

Title	QF-3 and semi-primary PP-rings. II
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1966, 3(1), p. 21- 27
Version Type	VoR
URL	https://doi.org/10.18910/9448
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Harada, M. Osaka J. Math. 3 (1966), 21–27

QF-3 AND SEMI-PRIMARY PP-RINGS II

MANABU HARADA

(Received January 18, 1966)

In the previous paper [5] the author has studied semi-primary left (resp. right) QF-3 rings, which is a ring A with the following property: there exists a faithful, projective, injective left (resp. right) A-module. Especially, we have considered, in [5], a semi-primary left QF-3 and partially PP-ring¹). We have shown in [5], Remark 4 that the basic ring of such a ring is characterized as a special subring of a semi-simple ring.

In §3 of this short note we shall study a similar problem to the above in a case of a semi-primary left and right QF-3 ring with the following properties: Let Ae is a unique minimal faithful, projective, injective left ideal and $e = \sum_{i=1}^{t} e_i$ a decomposition of e into a sum of mutually orthogonal primitive idempotents e_i . 1) The left socle of Ae (the sum of irreducible A-module of Ae) is A-projective 2) e_iAe_i is a division ring for all i and 3) eAe is a direct sum of division rings.

It is clear that 3) implies 2). We shall shown in §3 that 1) implies 2) and that 3) is equivalent to 1) if A is a left and right QF-3 ring. Furthermore, we shall show that the basic ring of left QF-3 ring is a partially PP-ring if and only if A satisfies condition 1) and a condition that the socle of every primitive left ideal is irreducible.

In §1 we shall show that if A satisfies left and right minimum conditions, then A is left QF-3 if and only if A is right QF-3. However in §2 we shall give a semi-primary ring which is left QF-3, but not right QF-3.

1. QF-3 rings with minimum conditions.

Let A be a ring with identity element 1 and N the radical of A. In this note we always consider a semi-primary ring A, namely A/N is a semi-simple ring with minimum conditions and N is nilpotent. We call A a left QF-3 ring if there exists a faithful, projective, injective A-module. Since A is semi-primary, we obtain a faithful, injective left ideal Ae if A is left QF-3, where e is an idempotent.

¹⁾ See [4] or [5].

Manabu Harada

We shall show in this section that a left QF-3 ring satisfying left and right minimum conditions is a right QF-3 ring. On the other hand in §2 we shall give an example which shows that the above fact is not true for semi-primary left QF-3 rings.

Theorem 1. We assume that A satisfies left and right minimum conditions. Then A is a left QF-3 if and only if A is right QF-3.

Proof. Let Q be the factor module of the ring of rationals modulo the ring Z of integers. We assume that A is left QF-3 and L a faithful, projective, injective A-module. Put $L^* = \operatorname{Hom}_Z(L, Q)$. Since Q is Zinjective by [2], p. 134, Proposition 5.1, L^* is a right A-faithful module. Furthermore, L^* is A-injective by [2], p. 166, Proposition 2.5a. Let Mbe a finitely generated left A-module. The $L^* \bigotimes M \approx \operatorname{Hom}_Z(\operatorname{Hom}_A(M, L), Q)$ by [2], p. 124, Proposition 5,3. Hence, L^* is A-flat, since L is A-injective and Q is Z-injective. Therefore, L^* is a faithful, injective, projective A-module by [3]. Hence, A is right QF-3. The converse is similar.

Corollary 1. Let A be as above. Then the left A-injective envelope of A is A-projective if and only if the right A-injective envelope is Aprojective.

Proof. It is clear from [8], Theorems 3.2 and 3.1.

2. Generalized trianglar matrix rings.

We shall consider a *g.t.a.* matrix ring $T_n(\Delta_i; M_{i,j})$ over division ringe Δ_i which is left QF-3, (see [6] for the definition of $T_n(\Delta_i; M_{i,j})$).

Proposition 1. Let A be a g.t.a. matrix ring $T_n(\Delta_i; M_{i,j})$ over division rings. We assume Ae_i is A-injective and t is the maximal index among j such that $M_{j,i} \neq (0)$. Then $Ae_i \approx \operatorname{Hom}_{\Delta_t}(e_iA, \Delta_i)$, and this isomorphism is given by the multiplication of elements in Ae_i from the right side, where $e_i = T_n(o, \stackrel{\forall}{1}, o; o)$.

Proof. First, we show that $M_{j,i} \approx \operatorname{Hom}_{\Delta_t}(M_{t,j}, M_{t,i})$ by the multiplication of elements in $M_{j,i}$. Since $M_{k,i} = (0)$ for k < t and Ae_i is an indecomposable injective ideal, $M_{t,i}$ is a unique minimal left ideal in Ae_i . Hence, $[M_{t,i}:\Delta_t]=1$ and $M_{t,i}\approx\Delta_t$ as a left Δ_t -module. Let $X=\operatorname{Hom}_{\Delta_t}(M_{t,j}, M_{t,i})$ and $f \in X$. We define $\overline{f} \in \operatorname{Hom}_A(\sum_{k=1}^n \oplus M_{k,j}, M_{t,i})$ by setting $\overline{f}(M_{k,j})=(0)$ for k>t and $\overline{f}|M_{t,j}=f$. Since $M_{t,i}\subseteq Ae_i$, there exists an element $m_j \in M_{j,i}$ such that $f(m)=mm_j$ for any $m \in M_{t,j}$. Therefore, X

22

coincides with the set of right multiplication of elements in $M_{j,i}$. Furthermore, $Ae_i \supseteq Am_j \cap M_{t,i} = M_{t,j}m_j$. Hence, $M_{t,j}m_j \neq (0)$ whenever $m_j \neq 0$, since $M_{t,i}$ is the socle of Ae_i . Therefore, $X \approx M_{j,i}$. It is clear from this fact that $Ae_i \approx \operatorname{Hom}_{\Delta_t}(e_t A, M_{t,i}) \approx \operatorname{Hom}_{\Delta_t}(e_t A, \Delta_t)$ as a left A-module.

Corollary 2. Let A be as above. We assume that A is a left and right QF-3 ring. Then $[Ae_1:\Delta_1] < \infty$.

Proof. Since A is left QF-3, Ae_1 must be A-injective. We assum $M_{t,1} \neq (0)$ and $M_{k,1} = (0)$ for k > t. Then $e_k A M_{t,1} \subseteq M_{k,t} M_{k,1} = M_{k,1} = (0)$ for $k \neq t$. Therefore, if A is right QF-3, $e_t A$ must be A-injective. Furthermore, $Ae_1 \approx \operatorname{Hom}_{\Delta_t}(e_t A, M_{t,1})$, $e_t A \approx \operatorname{Hom}_{\Delta_1}(Ae_1, M_{t,1})$ and $M_{t,1} = \Delta_t x = x\Delta_1$ for some $x \in M_{t,1}$ by Poroposition 1. Therefore, $[Ae_1:\Delta_1] < \infty$ by [7], p. 68, Theorem 1.

EXAMPLE. Let $\Delta = \Delta_1 = \Delta_3$ and Δ_2 be division rings and $M_{3,2}$ a $\Delta_3 - \Delta_2$ module such that $[M_{3,2}:\Delta_3] = \infty$. Put $M_{3,1} = \Delta$ and $M_{2,1} = \operatorname{Hom}_{\Delta}(M_{3,2}, M_{3,1})$. Let

$$A = egin{pmatrix} \Delta_1 & 0 & 0 \ M_{{}_2,1} & \Delta_2 & 0 \ M_{{}_3,1} & M_{{}_3,2} & \Delta_3 \end{pmatrix}.$$

Then Ae_1 is A-faithful. Furthermore, $Ae_1 \approx \text{Hom}_{\Delta_3}(e_3A, \Delta_3)$ as an A-module. Therefore, A is left QF-3. However, A is not right QF-3 from Corollary 2.

We obtain immediately Lemma 5 in [5] from Poroposition 1.

3. PP-rings.

Let *e* be a primitive idempotent of a semi-primary ring *A*. In this section we shall study the ring *A* such that *Ae* is injective and its socle is *A*-projective. If *A* is a partially PP-ring²⁾ and QF-3 ring, then *A* satisfies the above condition, (cf. Theorem 2 below).

Let A^* be a basic ring³⁾ of A. Then A is isomorphic to the endomorphism rings of a finitely generated projective right A^* -module (see [6]). We note from this fact that primitive left ideals in A and A^* enjoy many similar properties.

Lemma. Let e, f be primitive idempotents. We assume that the left socle of Ae is A-irreducible and A-projective. If $fAe \neq (0)$, then either

²⁾ See [4].

³⁾ See [5].

Ae contains an isomorphic image of Af or the left socle of Af is not irreducible.

Proof. If $x \neq 0 \in fAe$. Then $Afx = Ax \neq (0)$ in Ae. Let φ be an A-homomorphism of Af to Ax by setting $\varphi(yf) = yfx$; $y \in A$. Since $Ax \neq (0)$, Ax contains the left socles S of Ae. Then $o \rightarrow \varphi^{-1}(o) \rightarrow \varphi^{-1}(S) \rightarrow S \rightarrow o$ is exact. Hence, $\varphi^{-1}(S) \approx S \oplus \varphi^{-1}(o)$. If the left socle of Af is irreducible, then $\varphi^{-1}(o) = (0)$. Therefore, φ is isomorphic.

Proposition 2. 1) Let A be semi-primary and e a primitive idempotent in A. If Ae is A-injective and its left socle is A-projective, then $Ae \approx$ $\operatorname{Hom}_{fAf}(fA, fAe)$ as a left A-module and $eAe \approx fAf$ is a division ring. 2) Furthermore, we assume that A is a left QF-3 ring with faithful injective ideal AE. If the left socle of AE is A-projective, then EAE is a semi-simple ring, where f is a prinitive idempotent.

Proof. We may assume that A coincides with its basic ring. Let S be the socle of Ae. Since S is A-projective, $S \approx Af$ and Nf=(0) for some primitive idempotent f. Let $1 = \sum_{j=1}^{n} e_j$ a decomposition of 1 into a sum of mutually orthogonal primitive idempotents e_j (assume $e = e_i$, $f = e_k$). Then $e_jAe_k = e_jNe_k = (0)$ for $j \neq k$. It is clear that $\Delta \equiv e_kAe_k = e_kAe_k/e_kNe_k$ is a division ring. Since $e_iAe_kAe_j = (0) = e_iAS$ for $l \neq k$, $\operatorname{Hom}_{\Delta}(e_kA, S) = \sum_{j=1}^{n} \operatorname{Hom}_{A}(e_kAe_j, S)$. Furthermore, $S = e_kAe_i$, since e_kAe_i is a left ideal in Ae_i . Then we can prove similarly to Proposition 1 that $\operatorname{Hom}_{\Delta}(e_kA, S) \approx Ae_i$ as a left A-module. We have the last part of 1) from this isomorphism (cf. the proof of Theorem 3 below). 2) Let $E = \sum_{i=1}^{l} e_i$ be the usual decomposition. From the assumption we know that the left socle of Ae_i is A-projective. Then we obtain $e_iAe_j = (0)$ for $i \neq j$ by Lemma. Therefore, we have proved 2) from 1).

Corollary 3. Let A, Ae and fA be as above. Then the following facts are equivalent. 1) eN=(0), 2) The right socle of fA is A-projective.

Proof. We assume that A is basic. Let T be the right socle of fA, then $\Delta T = T$, where $\Delta = fAf$. Since $Ae \approx \operatorname{Hom}_{\Delta}(fA, \Delta)$, $\Delta \approx eAe \approx Ae/Ne \approx \operatorname{Hom}_{\Delta}(T, \Delta)$. Hence, $T \approx eA/eN$. Therefore, 1) and 2) are equivalent.

We note that if A is a semi-primary left QF-3 ring with a faithful injective Ae, then every irreducible left ideal in a primitive left ideal is isomorphic to one of Ae, (cf. [8]).

Theorem 2. Let A be a semi-primary left QF-3 ring with faithful injective left ideal Ae. Then the basic ring of A is a partially PP-ring¹ if and only if the left socle of Ae is A-projective and the socle of any primitive left ideal is irreducible. In this case A is also right QF-3.

Let A be a basic and partially PP-ring. Then we may Proof. assume by [5], Theorem 3 that $A = T_n(\Delta_i; M_{i,j})$ and $[M_{n,i}:\Delta_n] = 1$ for all *i*, where the Δ_i 's are division rings. Let $e' = T_n(1, o, \dots, o; o)$, then Ae' is faithful and injective. Therefore, the irreducible left ideal in a primitive left ideal Af is isomorphic to the socle $T_n(o; M_{n,1}, o, \dots, o)$, which is A-projective. Since $[M_{n,i}:\Delta_n]=1$, we obtain that the socle of Af is irreducible. Conversely, we assume that A is basic and Ae is a faithful injective and its socle is A-projective, and that the socle of any primitive left ideal is irreducible. Let $1 = \sum_{i=1,j=1}^{t,\rho(i)} e_{i,j}$ be a decomposition of 1 into a sum of mutually orthogonal primitive idempotent $e_{i,j}$ such that $e = \sum_{i=1}^{t} e_{i,1}$ and the left socle of $Ae_{i,j}$ is isomorphic to one of $Ae_{i,1}$ and not isomorphic to one of $Ae_{k,i}$ for $k \neq i$. Then $e_{i,j}Ae_{k,l} = (0)$ for $i \neq k$ Therefore, $A = \sum_{i} \bigoplus E_i A E_i$ as a ring, where $E_i = \sum_{i=1}^{p(i)} e_{i,j}$. by Lemma. Hence, we may assume t=1, $e=e_1$, and $1=e_1+\cdots+e_s$. By $n(e_i)^{(4)}$ we shall mean the largest integer p such that $N^{p}e_{i} \neq (0)$. If $e_{i}Ae_{i} \neq (0)$ for $i \neq j$, then there exists an isomorphism φ of Ae_i into Ae_j . Since Ne_j is a unique maximal left ideal in Ae_i , $\varphi(Ae_i) \subseteq Ne_i$. Hence, $n(e_i) > n(e_i)$. After rearranging $\{e_k\}$, we may assume that $1 = f_1 + \cdots + f_s$, $n(f_i) \ge n(f_j)$ if $i \leq j$ and $\{f_i, \dots, f_s\} \equiv \{e_1, \dots, e_s\}$. Since Ae_1 is faithful, $e_1 = f_1$. Furthermore, $f_i A f_j = (0)$ if i < j from the above. Hence, $A = T_s(f_i A f_i)$; $f_k A f_b^{(5)}$. It is clear that the $f_i A f_i$ are division rings⁶⁾. Furthermore, $A f_1$ is injective and $f_kAf_1 \neq (0)$ for all k and hence, $Af_1 \approx \operatorname{Hom}_{f_sAf_s}(f_sA, f_sAf_1)$ by Proposition 1. Therefore, $f_s A f_i \neq (0)$ for all *i*. Since $A f_i$ has the irreducible socle, $[f_sAf_i:f_sAf_s]=1$. Hence $[f_iAf_1:f_1Af_1]=1$. Therefore, A is a partially PP-ring by [5], Proposition 5.

REMARK. Using the similar argument as above and Corollary 3 we can prove directly [5], Theorem 1.

Theorem 3. Let A be a left and right QF-3 ring and semi-primary.

⁴⁾ cf. [6].

⁵⁾ See [6].

⁶⁾ Since $f_sAf_1 \neq (0)$ is left ideal in Af_1 , the socle S of Af_1 is contained in f_sAf_1 . Hence $S \approx Af_k$. We know $f_sAf_s \equiv \Delta_s$ is a division ring by Prop. 2. In the proof. of Prop. 1 we have used a fact that Δ_s is a division ring, and hence we obtain $[f_iAf_1:f_1Af_1]=1$ for all *i* as in the proof. Therefore, $f_iNf_iAf_i=(0)$ and hence $f_iNf_i=(0)$

MANABU HARADA

We assume Ae (resp. fA) is a unique minimal faithful, projective, injective left (resp. right) A-module, and $e=e_1+\dots+e_t$ $(f=f_1+\dots+f_s)$ is a decomposition of e (resp. f) into a sum of mutually orthogonal primitive idempotents e_i (resp. f_i). If 1) $e_iAe_i=\Delta_i$ is a division ring for all i, then 2) s=t and $e_iAe_i\approx f_{\pi(i)}Af_{\pi(i)}$. And furthermore, A is contained in a semisimple ring $B=\sum_{i=1}^t \bigoplus (\Delta_i)_{n_i}$ such that 3) Ae_i (resp. $f_{\pi(i)}A$) is isomorphic to an irreducible left B-ideals in $(\Delta_i)_{n_i}$ as $A-\Delta_i$ (resp. Δ_i-A) module for $i=1,\dots,t$. Conversely, if A is a subring in a semi-simple ring B satisfying 1) 2) and 3), then A is a left and right QF-3 ring, (cf. [5], Remark 4).

Proof. If A satisfies 1), 2) and 3), then $Ae_i \approx Be_{ii} \approx \operatorname{Hom}_{\Delta_i}(e_{ii}B, \Delta_i) \approx$ $\operatorname{Hom}_{\Delta i}(f_{\pi(i)}A, \Delta_i)$, where e_{ii} is a matrix unit in $(\Delta_i)_{ni}$. Hence, Ae_i is A-injective by [2], p. 166, Proposition 2.5a. Similarly we obtain that $f_i A$ is A-injective. Since $\sum_{i=1}^{t} Be_{ii}$ is B-faithful, $\sum Ae_i$ is A-faithful. We assume that A is semi-primary left and right QF-3 ring satisfying 1). First we assume that A is basic. We put $e_i = g$, $\Delta_i = e_i A e_i = \Delta$ and Hom $(Ag,\Delta) = (Ag)^*$. $T = \{t \in (Ag)^* | , t(Ng) = (0)\}$ is a right A-submodule of $(Ag)^*$ and TN=(0). Conversely, if $y \in (Ag)^*$ satisfies yN=(0), (0)=(yN)(Ag). Hence, $y \in T$. Therefore, T coincides with right socle of $(Ag)^*$. It is clear that $T \approx \operatorname{Hom}_{\Delta}(Ag/Ng, \Delta)$ as an A-module and since $Ag/Ng \approx \Delta$ (A is basic), T is an irreducible right A-submodule of $(Ag)^*$. Hence, $(Ag)^*$ is an indecomposable A-module (A is semi-primary). Put $M = \sum \bigoplus (Ae_i)^*$. Since $\sum \bigoplus Ae_i$ is A-faithful, M is A-faithful as right Amodule. Hence, M contains fA as a direct summand. Since $(Ae)^*$ is an indecomposable injective A-module, $f_i A \approx (Ae_{\pi(t)})^*$ for $i=1, \dots, s$ by the generalized Krull-Schmidt's Theorem in [1], where π is a one-toone mapping of $\{1, \dots, s\}$ to $\{1, \dots, t\}$. By φ we denote the isomorphism $f_{\pi^{-1}(i)}A \approx \operatorname{Hom}_{\Delta_i}(Ae_i, \Delta_i)$. The $\varphi(T) \approx \operatorname{Hom}_{\Delta_i}(Ae_i/Ne_i, \Delta_i)$. Since $e_i(Ae_i/Ne_i)$. $Ne_i) = Ae_i/Ne_i, \quad T = f_k Te_i, \quad (k = \pi^{-1}(t)). \qquad \varphi(f_k Ae_i) = \operatorname{Hom}_{\Delta_i}(\Delta_i, \Delta_i) \approx \Delta_i.$ Therefore, $T = f_k T e_i = f_k A e_i$. Let S be the left socle $A e_i$. Then $S = S \Delta_i$, since Ae_i is A-injective. Hence, we obtain $\varphi(f_kA/f_kN) = \operatorname{Hom}_{\Delta_i}(S, \Delta_i)$. Therefore, $f_k S = S = f_k S e_i = f_k A e_i$. Furthermore, $\varphi(f_k N f_k)(A e_i) = \varphi(f_k)(NS)$ =(0), $f_k A f_k / f_k N f_k = f_k A f_k$ is a division ring. Therefore, if we exchange "left" and "right" in the above argument, we obtain $(f_k A)^* \approx Ae_i$ and s=t. Similarly we obtain $[f_kAe_i:\Delta_k]=1$. Hence, $f_kAe_i=\Delta_k x'=x'\Delta_i$ for some $x' \neq 0$. Therefore, we have an isomorphism ψ of Δ_i to Δ_k such that $x'\delta = \psi(\delta)x'$ for $\delta \in \Delta_i$. Let $\varphi(f_k) = g$, then $gf_k = g$ and $g(ye_i) = g(f_k ye_i) = g(f_k ye_i)$ $g(x')\delta$, where $f_k y e_i = x\delta$ and $y \in A$. We may assume $g(x) = 1 \in \Delta_i$ for some $x \in f_k Ae_i$. Then we can easily check that φ is given by a multiplication of element of $f_k A$ from the left side and φ is a right A and

left (Δ_k, ψ) -semilinear mapping. Therefore, the facts $(Ae_i)^* \approx f_k A$ and $(f_k A)^* \approx Ae_i$ imply that $[Ae_i:\Delta_i] = [f_k A:\Delta_k] = n_i < \infty$ by [7], p. 68, Theorm 1. Let $C = \sum \bigoplus \Delta_i$ and $B = \operatorname{End}_C(Ae) = \sum \bigoplus \operatorname{End}_{\Delta_i}(Ae_i)$. Since Ae is A-faithful, we may regard A as a subring of B. Then it is clear from the fact $(Ae_i)^* \approx f_k A$ that $f_k A$ is isomorphic to an irreducible right ideal in B as $\Delta_i - A$ module. Furthermore, $(Ae_i)(Ae_i) = Ae_i$, hence Ae_i is isomorphic to an irreducible left ideal in B as an $A - \Delta_i$ module. If A is not basic, then we can use the same argument as the above after enlarging the degree n_i of the simple rings $B_i = \operatorname{End}_{\Delta_i}(Ae_i)$.

We shall consider the converse of Proposition 2.2)

Theorem 4. In Theorem 3 we assume furthermore that $e_iAe_j = (0)$ for $i \neq j$. Then Ae_i and f_iA coincide with irreducible left ideal and right ideals in B, respectively, and the socle of Ae_i and f_iA ard projective.

Proof. We may assume $(Ae_i)^* \approx f_i A$ and $(f_i A)^* \approx Ae_i$ and A is basic. Since $e_i Ae_j = (0)$ for $i \neq j$, $Ae_i \subseteq \operatorname{Hom}_{\Delta_i} (Ae_i, Ae_i) = B_i$ coincides to an irreducible left ideal in B_i . Since $f_i A \approx \operatorname{Hom}_{\Delta_i} (Ae_i, \Delta_i)$, $f_i Ae_j \approx \operatorname{Hom}_{\Delta_i} (e_j Ae_i, \Delta_i) = (0)$ for $i \neq j$. Hence, $f_i A = \operatorname{Hom}_{\Delta_i} (Ae_i, \Delta_i) \subseteq B_i$. Hence, we can assume that $e_i = e_{ii}^{(i)}$, $f_i = e_{mm}^{(i)}$, where the $e_{jj}^{(j)}$ are matrix units in B_i . Let E_i be the identity element of B_i . If $E_i A$ contains $x = \sum_j \delta_j e_j m$ such that $\delta_j \neq 0$ for some $j \neq m$, then $xf_i Ae_i \subset f_i Ae_i$. However, $f_i Ae_i$ is the left socle of Ae_i and $E_i Ae_i = Ae_i$. Therefore, we obtain $E_i A \cap B_i f_i = \Delta_i f_i$. Hence $Af_i = f_i Af_i$ is a A-projective. Since $f_i Ae_i \approx f_i Af_i$ as a left A-module,

OSAKA CITY UUIVERSITY

 $f_i A e_i$ is A-projective.

References

- [1] G. Azumaya: Corrections and supplementaries to my paper concerning Krull-Remark-Schmidt's Theorem, Nagoya Math. J. 1 (1950) 117–124.
- [2] H. Cartan and S. Eilenberg: Homological algebra, Princeton, 1956.
- [3] S. Eilenberg: Homological dimension and syzygies, Ann. of Math. 64 (1956) 328-336.
- [4] M. Harada: On semi-primary PP-rings, Osaka J. Math. 2 (1965) 154-161.
- [6] ————: Semi-primary hereditary rings and triangular matrix rings, to appear in Nagoya Math. J.
- [7] N. Jacobson: Structure of rings, Amer. Math. Soc. Colloq. Publ. 1956.
- [8] J. P. Jans: Projective, injective modules, Pacific J. Math. 9 (1959) 1103-1108.