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Abstract

The Morse-Novikov numbeN/ (L) of a smooth linkZL in the three-dimen-
sional sphere is by definition the minimal possible numbectrifcal points of a reg-
ular circle-valued Morse function on the link complemente(tterm regular means
that the Morse function must have nice behaviour in a tubuédghbourhood of. ).
Novikov homology provides lower bounds foMA/'(L). In the present paper we
introduce the notion of twisted Novikov homology, which allows dabtain better
lower bounds forMN/(L) than the usual Novikov homology. Our twisted Novikov
homology is a module over the Novikov ring(()) but it contains the information
coming from the non abelian homological algebra of the grdng of the funda-
mental group of the link complement. Using this technique wev@rthat the Morse-
Novikov number of the knouz¢ (the connected sum ot copies of the Conway
knot) is not less tha@n/5 for every positive integer . We prove also thst A\ (n€)
is not greater thai2n. The same estimates hold for the Morse-Novikov humbers of
the connected sum of copies of the Kinoshita-Terasaka knot.

1. Introduction

Let L be an oriented link, that is, @° embedding of disjoint anaf the ori-
ented circles ins3. The link L is calledfibred if there is a fibrationp €; =5°\L —

S behaving “nicely” in a neighborhood df  (see Definition 2.B).L is not fibred, it
is still possible to construct a Morse mgp Ci — S* behaving nicely in a neighbor-
hood of L ; such a map has necessarily a finite number of crifioaits. The minimal
number of critical points of such map is an invariant of thekJicalled Morse-Novikov
numberof L and denoted byVA(L); it was first introduced and studied in [21]. This
invariant can be studied via the methods of Merse-Novikov theoryin particular the
Novikov inequalities [17] provide the lower estimates ftve tnumberMN(L). This
inequalities can be considered fisering obstructiondor the link.

Recall that if a knotK is fibred, then its Alexander polynomial monic
(see [25], 10.G.9 or [1], Ch. 8, P.8.16). So the Alexandeypaiial provides another
fibering obstruction for knots, which is sufficiently powdrfas to detect all non-fibred
knots among the knots witkl 10 crossings (Kanenobu’s theorem, see [12]). There are
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non-fibred knots with 11 crossings having the trivial Aledan polynomial, for exam-
ple the Kinoshita-Terasaka knot and the Conway knot (wel gtatly these knots in
details in the present paper, see Section 5).

It is not difficult to prove that the Alexander polynomial ofkaot K is monic if
and only if the Novikov homology ok vanishes, so the fiberirgstouction provided
by the Novikov homology is equivalent to the one coming frdme tAlexander poly-
nomial. The advantage of the Novikov homology is that it care gomputable lower
bounds for MN(K) in the case of non-fibred knots (see [21] for examples oft&no
with arbitrarily large Morse-Novikov number).

Both the Alexander polynomial and the Novikov homology abareabelian in-
variants that is, they are calculated from the homology of the indirdyclic covering
of C,. More information is provided by theon-abeliancoverings, although the cor-
responding invariants are more complicated.

Several non-abelian versions of the Alexander polynomiatendeveloped in 90s
(see the papers by X.S. Lin [16], M. Wada [27], T. Kitano [15hdaKirk-Liv-
ingston [14]). According to M. Wada’s definition the twistedefander polynomial of
a link L is a rational function in one or several commuting &bkes. It is associated
to a representation af1(S%\ L) to GL(n, R) (whereR is a commutative ring), and
it is through this representation that the non-abelianriamés come into play. In the
recent preprint [10] by H. Goda, T. Kitano, and T. Morifuji, itas shown that if a
knot is fibred, then the twisted Alexander invariant is monic

In the present paper we develop a version of the Novikov hogwlwhich we
call twisted Novikov homologyThis part (Section 3) may be of independent interest
for the Morse-Novikov theory. The twisted Novikov homologyhiesh we define is a
module over the ringZ((r)) associated to a representation of the fundamentalpgrou
thus it allows to keep track of the non-abelian homologidgkhra associated to the
group ring of the fundamental group of the considered spasewe shall show in this
paper there are efficient tools for computing the twisted iklmv homology of the link.
Theorem 4.2 gives a lower bound for the Morse-Novikov numbé&N' (L) in terms of
the twisted Novikov homology.

We show that the twisted Novikov homology is additive wittspect to the con-
nected sum of knots. We apply these techniques to study theevidovikov numbers
of the knotsm&%, m€, where KT is the Kinoshita-Terasaka knot [13], is the Con-
way knot [3], andmK stands for the connected summof  copies ofktiet K. We
prove that

MN(mRKT) = MN(m¢) > %

The computation of the twisted Novikov homology for thesetsnwas done with the help of
Kodama’s KNOT program (available at http://www.math.kabec.jp/"kodama/knot.html).
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Applying the techniques of the papers [7], [8] we prove that
MN(mRZ) = MN (m€) < 2m

We recall the corresponding notions and results from [5],gAd [8] in Section 2.

In Section 7 we introduce and study thsymptotic Morse-Novikov humbef a
knot.

The final section of the paper contains a discussion abowgssacy and sufficient
condition for a link to be fibred.

AckNOWLEDGEMENTS ~ The authors began this work during the visit of the first
author to University of Nantes. He is grateful to the facultfy the department for
warm hospitality. This paper was finished during the visittbé second author to
Osaka City University. He is grateful to Professor Akio Kawhi and Osaka City
University for warm hospitality. Authors are grateful tooR¥ssor Teruaki Kitano, Pro-
fessor Kouji Kodama and Professor Sadayoshi Kojima foralall discussions.

2. Heegaard splitting for sutured manifold

The basic Morse theory gives a relationship of a Morse map andrdlé de-
composition for a manifold. In this section, we review thetiow of Heegaard split-
ting for sutured manifold introduced in [7] and [8], and ralehe relationship with
circle-valued Morse maps. Moreover, we present some pregewhich are used to
determine Morse-Novikov numbers.

In this section, we assume that a link is always non-split.

Here, we recall the definition of a sutured manifold which wadefined by
D. Gabai [5].

Derinimion 2.1, A sutured manifold(M, y) is a compact oriented 3-dimensional
manifold M together with a sef  9M ) of mutually disjoint annuliy)(and tori
T(y). In this paper, we treat the cagéy ( )= . The core curved\ of gay,s (),
are called thesutures Every component ofR { ) = cdM — A ( )) is oriented, and
R.+(y) (R_(y) resp.) denotes the union of the components whose norettors point
out (into resp.)M . Moreover, the orientation &y ( ) is cohereiith respect to the
orientations ofs ¢ ).

We say that a sutured manifold4(y ) ispgoduct sutured manifoldf (M, y) is
homeomorphic toKx [0 1PFx [0 1]) withRi(y) = Fx{1}, R_(y)=Fx{Q, A(y) =
d0F x [0, 1], where F is a compact surface.

Let L be an oriented link inS3, and letR be a Seifert surface &f . SR =
R NE(L) (E(L) = cl(S®— N(L))), then P,8) = Re, E L)) N QRg,dE ())) has a
product sutured manifold structur®£{ x [0, 3Rz x ,[0 1]). We call,§ )peoduct
sutured manifoldfor R. Thus P is homeomorphic t&z x [0 1], and then we denote
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by R.(8) (R_(5) resp.) the surfac®y x { }1 R x { }O resp.). Let
(M,y)=(cl(E(L) — P),cl(@E(L) — 3))

with Ri(y) = R<(8). We call (M, y ) acomplementary sutured manifofdr R. In this
paper, we call this autured manifoldfor short.

Here we denote bW X, Y ) a regular neighborhoodXof Yin

In [2], the notion of compression body was introduced by As€tm and C. Gor-
don. It is a generalization of a handlebody, and importantie¢ne a Heegaard split-
ting for 3-manifolds with boundaries.

DerinTION 2.2. A compression bodW is a cobordism reld between surfaces
9:W andd_W such thaW = o, W x [0, 1]U 2-handlesu 3-handles artdW  has no
2-sphere components. We can see thatiW /¢ = #@hd is connelted,obtdsed
from 9_W x [0, 1] by attaching a number of 1-handles along the disks)oW x {1}
whered_W corresponds to_W x { }0 .

We denote the number of these 1-handleshby ( ).

These notions enable us to define a Heegaard splitting foreditmanifold.

Derinimion 2.3 ([7]). (W, W’) is a Heegaard splitting forM, y ) if
(i) W, W’ are connected compression bodies,
(i) wuw’'= M,
(i) WNW'=0,W=0,W, 0 W=Ri(y), andd_W' =R_ ).

Derinimion 2.4 ([8]). Seth R) = midh W )(=h W' )| W,W’ ) is a Heegaard
splitting for the sutured manifold ok} . We call R( ) tHeandle numberof R.

Handle numbers of Seifert surfaces are studied in [7] and [8]

In order to state the relationship between the handle nuralper the Morse-
Novikov number, we recall some definitions on circle-valuddrse map according
to [21].

Derinimion 2.5 ([21]). LetL be a link. A Morse magf €; — S* is said to be
regular if there is a diffeomorphism

¢:LxD?>—=>U
whereU is a neighbourhood df 6%, such that

fo¢(x,y)=% for y#0.
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A link L is called fibred if there is a regular Morse map S3\ L — S* without
critical points.

For a regular Morse map we denote By f ( ) the set of all criticahtgoof in-
dexi and bym; f ) the cardinality of; f{ ). We say that a Morse nfapC, :— S* is
minimal if it is regular and for everyi the numbex; f( ) is minimal possil@mong
all regular maps homotopic tg

We define MA/ (L) as the number of critical points of the minimal Morse map.

DeriniTioN 2.6. A regular Morse mapy €, — S! is said to bemoderateif it
satisfies the all of the following:
@) mo(f) =ms(f)=0;
(i) all critical values corresponding to critical point$ the same index coincide;
(i) f~(x) is a connected Seifert surface for any regular value S*.

Theorem 2.7 ([21]). Every link has a minimal Morse map which is moderate.

Corollary 2.8. (1) Let f be a moderate maghen mi(f) = ma(f).
(2) Let f be a regular Morse map realizint (L), then MN (L) = m1(f) +ma(f).
(3) MN(L)=2x minfh(R)| R is a Seifert surface for.}

We denote by: L ) the minimum handle number among all Seifarfases ofL .
Note thatL is a fibred if and only ik I{ ) =0.

Thus we know that the handle number and Morse-Novikov humbersame es-
sentially, that is,

MN(L)=2x h(L).

We shall finish this section with some remarks on the behaofothe invariant
introduced above with respect to connected sum and plumtiag us denote; the
operation of plumbing. For a Seifert surfaRe  of a lihk , we 8¢tV (R) = 2xh(R).
Conjecture 6.3 in [21] says that

MN(R1HR2) < MN(Ry) + MN(Ry).

This conjecture follows from Theorem A in [8] in the case ofnrplit links. In the
recent paper [11] by M. Hirasawa and L. Rudolph, the authoosegthe conjecture in
general case.

Let K; and K» be knots inS3. Let K;£K» denote their connected sum. The fol-
lowing natural question is due to M. Boileau and C. Weber:

Is it true that MN(K18K1) = MN (K1) + MN(K2)?
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As far as we know this question is still unanswered, and wenkonly that

1) MN(K18K2) < MN (K1) + MN(K>).

3. Twisted Novikov homology

Let R be a commutative ring, put
Q=RI[r,1™Y, 0=R((r)= R

The ring Q is isomorphic to the group ring Z], via the isomorphism sendinge Q
to the element— 1e Z. The ring O is then identified witithe Novikov completion
of R[Z]. In the case whemR is a field) is also a field. Wheén Z=the ring
0 is PID. We shall need in this paper only the particular caskennR =Z, or R
is a field. LetX be a CW complex; le6 =X, and leté :G — Z be a homo-
morphism. Letp :G — GL £, R ) be a map such thatg:£,) = p(g2)p(g1) for ev-
ery g1, g2 € G. Such map will be called aight representationof G. The homomor-
phism & extends to a ring homomorphisfiG] — Q, which will be denoted by the
same symboE . The tensor produyet® & (whére is considered asrasespation
G — GL(1, Q)) induces a right representatign G:— GL n,Q0 ). The composition
of this right representation with the natural inclusigh— @ agva right represen-
tationp: : G — GL (u, Q) Let us form a chain complex

) 5A§£Jﬂ=@”§(¥@)

Here X is the universal cover of G, )~(( ) is a module oG], and 0" is a right
ZG-module via the right representatigh . Then (2) is a chain glem of free left
modules overQ , and the same is true for its homology. The nesdul

H.(X;€, p) = H(C.(X; £, p)),

will be called p-twisted Novikov homologyr simply twisted Novikov homology
if no confusion is possible. When these modules are finitelyegated (this is the case
for example for anyX homotopy equivalent to a finite CW complee set

bi(X;€.p) = kg (Hi(X;£.p)). Gi(X:&. p) = tng (H; (X 3. p))

where t.n. stands for thrsion numberof the @ -module, that is the minimal possible
number of generators of the torsion part o@r

The numbersh; X &, p )an@; X & p ) can be recovered from the canonical de
composition of H; K £,p ) into a direct sum of cyclic modules. Nayéét

Bi
Hi(X;.p)= 0% & (@ @/AF;)@)

i=1
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Wherekg.") are non-zero non-invertible elenlents of anﬁﬂky) Vj. (Such decom-
position exists since) is a PID.) Then =X (E,0 ) apd ¢g=X €,p ). Itis not
difficult to show that we can always Choosg) e Q Vi, Vj.

When p is the trivial 1-dimensional representation, we obthie usual Novikov
homology, which can be also calculated from the infinite icycbvering)? associated
to &, namely

ﬁ*(x;g,p):@%m()?) for p=1:G — GL(L R).

If Ris a field the numbers;; X &, p ) vanish (for every right repreagioh p),
and the moduled, X &, p ) is a vector space over the fi@ld

4. Novikov-type inequalities for knots and links

Now we shall apply the algebraic techniques developed inptlegious section to
the topology of knots and links. Let c S° be an oriented link and puf; §°\ L.
Let G denoterr;(C). There is a unique elemet € H(C., Z) such that for every
positively oriented meridiank; of a component of |, we have,; () .=We shall
identify the cohomology class with the corresponding horophismG — Z.

Let p: G — GL(n, R) be any right representation & (wheRe Z=or R is a
field). The next theorem follows from the main theorem in [18¢e also Theorem 8.1
of the present paper.

Theorem 4.1. Let f: C, — S be a regular Morse map. There is a free chain
complex\, over O such that
1. for everyiAthe number of free generators.®f in degreei equals: x m;(f);
2. H.WN.)~ H.CL;§, p).

We shall denotefl, ;. &,p ) by, I, p ). The numbebs C;( p ) aBdCi(p )
will be denoted by75,~ an@; (we omit the cohomology clgss in theatian since it
is determined by the orientation of the link).

The next theorem follows from Theorem 4.1 by a simple algebaagument.

Theorem 4.2. Let f: C; — S* be any regular map. Then

1/~
3) mi(£) > = (Bi(L. p) +Gi(L. p) +Tia(L. )

for every i.

Corollary 4.3. If L is fibred then ﬁ*(L, p) =0, andE-(L, p) =q:(L, p) =0 for
every representatiop and every .
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Proposition 4.4. The twisted Novikov humbers satisfy the following relation

4) bi(L,p)=Gi(L,p)=Ga(L, p)=0 for i=0, i>3,
(5) ba(L, p) = ba(L, p).

Proof. According to Theorem 3.3 of [21] there is a regular mapC; — S*
such thatf has only critical points of indices 1 and 2 angf) = my(f). Using
Theorem 4.2 we deduce (4). As for the point (5) it follows frtime fact that the Euler
characteristics of the chain comple, is equal to 0. O

In view of the preceding theorem the non-trivial part of thevikov inequalities
is as follows:

®) nMﬂ>%@@mH%@wW
@ nMﬁ>%@@mH%@m»

Let us consider some examples and particular cases.
1. R =2Z andp is the trivial 1-dimensional representation. The champlex
C.(CL; &, p) is equal to the chain comple@ ® C.. Cf), whereC, is the infinite cyclic
0

covering of C; associated to the cohomology clgss . Thus thsteédiNovikov ho-
mology in this case coincides with the Novikov homology forkk studied in [21].
Theorem 4.2 and Proposition 4.4 in this case are reduceddpoBition 2.1 and the
formulas (2)—(6) of [21].

2. R is a field. In this case the Novikov ring ¢(()) is also a field, aheé tor-
sion numbersj; K, p ) vanish for evety and every representasionhe. Novikov in-
equalities have the simplest possible form:

1~
ma(f) = ;bl(L, p) < ma(f).

3. Now we shall investigate the twisted Novikov homology foe tbonnected
sum of knots. Letky, K, be oriented knots ir§3, and putk =K#K,. We have:
71(SP\ K) = 71(S%\ K1) £ 71(S%\ K2),

where Z is the infinite cyclic group generated by a meridian Kofsee([1], Ch. 7,

Prop. 7.10). In particular the groups(S3\ K1), m1(S®\ K>) are naturally embedded
into 71(S% \ K), and some meridian elemept € 71(S%\ K) is the image of some
meridian elementg; € 71(S%\ K1), u2 € m1(S%\ K2). Now let

p1: m1(S3\ K1) = GL(n, R), po: m(S3\ K2) — GL(n, R)
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be two right representations. Assume thafu1) = p2(2). Form the product represen-
tation py * po: m1(S%\ K) — GL(n, R).

Theorem 4.5. H,(K, p1* p2) ~ H.(Kx1, p1) ® H.(K>, p).

Proof. The complemen€x is the union of two subspa€esC, with C; hav-
ing the homotopy type o€k, (fof =1, 2). The intersectiéGh N C, is homeomor-
phic to the twice punctured spher®  S$2\ {x, x}. The universal covering o€y is
therefore the union of two subspaces, which have the Novh@wology respectively
equal to ﬁ* K1, p1) and fl* (K>, p2). The intersection of these two subspaces has the
same Novikov homology aa’ , and this module vanishes. Thearalatd application
of the Mayer-Vietoris sequence proves the result sought. Ul

Corollary 4.6. Denote bymK the connected summf copies of the lkhot . Let
p: m1(S%\ K) — GL(n,Z) be a representation. Let” : 71(S%\ mK) — GL(n,Z) be
the product ofm copies of representatiopns . Then

q1(mK, p™) =m - qu(K, p).
Proof. This follows from the purely algebraic equality:
tn.(nN)=m- (tn.(v)

where N is any finitely generated module over a principal idédaain, andmN
stands for the direct sum of copies df . U

5. The Kinoshita-Terasaka and Conway knots: lower bounds fothe Morse-
Novikov numbers

The Kinoshita-Terasaka knot¥ was introduced in the paper [13], and the Con-
way knot € was discovered by J. Conway much later [3]. These two knagsvary
much alike (see the figures below), and many classical iamtgihave the same value
for these knots. Still these knots are different, as waseadwy R. Riley in [24], and
they can be distinguished by the twisted Alexander polyrdsni{see [27]).

These knots are not fibred. Indeed, for a fibred knot the degfdats Alexander
polynomial equals to twice the genus of the knot, and the @&ieler polynomial is
trivial for both knots. In this section, we prove the follow:

Theorem 5.1. There is a right representatiop: 71(S%\¢) — SL(5, Z) such that
q1(¢, p) #0.

By Corollary 4.6, this theorem implies
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T

L D

Fig. 1. The Kinoshita-Terasaka kngt¥

Fig. 2. The Conway knot

(8) MN(m€) > Z?m for every m.

Proof. The Wirtinger presentation for the group(s® \ ¢) has 11 generators
and 11 relations:

— -1 - -1 - -1 — -1
9) 51 = 51052519, 82 = Sg 5359, S3= S5 5456, S4=S57 S557,
— -1 - 1 - 1 - -1
(10) $5 = $1156511, 6 =S, S75a, S7=S, S8S2, S8= 51159517 »
- -1 — -1 —_ -1
(11) S9 = 87 §1057, §10— S85115g > §11 = S55155 .

DeriniTioN 5.2. A map¢ :G1 — G, between two groups will be callednti-
homomorphisnif ¢(ab) = ¢(b)p(a) for every a, b € G;.

There is an antihomomorphisin 73(S%\ €) — S(5) given by the following for-
mulas:

(12) h(s1) = h(ss) = h(se) = h(s11) = (253)  h (2) = (234)
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13) h(s3) = h(s7) = (123)  h(4) = (135) h (ss) = (142)
(14) h(sg) = (145) h (10) = (345)

The image ofr is contained in the subgrodp (5). The grSup (8 g permutation
of coordinates on the freB-moduleZ® and we obtain therefore a right representation
o m1(S3\€) — SL(5, Z). The twisted Novikov homologyH:(C¢; p), can be computed
from the freeZ((¢))-chain complex

a 0
C0<—1C1<—2C2

where rkCo = 5, rkC; = 55 = rkC,. The generators of’; correspond tas; , K i <

11, the generators of, correspond to the eleven relations (9)—(11), and the mafrix
d, is obtained by the Fox calculus using these relations. Thékde homology in de-
gree zero always vanishes, therefore the homomorphiisis epimorphic. We deduce
that the rank ofd, is not more than 50. The determinant of the>60 50-minor of the
matrix of 9, obtained from the matrix by omitting the last five columns ahd last
five rows, is equal tb

5+ 14 — 15+ 16— 19 P+ 10 M+ 5 B 2472
+ 347 - 32720 4+ 34719
=24 B+5 10 -1 Pl M - 15 B4 o5

This polynomial is a non-invertible element @{(¢)), since the leading coefficient
is —5 # +1. Therefore the torsion part of the twisted Novikov lbogy in dimen-
sion 1 is not zero, an@i(¢; p) > 0. By Corollary 4.6 we deduce the inequality (8).

(]

By using the Kodama’'s KNOT program, we can show that the KirtasTerasaka
knot AF has also a right representatign mi(S% \ &%) — SL(5,Z) such that
q1(R%, p) # 0.

6. The Kinoshita-Terasaka and Conway knots: upper bounds fothe Morse-
Novikov numbers

In this section, we show that bothI NV (RT) and MN(€) are less than or equal
to 2. ThereforeMN (mAT) = MN (m¢€) < 2m by the inequality (1).

Here we use the minimal genus Seifert surfacess®rand ¢, which were found
in [6]. See Figs. 3 and 4. Since the proofs are same, we caneitg the Conway
knot ¢.

1This computation is provided by the Kodama’s KNOT programg also verified independently
with the help of MAPLE.
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Fig. 3. The Kinoshita-Terasaka kn@&t¥

Fig. 4. The Conway knot

Fig. 5.

Since the Hopf band is a fiber surface, we may calculate thell@amumber of
the Seifert surface illustrated in left-hand Fig. 5 by TheorB in [8]. We callR this
Seifert surface, and denote by/(y ) the sutured manifold Ror urther, we name
R+(y) and R_ /), and leta be an arc properly embeddedMn as in Fig. & (W
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abbreviateR. ¥ ) toR. , angy to its core circles.) Théw,R.(y) U «, M) becomes

a compression bodyw  with W ) = 1. By using Lemma 2.4 in [7], we cduserve
that clM — W) is a compression body’ such thfatW’ R=y () andv’' ( )= 1.
Hence we havér K X 1, namelpN(€) < 2. This completes the proof.

7. Asymptotic Morse-Novikov number of a knot

Let K c S° be an oriented knot. LeuK  denote the connected summ of  copies
of K. Observe that

MN(m1K) + MN (m2K) = MN ((m1+ m2)K),

therefore the sequence

() = )

converges to some number (see [22], B.1, Ex. 98). This numfiebe called asymp-
totic Morse-Novikov number o and denoted byt K ).

Corollary 7.1. The asymptotic Morse-Novikov numbers of Kinoshita-Te@sa
knot R and of the Conway knaf satisfy

< u(RT), n(@ <2

gl N

8. Detecting fibred knots

In the previous sections we gave the estimates for the Moosgkbyv numbers
of regular maps arising from linear representations of tlwed&mental group. In the
present section we explore an approach which starts fronmtbe general form of the
Novikov homology and which should give the best possiblediowounds, although
the corresponding invariants can be more difficult to coraput

Let us recall first the construction of the Novikov completiof a groupG with

respect to a homomorphisih G — Z. SetA =ZG and denote byi the abelian
group of all functionsG — Z. Equivalently, A is the set of all formal linear combi-
nationsa =dec ngg (not necessarily finite) of the elementsGf  witlegnal coef-

-~

ficients. Fork € A andC € R set
suppé,C)={geGln, ~0 &£ )=C}
Set

(15) Ae ={re A | suppk, C ) s finite for every C e R}.
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Then Ks has a natural structure of a ring, containiag  as a sgibrin

Theorem 8.1. Let L be an oriented link ins3. Let f: C; — S! be a regular
Morse map. Then there is a chain compl&k of free finitely generatedA\g -modules
(the Novikov complgxsuch that
1. the number of free generators in each degiee equaly),

2. there is a chain homotopy equivalence

¢ N, — Ks % S.(Cy),

(where S,(C,) stands for the singular chain complex of the universal cimgeC, of
Cp).

The analog of this theorem for the case of Morse m#psM — S* of closed
manifolds to a circle was first proved in [18]. The manifolti  sha non-empty
boundary, so the results of [18] can not be applied direttgvertheless one can show
that the proof of the main theorem of [18] works also in thespré case.

Remark 8.2. In the paper [18], we worked with the convention that fheda-
mental group acts on the universal covering on the right.ofdma 8.1 above is the
translation of the results of [18] to the language of the tafidules.

Corollary 8.3. Let L be an oriented link ins3. If L is fibred then
H, (Ké ® 3*@)) =0.
Conjecture 8.4. An oriented link L is fibred if and only if
(16) i (Re@s.@n) =0

Remark 8.5. It is known that for the general problem of fibering of abitaary
closed manifold over a circle the vanishing of the Novikourtabogy is a condition
which is only necessary but not in general sufficient. Whaa tondition is fulfilled
there is a secondary obstruction to fibering, which lies ia Yhitehead group of the
Novikov ring (see the paper [20] of A. Ranicki and A. Pajitho¥or the case of
closed manifolds of dimensiok: 6 the vanishing of this secondary obstruction is suf-
ficient for the existence of the fibration (see [4], [19], [280]).

However, combining the main theorem of [20] with the claskibeorem of Wald-
hausen [28] (the Whitehead group of the link group vanisioe® can show that this
secondary obstruction vanishes in the case of knots and Imk2. Thus in the case
of links the total obstruction to fibering provided by the Naw complex is reduced
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to the Novikov homology, and this gives the motivation fornfazture 8.4.

The Novikov ring 7\; is a complicated algebraic object, and tkefication of the
condition (16) is certainly a difficult algebraic task. Theidted Novikov homology
as introduced and studied in the previous sections prowaesffectively computable
tools for evaluating the Novikov homology, and as we havenseemany examples,
the twisted Novikov homology is often sufficient to compulte tMorse-Novikov hum-
ber. Thus we are led to the following problem.

Problem 8.6. Is it true that vanishing of the -twisted Novikov homologyr fo
every right representation  implies the condition (16) ?

A natural and a very interesting question would be to ingesé the relations be-
tween the Problem 8.6 and the Problem 1.1 of [9], which askethdr the informa-
tion contained in the twisted Alexander polynomials for &ll(2k, F)-representations
(whereF is a field) is sufficient to decide whether a link is fibred.

ADDED IN PROOF After this paper was accepted for publication, J.-Cl. &ko
informed that Conjecture 8.4 had been solved affirmativaly2i6].
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