td2n+2. By the above hypothesis, we have that fR(x,s2)*fR(s2,sl)

>fR(X,sl)>fR(x,y) for some s2 in X• Then (s2,sl) (andlor (x,s2)) is

in Td2n+2, and (x,sl)l(x,y). Similarly for any skGX (k2z3), fR(u,sk)

*fR(Sk,V)>fR(U,V)>'''>fR(S2,sl)>fR(x,sl)>fR(x,y), where u,ve{x,y,sl,

s2,•••,sk.-1}. !t follows that (u,sk) (andlor (sk,v)) is in Td2n+2

and (u,sk)Åë{(x,y),(x,sl),''',(u,v)}; Since the number of elements in

Td2n+2 is finite, there must be a synonymous pair (s,t)ETd2n+2..Thus

(s,t)ÅëF2n+3, which eontradicts T2n+iT2n+3, and hence Td2n+2=Åë•

     By Step 3, it is true that F2i+2 is false w•r•t. T2i+1• Since

Td2n+4 is empty for n->N, T2n+3=T2n+4• Therefore, any element in F2n+4

does not satisfy the transÅ}tive inequality for some element in T2n+4.
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SimUarly, it follows that any element in T2n+4 satisfies the transi-

tive inequality for any element in T2n+4.

     By Lemmas 2.1 and 2.2, we can complete the proof of Theorem 2.1.

     Since, by Theorem 2.1, any word pair (x,y) satisfying fR*(x,y)IO

(word pairs satisfying fR*(x,y)=O may be considered as nonsynonymous

pairs, for these represent a null relation) is mutually synonymous,

relation R* defines the synonym graph G(X) such that nodes and weighted

2ines correspond to words and synonymous word pairs, respectively.

The meaning M(x) (gM(x)(y)fO for yEM(x)) of any word x is expressed

by, the set of all nodes adjacent in G(X) to x. As every nonadjacent

patr is nonsynonymous, two words belonging to a clique, or maximal

complete subgraph, of G(X) are mutually synonymous and no other word

is synonymous with all words of this clique. The following two pro-

perties are used to specify the ambiguity of word x. Here W is an

ambiguous word set w.r.t. R*, and MCS(x) is a set of cliques of G(X)

containing x.

     (!II-1) Word Å~ is a member of X-W iff the number m(x) of elements

in MCS(x) is equal to 1. '
.

     (I!!-2) Word x is a member of W iff m(x) is greater than 1.

Thus the cliques of the synonym graph are the semantic units for ob-

taining the ambiguous properties of natural language words. The algo-

rithms for finding al! cliques of a graph are shown in [2, 9, 23] and

in Appendix A.7.
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2.4 Analysis of Ambiguity

     The identification of the sense of a word in a given sentence is

one of the most important problerns for the automatic content analysis

of natural language document sentences. Since, however, many words

having several senses, called multiple meaning words, are included in

the document $entences, the application areas of every word should

be distinguished beforehand to disambigulate contextually the words

in a given sentence. Here a cornputational approach to determining

multiple meaning words is discussed using the complexity of the seman-

tic relation. The set of word applieation areas is then settled by

clsutering the meanings of non-multiple meaning words so that the

semantic complexities should not be increased.

     Ullmann [61] referred as multiple meaning to the complication of

semantic patterns such that more than one sense is attached to one

word and more than one word to one sense. The rnultiple rneaning of a

word here is treated as one of the chief symptoms of causing compli-

cation of the semantic relations by its ambiguous meaning.

     The number of cliques of G(X) containing a word w is shown to be

sufficient to determine whether or not w has ambiguity w.r.t. Rrk (see

(III--1) and (NI-2)). It may be interesting for specifying multiple

meaning words, or words having multiple meanings, to formulate the com-

plexities of semantic relations based on the cliques of the synonyrn

graph. Two types, i.e., static and dynanic, of complexities are defined

as follows:
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                  '                                                 '
     Statie eompZexity caused by a word whose meaning consists of the

cliques with a small number of common words. The multiple rneaning

word obtained by the static complexity is considered to have several

                                                  'rernote application areas.

     Dynamie eompZextty caused by a word having a more ambiguous nature

in a new meaning space N(X) than in M(X). Space N(X) is obtained by the

execution of algorithm A on a relation S whose value of the fuzzy ex-

pression fs is given by (2-l6). Since in N(X) ambiguity of word w i,s

measured by the number n(w) of cliques of the graph H(X) of N(X), a

multiple meaning word w having a dynamic complexity is one which meets

   '                   m(w)En(w) (ll). (2-12)
The dynamic complexity is analyzed more explicitly as follQws: Note

that each member of M(w) is in general a mernber of N(w). (Consider

the inequaZity fs(Å~,k)rkfs(k,w) S fs(x,w) for xeM(w) and keX. Even if

the value of fs(x,w) becomes smaller than that of fR(x,w), the value of

Cs(x,k) (andlor fs(k,w)) generally becomes smaller than that of fR(x,k)

(fR(k,w)), and hence the above inequality holds (the experimental ana--

lysis verify this fact)•) Suppose firgt that every clique C of G(X)

containing w is homogeneous in H(X). The term "homogeneous" is used

to note that clique C is included as a subgraph in only one clique of

H(X). If the transitive inequality w.r.t. S does not hold for every

nonsynonymous word pair in M(w), then the words in such a pair is not

adjacent in H(X). It follows that n(w) is equal to rn(w). While if

some nonsynonyTnous word pair in M(w) satisfies the transitive inequality,
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then the words in that pair share at least one clique in H(X), and

hence n(w) is smaller than rn(w). Thus, considering that every homo-

geneous clique corresponds to one sense of a word, w which meets (2-12)

is a word with several application areas or "po!ysemy" in the document
                            'sentences. Secondly, suppose that the cliques of G(Å~) containing w '

are not homogeneous, it is possible that, by a word or a synonymous

word pair in N(w) and not in M(w), n(w) is greater than or equai tom(w).

If the cliques having a coamon characteristic word are considered to

be one sense of a word, then word w which meets (2--l2) possesses several

shades of application or "shifts in application."

     From the above consideration, it is shown that a multiple meaning

word obtained by the complexities has several application areas in the

document sentences (These sentences are used to give the similarity

relation R on X). The advantage of this method of specifying multiple
                                                                    '
meaning words is its simplicity ---- the rnethod simply compares the

value of n(w) with that of m(w).

     In the rest of this section, let us discuss the problem of group-

ing set X into the clusters for setting word application areas based

on the notion of muitiple meaning words. Since every word pair in a
                                                                    '
clique is mutually synonymous, each clique can be regarded as a aluster of

synonyms. Such clusters often overlap with each other for the sets includ-

ing many ambiguous words. Gotlieb and Kumer [24], in this connection, have

developed a procedure (called a merging procedure) for combining ciiques
                                        '
into diffuse elasses. Their method of merging, however, does not assure



that the number of nodes of a newly generated graph would not exceed

that of the original graph. Zn graph H(X), on the other hand, there

exists the sarne number of nodes as in G(X). Further it i.s possible

for merging cliques to use the following theorem.

     Theorem 2.2. Let Z={xl, x2, •••, xk} (ksn) be a set of single

(non-multiple) meaning words not adjacent in H(X) with each other.

Then
                                                       '

                       m(Z) 2: n(Z), (2-13)

where m(Z) (or n(Z)) is the total nurnber of cliques of G(X) (H(X))

containing at least one of Z.

     Proof. By the property of the meaning, we have that

              m({x.,x.}) = m(x.) + m(x.) - m(x.x.),
                  iJ i J ij (2-14)
              n({x.,x.}) = n(x.) + n(x.) - n(x .x.),
                              1J IJ •                  IJ

for any x.,x.GZ, where m(x.x.) (or n(x.x.)) is the number of cliques
                          IJ                                     1]         zl
of G(X) (H(X)) containing both xi and xj. If both xi and xj are

members of Z, thenm(xi))n(xi), m(xj)2tn(xj) and n(xixj)=O. Since, by

the previous assumption, any pair og nonadjacent nodes xi and xj Å}n

H(X) is not adjacent in G(X), we have that m(x.x.)=O. Thus
                                             IJ

              m({x. ,x.}) =m(x.) +m(x.) '                  IJ                             IJ
                        )n(xi) + n(xj) = n({xi,xj}). (2-15)

     To complete the proof of Theorern 2.2, suppose that the theorem holds
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for any subset V (IZ) of Z. Since any word x in Z (xÅëV) is independent

of any other word in V, n(VU{x})=O and rn(VU{x})=O. It follows that

m(VU{x}))n(VU{x}), and hence m(Z))-n(Z). (This is an equation when

m (z)-1zl•)

     The similar theorem holds for a set of single meaning words not

adjacent in G(X) with each other. If the meaningsofmultiple meaning

words are distrÅ}buted among those of single meaning words, then al! words

in X are included in M(Z). Considering that the single meaning words are

the characteristic elements of the clusters, Theorem 2.2 gives the basis

for obtaining applicatÅ}on areas for every word of X. '
     Section 2.5 goes on to show the experimental result of selecting a

set {w} of multiple meaning words in Xbased on the complexitieis speci-

fied by the following criteria:
                                               '
     (IV-1) n(w)A and w is a cut-nodet of G(M(w)), a subgraph of G(X)

                             'whose nodes consists of M(w).

     (IV-2) m(w)>2 and n(w)!lm(w).

                                '
              '                                '

2.5 Computational Experiments

     The sample corpus X for the computational construction of a dic-

tionary consists of about 220 verbs selected from ABSTRACTs of 100

+ A set of cut nodes is found by using connected component and

fundamental cycle generation algorithms (see Appendices A.5 and A.8).
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documents in IEEE Transactions. The input to algorithm A is a matrix

representation of a fuzzy expression fR, or a labeied similarity mat-

rix R, of a similarity relation R. A nurnber of similarity measures

have been proposed by various authors [2, 7, 24]. Here a set-theoretical

measure is defined as:

  fR(x,y)=((T+3)IM(x)nM(y)I)1(IM(x)I+IM(y)l+(T+i)IM(x)nM(y)l), (2-i6)

where IM(x)I is the number of words synonymous with x in the thesaurus

dictionary [64] (or in the space M(Å~) for fs(x,y)), and T, which takes

a large value when IM(x)AM(y)l is small in comparison with IM(x)l or

IM(y)1,is a factor for reinforcing IM(x)AM(y)l (T is set to 1 in the

experiment). The thesaurus dictionary used for obtaining fR(x,y) is

employed to give an objective standard for evaluating the computa-

tionally generated dictionary. (The simÅ}larity measure computed based

on the word usage experiences is presented in the next chapter.)

     The efficiency of the proposed method of constructing a dictionary

can be rneasured by the retrieval factor for the semantic entities, i.e.,

synonyms, antonyms, multiple meaning words and homonyms, found in the

above thesaurus dictionary. Sinc6, however, the codomain of the simi-

                                  'larity measure is [O, 1], synonyms and antonyms are not distinguishable

by the computational approach [36]. Further homonymy is regarded as

the same concept as multiple meaning without the support of a context.

The measures, recall Ru (or Rp) and precision Pu (Pp) factors [50], of

retrieval effectiveness are then utilized for evaluating the retrieved

synonyms (multiple meaning words).



     The previously proposed graph-theoretical methods have used the

threshold level (called method B) [2, 7, 24] or the nearest neighbor

rule (called method C) [33, 70] to produce a graph from the similarity

matrix. In method B, a line of the graph corresponds to a synonymous

word pair whose similarity value is not smaller than the threshbld

value T, and in method C, it corresponds to a word pair, one of which

belongs to N nearest-neighbors of the other. Once the graph is pro-

duced, it is possible to find multiple meaning words based on criteria

(rV-1) and (IV-2). A pseudo parameter SL, to exclude unnecessary simi-

larity by setting any value smalZer than the value of SL to O, is

employed in algorithm A for the comparative studies with the others.

     Fig. 2.2(b) shows the result of rearranging the similarity matrix

in Fig. 2.2(a) by algorithm TDSO (see Appendix A.2), which is formulated

for the compression of the similarity matrix R. The rearranged matrix

can be manipulated by subdividing it into the smaller matrices than

the original one.

     The modified version of TDSO, where Step 2 of procedure ODSO in

TDSO is replaced by "If rL(i)1,(s) is not smaller than the va!ue of T,

then exchange the contents of L(s) and L(t), and add 1 to t," can be

used to classify the word set X into the subclasses in which in-class

words are connected by a path of lines having similarity values not

smaller than T. The clustering result of X is shown in Fig. 2.3, where

Mc is the maximal size of clusters, and Nc is the total number of clus-

ters exaept for 1-element clusters. It is seen that the variances of
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the values Mc and Nc for T in (O, O.15) and (O.4, 1.0] are relatively

       'small. This is an indication that the pararneter value in those regions

has little influence on retrieving synonyms and multiple meaning words.

     Table 2.1 presents the timing estimates for methods A and B. (The

cycle number for algorithrn A is the number of exeeutions of Steps 2, 3

and 4, and for method B the number of matrix products required until

any connected pair satisfies the transitive inequality.) The cycle
                                                      '
number of algorithm A is smaller than that of method B. This means

that in algorithm A the similarity matrix can be manipulated by sub-
         '
dividing it in a smaller scale.
   '
     Table 2.2 illustrates some of correctly retrieved, incorrectly

retrieved and non-retrieved correct multiple meaning words (mmw) fol-

lowed by their relevant synonyrns. Correctly retrieved multiple meaning

word w has its two application areas each of which corresponds to the

cliques connected by a single meaning word chaih in M(w).'The word

bound, where m(hound)=n(bouncl)=2, is found by (IV-l). The mutually

synonymous multiple meanÅ}ng words defane and estabZish are selected

by (IV-2). wrien the adjective form (-ing) of a verb is conside.red as

a meaning eletnent, the homonym eZose is correctly extracted by (IV-1)

as a rnultiple meaning word. The retrieval effectiveness for synonyrns

and rnultiple meaning words w.r.t. various values of SL, T and N is given

in Tables 2.3, 2.4 and 2.5. The behavior of algorithm A (product x is

employed in place of rk) is generally superior to that of the others.

                    for method B indicates that simialrity does notThe low value of P
                  U
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Table 2.l. Cycle numbers before convergence.

method AlgorithmA MethodB
operationee Å~ min Å~ min

sim.matrix
SL,T

R s R s R s R s

o.oo

O.1

o.I6

O.2

l1ll 22zl 3333
4433

7777
6666 ll

ll

IO

14

68l213

lt Every elernent indicates the rnaximal
small matrices of size 58Å~58 words whic
subdividing similarity matrix R of sÅ}ze

cycle number for 7
h are obtained by
 220Å~220 words.
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Table 2.2. Multiple meaning words and synonyms
(algoritlm A (*=Å~, SL=O•1))•

Cr. mm Synonymst

bound: 1. Iimit restrict 2. enclose include
calculate: 1. compute estimate 2. suppose assume
           expect eonceive
close: 1. conclude terminate complete 2. approach(ing)
       reach (ing)
define: 1. explain describe formulate illustrate
        2. fix establish base constitute
establish: 1. fix constitute define base 2. prove
           demonstrate show represent
extend: 1. stretch increase magnify 2. give present
' supply furnish provide deal
recognize: 1. know identify 2. allow aceept receive

In. mmw Synonyms

estimate:
indicate:

present:
restrict :

 calculate compute rank regard decide
 show demonstrate represent denote express
suggest present imply
give offer extend indicate deliver express
 limit bound control contain

Nr. nm Synonyms

deliver:
express:
make: 1
      2.

  1. give provide furnish 2. express present
  1. present offer deliver 2. indÅ}cate
. forrn compose construct generate constitute
 cause
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Tab1e 2.3(a). Evaluation of
(algorithm A

 structure
(rk=Å~)).

coneepts

s R P R PL Cf o p p

o.oo O.92 O.77 O.71 o.41

OJ O.91 O.77 O.71 o.4g

o.16 O.90 o.81 o.Uh o.s4

O.2 o.8g o.84 O.32 o.6g

O.3 O.88 O.91 o.o6 --e

o.4 o.85 O.95 O.03 ---
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Table 2.3(b). Evaluation of
(algorithm A

 structure
(*=min)).

concepts

s R P R PL o o p p

o.oo o.84 O.79 o.68 O.Ul

O.1 o.84 o.8o o.6s o.47

o.I6 O.8U o.83 O.I8 o.lt6

O.2 O.82 o.86 O.09 O.50

O.3 O.82 O.92 o.o6 ---

o.4 o.8o o.g6 O.03 ---
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Tab1e 2.4. Evaluation of
(method B).

structure concepts

[I] Ro PU Rp Pp

o.oo O.92 O.73 O.77 O.3U

O.1 O.92 o.7L O.53 o.42

o.I6 O.90 O.79 O.35 o.4U

O.2 o.89 o.83 o.I8 o.43

O.3 o.88 O.90 O.09 ett

o.4 o.86 O.95 O.03 ---
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Tab1e 2.5. Evaluation of
(method C).

structure concepts

N R P R P
cs U p p

9 O.91 O.77 o.68 o.38

8 O.90 O.79 O.53 o.38

7 o.8g o.8o o.41 o.41

6 o.88 o.81 o.h7 O.U3
.

4 o.78 o.86 o.38 o.48

2 O.7U O.93 O.21 ---



always represent the degree of synonymy between words. That is, the

notion of ambiguity must be taken into account for the selection of

synonym clusters, i.e., the semantic processing units. The variance

of Pp (and Rp)for SL in (O, O.1] is small in Table 2.3(a) as was pre--

dicted in Fig. 2.3. The low value of Pp for all cases is caused by

the words which are synonymous with correctly retrieved muitiple

meaning words, and are regarded as single rneaning words in the thesaurus

                                                        '
dictionary. If Pp is rneasured by assuming these words to be the cor-

rectly retrieved multiple meaning words, it becomes (O.72, O.80, O.83•,

1.0) for SL=(O.OO, O.1, O.16, O.2) in Table 2.3(a). Frorn the above
  '                                       '
consideration, the rnost satisfactory dictionary for natural language

text processing may be obtainable when graph G(X) is generated based

on algorithm A.

     An efficient procedure for updating the graph according to the

changes of similarity relations between words will be formulated by re-

moving the altered simÅ}larity values into a small matrix (TDSO can be

used for this purpose).

2.6 Conclusions

     A graph-theoretical method of constructing a dictionary, given
                                                '
the usage similarity between every two words, was discussed for the

purpose of contextual processing of natural language texts. The spee-

ification tif synonym classes and arnbiguous words, which was done by
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algorithm A, is needed for the construction of such a dictionary.

Further the notion of multiple rneaning words was introduced using the

cliques of a synonym graph to treat computationally the irregularities

of semantic relations. The multiple meaning word is also disambigulated

by fixing one of its application areas in a given sentence.

     The dictionary construction operation was examined on a set of

verbs extracted from ABSTRACTs of 100 documents in rEEE Transactions

and the results were compared with those of previously proposed graph-

theoretical techniques. It was shown that the proposed method was

sqperior to the others. This is due to the appropriate specification or

formulation of ambiguity as well as syonoymy in natural language words.

     In the next chapter, a method of cornputing the similarity between

two words is discussed based on the exchangeability over the predicate

network of the document sentences. The predicate network is used to

decide the application area of the word in a given sentence as well.

Another treatment of ambiguity will be shown in Chapter 4, where the

document data including ambiguous elements is organized into' a struc-

tured file for the fast retrieval of the relevant documents to the
                                 '
                                      'information queries. . •
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               CHAPTER 31

     Contextual [[tu<t trocessing

                            for

Ztutomatic Xnformation Retrieval

     An appToaek to the automatie eontent anaZysis of textuaZ data

is theoTetieaZZy ancl ezrpeTimentaZZy diseussed using a p?edieate

netwoyk of doeztment sentenees. The sentenees in the p?edlieate

netzDo?k a?e exp?essed by the pTedieate pattepns and the wordl eZasses

to zDhaeh the woTd appZication aweas aTe attaehed. The fowration
                                                                 '
of the netwo"k is an ate"atave ppoeeduve sueh that pTedaeate patteorves

JÅíoor7 ?eZatang wo?ds ave settZed by using woTd appZaeation a"eas. and

wo?d appZieation aTeas a"e obtainecl by g"ouping the words havang

samilaT usages in the pTedieate netwo?k at the p?evZous itevation.

Seve?aZ woor7d g"ouping eviteTaa aT}e excmTaned eompavativeZy hy eon-

st?ueting a ppaedieate netuoyk fo? the sentenees of seientifie

doezanents.
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3.1 Introduction

     The formulation of representing information contents of a document

based on the semantic analysis of natural language has been recognized

to be important for the design of an automatic information retrieval

system. Some of the advantages of natural language information re-

trieval are the availability of coping with a large user population of

nonspecialists, the flexibility of expressing the subject themes of

various documents, and the extensity for handling the changes of a

document collection for future use. It is also important for obtaining

the high recall system performance without reducing the precision to

digtinguish the substantiaZ differences between the subject areas of

the documents.

     The establishment of an automatie information retrieval system,

regardless of whether it employs a keyword indexing schedule or a
                                                                    '
relevancy computation process, should start with providing a contextual

analysis rnethod of natural language document sentences. The procedure

of constructing a dictionary for regulating the ambigutty or the com.

plexÅ}ty of natural language was discussed in the previous chapter,

where the similarity between two words is assumed to be given. Here

the probletn of computational treatment of document sentences is logically

and theoretically analyzed, and a predicate network for giving the
                          '
similarity between two sentences is proposed.

     The semantic analysis of natural language sentences has mainly

been studied in the field of artificial intellÅ}gence (Ar) as a model



of the human psychological process of inference and deduction for lan-
                                         '
guage understanding and translation. Schank [54, 55] and Quillian [41],

in this connection, have set up a conceptual dependency or semantic

network representation theory for a meaning understanding of natural

language sentences. (The similar studies were seen in [6, 10, 17, 22,

53, 57, 63].) They have been conducting tihestudies by posing manual-

ly settled semantic primÅ}tives from a conceptual level and allowable

inference process between these primitives. Such approaches to com-

putational semantics of natural language seemed not to be satis-

factory, when applied to the IR field, to deal with a !arge amount of

do6ument data including cornplicated entities.

     Quine [42] emphasized, as shown in Chapter 2, that the study of

semantic part of languages comes not to appeal to meaning but to con-

cern with synonymy in significant word sequences. That is to say, the
          '                                                                    '"meaning" of a word is fixed by the two contextual definitions "alike

in meaning (or synonymy)" and "having meaning (or significant)." The

present chapter develops, using a dictionary which specifies the words

similar in usages, a method of re.solving sentences into a predicate

network for a computational approach to the semantic processing of

textual data.

     It is shown in Seetion 3.3 that a predicate P of any sentence
                               '                         '
should computationally be treated as an extensional entity except for

considering the .symbol"p" isameta expression by itself. Adictionary

for setting word application areas and for establishing predicate
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patterns (the predicate pattern provides semantic relations between
 '                               '
the words) is generated in Section 3.4 by rectifying recursively the

incorrect setting of application areas in the given sentence examples.
                                                                        '                                                    '  rrSparck-Jones [58] has set up a standard for classifying index terms

by noting that two words may be considered semantically equivalent or
                                                '
synonynous if in a given eontext the words are interchangeable without

              -changing meanzng. However, the resulting clusters of index terms are

unsatisfactory to process contextually the document data by its poor

definition of "without changing meaning." The grouping criterion

proposed here is such that a set of the words interchangeable with

a single meaning word without changing surrounding situations in a

predicate network provides one of the word clusters for specifying
                 '
word usages. The validity of the proposed method is shown in

Section 3.5 by the experimental construction of a predicate network
          '                                                                    '
for the sentences of scientific documents.

3.2 Baslc Assumptions

     The analysis of a document col!ection in an information retrievai

environment should be proceeded so as to establish automatically a con-
                      '               'ceptual or network representation of the document sentences. Such a

network, called a predicate network, is used for establishing relevancy
             '                                                         '
between two sentences or a sentence and an incomming query.
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     A method of analyzing the document sentences, which are considered

intuitively to be "significant" in a document collection, is here discus-

sed by taking the following three assumptions for granted. These are

intended for the automatic processing of natural language document

data.

     1) Any sirnple sentence S can be decomposed Å}nto the basic com-

ponents, severaZ terms and a predicate for relating these terms.
                                                         '     2) The content of any S can be interpreted by relating the

components of S to those of other sentences, i.e., establishing a

predicate network for the document sentences.

     3) The "interchangeability" for the basic components can be

tested based on their contextual positions in the network.

     The basic components in the first assumption are commonly speci-

fied by the information for the part of speech, idiomatic phrases,

attribute indications, etc. The second assumption says that the

subject content of S is seized within a predicate network, and the

third one denoting interchangeability gives the standard for obtaining

similarity between the basic components. The interchangeability here

is formulated based on the fact that there are fundamental features

of the way of conceptualizing language contents and of specifying
                    '
synonym word classes. That is, two components observed in the simi-

lar relational situation in the predicate network differ only in

the symbolic forms and not in the conceptual indications.
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work

those

In the following sections, a method of obtaining predicate net--

for natural language document sentences is discussed based on

 three assumptions.

3.3 Predicate Network

     The structural decomposition of natural Zanguage document sen-

tences is needed for the analytic understanding of the document con-

tents and the easy judging of semantic relevancy between the two

documents. In the analysis of sentences, a phrase in the term showing

a fixed concept shouZd be treated as a single indivisible word. Thus

by assumption ! the predicative expression of any sentence is defined

                                                         'as:
                                                            '            '                                                                     '           '

                                              '     Definition 3.!. Let P and X = (xl, x2, ..., xr), r21, be a pre-

dicate and a word vector (shortly word), respectively. Thenasimple

sentence S is expressed by
                                           '                                   tt
                                    +                          S= PX. (3-1)
(If the number of argument in X is 1, then P is often called an at-

tribute; otherwise called a relation-in-intension interconnecting all

x., lsisr.)
 1



     An abstract or concrete singular term is eligible for every xi,
 '
and a general term for P. The following two attributes (in Russell's

circumflexed notation) for a simple sentence S (=Px) can be derived
                                                    'by the definttion. - '                                                           '                                                                  ,                   '                                          '                        A                       Px, (3-2)                                          tt

                                            '                                                   '     Expressions (3-2) and (3-3), respectively, mean the attribut'es

                                                       ' '

"having a relation P" and "relating the words in x." The content of

S therefore is interpreted by specifying these attributes such that
                                          '
preqicates and words having simUar usage experiences are related

with eaeh other in a network form. The attribute PÅí has been inten-
                                     '                                     '
sionally realized at the AI field in conjunction with a modeling of

human psychological process for natural language understanding and

translation. The main defect of such a program is that the manually
                                          '                                                                  '                                                                   'decided (certainly, a?tifieiaZZy-progranmed inteZZigenee) semantic

primitives and semantic relations between them are too complicated
                                                    '
to use for the proeessing of a large amount of document data.

                    A     The attribute Px can be explained extensionally, in addition to

intensionally, as a class such that {x: Px}. Extensionality is what

separates classes from attributes (i.e., classes are considered to be

                '                          'identical when their members are identical). But attributes are unlike

mere classes in the capability of distincting from one another even

when relating extensively the same things. The distinction between
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thern is referred to as Russell's theory of types [43]. Intenslonal

expression of P is computationally obtained only when it appears in

other sentences as the general term for P (The general term for P

differs from P in ovedeT or type).

     Proposition 3.1. Let P be a predicate in a significant simple

sentence S. Then P could not be intensionally explained except for

the following two special cases.

     (1) Symbol "P" Å}tself shows an attribute of P.
          '
     (2) General terrn for P appears as the singular term in another

relation or attribute.

     We can conclude by Proposition 3.1 that P should be treated as

an extensional entity for the computational construction of a predicate

network. The similarities h and f of two predicates P and Q, and two

words x and Y are given by the concretion of the abstracts V = {(P,Q):
                                    'P and Q give the similar relation to all words} and CU = {(x,y>: any

predicate relates x and g to the other words similarly} such that

                  hv (P,Q) for PVQ, (3-- 4)
                  fw(X,g) for xWg. (3-5)

                      A                A     Hereafter Px and Px, respectively, are called a predicate pattern

for P and word usage examples (or experiences) for X. Any predicate pat-

tern is settled by relating the words of the predicate to the word classes

which those words belong to. Thus the contextual expression of S is



obtained by relating (i) the indivisible word to its application areas,

and (ii) the predicate to its predicate pattern. Incomming sentences

are thus predicatively analyzed by using a word usage dictionary and

a set of predicate patterns. The dictionary is, as shown in the previ-

ous chapter, generated by grouping the interchangeable (see assumption 3

word pairs in a predicate network. Predicate pattern is used to
 '                                       '
predict the adequate individuals for the predicate arguments as well.
                                                             '
Thus both the predicate pattern and the dictionary are needed to dis-

ambigulate the word application areas in a given sentence, to find

the correct references of various pronouns, to decide the dependency

form of modifications, and to limit the number of arguments for a

predicate. wrien a word application area is expressed in the form of

a storage location which is connected with x by a pointer (called an

                                                     Aapplication pointer) from X to the locations, then Px is obtained

                                                                  Asimply by pursuing pointers of x in the positive directions and Px

in the opposite dÅ}rections. A predicate network thus is constructed

by giving a set of application pointers to the predicate arguments

and the words.
                                   '
     The predicative analysis resulti is exemplified in Table 3.1 for

the sentences drawn from several seientific documents. These ideas about

                                          'simple sentences can be used to analyze complex sentences and documents
        'by eonsidering the basic c6mponents are simple sentences, modification

style, type of conjunction, several kinds of pronouns, etc.
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Table 3.1. Sentence examples showing word usage experiences.

No. Sentences

 1

 2

3

4

5

6

7

8

9

10

11

l2

13

A class of paetuTes is COMPOSed Of line-like elements,
specifically, digitized hubhZe-ehczmheT photogvaphs. '

Shaded regions in a class of pietnves of human faces,
photog?aphs of cloud formation.

Piecewise-linear classification is replaced by edge de-
tecting preprocessings.

Edges between different texture regions are detected in
a eomposite output.

              .Texture edges ln digitized paetLti?es.
                             '                   '
Digitized pietuz7e processing--operations are discussed with
Gestalt psyehologists' laws of pictorial pattern-recognition.

    'Small regions of the film are scanned automaticaliy in a
special--purpose buhbZe-ehcunheT film measuring-device.

DAPR is a digitaZ automatic pattern-recognition system.

DAPR is able to measure hubhZe-ehcmihev films from photogpa[)hie
development-process.

A digita! abstraction of the information is contained in the
hubbZe--ehcpnhev film. i•
           ttA sequentiai-decision model SeleCts featuTe subsets in pattern--

      -- •
A character-recogpition experiment deMOnstrates the feasibility
of the featu?e selection strategies.

A gTaph-theo"etaeaZ cluster detection is applied to the selection
of a good featu?e space fOr pattern-recognition.

* Predicates and words for setting application pointers are
written in block letters and italies, respectively.



3.4 Predicate Pattern and Dictionary Generation

     The predicate network for an automatic analysis of document

sentences is construeted by establishing predicate patterns and word

application areas for the predicates and the words of those sentences.

An automatic method (and also a manual one) of obtaining intensional

expressions for the predicates is hard to establish, because in most

cases the singular term for a predicate would not be specified

computational!y.

     Here a lexieographic problem of obtaining application pointers

and predicate patterns is discussed. A predicate pattern, one of the

semantic primitives for the predicate network, is used to decide how

the words are conceptually related with each other. Any application

pointer corresponding to a word class is given by clustering synonym

classes. Synonyms are extracted by executing algorithrn A on the
                                                                    '
similarity matrix of the word set. The similarity measure is here.

computed based on the interehangeability such that two words are

similar iff they are interchangeable in some contexts of a predicate

network without ehanging the surrgunding connections. The inter-

changeability is then defined as:

     Definition 3.2 (Law of Interchangeability): Let X and ij be word

vectors for predicates{P}and {Q} such that PX and QY (PE{P}, QE{Q}),

respectively. Then the interchangeability of the two words Å~ in X

and y in Y is the similarity f(x,y) between the two situations which
                                                              '
are eonnected to x or y via {P} or {Q} in the predicate network.

54



     Definition 3.2 is circular, i.e., the interchangeability for

defining the class of synonym words and the word application areas

are computed by using a predieate network, which is settled by re-

plactng the arguments of the predicate patterns with the application

pointers. An iterative procedure, therefore, is employed for gene-

rating a predicate network, where intuitively correct applications

are firstly given as an input data, and the other correct ones are

successively decided based on the pointers and patterns at the previous

iteration. (Hereafter every tteration for setting application pointers

is called by the term "cycle.")

  '     Let us next discuss about which word set gives a right cluster.

Though the interchangeability is considered to give an appropriate

approximation for synonymy, no right word cluster at cycle i (Zl) is

unfortunately known beforehand. rf the true clusters are obtained at

sorne cycle k (ZO), then we can believe that the correct clusters at

cycle i (2:k) are deducible iteratively. Let us now examine the

relationship between two similarity values fi(x,y) and fi+1(x,y)

for pair (x,y) at cycles i and i+1. If any word cluster at cycle i

has no word pair with different areas, then the application pointer

set Si at cycle i is included in the pointer set Si+1 at cycle i+1.

The similarity value fi(x,y) obtained by. using Si is then not greater

                        'than that of fi+1(x,y). Conversely, if fi+1(x,y)1?fi(x,y) for all (x,y),

then any area at i+1 is considered to include no ambiguous word.

Thus the clustering strategy is decided so that the similarity value
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fi+l(x,y) wili become not smaller than that of fi(x,y) and the result-
                                '
ing clusters include no pair of words having different application areas.

[Algorithm D] (Dictionary Generation)
                                                                    '                                                  '
!n: InÅ}tia! (i=1) predicate network, i.e., initial word application

                                                                       'pointers and predicate patterns.

Out: All the application pointers.

Note: The following steps are formulated for cycle i (>1).

Procedure:
              '
     Step 1. Compute the similarity value f(x,y) for words x and y in

the,predicate network.

     Step 2. By algorithrn A, extract all the synonym classes.

     Step 3. Cluster the synonym classes for setting application point-

ers so that every application area will include at least one characteris-

tÅ}c word (see Theorem 2.2). Set fi(x,y) to max(f(x,y),fi-.1(x,y)) tO note

that (x,y) satisfying fi(x,y) Zfi-1(x,y) is a correctly interchangeable
                                                                         '
word pair. !f f(x,y) = fi-1(x,y) for any pair (x,y), then terminate the
                                                       '
a1gorithrn.
             tt                                                   '
     Step 4. Update the predicate p.atterns based on the newly obtained

pointers, and go to Step 1 to enter the next cycle.

                                                 '                  '  '
     Algorithm D gradually selects the characteristic synonym classes

by examining the correctness of the settled application pointers

through the word usage examples in the predicate network. The updating
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of predicate patterns is intended to establish the right'interrela-
                               '                    'tionships between the words. Though more than one application point-

ers are also able to be attached to any argument of the predicate

pattern, the disambigulation of the word could be attained contextually

bythepreferred inference process [63]. The terrnination property of
                                          '                                                                   . (i>1).algorithm D is proved by Theorem 2.1 and increasing property of f
                                                                   1-
                                                    'After the termination of this algorithm, the fixed set of application

pointers are obtained.

     In the next section, cornputational experiments will proceed by

taking word stems as one of the input application pointers. Several

criteria for clustering synonym classes are employed for the performance

                                     'evaluation of algorithm D.

3.5 Computationql Experiments
                                              '                                                                    '     An experimental system in Fig. 3.1 operated on a set of sentenees
                         '
of scientific documents is designed for the construction of a predicate

network. The core of this experiment consists of the predicative sen-

tence analysis and the grouping of synonym word classes.
                                                                          '
     The sample corpus consists of about 200 sentences extracted from the

                 'ABSTRACTs of 40 documents in IEEE Transactions. Preprocessing of the
                                '                          '
sentences is such that any pronoun is replaced by its designating noun,

any verb is changed into its present vo or participle v p form, and com-

plex or compound sentences are decomposed into a set of simple sentences.
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       .

Further auxially verbs are deleted, and nouns (including several

adjectives) are replaced by their word stems.

     Any simple sentence is predicatively analyzed based on verbs (v
                                                                   o
and v ) and prepositions [27, 63]. The general form of a predicate
     p
is considered to be an n-place predicate P having n terms (nL>1). The
                                         n
specification of 3-, 4-, etc., predicates, however, needs a p?iopa

knowledge of semantic relations between'  the words in the terms. The

predicative sentence analysis proposed here treats any predicate as

the combination of 2-place predicates of the forms (i) v (or v )
                                                       op
               t                              (including adjective) + [preposition],                 (ii) is + v+ [preposition]
                            p
or (iii) preposition only. Any predicate pattern (and necessariily a

predicate network) is then obtained simply by giving application pointers

to the two arguments of the predicate. Some of the 2-place predicates

are shown in Table 3.2. 0ther input data, the stop-words, are used to

prevent the inessential setting of associations between words. The

initial set of application pointers is a collection of the word stems

to which the final pointer setting is intended.
                                                     '
     Application pointers at cycle i ()1) is obtained by grouping the

words according to the usage closeness in the predicate network at

cycle i-1. The closeness between word wl in term tl and word w2 in

term t2 is given by Definition 3.2 as follows: Let us denote by

{P(tl,u)} or {Q(t2,v)}, the predicative expressions of sentences

t [preposition] means that the preposition can be eliminated.
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Tab1e 3.2. Examples of 2-plac'e predicates.

according--to
airned (at)
applied (to)
assoeiated (with)
assumed (to)
based (on)
compared (with)
composed (of)
concerned (with)
contained (in)
corresponding (to)
defined (by,to)
demonstrated (for)
derived (from)
detected (in)
described (by, for)
employed (for, in)
established (for)
expeeted (for)

found (for)
generated (by,for)
given (for, to)
ignored (in)
illustrated (by)
introduced (by, to)
make-use-of
obtained (by)
presented (for,to)
processed (by,with)
produced (for)
searched (for)
tested (on)
take-into-account
take-place
used (for,to)
with-respect-to
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including wl or w2, where P and q are 2-place predicates, and u and v

are terms. The situations, where wl and w2 are used in the predicate

network,are given by {(P,u)} (=Ul) and {(Q,v)} (=U2), respectively.

The similarity f(wl,w2) for words wl and w2 is then computed by modifytng

equation (2-16) as

   f(wi,w2)=(T+3) •min (v (UilU2) ,v (U21Ui))1 ' (3.- 6)
                  (v (ui)+v (U2)+ (T+i) •max (v (UilU2) ,v (U2IUi))),

                       'where v(UllU2) indicates the sum of the matche$ of Ul for U2. The

degree of the match of (P,u) for U2 takes one of the values {i,112,O}

according to the following three cases: For some (Q,v)EU2, (i) P=Q,

and A(u)AA(v)iÅë (A(u) means a set of application pointers of the

words in u), (ii) PIQ and A(u)hA(v)lÅë, and (iÅ}i) A(u)AA(v)=Åë.

     A word set X required for setting application pointers consists

of about 50 words extracted from the input sentences. The similarity

matrix for these words is arranged similarly in Section 2.5 by TDSO

and divided into 4 small matrices. The extraction operation of synonyms

by algorithn A and the grouping operation of these extracted synonyms

by algorithm D are executed in turn. Also algorithm A constructs a

synonym graph G(X) of X.

     Five criteria SL, MIL, SW, MW and CQ for elustering word set X

are formulated and used in Step 3 of algorithm D.

     SL: All the words in the cliques, each of which has a member in

common with some other cliquesare gÅ}ven an application pointer.
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     lhlJ: All the words in the cliques, each of which has members in

common wÅ}th some other clique except one metnber, aregiven a pointer.

     SW: l) All the words in the cliques including at least one

characteristic word are given a pointer (single meaning words belong-

ing to a small number of eliques are selected as candidates for the

characteristic words). 2) Every word with more than one applÅ}cation

areas, i.e., rnultiple meaning word, is given no pointer except the
         '
word stem pointer.

     MVif: 1) AZI the words in the cliques including at least one

characteristic word are given a pointer. 2) Every rnultiple meaning

word is given the same pointer as the word closest to it.

                                           '     CQ: All the words tn a clique is given a pointer.
                   '                                                                '
     The result of algorithm D for these criteria at cycle iE{l, 2,

••• , 6} is shown in Table 3.3 (the significance level SL of algorithm
                                         '                                                                    'A is fixed to o.ls). Every element of this table means (IAil!Ixl,

IB"llxl), where Ai={a set of application areas including rnore than

one word at cycle i} and Bi{x: xEX, Ai(X)=Ai-1(Å~)}•

     The validity of the employed griterion is measured by the variance

of IBilllxi, so algorithm Dt is executed by excluding the statement "other-

wise, set fi(x,y) to max(f(x,y),fi-1(x,y)) to •.•." in Step 2. It is

seen that incorrect pointersare initially settled foralargevalue of T.

t Algorithm D terminates when the present app!ication pointers are
                                                                       'the same as the previous ones.
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Table 3.3. Comparisons
application

of clustering ab"ities
pointers (T--1).

for setting

cyele i

criterion a

l

b a

2

b a

3

b a

u

b a

5

b

c"?L O.21L O.32 O.[L3 O.7l, O.13 1.00 ee ee

l>v[L Oe31 OeijO Og27 Oe61'L Oe23 Oe82 O.23 O.9lt Oe23 Oe96

sw O.35 o.68 O.33 o.88 O.33 O.96 ee ee

mu Oe35 OeL6 O.31 O.72 O.27 O.78 O.29 O.86 o.2g e.g6

CQ o.s6 o.U8 Oe 56 Oe 4L LL O.E56 O.78 o.s6 l.oo ee

* Variable a (and b) shows the ratio
areas consisting of more than one word
application areas commonly oacured in
total number of words in X.

of
 at
both

the numbe'r of application
cycle i (the number of
 cycles i-1 and i) to the



64

     The criteria SL and ML, often used in graph-theoretical cluster-
   '                                                    '
ing algorithms, are intended to collect the words linked by ambiguous

words into one cluster. The linkage cluster analysis, however, has
                              'a well known defect that two words having different application areas
                                                  'are given more inclusive application pointers than required. Thus the
                                                                '
word clusters not suitably subdivided are obtained by the linkage

criteria SL and ML.

     Other criteria SW and MW are formulated based on Theorem 2.2,
      '                                 'where the meanings of the characteristic words correspond to the

correct application areas. It is seen in Tables 3.3 and 3.4 that SW

gives the more preferable program to MW in the way of obtaining the
                         'correct applicat!on areas. This is not unexpected, since only the
                                             /
classes including no word pairs with different usage experiences are

selected at every cycle, and the words with different application
                                                                 'areas are decided to be multip!e meaning words. When many pointers

are attached to those multiple meaning words (which cause multiplicity
                                          '       '
via the usage examples in the document sentences), the settling of point-

                                            'ers becomes unstable by their ambiguous usages. According to the last

criterion Cq, the resulting word groups are rzot well clustered.

     The larger size of clustersis obtained as tke value of the similarity
  '
increases. Table 3.i'- shows the clustering result obtained by criteria
                           '
SW and MW for various values of T and i. Algorithm D employing MW re-

quires many cycles for fixing applicaticn pointers for the smallvalue of T.
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Tab1e 3.4. Clustering
(crite!-ia

 statistics
SW and MW).

for    .varlous values of T

cygle
  l 1 2 3 u 5

T a b a b a b a b a b

    sw
-- 2
    nv

    sw
-- l    ww

o.66 o.82
O.6s o.7U

O.3s o.68
O.3s o.46

o.66 o.g6
o.60 O.92

O.33 O.88
O.31 O.72

ee

O.58 O.90

O.33 O.96
O.27 O.78

ee

o.6o o.9o

ee

o.2g o.86

ee

o.6o O.g8

ec

O.29 O.96

   swO MW
O.31 o.68
O.29 O.28

O.31 o.86
O.27 O.88

O.31 O.98
O.25 O.96

x
ee

ee

ee

   sw1 Mw
o.2s o.64
O.29 O.30

O.25 O.92
O.27 O.8U

O.25 O.98
O.27 1.00

ee

ee

ee

ee
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Tables 3.5(a) and 3.5(b) show the transient application areas settled
          '
by criterion SW. Table 3.5(a) teils that the application area for the

word DAPR is the same as that of bubbZe, and different from that of edge.

By referring to Table 3.1 exemplifying the usage experiences for the

words in Table 3.5(a), the attribute for DAPR and!or bubbZe in area 1 is

explain.ed contextually as "DAPR (which is a pattern-recognition system) for

selecting features of a bubble-•chamber photograph, one of the digitized

pictures." Simiiarly, the attributes for edge in area 3 and gwaph in

area 2, respectively, are explained as "Digitized pictures and photographs

include texture edges," and "A graph-theoretical method selects features

(for pattern-•recognition)."

     Since the users' requests for the document information are sub-

nttted in various conceptual levels, the word application areas for

the contextual analysis of document sentences should be hierarchically

related such that the areas at the lowest level is used to obtain and

disambigulate the specific word usages, and the areas at the higher level

to show the more general ones. For example, areas 2 and 3 containing

pactu"e could be grouped into one general application area to retrieve

the documents denoting a method of processing line-like photographs or

detecting texture edges as the ones having the subject theme about
                        '
picture processing. Thus the finai pointers settled by SW can be
                         '                                                '
grouped, byalinkage cluster criterion, into a new pointer showing a

general areas. It is hard, however, to divide the final areas obtained

by SL andlor M into the subsets for the specific areas. The process for
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Tab le 3.5(a)e Application areas versus cyc!es.

cyclei o 1 2 3

1. 1. 1. 1
.

bubble bubble bubble bubble
2. DAPR DAPR DAPR
DAPR photographrk photographx' photographVc

3. 2. feature feature*
photograph feature .plcture picturek

application
areas

4.
feature

5.

3.

photographrk
-plcture

2.
photograph*
edge

2
'featurerk

graph
picture edge 3. 3

.

6. 4. graph photog'caphrk
edge graph picturerk

7. edge
graph

t The asterisks are used to show multiple     .meanlng words.
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Table 3.5 (b) . Application area•s versus cy cles .

cyclei o 1 2

1. 1. 1
.

decision decision decision
2. class* discriminationrk
correlation 2e class*

3. weight 2
e

weight nonparametric weight
4. iinear* .nonparametrlc.

application sequential
5.

discrimination*
classrk

linear
discrimination*

areas nonparametric 3. classft
6. correlation 3

.

linear class* correlation
7. 4e classrk
diEcrimination sequential 4

.

8e linearrk sequential
class discrimination* discrimination*
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setting application areas, therefore, is to specify the synonym classes
   'of the eharacteristic words, and then to cluster those areas into

diffuse classes.

3.6 Conclusions

     The method of predicative analysis of natural language was pre-

sented, using predicate patterns and word application areas, for the

easy relevancy computation between the document sentences. Conven-

tional techniques of text analysis in IR areas have exploited keyword

or'  class number indexing schedules for the cataloging of the document

contents. Then the main problem of automatic document processing is

not in the sentence analysis but in the indexing of documents.

     The predicative expression of the document sentences was proposed
          '                                                                    'for the contextual processing of the document themes. That is, document

sentences are automatically analyzed by examining the usage experiences

of predicates and words in the network. Experimental experiences for

the construction of a predicate network have revealed that the appli-

cation areas for every word should' be specified by the characteristic

single meaning words and the words simUar to the characteristic words

in usage experiences are grouped into one cluster.
                         '
     The established predicate network, which formally represents the

eonceptual relations between sentences,'is used for the relevancy com-

putationbetween two documents. The verbs appeared in the predicate
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should be treated as both special terms and general terms for the analysis
                               '                                                                         '
of complex and compound sentences. That is, the intensional explanation

and extensional understanding of the predicates will contribute to the

future researches of contextual text processing in the design of auto-

matic inforrnation retrieval systems.
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           CHAPTER 4

                   '
Structured File arganization

                         for

  Fast Information Retrieval

     An automatie ?eaZ-time anfopamation veet"aevaZ system as expeeted

to pMovide a fast fiZe seaveh aZgoMitlzm fopa yetpaeving tke ?eZated

doeztn7euts to the va?aous submatted quepaes. Jn this ehapteor?, a new

met7`od of oi2ganaging a fiZe, eaZZed a st?uetu?ed faZe, is diseussed

based o'n tlz,o.. Zineaxi oydptez?7;ng of a doebtment set. The doeblment set

                                                                 '
as hex#e a?wanJfed acFc`o?ding to the simiZayaty hetween tuo doewnents,

and ti6 oi?gayzaged 7;n a forvn of hieor)ayehieaZZ.or netwo7?ked str7uetui?ed

f-L7ves. Fa'st. faZe sea2oc`h aZgo?ithms whieh ean aeeess to the eonfaned

smaZZ smbseetaonsv of the doewnent fiZe a7e aZso ppesented.
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4.1 Introduction
                                                                     '
     The uti!ization of a computer system for various information pro-

cessings has become possible by the prevalence of data-base management

and computer networking techniques. An information retrieval systern

working in a real-time operating envirorment is then expected to process

many search queries against a large document file. The information

queries about the searching of the document file, which vary with the

user population, are c!assified into the following three basic types:

                                                                  '     1)         Determine whether or not the document identical to the incom-

ming query is in the file.
  '
     2) Obtain all the documents in the file having the closest or the

most relevant prc,perties to the query.

     3) Obtairt the documents in the file showing high relevancy to

the query, or arrange these documents in such a way that their simi-

lave'ties to th' e query are o'rdered into a decreasing sequence.

     "rke type l g.uery, common!y occured in constructing symbol tables is

answeired by conventionaZ techniques of binary search, direct chaining

or key hashing methods [4, 5, 37, 38, 44]. On the other hand, it is a

typical problem in a document retrieval environmenttosearch a file for

the documents which are appropriatel: related to, but not always identi-

cal iro, the query. Also, an exhaustive search examining all the stored

i.tzerns fwurrlt one. end to the other can answer such problems. Since, however

the t-ile to be searched is usually very large, it is hard to examine the

relevancy of the queries against the enttre collection of the stored item

'

.



73

     Salton et aZ. [32, 49, 50, 62], in this connection, haveformulated
                                   '
partial file search procedures by constructiRg groups of related docu-

ments. All the accesses to the file were made through the centroids of

the doeument groups. Burkhard et aZ.[11, 56] have devised efficient

file search methods for the closest (or the best-match) key to the

query by subdividing the given set into subclasses based on the distances

on a set of index keys. Saltons' methods, however, do not always find

the closest documents to the queries, and Burkhards' methods are only

applicable to search the documents whose keys form a disatnce space.

Further those methods are inefficient to cope with the type 3 request

because of inadequacy of the definition of the term "closeness" or

"relevancy.'' Considering that the given similarity is an index for

clustering the documents, relevancy should be measured by a new simi-

larity obtained after grouping the document set.
                                                                    '
     It is noted that the sirnilarity between two documents would be
                                      '
eomputed by using a predicate network which regulates the ambiguity

of the document sentences. Then the discussion here proceeds firstly

by assuming that a fuzzy transitive inequality holds for the given

document set. It is possible by a Two-Dimensional Sorting Operation
 '
to arrange the documents in a one-dimensional storage space for a
                                 '
hÅ}erarehical clustering, and to organize the document set into a

structured file so as to answer effectively the types 2 and 3

requests. Next, the discussion about structuring a file is made by

not assuming the transitive property of the document set. A new
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measure, intra-class similarity, is defined to show the relevancy of two

documents in a cluster as the minimum line weight of a path connecting

these documents in a maximal spanning tree of a similarity weighted graph.

All the documents are then grouped into a set of document clusters, each

of which constitutes a structured file, based on the newly obtained meas-

'ure. T.he entire file is organized by placing the files for document clus-

ters and' their abstracted forms on a storage hierarchy [45] in the form
                                         '
of hierarchically networked structured files. The retrieval of the re-

quired documents from the storage hierarchy is attained by searching

iteTatively the structured files at every storage level. Experimentally

the proposed methods of file organizing and searching are shown to be

useful for answering the queries of the above three types.

4.2 Basic Observation
                                      '
     In this section, several characters of a maximal spannig tree (MST)
                                       '
and a fuzzy equivalence relation are examined from apoint of clustering

ana!ysis.

     The concept of an MST of an undirected finite graph was first

used to detect and describe the structure of a point cluster in

spark-chamber photographs, and then gradually becomes to be used for

various problems in c!uster analyses. This is because the MST reflects

well the structure of the input data, and is obtained by the computa-

tionally simple procedures [70]. Zadeh [69] and Tarnura [60] gave in-

dependently developed based on a fuzzy equivalence relation a pattern



classification method whieh, as Dunn [15] proved, essentially con-

                           'structs an MST. One efficient procedure for obtaining an MST is shown

in Appendix A.6. ' •                                  '
     Let us observe the fuzzy classification scherna in the light of

hierarchical cluster analysis. Consider f satÅ}sfying equations (2-2)

and (2-3) be a simi-larity measure defined on two members of a document

set D (IDI=n). The simiiarity f leads a reflexive and symmetric

relation R by Definition 2.1. Next donote by G(D) a graph whose

node d and weighted line dc correspond to a document d and a simi-

larity value f(d,c) between documents d and c in D. Further let

g(d,c) be a concretion with a pair (d,c) of an n-step fuzzy relation

S [60, 69] obtained by the maxmin compositions of relation R.

     Since S satisfies ail of fuzzy reflexive, symmetric and transi-

tive laws, S is an eguivalence relation. For each threshold value

           'Te[O, 1], define a new relation S to be a set of document pairs
                                  T
having the similarity value not smaller than T. Then the following

theorem holds [70].
                 '
                                            '
     Theorem 4.1. Let CT be an equlvalence class of ST. Then any pa.ir

of docurnents in C is connected in an MST by a unique path of lines
                 T
                                                                 'whose weights are not smaller than T. '

     This theorem states that for d, ceCT and eSCT the similarity of

a pair (d,c) is greater than that of pairs (d,e) and (c,e). Sinceaclass

in {CT} is expressed by a finite union of nonempty classes {CT,}, T<T',

75
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an m-level hierarchy of clusters is obtained according to a monotone

decreasing finite threshold sequence 1==To>Tl>T2>'''>TmZO, l<M<n.

     The notion of MST is also used for finding maximal capacity routes

in a weighted graph. The capacity of a path connecting two nodes in

                  is the minimum line weight of the path. Any pathweighted graph G                W
in MST of Gw is proved to be one of the paths with the maximal capacity.

Thus the intra-class similarity g(d,c) defined as the maximal capacity

of the path connecting d and c is identical to the concretion of fuzzy

relation S with (d,c).

     Hereafter a document set D in which the similarity g(d,c) is given

for any pair (d,c) is called a transitive space. Whereas a set D in

which the distance for any (d,c) is given by a metric function is

called a distance space.

4.3 Document Ordering for Structured File Organization

     In an information retrieval environment, where the order of hund-

reds of thousand of documents may be processed, a development of a fast

file search algorithm is an important problem to obtain effectively

the related documents to every incomming query. The document collec-

tion, therefore, is organized so that the searches could be restricted

to the desired subsections of the stored file.

     A method of arranging the documents in a one-dimensional storage

space is presented from which the relevant documents to any query is



effectively retrieved. The discussion here is made by assuming that
              '
the given document set D constitutes a transitive space with respect

to the similarity measure g. The following algorithm, called MTDSO,

can be used to arrange all of D such that

                   g(di,dj) z g(di,dk), isisjsksn,
                                                            (4-1)
or g(di,dj) sg(di,dk), iEjsk:ELiEn,
                                                          '
where di, d j and dk are documents in D, and i, j and k are indices

for document ordering.
   '

[Algorithm MTDSO] (Modified TDSO)

In: Assurne that all of D are indexed by finite integers 1, 2, ••',

and n, which are stored in a one-dimensional array L (size n). The

                 'simÅ}larity g(di,dj) is expressed by an element aij of rnatrix A (nxn).

Also matrix A is considered to be labeled by L.

Out: Ordering of L which satisfies inequality (4-1).

Note: A variable i is used for indicating a row of matrix A.

Procedure:

     Step 1. Do Step 2 for i=1, 2, ..., n--1.

     Step 2. Rearrange the contents of [L(i+1), L(i+2), •'', L(n)]

so that a continued part [aL(i)L(i+1), aL(i)L(i+2), '''' aL(i)L(n)]

in row L(i) of A will be ordered into a decreasing sequence. (The

row L(i) of A is expressed aS [aL(i)L(1), aL(i)L(2), '''' aL(i)L(n)]')

     Step 3. Renumber all the doeuments by a perrnutation

                     L(i) + i, (4-2)
and terminated the algorithm.
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     Theorem 4.2. Document set D can be arranged in a one-dimensional

space so as to satisfy inequality (4-1).

     Proof. The following proposition is used to prove the theorem.

     Proposition. Let g(d,c),g(c,e) and g(e,d) be three simUarity

values for three dpcuments d, c and e in a transitive space. Then two

of them are equal, and the rest is not smaller than the other [60].

     The proof of the theorem is made by induction on a size n of D

(see Fig. 4.1).                Here aij means the element aL(i)L(j) of A. Clearly

the theorern holds for ntal and 2.

. For n=3, L can be rearranged by Step 2 of algorithrn MTDSO such

thht al221:a13 holds. Then, by proposition, we have a23za13 (This is

                '
an equation when a12>a13).

     Next assume that this theoretn holds for a value not greater

than i. SÅ}milar to the above, we can rearrange the Set {a12, a13, '''

ali , al , i+1} into a monotone decreasing sequ ence a1 2Za13!l.' ' '2 al i2zLal , i+1 .

     Now let us show by induction on j (!,Sj<i) that aj,i+1`aj+1,i+1

<aj+1,i holds. When j is equal to 1, since a12)al,i+1, al,i+ISa2,i+1•

There are two cases to be considered for a2i an• d a2,i+1.

     Case (i)• If ali=al,i+1, then by Step 2 for row L(2), we obtain

that a >a .      2i- 2,           i+1
     case (ii). If ali>al,i+1, then sinee al2zali, we have that a2,i+1

=al, i+ lsa2i.



                                               '

     Generally, if the above inequality holds for k smaller than or

equal to j, then since aki>ak,j+1, we have that ak,j+1)aki, and

aj+1,i+12zaj,j+1. FOr aj+1,i and aj+1,i+1, the following cases are

considered.

     CASE 1• !f aki=ak,i+1 holds for all k (lsksj), then by Step 2

for row L(j+1), we obtain that aj+1,i<-aj+1,i+1'

     cAsE 2. If aki>ak,i+1 holds for some k (lsksj), then by ak,k+l

->aki, we have that ak+l,i+1=ak,i+1<ak+l,i• Therefore, a j+1,i>aj+1,i+1.

Thus by induction the proof is complete.
                                                         '
   '     The speed of a file search algorithm is accelerated by avoiding

wasteful access to the subsections of a stored file not including

related items to the queries. The following theorem is used to

restrict the search process within a subfield which contains the

closest documents to query q.

  , Theorem 4.3. Let us denote by D=[dl,d2,''',di,''',dj,''',dk,''',

d ] (1<-i<-j<--k<"n) the documents arranged by MTDSO. Then, if query q,
 n
which will be a mernber of transitive space D, satisfies an inequality

                           .)>g(q,d.), (4--3)                      g (q,d
                           1J
then we have the following inequality

                      g(q,di) > g(q,dk)• (4--4)'
     '
     The proof of this theorem is obtained by the above proposition.
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Theorern 4.3 shows the elosest or best-match documents (shortly the

best-matches) to query q are located on the left half side in D of dj.

The similar theorem holds for the documents located on the left half

side in D of di.
                                        '     The next theorem, in additton to Theorem 4.3, can be used for

reducing the number of relevancy comparisons between the docurnents

and the query for obtaining the best-matches.

     Theorem 4.4. Let Bst be a set of the best-matches for q. Then

all of Bst are in a continued part of D.

     Proof. Suppose that di is the most left side document of Bst

in D, and d j and di+1 (j>i+1) are a member and a nonmember of Bst,

respectiveiy. Then, by the definition of the best-matches, it holds

that g(q,di)=g(q,dj)>g(q,di+1). This is a contradiction.

         '                                                                  '
     Thus, after one di of Bst is retrieved, all the other members of

Bst are found effectively by examining the docu!nent file in the order

                                           '[di, di+1, di-1, di+2, di..2, ''']•

4.4 File Organization and SearÅëh Strategies

     The efficiency of a file search algorithm varies with the division
                              '                        '                       'strategies of doeument set D and with the selection criteria of repre-

sentative documents of subdivisions. When set D is divided into non-
          '                      '                                              'overlapped subsets of an appropriately identical size, the efficiency
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becomes maximum. The representatives should be selected so that the

required field of arranged set D could be specified simply by computing
                         '   'the relevancy between the query and those representatives. Set D is '

                                   '
here divided in the following way:

     [Division T] Let K be a continued part in D. The division of K

into a set of subdivisions Kl, K2, ''', Kj, ..• and Kt (!<-j<-t) is

obtained by a monotone decreasing sequence of "thresholds" 1=To>Tl

>...>T j> '''>Tt>O such that any document d outside Kj does not satisfy

Tj-1(2)g(d,ks))Tj (the equation in the parentheses holds only when j=1).

Th,e representative ks for subdivision K is general!y set to the most

left hand element in K.

     A structured file for set D is constructed by dividing first D

into a set of subdivlsions, and in turn by applying division T to

each of the resulting subdivisions until the desired hierarchical

structuring is attained.

     Fig. 4.2 shows a computer implementation of an m-level structuring

of D. Since every subdivÅ}sion is in a continued part in D, the struc-

tured file is constructed by accombanying each pointer with the repre-

sentative, and the positions of the first and the last documents in D

                                                  'of its corresponding subdivision. The representative is generally
                               '                         '
selected as the most left hand document of the subdivision.

     Next let us describe the structured file search algorithms for

obtaining the best-matches B                                and better-rnatches B for query q
                             st                                                    tr
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(The better-matches here mean a set of documents arranged in the

order of sirnilarity to q). An algorithm for finding Bst is first
                                              '
formulated and an algorithm for Btr follows it.

  '
[Algorithm BST] (Best-Matches)

In: Structured fÅ}le SF and query q.

Note: The subdivision in D under searching is denoted by K. The

representative for K is the most left hand element k . Further the
                                                     s
most r.tght hand element in K is written by kr.

Procedure:

     Step l. Search K={Kl, K2, o••, Kt} to find the subdivision Ki

such that Ti-lc))g(ks,q)ZTi, ISiSt (The equation in the parentheses

is for i=t). If Tt>g(ks,q) or IKI==1, then set kr to b, and go

to Step 3.

     Step 2. If i=1 and g(ks,q))g(ks,ks+1), then set ks to b, and

go to Step 3; otherwise, set K to K.--{k }, and go to Step 1.
                                    IS
     step 3. Let j be the position tn D of b, and Ds"[dl, ''', dj]

and Dr=[dj+1, ''', dn] be the two continued parts of D. Then, by
   '
theorem 4.4, the set B                          of the best-matches for q is located in the
                       st
                                      'contiguous parts D and!or D to b. Terminate the algorithm. '
                  sr
     The underlying idea of this algorithrn is the same as the one in

a method of synbolic key addressing. Algorithm BST is intended to

deeide the position of the query in a one-dimensional document space

by comparing the threshold values and the similarity of the query to

84
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the representatives.

     The next algorithm is formulated to find the set Bst of better-

matches for q. After Bst is retrieved, the two sets of documents

in the left and right hand in D of Bst are merged into one document

sequence for Btr'

[Algorithm BTR] (Better-Matches)

rn: Structured file SF, query q, and the best-matches Bst for q.

Note: The set Bst is expressed as [di, di+1, •••, dj] (1<iEj<n)•

Variables Ds, Dr and C are one-dimensional arrays.

Procedure:

     Step 1. Set Ds=[di-1., di-2, ''', dl] and Dr==[dj+1, dj+2, ''", dn

     Step 2. Merge Ds and Dr into C so that the similarities between

members of C and query q will be arranged in a decreasing order.

     Step 3. Merge Bst and C into Btr in the sarne manner as Step 2.

Terminate the algorithm.

     The discussion in this section is about the file organization

and $earch methods for a document set consisting a transitive sapce

with respect to the similarity measure g. The next section is devoted

to develop these algorithns for structuring document data which do

not always constitute a transitive space.

]•

the
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4.5 Search Algorithms for General Document Space

     A document collection of real world information, where the simi-

larity measure is given by f, in general incZudes ambiguous documents

having more than one subject themes. So the problem of searching a

document' file for the best- or better-matches should be discussed

after the grouping of the documents into clusters. Namely, the

similarity between two documents is measured by an intra-class simi-

larity, and the search is made separately in every cluster of D. Let

us show by the following theorem that the modified version of algorithm

MTDSO in which documents are arranged according to f can be used for

obtaining document clusters.

                '
     Theorem 4.5. Let C (ICI=msn) be a subset of D rearranged so as

to satisfy f(di,dj)2iLf(di,dk), lsisjsksm (or f(di,dj)sf(di,dk), lm<-.jÅíksism)

for any di, d j and dk in D. Then those arranged document pairs satisfy

imequality (4-1) with respect to g, an m-step fuzz: relation on C.

     Proof. Denote by aij (lsisjs.1rn) the simÅ}larity value f(di,dj),

and by a2ij ("IIteftstm(aik*akj)) thevaZue of the two-step fuzzy relaton

for di and dj (* is the composition). Then,since the documents in

D are rearranged with respect to f, it holds that

   '            aij 21.ai,j+1rkaj+1,j, ai,j+2eeaj+2,j, ''',
        ',and then a;•j = ll.EQI.j(aik*akj)Zle.Q-X.j(aik*ak,j+1) = Max( 1!.ka->j(aik

     '                                                              '
rka k,j+1), ai,j+1) = 1ItEit-Xtj+1(aik*ak,j+1)• Similarly, we have that

ai•,j+1 = lg.Iftltm(aikftak,j+1) = 11tBiti.j+1(aikrkak,j+1)• It follows that



a/Tj is2not smaiier than ai.,jh. suniiar t6 the above, we have that

aij Eai+1,j•
     since g(di,dj) is given by ag.J:1 = tie.j (=al:.t:jl =•e-), by the

iterative process of the compositions, g(di,dj+s)S g(di,dj)S g(di+t,dj),

Os<sSm-j, OSLtEj-i• Thus the proof'  is complete. ,
                                                      '

     This theorem states that all of the documents in C can be placed

on a transitive space without changing the indices for doeument order-

ing. The set C is considered by the discussions in Chapter 2 to be one

of the document clusters. -The intra-class similarity g for any document

pair in C is defined as an m-step fuzzy relation obtained by maxmin

compositions of f.

     Fig.4.3 shows the rearranged similarity matrix for a document

colleetion drawn from the recent Comm. ACM contributions (100 docu-

ments). Every similarity value is computed by equation (2-l6) (T=i)

in which M(x) means CR eategoor)ies of document x. The documents which

constitute a cluster are located in a continued part of L in this

figure. The small matrix eorresponding to one of the clusters is

enc!osed with a rectanglet. The similarity information outside the

rectangles reveals the interreiationship between the elusters, and is

used for grouping the documents further for the hierarchical elustering.

                          '                                                      '      '            '
t Some of the similarity values in the small matrices do not

satisfy inequality (4-1) with respeet to fs for a general document

                                                               'space consists of doeuments with more than one subject theme.
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     The following theorem holds between two similarity measuresfand g.

     Theorem 4.6. For any pair (d,c) in C, we have that

                        f(d,c) sg(d,c). (4-5)

If d and c are the most similar document pair with each other,then this

is an equation.

     Proof. Since g(d,c) is the minimum weight of !ines in a maxmin path

connecting d and c, inequality (4-5) holds for any pair (d,c). If d is

the closest document to c, then these are connected by a line (or path)

whose weight is equal to f(d,c).
                                                 '                                                   '   '
     Theorems 4.4,. 4.5 and 4.6 state that the best-matches Bgst (SC) with

                                                                  frespect to g is in the continued part of arranged C, and the set B                                                                  st
with respect to f is included in Bgt. Thus the sets Bgst and Bfst are

retrieved by using algorittm BST. The similarity measure in a general

                                                                gdocument space D is given by f, so it is required for obtaining Btr to

compute the intra-class similarity g(d,q) between d and query q. Since

the sirnilarity weight f(dL(k-1),dL(k)) of any adjacent document pair

(dL(k-o,dL(i)) in arranged C is thg same as g(dL(k-.1),dL(k)), the value

g(q,dL(j)) (called transient simi!arity) for dL(j) is obtained by com--

puting g(q,dL(k))rmax(f(q,dL(k)),min(f(dL(kdl),dL(k)),g(q,dL(k-1)))) for k,

1<kEjf!rn, iteratively, whenever row L(k) is selected for Step 2 in MTDSO.

Thus the set Bgr of the better-matches for q, in which documents are ar-

ranged into a decreasing order of similarity g to q, is retrieved simUarly

by algorithrn BTR. (The problem of establishing an efficient method of
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         ffinding B            is unsolvable, because no expected vaiue is assumed for f.)
         tr
     Next let us formulate an algorithm for obtaining the best-matches

in a file of the document cluster C. If any query is a rnember of C,

then the best--rnatches are obtained by using modified versions of algo--

rithm BST and divlsion T sueh that the required subdivisions are

specified based on the values of f. On the other hand, if the above

assumption does not hold for a query, then the best-matches are re-

trieved in the following way: Document clusters arranged with respect

to g are divided into a set of subdivisions in which all of the docu-

ment pairs have the similarity values not smaller than a threshold

vaiue T (OsTsl), and are organized into an entire document file. The

searching of the file is to specify in turn a smaller subdivision K

satisfying f(q,ks)Sg(d,ks) for any dEK by computing the similarity

between query q and a representative ks of the subdivision. Thus an

algorithm for finding the best-matches (which is not so efficient as

algorithm BST) is formulated as:

[Algorithm GBST] (Best-matches within a document cluster)

In: Structured file for a document cluster and query q.

Note: The continued part in C under searching and its representative

(if it exists) are denoted by K (initialized to C) and ks(initialized

to the left side element in K), respectively. Further let s (initialized

to O) be a variable to store f(q,k ). A document which will show the
                                 s
                          'best-match with q is stored in variable b.

Procedure:
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     Step 1. If f(q,ks)>s, then set s to f(q,ks), and seareh K to find

the subdivision M such that a member d of this subdivision satisfies

      )2Ls. Further set K to M-{k }, and set b to k to note that b isg(d,k
                                ss     s
one of the best-matches in the already examined documents. Otherwise,

set K=K-{k }.
          s'     step 2. If IKI=o, then go to Step 3; otherwise, set ks for a new

K to the left side element in K, and go to Step 1.

     Step 3. Consider b to be one of the best-matches. Then all of

Bgt are in a part contiguous to b in C. Search Bgt exhaustive!y to

find all of Bgt by examining f(q,d) for eveTy d in Bgt. Terminate

the a!gorithm.

When the condition "f(q,k )>s" in Step 1 of this algorithm does not
                         s
hold for (q,ks), the area in K to be searched is the same as the one

in the forme'r iteration except ks. .
     Algorittm BST (and GBST) is formulated to find the best-matches

within a cluster (Hereafter, since Bgt-)Bgt, the best-matches mean the

documents showing the highest similarity to q with respect to g). Next,

a method of determining which clusters are significant to be searched

for the best-matches in the entire file is discussed by employing an

appropriate storage hierarchy (h level, h211). The entire file is or-

ganized by placing document clusters on a storage at the lowest level,

and at the higher storage level the abstracted form of the bibliographic

items are allocated. The hierarchical data abstraction is obtained by

grouping the rearranged items into one stored item at the one higher
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storage level, which corresponds to a cluster C of doeuments. Algorithm

                                       /.MTDSO is also usable for this purpose. Since the intra-class similarity g

is defined as the ntnimum line weight of MST, the simÅ}larity between two

document clusters, i.e., two items, C. and C. at this level is defined as:
                                    IJ
                                 '                     f(Ci,Cj) == decg.?E,cjf(d,c)• (4-6)

After the desired data abstraction is attained, the documents are indexed
        '
by the category numbers reflecting the hierarchical structure. The

indexing process proceeds in the following way.

                              '            '
     [Indexing 1] Let {C2, Cg,'••., C:.p} be the document clusters at

le"el p (1`-p`h). (i) Index every document d by gl•••qP•••chgh+1 (llsgPÅíip.

gh+1 is a unique document number), called a category number. if documents d

and c belong to the same cluster at level p, then d and c give the same
                      ttvaluels for gi,g2,e•• and gP. (ii) if documents d and c in different •

                                                                '
clusters at level h give a line of MST, then d (or e) is further indexed

by the category number of c (d).

         '
     The documents or their abstracted forms at every hierarchical level

are also stored in the forrn of a scructured file. Note that the data

banks of the higher storage level take much more compact forms than that
                                                     '
of the lower hierarchical storage level. The configuration of a storage

hierarchy is depicted in Fig. 4.4, where every document cluster correspond-

                                                                         'ing to a stored item at one higher level constitutes a document file DF.

     The search process for the best-matches under the storage hierarchy

is firstly to specify in turn the lower level document file which will
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include related data to the incomming query. The search query could

be supposed to be suitably indexed by the automatically generated

category numbers, for the user's profile can be expressed and stored

in the abstracted form of the document data which were determined to

be relevant in the user's past history of retrieval experiences.

                                                                hNext one of the best-matches within the selected document file DF at
   'the lowest level h is retrieved by algorithms BST or GBST. Since this

document is not aZways a rnember of the best-matches in the entire file,

it is updated by searching the other files decided to include one of

                                                  hthe best-rnatches in a file of the upper level of DF . After one of

the best-matches is found, all of the best- and better-matches are

easily be retrieved by using the index or indices of this best-match.

     The idea of storage hierarchy is intended for the fast searching

of a document file of real world information for the document subset

showing high relevancy to the subnitted queries. The subdivision in

which rnost of the members satisfy (4--1) with respect to f is organized

into a structured file, and the documents in the different subdivisions

are grouped into a file at the higher storage level. Thus the file

structuye for the general document'data is composed of a hierarchically
                                                             '
networked structured file. A best-match search algorithm for the

storage hierarchy is formulated as:
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                                     L                                   '                                            '[Algorithm HBST] (Best-matches in a storage hierarchy)

In: Hierarchical storage configuration with a structured document file

DFi at every storage level i (ISiSh), and search query q.

Out: One of the best-matches for q.

Note: Working variables i and j (initialized to 1) are used' to show

the storage levels under searching. Variable b stores a best-match

docurnent in the already examined files.

Procedure:

     Step 1. Do Step 2 from level i=j to h-1.

                                           i+1     Step 2. Determine the document file DF                                               at level i+1 which is

corisidered to have a related item to q (If q is indexed, this search

                                         'process can be accelerated).

     Step 3. Set j=h-1. Search by algorithm BST (or GBST) the file

                                          , and set b to the best-DF for one of the best-matches to q in DF

                                                                  'match document in the already examined files.

                    .     Step 4. Let DFI be a file at level j storing the abstracted form

of the previous doeument file DFj+1. Search DFj by algorithm BST (or

                                    j+1GBST) to obtain an unexamined file DF                                        at level j+1 which shows the

similarity to the above abstracted ' form not smaller than f(b,q), and

go to Step 1. If no sugh fÅ}le exists, then set j=j-1. If j<1, then

terminate the algorithm; otherwise repeat Step 4.

                         '                                 '                                '                       '
     A better-match search algorithm for storage hierarchy is formulated

as follows:
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                                  g[Algorithm HBTR] (Better-matches B                                     in a storage hierarchy)
                                  tr
rn: Hierarchical storage configuration, search query q for r better-

                                                   hmatches and best--match document b for q in a file DF .

Out: One-dimensional array Bir (initialized to Åë) for storing r better-

matches.

Note: Variable BP (BP=Åë for lsp<h, and Bh=[b]) for every storage level p

is a one-dimensional array of size r. Working variable j (initialized

to h) indicates the storage level under searching.

Procedure:

                            hh     Step l. Extract from DF the better-matches to the documents in                                                                     B

using algorithm BTR, and merge them into Bgr based on measure g until r

better-matches for q are stored in Bir,' or DFh becomes empty. Further

                                          hstore these extracted better-matches into B . Set j=h-1.

                    .     Step 2. Let DFJ be a file at level j storing the abstracted form

of the previous document file DFj+1. Merge Bj+l and Bj into Bj based

                        j+l                            . Set s to the intra-class similarity valueon measure g, and clear B

                                                          gbetween q and the document p!aced at the r-th position in Btr.

                                              .     Step 3. Search, by algorithn BTR, file DFJ for an unexamined file

DFj+1 whose abstracted forrn at the'level of Step 2 has a similarity value

not smaller thansto theabove abstracted form. Zf no such file exists,then

set j=j•-1. rfj=O, then terrninate the algorithm; otherwise, go to Step 2.

     step 4. select a file DFj+1 (first, the file DFj+1 at step 3 is

selected) whose corresponding cluster contains a document with the same

index part g8..'gJo'+1 as that of some document d in Bj (Azso the document
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showing greater similarity to q is apt to be selected as d). If file
DFi+1 does not exist, then go to step 3. otherwise, set Bj+1 (c...Bj) to

                                              '                                   1                                        j+1a set of documents with index part go'''qo , and set j=j+1. If j=h,
                        'then go to Step 1; otherwise, repeat Step 4.

     The computer implementation of this hierarchical storage configu-

ration consists of a memory hardware (as proposed by SaZasin [45]) with

increasing data access time and data storage capabilities. ThÅ}s fÅ}gure

would be extended to a computer network for document information retrieval

by considering the hierarchical storage hardware as the computer hierarchy

with increasing facility of data processing and genera!ity of application
  '
areas.

4.6 Computational Experiments

     Computational experiments for retrieving the best- and the better-

matches in a storage hierarchy are performed on a set D of 100 documents

drawn from the Comm. ACM contributions. The similarity matrix for set D

is shown in Fig. 4.3. A storage configuration for the document files

takes the form of an h-level (IShE4) hierarchy. A cluster at every

storage level, which is obtained by algorithm MTDSO, is stored as an

indexed itern in the storage at one higher level. The similarity values

for items are also stored after subdividing them into clusters at this

level. The stored information at the lowest level is a set of indexed

documents and the input and intra-class similarity values for every
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pair of adjacent docurnents. Since all the iterns in a cluster is stored

as an item at one higher level, the files at the higher storage level

require much srnaller storage area. Also all items in a file at every

hierarchical level are arranged linearly so that the required items will

be retrieved effectively. The numbers of items at storage levels 1,2,3

and 4 are 9, 16, 35 and 100, and the average (or maximal) numbers of

documents in clusterst at levels 1, 2 and 3 are 20.0, 8.3 and 3.2 (53, 22

and 7), respectively.

     Algorithms HBST and HBTR are used to obtain the best- and better-

matches for every incomming query. Four kinds Ql, Q2, Q3 and Q4 Of

qu'eries, each of which consists of 10 members exactly matched with the

stored documents, are prepared for a storage hierarchy (Hereafter the

h-level storage hierarchy is written as SHh). Any query .in Qi (2Si:Sh)

is indexed by the correct class numbers for hierarchy levels l, ..'

and i-1, and any query in Ql is given no class number. Class numbers

are used in Step 2 of algorithm HBST to specify the document file which

will include a best-match documentbtoqueryq. When no class number is

given for query q, any unexamined document file is first selected. Next,

this algorithm proceeds into Steps'3 and 4, and, if possible, returns to

Step 1 for searching an unexarnined file with the class number of b. The

efficiency of file searching is largely reduced for the input data in-

cluding many ambiguous documents (which do not satisfy (4--1) with respect

to f), for many document files are determined to be searched in Step 4.

                                                                     '   't One-element clusters are excluded.
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After one b of the best-matches is found by algorithm HBST, the better-

matches Bgr (IBgrl=r, 2-<rs6) are found by algorithn HBTR. !n this ex-

periment a document in Bir having the same similarity value to q as a

docurnent outside B9r is not retrieved, since it is hard to decide which

document is a required one.

     Table 4.1 shows the average nurnbers of relevancy computations be-

tween the queries in {Q2,..', Qh} and the documents at the lowest level

or between the stored items at the other levels until one of the best-
matches is retrieved from SHh. The files at the lowest level is searched

linearly in this case. Algorithm HBST searches about the half documents

in'any storage hierarchy to obtain one of the best-matches for a query

     t         On the other hand, the fUll search is required for the documentin Q    1'
fiie being not organized hierarchicalZy. The result of retrieving r
E{2, 4, 6} better-matches in SH4 is shown in Table 4.2.

     The file search time for a storage hierarchy mainly depends upon

the numbers of relevancy computations at the lower storage level. Table

                                                      234.3 shows the retrieval result of algorithm HBST for SH and SH , where

the searching of the files at the lowest ievel is done by algorithm BST

instead of the linear search process. Also these files, i.e., structured

files, are organized by subdividing the document clusters into subdivi-

sions. The sequence of thresholds and the numbers of representatives

for division T are O<O.2<O.4<1.0 and 18, respectively. Variable rp

 '                              '

t When the files at the higher storage levels include the representative

documents, algorithm HBST can search the files more efficiently.
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(or nrp) in Table 4.3 counts the number of representative (non-
 '
representatÅ}ve) documents drawn in the executions of algorithm BST.

The relevancy computations between the query and the stored items in
             '
the structured file are executed sequentially from the first item to

the last one in the specified subdivision of the cluster. Thus the
                                                                     '                                'rearranged documents are placed on a sequential file with a key region.

                 3The result for SH at the lowest level is superior to the other. This
is because the more confined subdivisions can be specified in sH3 than

     2in SH . When the stored documents are accompanied by the similarities

to the other documents in a cluster, since every document i.s considered

to' be a representative, the more prominent result is attained. Also in

this case rnuch more area to store the similarity information is needed

                   3'      2for SH than for SH .                      Algorithm HBST can be used to retr:ieve the best-
                                                                      '
matches to the queries, none of which exactly matched any stored document,
                                                                  '       .at the slight deterioration of the retrieval effectiveness. The reductions

of tthe precision values for retrieving one of the best-matches to the
             '
queries in Ql, Q2 and Q3 are O.21, O.07 and O.04, respectively.

     The experimental experience reveals that algorithms HBST and HBTR
   '                                                           '
search effeetively the files of do6ument data in a real world. The stored

information in a storage hierarchy consists of the arranged iterns and the

similarity values for a set of clusters at every 1elvel. Therefore, the

storage requirement for hierarchically organized files is much less than

                                   'that for a file storing the entÅ}re data without structuring.
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4.7 Conclusions

     As the studies of analyzing natural language texts proceed, the
                                             'establishment of a file searching method becomes important for obtaining

quickly the documents closely related to any natural language query. The

conventional inverted file organization techniques devised in a histori-
                                          '                                                                         'cal keyword indexing background seem to be inappropriate to manipulate

such a flexible problem. Here by ordering the documents linearZy, the

structured file organization and its searching techniques under the

storage hierarchy are presented for obtaining the best- and the better--
                 '
rnatch documents to any ineomming query. The computational experiments

show that the algorithms HBST and HBTR search effectively the files of

large docurnent data for these documents.

                                                    '     The files in a storage hierarchy are maintained, when a new docu-•

                                                                      'ment c is added, in the following manner. First, by algorithm HBST,
          '                                                                    'obtain a best-match document b in a file DF at the lowest level, and

                  'next, store c in the storage location adjacent to b in DF. The deletion

of a document is executed similarly. Since the documents at the lowest

level are arranged linearly according to their similarities, feed back
                                              '                                                            '
runs to updata the retrieval result under rea!-time information retrieval

systems can easily be performed by non-expert, and also expert, users.
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CHAPTER 5

Concluding Rernarks

     The basic function of information storage and retrieval tasks

has been explained based on the conceptual pmeZevaney matching process

                                     '
between the documents and the subnttted search queries.

  ' First, the methods of constructing a zuord usage daetaonaTy and of

analyzing document sentences were given for the autornation of docurnent
                                        '                                                                      '
retrieval process. The dictionary used for specifying the application
     '
areas of the words was generated by grouping the words interchangeable

in a por'eciaeate netwoTk of the given document sentences. The predicate

network is obtained by relating the wQrds and predicates of the
                             'sentences to the application indications and pTedicate patterns,
    '                                            'respectively. The grouping method, whÅ}ch is an iterative procedure,

                                                               '               'is such that only the meaning of a'single meaning word constitutes one

of the correct application areas at every iteration. Thus the relevancy
                                                      '                                                                      'of the submitted query to the document sentence or to the document is
                                                        '
obtained by examining the similarity between them in the predicate

network. Next a st?uetu?ed fiZe oor)ganigation technique for the fast



105

retrieving of the relevant documents to any query is formulated by the
                                           'linear ordering of the documents according to the relevancy or simi-

larity between two documents. The extension of the structured file

organization for deciding which document data bases (or document groups)

are significant to be searched was to construct a storage or computer
                                      'hierarchy with increasing facility of data processing.

     In the first chapter, it was indicated that the document retrieval

process under the laboratory environment is classified into two types,

and the most of existing computer inforrnation retrieval systems have

utilized manual indexing schedules to obtain the document having

the specified and format.ted subject themes. The study in IR field,

therefore, was mainly believed to develop a mechanism of indextng

or cataloging the documents and organizing a inverted file. The IR

system, however, should be designed, regardless of whether it employs
                                                                 '
indexing schedules or not, to manipulate the document data more

"intelligently" such that the information storage and retrieval

operation is made based on the relevancy cornputation between the

conceptual expressions of the document contents.
       '           '                              '                                 '     The grouping of information queries or the specification of users
             '
is also an important factor for the design of desirable IR systems.

That is, the users with refined profiles should be incorporated into
                   '                       'the suitable information files for the efficient and accurate document
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retrieval. It is probable by the great prevalence of mini or micro
                            tt                                           '
computers as well as general purpose ones that the users' profiles

might be expressed and stored by the abstracted forms of the document

data retrieved to be relevant in the users' past history of the file

           'searching. Individual systems developed separately in various labor-

atory environments, which are intended to answer the specified infor-

mation queries of resident research workers, will be summarized into a

hierarchically networked system of a world scale for the extensive

retrieval of required information.
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              AppENDIÅ~

Matrix Rearrangement P]rocedure

                         and

  draph-Theoretical Algoritms



A.1 Preliminaries
                                      '     The aims of this Appendix are twofold. One is to present a
                                                         '                                                           '                              'new data structure for representing interrelationships between two

items of given data X (all items are here assumed to be indexed by
                                                     '                                    'integers 1, 2, ''' and n). The other is to forrnulate efficient algo--

rithms for finding graph-theoretical concepts, e.g., data compresslon,

spanning tree, connected component, maximal spanning tree, and clique,

used in this thesis. The "efficiency" of an algorithn is measured

by the computing speed and the extra storage requirement of the

algorithm, and the succinctness of its expression.

     Two types of data structures, aneighbor-list and an adjacency

matrix, are generally well known to be useful to represent' in a com-

puter the graph with a finite node set {1, 2, .•., n}. Also which

                                         '                                       'representation is more convenient depends on the question types being
          '                                                                    'asked in the algorithrns. Here a new kind of data structure [30] is
                                                '
presented for expressing a graph G(X), where every node and line

(weighted line) correspond to a data item and adjacency (or similarity)

information on X. The data structure consists of an nxn adjacency

(or similarity) matrix A=[aij] and a linear list L of size n. The

                                '       'list L contains, as its value, row index of A corresponding to a node

of G(X). Adjacency or sirnilarity information between two nodes L(i)
                                                                       ' '                              '               t ttand L(j), ISiSn, ISjSn, is expressed by the elernent (L(i),L(j)) of A.

(rf two nodes L(i) and L(j) are connected with each other, then the

value of aL(i)L(j) is set to 1; otherwtse to O.)

108



109

     One- and Two-Dimensional Sorting Operations'(written'byODSO and
  '
TDSO for briefness) on a newly proposed expression of a graph are

presented before the formulations of gTaph-theoretical algorithms.
           '                                       '                           'These are operations which rearrange the aontents of L according to

the adjacency or similarity information of the specified row or rows

of A. Since any access to A is made by referring to L, A is considered

to be labeled by L.

A.2 Matrix Rearrangernent Procedure

   ' Let G be a finite undirected graph with nodes {1, 2, '.•, n} ex-

                                        '
pressed in the form of a labeled adjacency matrix. Hereafter an ele-

                                                'ment .of a labeled matrix in written as aL(i)L(j). First One-Dimensional

Sorting Operation ODSO on a specified row of A is formulated.

     Let a continued part of rOW L(i) =[aL(i)L(1), aL(i)L(2), ''''

aL (i)L (.)] of A be denoted by K(i) =[ aL (i)L (j ), aL (i)L (j +1), ''',

                             'aL(i)L(k)], wherej and k (lj' SkÅín) are variabZes to indicate the

                                                    'first and the last positions of K(D in L(i),.respectively. Then

operation ODSO on K(i) is defined as fol!ows:

[Algorithm ODSO]

Zn: Array L and the continued part K(i) of row L(i) of A specified

by i, j and k.

Outi The position t of the last non-zero (or significant) element

                                                    'aL(i)L(t) Of K(i). •



                                                            '                                   '
Note: Working variable s is used for binary sorting process in Step 2.

                 '

                                                             '                                               '     Step l. Set s and t to the value of j.

     Step 2• If aL(i)L(s)>O, then exchange the contents of L(s) and

L(t), and addlto t. ' '
     Step 3. Set s=s+1. If ssk, then go to Step 2; otherwise, set

t=t-1, and terminate the algorithm.

                                                         '                          '
Note that ODSO collects the nodes adjacent to L(i) into the contF

nued part [L(j), L(j+1), ''', L(t)] of L. When all accesses to

matrix A are made through L, the rearrangement of L is xeduced to

that ofAitself: That is, we have that .
  ' aL (i)L (j)='''=aL (i)L (t)"1, and al. (i)L (t+1)='"'"aL (i)L (k)"O

                                                      'after the termination of the algorithm.
                                                                  '

   • The Two-Dimensional Sorting Operation [29] is defined as the se-

quenees of ODSO on each row L(i), lsisn, 1sL(i) sn, of labeled matrix A.

                                                   '
                        '[Algorithm TDSO] ' . •                                            '

                          '
' Step 1. Set L==(l, 2, •.•,n). Set i to 1, and j to 2.

 , step 2. Select row L(i) of A, and execute ODSO on (aL(i)L(j),

"L(i)L(j+1), ''', aL(i)L(.))• Set j=t+l• . .
     Step 3. Add 1 to i. If i is equal to j, then add 1 to j. .

     Step 4. If i is not greater than n, then go to Step 2; otherwise,

terminate the algorithrn.
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A.3 Matrix Compressing Process
                                                           '                                                              '
     The graph obtained from data in a real world is known to become

sparse (A sparse graph is expressed by a matrix having srnall amount

of non-zero or significant elernents). Table A.1 shows sorne of the

                      'statistics for the graphs obtained by applying thresholds to the

                                                               'simÅ}larity matrix in Section 2.5. Parameters Mcc and pa ("2m/Mcc(Mcc

-1): rn is the number of lines of a graph), respectively, indicate the

size and the line density of a graph G, and p                                              the average line den-                                            b
sity of subgraphs of G. Table A.1 tells us that these graphs are

totally sparse but locally dense. The similar situation is shown in

Fig. 4.3. (Sph'rck-Jones [58] indicated that the density of significant

elernents in such a matrix is practically as low as 10 percent.)

     One efficient way of representing a sparse graph is attained by

     ttsubdividing the matrix of the sparse graph into a set of small rnatrices,

each of which corresponds to one of subgraphs of that graph. Also the

rnatrix should be subdivided so that the interconnection between resulting

subgraphswouldbecome smaller. An algorithm for compressing the matrix

of a sparse graph is given below:

[Algorittm MC] (Matrix Compression)

                           'In: Labeled similarity rnatrix A.

Out: Arranged A and L.

Note: One-dimensional array LEV is used to specify the region of A

in which significant elements corresponding to lines of ST are stored.
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Tab1e A.1. Statistics for threshold graphs.

M
cc

Pa Pb

IOO

 88

 66

 21

O.05

o.o4

O.05

O.I6

O.28

o.26

O.29

O.39
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Procedure:

     Step 1. Set i to 1, and j to 2. LEV(1)=1.
                                                         '
     step 2. Select row L(i) of A, and execute ODSO on (aL(i)L(j),

aL(DL(j+1), ''', aL(i)L(.))•- Set LEV(i+1)=t and j==t+1.

     Step 3. Add 1 to i. If i is equal to j, then add 1 to j.

     Step 4. If i is not greater than n, then go to Step 2; otherwise,

set LEV(i)=n, and terminate the algorithm.

     Algorithm MC collects the significant elements into the upper

trianguiar part {[L(i), L(LEV(i+1))]ll<-i<-n} of matrix A. This rear--

ranged matrix can be divided into a set of small matrices by considering

{.LEV(i+1)-illsi<n} to be an index for subdivisions. Algorithm MC is also

rnodifiable so that the more significant similarity information will be

collected into the nearer area to the diagonal elements (see Chapter 4).

A.4 Spanning Tree
                                                '
     Next, let us formulate based on ODSO two algorithms for finding

                            'a spanning tree of a graph G. The concept of a spanning tree is used

to define connected component, maximal spanning tree, cycle, block,

and so on. '
                            '
     A spanning tree ST of G Å}s constructed by expanding continuously

nodes of any subtree T of G until all nodes of G are Å}ncorporated intoT.

Two methods, called breadth-first BF and depth-first DF methods, are

well known in accordance with the way in which nbdes are ordered
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for expansion [39]. The nexts are two spanning tree generation algo-
                                                                    '                 '               'rithns foraconnected graph G. '
 .t
[Algorithrn BF] (Spanning Tree)
                                             '           '                                                                   'In: The graph G is expressed by an adjacency matrix A with label L.

Out: Any line of T under expanding is expressed by the element (L(i),L(s))

of A such that aL(i)L(s)>O in Step 2 of ODSO.

Procedure:

     Step 1. Set i and j to 1.

     Step 2. If j=n, then terminate the algorithm; otherwise, set j=j+1,

anq execute ODSO(i,j,n) considering L(DL(s), which satisfies aL(i)L(s)

\O in Step 2 of ODSO, to be a line of ST. Set j=t.

     Step 3. Set i=i+1, and go to Step 2.

[Algorithm DF] (Spanning Tree)

In and Out: Same as algorithm BF.

Procedure:
                               '
     Stepsland 2. Same as algorithm BF.

     Step 3. If no node L(s) satisfying aL(i)L(.);O in Step 2 of ODSO

                                                              'exists, then set i=i-1; otherwise, set i=j. Go to Step 2.

     Algorithm BF can easily be understood by viewing [L(i),L(i+1),•••,

                                 'L(j)], ISijt Sn, as a queueinwhich every element is a node waiting in

                                                                    'line for expansion [34]. After the expansion of L(i) by ODSO, node
                 '
L(i) is deleted from and its successors are inserted into that queue
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by increasing the values of i and j. (Suceessors of L(i) are nodes

adjacent in ST to L(D. NodeL(i) is called a parent of these suc-

cessors.) A row for ODSO in BF method, whtch corresponds to a node

for expanding the tree, is selected in the order [L(1), L(2), ..',

L(n)]. In DF method, however, a back-tracing procedure into L is needed

to find a row for ODSO, and then many elements of A will be referred

                                                                   '  .twlce or more.

       '
A.5 Connected Component
   '     Two nodes disconnected in G are also disconnected in a spanning

tree of G. An algorithm for finding connected components is then

formulated by adding only one conditional statement to Step 3 of

algorithm BF.

[Algorithm CC] (Connected Component)

Out: The node of every connected component are lined inacontinued

part of label array L.

Procedure: .    '     Step 1. Set i and j to 1. Let L(1) be the first element of a
                  '
                                         'connected component. .                  '
     Step 2. If j=n, then terminate the algorithm by considering L(j)

to be the last element of the connected component; otherwise, set j=j+1,
                               'and execute ODSO(i,j,n). '                                    '
     Step 3. If j=i, then let L(i) be the last element in L of the
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             '
                                  '

connected component, and L(i+1) be the first element in L of a newly

generated connected component. Set i=i+1 and j=t, and go to Step 2.

   '
                                             '
                 '        '                                                                     '
                                                   '                                                     'A.6 Maximal Spanning Tree
                                                             '                                       '
     The spanning tree, where the sum of the line weights is rnaximal

of a line weighted graph (shortly weighted graph) Gw, is called a

maximal spanning tree MST. The concept of MST is used in Chapters 2, 3

and 4 for the graph-theoretical clustering schemes. Let T be a subtree

obtained by removing the lines of MST whose weights are not greater

than a given thresho!d value T. Then two nodes in T is connected by

at least one path (called a maxmin path) whose ninimum line weight

is not greater than T. A node set of T, therefore, becomes one of the

single linkage clusters of Gz". An MST generating algorithm is obtained

by modifying PrÅ}m's algorithm [7Q].

                                           '

[Algorithm MST] (Maximal Spanning Tree) ' ' '
In: Labeled similarity matrix A of Gw.

Out: Refer to algorithm ST.
                                   .                                       'Procedure: •                                     '
             '     Step 1. Set i=1.

     Step 2. Exchange the contents of L(i+1) and L(k), where node

L(k) (i+lsksn) shows the greatest similarÅ}ty to L(i).

     Step 3. Set i=i-Fl. Let L(OL(s) be a line of MST, whereL(s)

(ISsSi--1) shows the greatest similarity to L(i).



                                                                '                                                 '

     Step 4. If i=n, then terminate the algorithm; otherwise, go to

                                    '
                                                      '                   '                  '
                            '                                      '

                                                     '                                              '                                                   'A.7 Clique •
     The most efficient clique finding algorithrn in the previous works

has been proposed by Bron and Kerbosch [9]. Their rnethod, however, is

not so useful for a sparse graph. Here a new clique finding algorithm

is formulated which works effective!y for a sparse graph without any

extra two-dimensional storage. The next theorem is important to show

  'the correctness of any clique finding algorÅ}thm. •

     Theorem A.1: Let K (IKI=i-1, i>1) be a set of adjacent nodes

in G with each other. Further let Q be a set of nodes adjacent to all

of K, and R be any subset of Q. If any clÅ}que having, as its nodes,

all of K and some of R is already found, then a new clique having all

of K includes at least one node, which is a member of Q-R (=P) and

not adjacent with some of R. Hereafter R (or P) is denoted by R(i)

(P(i)) as the already examined nodg set (unexamined node ' set) at

level i. Similarly K is expressed as K(i).

                                                     '
     Each of K(i), R(i) and Q(i) can be expressed, by rearranging the

contents of L, as was shown in Fig. A.1(a). Here LIST(i) and ALDY(i)

denote the last and the first positions in L of the nodes of Q(i)

and R(i) at level i, respectively. Set S(i) is a collection of
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1 i ALDY(i) LIST (i) n

--- --

P(i) R(i) s(i)K(i)
Q(i)

Fig. A.1(a). Arranged pattern of L at level i.

i+1

1i+lALDY(i+1)LIST(i+1)ALDY(i)Pi,i+ILrST(i) n
.

ee"
(.-) -- --- e--

K(i+1) P(i+1) R(i+1) R.(i+1)1 Si(i+1)-

Q(i+1)

Fig. A.1(b). Arranged pattern of L at 1evel i+1.

RNoo
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nodes which are not in Q(i), and adjacent to all of K(i). If P(i)=Åë,

then a complete subgraph K with nodes K(i)U{L(D} can be considered

as a candidate for a clique. On the other hand, if P(i)XÅë, then K

should be expanded by adding to K a node adjacent to all of K (see
         '(IKI) and (IK2)). To do so, execute ODSO on P(i)-{L(i)}, on R(i)'
                   'and on S(i) independently, and obtain Q(i+1), R(i+1) and S(i+1)

(=Ri(i+1)USi(i+1)). Set Ri(i+1) is a collection of nodes adjacent to

L(i). Set S.(i+1) is a collection of nodes which are adjacent to all
            i
of K(i+1), and are members of already examined nodes at level j (<i).

More explicitly, Si(i+1)= jY.`i Ri(i+1). Set R(i+1) is initialized to

Åë by setting ALDY(i+!) to LIST(i+1)+1. After all complete subgraphs
                                                'having K(i+1)U{L(i+1)} are found, node L(i+1) is incorporated into the

already examined node set R(i+l) at level i+1. The index pi,i+1, exww
                                                 '    'pressed by the sign bit of an element in {aL(i+1)L(pj,i+1)11-`J'Si}, iS

used to indicate the position of the last element in L of R.(i+l), and
                                                            u-
then the set Rj(i+1) (1:Ejsi) is located in a continued part [L(ALDY(j)),

''' , L(pj,i+1)] of L. [Chus node set K(i+1)U{L(Å}+i)} constitutes a clique

iff P(i+2), R(i+1) and S(i+1)=Åë.
                                                             '
                                   '     The selection of node L(i) for expanding K(i) is executed as:
                                                                          '
                                                                           t     (IKI) Let ci in R(D be a node having the smallest connected number

in SG whose nodes consist of K(OVQ(i). Then select as L(i) a node '

in P(i) not adjacent to ci in G (see Step 6). '

t A conneeted number of ci is a number of nodes connected to ci in SG.
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     The following rule is applied tn addition to rKl for the graph

                                         'havtng alocally dense matrix. -                                                              '
     (IK2) Execute ODSO on S(i) and select a level h (<i) such that

set P(h) contains at least one node useful for expanding a complete

subgraph K(h) (see Step 5).

[Algorithm CL] (Clique)

In: Labeled adjacency matrix A.

Note: Variables m and f used for indicating the levels satisfying

R(m)=Åë and Rl(f)=.•e=Rf(f)=Åë, respectively. Note that K constitutes

a clique when m>f.

Procedure:

     Step 1. Set i=O, m=n, LIST(1)=n, ALDY(1)=n+1 and }<=L(1).

                                 '     Step 2. Add 1 to i. If i>n, then terminate the algorithm. Other-

wise, if i>m, i.e., P(D=Åë, then go to Step 3; otherwise, execute ODSO

(i,i+l,n) to extend K by L(i+1) setting the signs of aL(Å})L(s) (and

aL(s)L(i)) fOr all s, i+IEsSm, to (+)• Set m to the value of t in

Step 3 of ODSO, and set LIST(i+1)=rrrn and ALDY(i+1)=m+1.

     Step 3. Execute ODSO for nonempty set Rh(O with the htghest

level h (lshsi) setting the sign of aL(Å})L(s) (and aL(.)L(o)tO (-) in

Step 2 of ODSO. At this time, for the value t in Step 3 of ODSO, put

the (-) sign to aL(i+1)L(t+1) (and aL(t+1)L(i+1)), and set f==i.

     Step 4. If Rh(i)=Åë for all h, and ODSO in Step 2 is not executable,

then go to Step 5; otherwise,go to Step 2.



                                   '

                                            '                                   '                                                             '
     Step 5. If m>f, then consider K to be a clique, and set i=m.
 '

On the other hand if msf, then select the greatest r (by rule IK2),

lsrsm+1, satisfying LIST(r)>f, and set r to i.

     Step 6. Compare the disconnected numbers for ci and L(i) at .

Ievel i (ci=L(i), when R(i) =Åë), and select a new ci based on rule IKI.

Further exchange L(i) for a node L(s) in P(i) disconnected from ci.

If one of the above disconnected numbers is O, then set i=i--1, and

repeat Step 6 untU both disconnected numbers are non--zero.

     Step 7. Delete 1 frorn ALDY(i), and exchange L(s) for L(ALDY(i)).

Set m=ALDY(Å})-1, and go to Step 2.

A.8 Fundamental Cycle
                               '
     Finally, let us formulate a fundamentai cycle finding algorithm

[30] to show how the matrix rearrangement procedure works effectively.

                                                                    'The formulation of such an algorithm is important to analyze various

graph-theoretieal structures. Note that any line, called a ekopd, of

a graph G not in a spanning tree ST of G, will yield a fundaTnental

cyc!e. Any chord of ST can be expfessed by 1's element in area

R={[aL(i)L(i+1),''',aL(i)L(ti-.1)]11<i<n} of A, where ti-1 is the value

of the output parameter t of ODSO for L(i-1) (refer to algorithm BF).

The following theorem is used to compute a fundamental set of cycles.
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     Theorem A.2. For any chord L(x)L(y) (x<y) in R, it is true that

the location z in L of the parent node of L(y) is not greater than that

of L(x).

     Proof. Assume that the value of z ts greater than that of x. Sup-

pose first that L(x) and L(z) are not adjacent in ST wlth each other,

then ODSO for L(x) is executed before ODSO for L(z), and we have z2.Ly.

On the other hand, suppose that L(x) and L(z) are adjacent, then the
                                 'line L(z)L(y) of ST becomes a chord of G. Both cases lead to the con-

tradiction, and then we have zzx. Similarly, it is true that the

1.ocation in L of the parent of L(x) is not greater than z.

  tt

[Algorithm CY] (Fundamental Cycle)

In: Same as algorithm BF.

Note: Steps 1, 2 and 3 generate a spanning tree ST of G, and Steps 4,5

and 6 find a set of fundamental cy. cles through ST. A one-dimensional

array PARENT stores a pointer PARENT(i) (ISi<-n) to indicate the position

in L of the parent of its successor L(i).

Procedure:

     Step l. Initialize i and j to 1.

     Step 2. If j=n, then go to Step 3; otherwise, set j=j+1, and

execute oDSO(i,j,n) setting PARENT(s)=i for s such that aL(i)L(s)IO•

                                       '
     Step 3. If i=n, then go to Step 4; otherwise, if i==j, then set
  '                                       '                                                     '                                                 '                                             '                'j=j+1 and i=i+1. Go to Step 2.
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     Step 4. Select a new chord L(x)L(y) (1<x<y<n) from C={[L(i+1),•••,

L(ti-1)]}. If no new chord exists, then terminate the algorithm; other-

wise, go to Step 5 to generate a new fundamental cycle C by putting L(x)

and L(y) as the members of C.

     Step 5. Set z to PARENT(y), and add L(z) to C. Set y=x and x=z,

and repeat Step 5 until x=y.

     Step 6. Go to Step 4.

     An efficient cycle finding algorithm CY, which is coded into a PL/I

procedure, is seen in [30], where algorithm CY and algorithm BGENERATOR

proposed by Gibbs [20, 40] are compared. Sorne of the reasons for the

superiority of CY over BGENERATOR are: (i) CY needs, as the extra-

storage requirement, two linear lists L and PARENT, and some variables.

No copy of the input graph is necessary, for adjacency matrix A is not

destroyed in the process of CY; (ii) Any element of A is referred only

once in CY, but in BGENERATOR many elements will be referred twice or

more; (iii) CY is coded succinctly, and is available for a disconnected

              'graph as well as a connected graph.
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