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1. Introduction and results

Let G be a compact Lie group. A G-ENR (Euclidean Neighborhood
Retract) is a G-space which is a G-retract of some G-invariant open subspace
in a Euclidean G-space. In this paper we will consider the Lefschetz number

AMf) = 20 (—1) trace fy i: H(X; Z)[Tor - Hy(X; Z)/Tor

of a self G-map f: X=X of a compact G-ENR X. f restricts to the self map
f6: X6—>X6 of the G-fixed point set X¢ of X. Then we will show

Theorem 1. Let f: X—X be a self G-map of a compact G-ENR X.
(1) If X has only one isotropy type (H), then NM(f)=0 mod X(G/H) where
X( ) denotes the Euler characteristic.
(i) If the G-action on X is semifree, then \(f)=N\(f°) mod X(G).
(i) If G is finite and of prime power order p*, then N(f)=\(f€) mod p.
(iv) If G is connected and abelian (i.e., torus), then N(f)=n(f€).

In section 4 we will prove this theorem by using the fixed point index
defined by Dold [2]. (i) of the theorem is a special case of Dold [3; (8.18)].
If G is finite and the G-action is free, related results are in Nakaoka [9] and
Gottlieb [5]. As a corollary of the theorem we obtain

Corollary 2. (i) If the G-action on X is semifree and \(f)=0 mod X(G),
then f has a fixed point in X ©. :

(i) If G is of prime power order p* and N(f)%0 mod p, then f has a fixed
point in XC.

Proof. In either case it follows A(f€)==0 and by the Lefschetz fixed point
theorem there exists a fixed point of f¢: X¢—X¢, q.e.d.

If G is a compact monogenic Lie group (i.e., finite cyclic group, torus and
product of these) and f G is its generator, then we may regard f as a self G-
map of a G-ENR X. In this case we can show, as in the proof of Theorem 1,
that A(f)=X(X?¢), although this has already appeared in the literature, tom



300 K. Komrva

Dieck [1; (5.3.11)] and Huang [6; Corollary 1] for G a finite cyclic group, Koba-
yashi [7; p. 63] for X a Riemannian manifold. As applications of this we will
show the following two results.

Proposition 3. If X is a compact G-ENR and G is monogenic, then
[X(X%)| <X rank H(X; Z).

In connection with this we note that if G is finite and of prime power order
#*, Floyd [4] shows

IX(X6)| <3 dim Hy(XC; Z,) <Y dim Hy(X; Z,) .

Proposition 4. Let G be of order 2 and f be its generator. Let M be a 2n-
dimensional closed smooth G-manifold and orientable over Z. If f is orientation

preserving, then
X(M®)=trace fy, mod2.

If f is orientation reversing, then
X(MF€) = trace fy , = 0.
Here fy,, is the automorphism of H,(M ;Z) induced from f.

These two propositions will be proved in section 5.

2. A lemma

If M is a G-space and x& M, then G(x) denotes the orbit of x and G, the
isotropy subgroup at x. 'The conjugacy class (G,) of an isotropy subgroup G, is
called an isotropy type. For a subgroup H of G let My={xeM |(G,)=(H)}.
If N is a G-invariant subspace of M and h: N—M a G-map, then the fixed
point set Fix (k) of & is a union of orbits. If N and M are smooth G-manifolds,
then for any fixed orbit G(x) CFix (k) we may take G-invariant tubular neigh-
borhoods T and T of G(x) such that T’C T’ and K(T)CT'. We decompose T'
into T=T,PT,, where T,=T N Ny, H=G,, is the component tangent to Ny,
and T, the component normal to N¢;. Similarly we decompose 7" into 7=
Ti®T,;. Then we see W(T,)CT{. We may regard T and T’ as G-vector
bundles over G(x)~G|H.

Lemma 5. Let M be a smooth G-manifold and N a G-invariant codimen-
sion O submanifold of M with finite isotropy types. If f: N—M is a G-map with
Fix(f) compact, then there exists a G-map h: N—M such that

(i) & is G-homotopic to f relative to the outside of some G-invariant com-
pact neighborhood of Fix(f),

(if) Fix(h) consists of a finite number of orbits,



LEFSCHETZ NUMBER FOR EQUIVARIANT MAPS 301

(i) if f(Nun) N My= b then h(N ) N Mmy= ¢ and hence Fix(h) \Np=¢,

(iv) for any fixed orbit G(x)CFix(h) if T=T,PT, and T'=T BT, are
G-invariant tubular neighborhoods of G(x) as above, then h|T: T—T' is fibre
preserving and decomposes into h| T=(h|T,)P0 where 0: T,— T, maps any vector
to 0.

Proof. (I) The case in which the G-action on N is free. NXM is a G-
manifold with diagonal G-action, and its action is also free. Thus the orbit
spaces N/G and N'x ;M are smooth manifolds. Define a G-map f: N->NxM
by f(x)=(x, f(x)) for x&N. Passing to the orbit spaces, f induces a map
fIG: NJG—=Nx ;M. By the transversality theorem we obtain a smooth map
hy: NJG— N X ¢ M such that

(i) A, is transverse to A/G, where A is the diagonal set in NXx M, and

(ii) A, is close enough and homotopic to f/G relative to N—V/G, where

V is some G-invariant compact neighborhood of Fix ().
By the dimension reason AT'(A/G) is a finite set, in particular it is empty if
dim G>0. If f(N)NMy=¢ where M, is the points of M with the identity
isotropy subgroup, then Fix(f)=¢, f/G(N/G)NA/G=¢ and hence we may
take ;= f/G. By the equivariant covering homotopy property we may lift the
homotopy of (ii) and obtain a G-map k,: N—>Nx M G-homotopic to f relative
to the outside of some G-invariant compact neighborhood of Fix(f). A3'(A)
consists of a finite number of orbits. Let p;: NXM—N and p,: NXM—>M be
the projections. p,h,: N—N is a diffeomorphism since it is close enough to
p f=identity. Let hy="hy(ph,)': N->NxM and h=ph;: N—M. then
hy(x)=(x, h(x)) and Fix(h)=h3'(A)~h3'(A). his a desired G-map.

(II) The general case. Let {(H,),(H,), -*+, (H,)} be the set of isotropy types
on N ordered in such a way that if H; is conjugate to a subgroup of H; then
j<i. Consider the following assertion A(z) for 0<i<a:

A()). There exist a G-map h;: N—M and a G-invariant neighborhood U;
of X;=Nyy U+ UNy, such that
(1) &; is G-homotopic to f relative to the outside of some G-invariant com-
pact neighborhood of Fix(f|X;),
(i) Fix(h)N(Ui—X))=¢,
(i) A;|U;: U;— M satisfies the conditions (ii), (iii) and (iv) of the lemma.

If =0, then X;=¢ and hence we may take U;=¢, h;=f. Thus A(0) is
valid. A(a) is equivalent to the lemma since X,=N. Thus, to prove the
lemma it suffices to prove that A(7) implies A(Z-+1).

Now suppose A(z). As in the author [8; Lemma 3.1] there exists a
G-invariant codimension 0 submanifold P (with boundary) of N such that X;C
Int PcPcClInt U;. Let Q=N—IntP and K=H,;,,. Consider an N(K)-map
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h;|Q%: Q¥—M¥X, where N(K) is the normalizer of K in G. h;| Q¥ may also be
considered as an N(K)/K-map. Since K is the maximal isotropy subgroup on
O, then the action of N(K)/K on QX is free. Thus we may apply the preceding
argument (I) to the N(K)/K-map k;|Q¥, and obtain a resulting N(K)/K-map
O¥— M*. By G-equivariancy it extends to a G-map f;: Quy=G(0%)— M,
which satisfies the conditions (i)~(iv) of the lemma. To be precise for the con-
dition (i) it says that f, is G-homotopic to #;| Q) relative to the outside of some
G-invariant compact neighborhood (in Q(x)) of Fix(%;|Q()). Moreover its G-
homotopy may be so taken as to be relative to a neighborhood of 0Q ), since A;
has no fixed point in a neighborhood of 8Q(). Let T be a G-invariant tubular
neighborhood of Q) in Q and z: T'— Q) be the projection. Then we may
extend f; to a G-map f,: T—M such that

(i) for some two neighborhoods U U’ (U’ compact) of Fix(f;) in Q,
f2:f1°71' on TI U andfzzh,- on TlQ(K)_ U’,

(i) Fix(/)N (T—Qu)—9.
From £;|Q and f;, as in the author [8; Lemma 3.2], we obtain a G-map
fs: O— M such that

(i) fs=h; on a neighborhood 4 of 8Q, f;=f, on a neighborhood of Q(,),
fs=h;=f on the outside of a G-invariant compact neighborhood B of
Fix(f) (=Fix(f),

(ii) f3 is G-homotopic to #;|Q relative to 4 U (Q— B).

Define h;y: N—M as h;y,=h; on P and hiy=f; on Q. Then h;y, is a
G-map required in A(z4-1). q.e.d.

3. Fixed point index

We first recall the definition of the fixed point index from Dold [2]. Let
FCcNCR'CR'U {c0}=S", where F is compact and N is open. The funda-
mental class e, H,(N, N—F; Z) is the image of 1 under the composite homo-
morphism

Z = H,(S"; Z)— H,(S", S"—F; Z)~H,/N, N—F; Z) .

Let h: N—R" be a map with Fix(h) compact. Define the map 1—#%: (N,
N—F)—(R", R"—0) by (1—h)(x)=x—h(x) for x&N. Then the fixed point
index ind(h) of h is defined as ind(h)=(1—h)yerEH,(R", R"—0; Z)=Z. Dold
uses the symbol I, for the index, but we use the symbol ind (%) to facilitate the
printing.

Let R” be a Euclidean G-space, N be a G-invariant open subspace of R
and h: N—R" be a G-map satisfying the conditions (ii) and (iv) of Lemma 5.
Let Fix(h)=G(x,) UG(x,) U ++- U G(x,) with G,,=H; (1<i<a). If T;is a small
G-invariant open tubular neighborhood of G(x;) in N, then by the additivity
of the index [2; (1.5)] it follows that
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ind(h) = X%, ind (k| T}).

For a while let x=x;, H=H;, T=T;. We may consider that a fibre in T over
8(x)EG(x) is a subspace in R” which is a parallel translation to g(x) of (a small
open disc in) a linear subspace through the origin. Let z: T'—>G(x) CR" be the
projection, and 7" be the other G-invariant open tubular neighborhood of G(x) as
in (iv) of Lemma 5. Define 1—h+z: T—T" as (1—h+z)(v)=v—h(v)+7(v).
This map is fibre preservmg, and the following diagram is commutative for any
geq.

H(T, T—G(w) %> H/T, T—g() = Z
(l—h—i—n)*l (1—h+m)s
H(T', T—G(®) ——HAT', T'—g(=)) = Z

where j: (T, T—G(x))— (T, T—g(x)) is the inclusion. Let e=oy € H,(T, T—
G(x)) be the fundamental class. Let a,=jx(1—h+n)sxe€EZ. By the com-
mutativity of the diagram, a,=(1—h-+7)sjxe and jyo=1 in H, (T, T—g(x))=Z.
Since 1—h+= is G-equivariant, @, are all equal for every g&G. So, if « is its
the same value, then we see that (1—A+7z)ge=a-e in H,(T', T'—G(x)).

(1—h): Hy(T, T—G(x)) = H,(R", R"—0)

factors as

HT, T—G ) "% g o Gy U5 i we, R—0).
Thus we see that in H,(R", R"—0)
(1—h)go = (1—m)u(l—htz)so = a-(1—)so,

and hence ind (k| T)=¢-ind(z). Since ind(z)=X(G/H) by [2; (4.1)], it follows
that ind (%] 7;) is a multiple of X(G/H;) for i=1, 2, -+, a

Let Fix(B) N N®={xy, x5, +*+, x;} (1<b<a). For 1<7<b the tubular neigh-
borhood T is a disc with x; as its center. As before T; decomposes into the
direct sum T;=T; DT;, where T; ,=T¢ is the component tangent to N¢ and
T;,, is the component normal to N¢. Then, from the condition (iv) of Lemma
5 we see that & on T'; decomposes into h(u, v)=(h(u), 0). Thus, by [2; (1.4),
(1.6)], ind (k| T;)=ind (2| T'¢) and hence

‘.1 ind(%| T;) = ind (A°) .
From the above argument it follows the following.
(i) If Fix(h)cNC€U Ny, then ind (h)=ind (A°) mod X(G/H).
(ii) If G is finite and of prime power order p*, then ind(k)=ind (k°)
mod p. For X(G/H)=0 mod p for any proper subgroup H of G.
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(iti) If Gis connected and abelian, then ind (2)=ind (k°). For X(G/H)=0
for any proper subgroup H of G.

4. Proof of Theorem 1

Let f: X— X be as in the theorem. Let N be a G-invariant open subspace in a
Euclidean G-space R", and i: X =N, r: N—X be G-maps such that ri=identity.
We easily see that X# is also an ENR for any H<G. We apply Lemma 5 to
the G-map #fr: N—R" and obtain a G-map h: N->R" satisfying the conditions
(i)~(iv). By [2; (1.7), (4.1)] it follows that A(f#)=ind ((ifr)?)=ind (h¥). From
this and (ii), (iii) in the preceding section, (iii) and (iv) of the theorem immedi-
ately follow. If X has only one isotropy type (H), then (ifr)(Nw)) C Rix, for any
K<G. Thus, from (iii) of Lemma 5 it follows Fix (k) C Ny, and from (i) in the
preceding section it follows A(f)=ind(h)=0mod X(G/H). This proves (i) of
the theorem. If the G-action on X is semifree, from (iii) of the lemma it follows

Fix(h)cN¢UN(. Thus (ii) of the theorem follows from (i) in the preceding
section.

5. Proof of Proposition 3 and 4

Let X be a compact G-ENR and N, 7, » be as in section 4. If G is a com-
pact monogenic Lie group, we regard a generator f of G as a G-map f: X —X.
Then Fix(f)=X¢ Let h: N—R" be a G-map obtained by Lemma 5 from the
G-map ifr: N—R". In this case we may construct 4 satisfying the additional
condition Fix (k) CN€ This is ensured by the fact Fix(ifr)=:¢(X¢)CN®. Then
we see that A(f)=ind ()=ind (A®)=A(f€). Since f€ is the identity map of X¢,
it follows A(f)=X(X€). As noticed in Introduction this has already appeared
in the literature. Using this result, Proposition 3 and 4 are proved as follows.

(1) Proof of Proposition 3. Let fy;: H(X; C)—=HyX; C) be the auto-
morphism induced from f, where C is the complex numbers. Let 2, 25,**, 2,
€C be the eigenvalues of fy ; where r=dim H,;(X; C)=rank H,(X; Z). Since
the X(G) times composition of f ; is the identity, then 25©=1 and thus |z;|=1
for 1<j<r. We see that

[trace fy,;| = | 2371 2;| <X5-115;] = rank Hy(X; Z),
and
[X(XE) | = IMf)| £ rank Hy(X; Z). q.e.d.

(2) Proof of Proposition 4. Let G, f and M be as in the proposition.
Note that a smooth G-manifold with a finite number of isotropy types is a G-
ENR. Let z€H,,(M; Z) be the fundamental class defined from an orientation

of M for which f is either orientation preserving or reversing. Consider the
following commutative diagram.
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11L(M; 72—V g 7)
fxi frm
Hy(M; Z) RPN HJ'-I(M 3 Z),

where N denotes the cap product and the horizontal homomorphisms are the
isomorphisms of the Poincaré duality. Note that the inverse of the isomorphism
f*™ s itself since f is an involution. It follows that if f is orientation pre-
serving then trace fy ;=trace f**~/ and if f is orientation reversing then
trace fy ;= —trace f¥?7*, From the universal coefficient theorem it follows
that trace f**=trace fy ;. It thus follows that if f is orientation preserving then
M(f)=trace fy , mod 2, and if f is orientation reversing then A(f)=trace f ,=0.
Thus A( f)=X(M°) implies the proposition. q.e.d.

In case M is odd dimensional in Proposition 4, we then easily see that
Mf)=X(MC)=0 if f is orientation preserving, and A(f)=X(M°)=0mod 2 if
f is orientation reversing.
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