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Introduction. In the study of submanifolds of a riemannian manifold,
the notion of an isotropic submanifold has been introduced by B. O’Neill [13]
as a generalization of a totally geodesic submanifold. On the other hand, as
another generalization of a totally geodesic submanifold, there is the notion of
a submanifold with parallel second fundamental form. It is interesting to
study submanifolds that belong to both classes, in particular, those which are
not totally geodesic, that is, to study nonzero isotropic submanifolds with para-
llel second fundamental forms. These submanifolds have the property that
every geodesic in the submanifold is a circle in the ambient riemannian mani-
fold (K. Nomizu [11]).

Now, as typical examples of such submanifolds, we have the following
two; an extrinsic sphere and a nonzero isotropic Kihler submanifold with
parallel second fundamental form. The former submanifold is totally um-
bilical and the latter is minimal.

When the ambient riemannian manifold is a symmetric space, extrinsic
spheres have been studied by B.Y. Chen ([2],[3],[4]). Moreover when the
ambient riemannian manifold is a complex projective space with Fubini-Study
metric, nonzero isotropic Kahler submanifolds with parallel second fundamen-
tal forms have been studied by K. Nomizu [11] and T. Itoh [8].

In this paper, we shall show the following two results:

I) If the ambient riemannian manifold is a symmetric space, a com-
plete extrinsic sphere of dimension>2 is isometric to a simply connected real
space form (Theorem 8).

IT) If the ambient riemannian manifold is a Hermitian symmetric space,
a complete nonzero isotropic K#hler submanifold with parallel second fun-
damental form is the Veronese submanifold of degree 2 in some totally geodesic
complex projective space in the Hermitian symmetric space (Theorem 25).

The author wishes to express his hearty thanks to Professor M. Takeuchi
and Professor Y. Sakane for their useful comments during the preparation of
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the present paper.

1. Preliminares

Let M™ be an m-dimensional riemannian manifold furnished with a rie-
mannian metric <, > and M" be an n-dimensional riemannian submanifold in
M™. Denote by V (resp. V) the riemannian connection on M (resp. M) and
by R (resp. R) the riemannian curvature tensor for V (resp. V). Moreover
we denote by o the second fundamental form of M, by D the normal connec-
tion on the normal bundle N(M) of M and by R' the curvature tensor for D.
For a point p in M, the tangent space T,(M) is orthogonally decomposed into
the direct sum of the tangent space T,(M) and the normal space N,(M). For
a vector X € T,(M), the normal component of X will be denoted by X+. Put

Ny(M) = {o(X,Y)EN,(M); X,Y €T,(M)}z,

where {*}, means the R-span of *. It is called the first normal space of M.
Then we have the orthogonal decomgosition

Ny(M) = NyM)+N(M))*,

where (Nj(M))* is the orthogonal complement of Nj;(M) in N,(M). Note
that for a vector & in (NV;(M))L, the shape operator A; for & vanishes on T,(M).
(Recall here that the shape operator 4; for {&N,(M) is a symmetric endo-
morphism of T',(M) satisfying <4¢(X), Y>=<o(X,Y), { for all X, YET,(M).
It is also characterized by that

for a vector field X of M and a normal vector field {.)
Now we recall the following fundamental equations, called the equations
of Gauss, Codazzi-Mainardi, and Ricci respectively.

Ll)  REYVZW) = RX,Y)Z,Wy+<o(X,2), o(Y, W)

— (X, W), a(Y,2)>,
(1.2) {R(X,Y)Z}* = (Vi0) (Y,2)—(Vi0) (X,2),
(1.3) R(X, Y)t,m) = KRHYX, V), n>—<[4;,4,] (X), YD

for X,Y,Z,W&T,M) and ¢{,7€N,(M). Here V* is the covariant deriva-
tion associated to the submanifold M C M, defined by

(V%) (Y,2) = Dxo(Y,2)—0(VxY,Z)—0(Y,VsZ)

for vector fields X,Y,Z of M. The second fundamental form o is said to be
parallel if V*¢=0. If o is parallel, we have
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(14) Dy(o(Y,2)) = o(V+Y, 2)+0(Y,V2),
(1.5) {R(X,Y)Z}* =0.
Moreover we have the following
Lemma 1. If o is parallel,
RYT,S)o(X,Y) = o(R(T,S)X,Y)+o(X,R(T,S)Y)
for wector fields, T,S,X,Y of M.
Proof. By (1.4),

RYT,8)a(X,Y) = D;Dso(X,Y)—DsD;o(X,Y)—Dyis 510(X,Y)
= a(VVsX,Y)+0(V X,V Y)+0(V:X,VsY)
+0(X,VVsY)—a(VsVrX,Y)—o(V: X, VsY)
—0(VsX,V:Y)—0o(X, VsV Y)—a(Vir 21X, Y)
—o(X,Vir,a1Y)
= o(R(T,S)X,Y)+o(X,R(T,S)Y).
q.e.d.
For a given A =0, a riemannian submanifold M in a riemannian manifold
M is called a A-isotropic submanifold if |o,(X,X)|=X\ for any point p in M and

any unit tangent vector X in T',(M). In particular, a O-isotropic submanifold
is totally geodesic.
Now we study nonzero isotropic submanifold with parallel second fundamen-
tal form. At first, we recall the notion of circles in a riemannian manifold M.
A curve x, of M parameterized by arc length is called a circle, if there exists
a field of unit vectors Y, along the curve which satisfies, together with the unit
tangent vector X,=1%,, the differential equations

V. X;=FkY,and V,Y, = —kX,,

where & is a positive constant, which is called the curvature of the circle x,. Let
p be an arbitrary point of M. For a pair of orthonormal vectors X and Y in
T,(M) and for a given constant k>0, there exists a unique circle x,, defined for
t near 0, such that

% =p, X=X, and (VX))o = RY .

If M is complete, x, is defined for —oo<t<-+oo. Moreover, it is known
that a circle is characterized as a 1-dimensional submanifold immersed in M
which has nonzero parallel mean curvature vector (See [12]).

Now a nonzero isotropic submanifold with parallel second fundamental
form has the property as follows.
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Lemma 2 (K. Nomizu [11]). If M is a N\(>0)-isotropic submanifold in
M with parallel second fundamental form, every geodesic in M is a circle with cur-
vature ) in M.

2. Extrinstic spheres in a symmetric space

A nonzero isotropic submanifold M" with parallel second fundamental
form is called an extrinsic sphere in M™ if it is a totally umbilical submanifold in
M™. 1If moreover n+1=m, it is called an ex’rinsic }ypersphere in M™.

In this section, we study a complete extrinsic sphere M"(n=2) in a sym-
metric space M™. Since o is parallel and M" is a locally symmetric space, M
is a locally symmetric space. Moreover B.Y. Chen [2] has shown the following

Proposition 3. There exists a unique (n+1)-dimensional complete totally
geodesic submanifold N™** of constant sectional curvature in M™ such that M" is an
extrinsic hypersphere in N**',

We see that N in the proposition is a symmetric submanifold of M since N
is complete totally geodesic in M. Now we know the following (cf. [6])

Lemma 4. If N is a symmetric space of constant sectional curvature, it is
isometric to one of the followings: a sphere, a real projective space, a real hyperbolic
space, and an abelian group with a bi-invariant metric.

We study an extrinsic hypersphere in each NV of Lemma 4. The com-
plete totally umbilical hypersurfaces of simply connected real space forms are
well known (See [14], for example), and they ate all extrinsic hyperspheres.
Thus we have the following

Proposition 5. If N is a euclidean space R"', M" is isometsic tc a sphere
S". If N is a sphere S***, M" is isometric to a sphere S". If N is a real hyperbolic
space H**(R), M" is isometric to one of S”, R", or H"(R).

Proposition 6. If N is a real prejective space P**(R), M" is isometric to S™.

Proof. Let 7: S"*'—P**}(R) be the canonical covering map and choose
a point 0 in M. Since M is an extrinsic sphere in P**(R), each geodesic in M
starting from o is a circle in P**'(R) with the mean curvature vector H, at o.
Take a point pES**! so that z(p)=o, and consider the subset M= |J {Im x,}

i
of §**1, where x, runs over all circles in §”*! starting from p with initial tangent
vectors in 7xy(T,(M)) and with the initial mean curvature vector z3}j(H,).
Then we see that M is a small sphere in $**! and that z maps M onto M. Now
we show that z|M is injective. If m(g)==(r) for two distinct points ¢, 7 in
M, q and r are antipodal in S**'. Let x, be a geodesic in M joining ¢ and 7.
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Then x, is a circle in S**!, since M is a small sphere in S"*. This contradicts
the fact that ¢ and 7 are antipodal in S**'. Hence =|M is injective, and M
is a sphere. q.e.d.

Proposition 7. If N is an abelian group with a bi-invariant metric, M" is
isometric to S”.

Proof. Let n: R**'-N be the riemannian covering map. Then the
covering transformations aie parallel translations of R**!. As in the proof of
Proposition 6, we construct a sphere M in R**'. Then = maps M onto M.
Now we show that = |M is injective. If z(g)=r(r) for two distinct points g, 7
in M, there exists a covering transformation 7 such that 7(g)=7. Since =(M)
=M, there exist a neighbourhood U of ¢ in R"*! and a neighbourhood V of
r in R**! such that 7(U NM)=V NM. Since 7 is a nontrivial parallel transla-
tion of R**! and M is a sphere in R**!, this does not occur. Hence z | is in-
jective and thus M is a sphere. q.e.d.

Summing up our results, we have the following

Theorem 8. If M™ is a symmetric space and M"(n=2) is a complete ex-
trinsic sphere in M™, then M" is isometric to a simply connected real space form.

ReMARK 9. In [2] and [7], B.Y. Chen and C.S. Houh have shown that if
M"(n=2) is a complete simply connected extrinsic sphere with flat normal con-
nection in a Hermitian symmetric space M™, then dim M<rank M. Theroem
8 shows that the assumption of simply-connectedness of M may be omitted.

Remark 10. On the classification of complete extrinsic spheres in a sym-
metric space, the classification of totally geodesic submanifolds N in Proposi-
tion 3 has been still left, but the maximum of dimensions of such N in an ir-
reducible symmetric space has been studied by B.Y. Chen and T. Nagano [5].

3. Isotropic Kihler submanifolds

Let M be a Kihler manifold furnished with an almost complex structure J
and a Kihler metric ¢, > and M be a Kahler submanifold in M. In this
case, both the tangent space T,(M) and the normal space N,(M) are invariant
under the action of J. Since

o(JX,Y) = o(X,JY) = J((X,Y))

for X,Y&T,(M) (cf. [10]), the first normal space N;(M) is also a J-invariant
subspace in N,(M). Recall (cf. [10]) that

R(JX,JY) = R(X,Y) and JR(X,Y)= R(X,Y)].
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The same holds also for R.

Let H (resp. H) denote the holomorphic curvature of M (resp. of M).
Since a Kiahler imbedding preserves holomorphic planes, we can define the
holomorphic difference

A(X) = H(X)—H(X)

for a unit vector X in T,(M). If M is a A-isotropic Kihler submanifold in
M, we have

(3.1) A(X) = 22

for any unit vector X in T,(M), which is an easy consequence of the equation of
Gauss.

From now on we assume that M Jlis a A-isotropic Kihler submanifold
with A>0. Put

A(X:Y;Z: W)= <°'(X:Z)’ o(Y, W)>_<°'(X: W), o(Y, Z)>

for tangent vectors X,Y,Z,W of M. Then 4 is a curvaturelike tensor on M
with the holomorphic sectional curvature 2\? such that

A(JX,JY;Z,W) = AX,Y;Z,W).
By the theorem of F. Shur, we have
() AXYZW) = XY, 2> AWV, 2 JXWy—X, 2> <Y W>
—JX, Zy JY,Wo+2KX, V> < JZ, W}
for tangent vectors X,Y,Z,W of M (cf. [10]). Now we have the following
Lemma 11. For tangent vectors X,Y,Z, W of M,
C(X,Z), oY, W)> = 5 {CY, 2 XWX, Y5 <Z, W
HXJY>LJZ,WH+LJY, Z><JX, WD} .
Proof. By the J-invariance property of o, we have

A(JX,Y; JZ, W) = —<o(X,2), o(Y,W)>—<a(X, W), o(Y,2)>,
and thus

(X, Z), (¥, W)> = % {A(X,Y; Z,W)— A(JX,Y; JZ, W)} .

Now the required equality follows from (3.2). q.e.d.
Lemma 12. For tangent vectors X,Z,W of M the shape operator A, w)
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is given by
Avte il X) = X AW, X022, XOW-+<2,JX> JWAJX, W] 2}
Proof. For tangent vectors X,Y,Z, W of M, we have

Aoz (X), YD = <o(Z, W), o(X,Y)).

Now the formula follows from Lemma 11. q.e.d.

4. Isotropic Kéihler submanifolds in a Hermitian symmetric space

Throughout in this section, let M" be a complex m-dimensional Hermitian
symmetric space and M" be a complex n-dimensional A(>0)-isotropic complete
Kihler submanifold in M” with the parallel second fundamental form ¢-.

Now for a point p in M, set

Oy(M) = Ty(M)+Ny(M),
which is called the first osculating space at p. Note that dimensions of N;(M)
and O}(M) are constant on M, and hence N(M)=UNyM) and OYM)=
4
,UMO‘I’(M) are subbundles of T(M)|M, the restriction to M of the tangent

bundle T(M) of M.
Now fix a point p in M. Let G be the identity component of the group of

isometries of M, and set
K= {geG;g(p) =1} -

Let g and t be the Lie algebras of G and K, and
let

g=t+m
be the associated Cartan decomposition. Then the tangent space T,(M) is

identified with i, and hence O}(M) is identified with a subspace of . Then
we have the following

Lemma 13. The first osculating space Oy (M) at p is a Lie triple system in
m, that is, [[O}(M), O(M)], OXM)COXM).

Proof. Since RP(X,Y)Z=——ad[X,Y]Z for X,Y,Zem (cf. [6]), it is suffi-
cient to show the followings:

(1) RAT,M), T(M)T,(M)T(M)COx(M),

(2) Ry (Ty(M), T(M)Ny(M)CNyM)COyM),

() R (T,(M), Ny(M)T (M) Ny(M)C O(M)
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(4) R(T,(M), NM)N}M)COyM),
(5)  Ry(N3(M), NY(M)T,(M)< O3(M),
(6) R,(N}(M), Ny(M)N}(M)C O}(M),

for each point p of M.
(1) 1is seen by the equation (1.5) of Codazzi-Mainardi.
Now we shall prove (2). By the equation (1.3), we have

(R(X,Y)H,n> = {RYX,Y)H,n>—<[Ay, A,]X,Y>

for X,Ye T, (M), HEN}(M), and n&(N(M))*. The equation (1.4) shows that
RY{X,Y)HeN,(M). Since A4,=0, we get

(R(X,Y)H,7>=0,

and thus R(X,Y)HeO}(M). But R(X,Y)H is orthogonal to T,(M) by (1), thus
we have R(X,Y)H € N}(M).

Next we shall prove (3). Since M is a locally symmetric space, we have
(V+R) (X,Y)Z=0 for tangent vector fields X,Y,Z, W on M, and thus

41)  VA(RXY)Z)= RV:X,Y)Z+R(X,V,Y)Z+R(X,Y)V,Z.
Since R(X,Y)Z is a vector field on M by (1), by the equation of Gauss,

V:R(X,Y)Z = VA(R(X,Y)Z)+o(T,R(X,Y)Z) .
Similarly, we have

R(V:X,Y)Z = R(V.X,Y)Z+R(o(T, X),Y)Z,

RXV,Y)Z = RX,V.Y)Z+R(X,s(T,Y))Z,

R(X,Y)V.Z = R(X,Y)V,;Z+R(X,Y)o(T,Y).
Here V(R(X,Y)Z), R(V;X,Y)Z, R(X,V,Y)Z, and R(X,Y)V,Z are tangent
vector fields on M by (1), and R(X,Y)s(T,Y) is an N'(M)-valued vector field
along M by (2), and moreover R(o(T,X),Y)Z and R(X,s(T,Y))Z are normal

vector fields on M by (1) together with the symmetry property of the curvature
tensor R. Thus we have

(4.2) VA(R(X,V)Z) = R(V.X,Y)Z+R(X,V,;Y)+RX,Y)V,Z,

(4.3) o(T,R(X,Y)Z) = R(s(T,X),Y)Z+R(X,o(T,Y)Z+R(X,Y)o(T, Z).

In particular, by (4.3) and (2)

(4.4) R(o(T,X),Y)Z+R(X,o(T,Y))ZE N\(M) .

Since M is a Kahler submanifold in M, substituting JT (resp. J¥) for T (resp.
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Y) in (4.4), we have
(4.5) R(o(T,X),Y)Z—R(X,o(T,Y))ZEN(M).

By (4.4) and (4.5), we have R(o(T,X),Y)Z<E N M), and thus R(T,(M),N}(M))
T,(M)C N}(M) for each pe M.

We shall prove (4). Since M is a locally symmetric space, we have (V,R)
(X,Y)H=0 for tangent vector fields X,Y,T on M and N'(M)-valued vector
field H along M, and thus

(4.6) VT(I?‘(X, Y)H) = R(V,X,Y)H+R(X,V,;Y)H+R(X,Y)V.H .
Since R(X,Y)H is an NY(M)-valued vector field along M by (2),

Vr(RX,V)H) = —Azxpu(T)+Dr(RX,Y)H) .
Similarly, we have

R(V.X,Y)H = R(V;X,Y)H+R(s(T,X),Y)H ,
R(X v, Y)H = R(X,V,Y)H+R(X,s(T,Y))H,
R(X,Y)V,H = —R(X,Y)4x(T)+R(X,Y)D,H .
Here R(V.X,Y)H, R(X,V,;Y)H, D,(R(X,Y)H), and R(X,Y)D,H are N(M)-

valued vector field along M by (2) and (1.4), and R(X,Y)A4(T) is a tangent
vector on M by (1). Thus we have

(4.7) —Asxna(T) = —RX,V)A(T)+{R(o(T,X), Y)H
+R(X,o(T,Y)H}T,
(4.8) D (R(X,Y)H)= R(V;X,Y)H+R(X,v,Y)H+R(X,Y)D,H

+{R(o(T,X), Y)H+R(X,o(T,Y)H}*,
where {*}7 is the tangent component of *. In particular, by (4.8),
(4.9) R(+(T,X),Y)H+R(X,o(T,Y))HEO(M).

Since M is a Kahler submanifold in M, substituting JT (resp. JY) for T (resp.
Y) in (4.9), we have

(4.10) R(o(T,X),Y)H—R(X,o(T,Y))H < OY(M).

By (4.9) and (4.10), we have R(o(7,X),Y)HEOYM), and thus R(T,(M),
N (M))N (M) Oy(M) for each pe M.

Now we shall prove (5). Since M is a locally symmetric space, we have
(V:R) (X,H)Y=0 for tangent vector fields X,Y,T on M and an N'(M)-valued
vector field H along M, and thus, as in the proof of (3) and (4),
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(4.11)  V(R(X,H)Y) = R(V,X,H)Y+R(c(T,X),H)Y—R(X,Ay(T))Y
+R(X,D,H)Y+R(X,H)V,Y+R(X,H)s(T,Y) .

By (1), (3), (4) and (1.4), we have R(o(T,X),H)Y €0(M), and thus R(N}(M),
N(M))T,(M)C Oy(M) for each pe M.

At last we shall prove (6). Since M is a locally symmetric space, we have
(VoR) (X,H)H'=0 for tangent vector fields 7, X on M and NY(M)-valued
vector fields H, H' along M, and thus

(4.12) YV (R(X,H)H') = R(V.X,H)H'+ R(o(T,X),H)H' — R(X,A,(T))H’
+R(X,D,H)H'— R(X,H)A(T)+R(X,H)D,H' .

By (2), (3), (4) and (1.4), we have R(o(T,X), H)H' € O(M), and thus R(N}M),
NYM)N}(M)C OYM) for each p& M. qe.d.

RemMARk 14. Lemma 13 holds for any Kihler submanifold M with parallel
second fundamental form in a locally Hermitian symmetric space M.

Now let N be the complete totaily goedesic submanifold in M through p
with T,(N)=0}(M) (cf. [6]). Since O}(M) is a J-invariant subspace in T,(M),
N is a Kahler sumbanifold in M. Now we have the following

Proposition 15. If M is a complete nonzero isotropic Kahler submanifold
in M with parallel second fundamental form, there exists a unique complete totally
geodesic Kdhler submanifold N in M such that

(@) M is a Kahler submanifold in N,
and

(0) Oy(M)=T(N) for any point q in M.

Proof. Let N be the totally geodesic Kihler submanifold in M defined
as above. Since M is complete, for any point ¢ in M there exists a geodesic
v in M such that y,=p and v,=¢q. By Lemma 2, v, is a circle in M. Since
%o and (V;7,);= are vectors in Oy(M)=T,(N), there exists a unique circle ¥,
in N such that %,=p, %=y, and (Vi¥,);=o=(V:7¥:)i=- Since N is rotally geo-
desic in M,  is a circle in M with the same initial conditions. Thus we have
=19, by the uniqueness of circle, and consequently g N. This shows the
assertion (a). The assertion (b) follows from that both O'(M) and T(N)|M

are invariant under the parallel translation of M along a curve in M.  q.e.d.
Now we shall calculate the curvature of the Kihler manifold M.
Lemma 16. For tangent vectors X,Y,Z,T of M,
R(X, Jo(T,Y))JZ+ R(X,o(T,Y))Z = 0.
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Proof. Substituting JT (resp. JZ) for T (resp. Z) in the equation (4.3), we
have

(4.13) —o(T,R(X,Y)Z) = R(Jo(T,X),Y)JZ+R(X, Jo(T,Y)]Z
—R(X,Y)o(T,Z).
By (4.3) and (4.13), we have

(4.149)  R(Jo(T,X),V)JZ+R(X, Jo(T,Y))JZ+R(s(T,X),Y)Z
+R(X,o(T,Y)Z=0.

Substituting JT (resp. JX) for T (resp. X) in (4.14), we get the lemma. q.e.d.

Let K(4,B) denote the sectional curvature for the plane spanned by or-
thogonal vectors 4,B of M.

Lemma 17. For a unit vector Z of M,
H(Z) = 4R (Z,s(Z,Z)) .
Proof Substituting JT (resp JX) for T (resp. X) in (4.3), we have.
4.15)  ¢(JT,R(JX,Y)Z) = —R(c(T,X),Y)Z+R(X,s(T,Y))Z
+R(JX,V)o(JT,Z).
By (4.3) and (4.15), we have
(4.16) o(T,R(X,Y)Z)+o(JT,R(JX,Y)Z)
= 2R(X,o(T,Y))Z+R(X,Y)o(T,Z)+R(JX,Y)oc(JT,Z) .
Setting T=X=Y=Z, we have
417y  o(JZ,R(JZ,Z)Z) = 2R(Z,0(Z,Z)) 2+ R(JZ,Z)s(JZ,Z) .
When Z is a unit vector of M, by Lemma 11,
(4.18) o(JZ,R(JZ,2)Z),o(Z,Z)> = \KR(JZ,Z)]Z,Z>
= —NH(Z).
By the Bianchi identity and Lemma 16,
419)  <R(JZ,Z)o(]JZ,Z),0(Z,Z)> = ~<I§(Z,J o(2,2))]2,5(Z,2)>
—R(a(Z,2),2)2,0(Z,2))
= UR(Z,0(Z,2))Z,0(Z,Z)> .
Thus, by (4.17), (4.18), and (4.19), we have
—NH(Z) = KR(Z,0(Z,2))Z,0(Z,Z) .
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Since |o(Z,Z)| =\, H(Z)=4K(Z,5(Z,2)). q.e.d.
Lemma 18. For a unit vector Z of M,
2KR(Z,0(Z,2)) = —H(Z)+6\*.

Proof. Substituting JX (resp. JT) for X (resp. T) in the equation (4.7),
we have

(420)  —Aruxpa(JT) = —R(JX,Y)A,(JT)
+{—R(o(T,X), Y)H+R(X,o(T,Y))H}" .

By (4.7) and (4.20), we have

*AI‘?(x,Y)H( T)—Ai(lx,y)n( T)
= —R(X,Y)4x(T)—R(JX,Y)Au(JT)+2{R(X,0(T,Y))H}" .

If we put X=Y=T=Z and H=0¢(Z,Z), where Z is a unit vector of M, we have

(4'21) _AI-?(]Z,Z)e(Z,Z)(]Z) = - R(JZ: Z)Ac(z,z)(]z)
+2{R(Z,0(Z,2))o(Z,Z)}" .

On the other hand, by Lemma 12,

422) {Ao'(Z,Z)Z =NZ,Auzn]Z = —N]Z,
' A]a(z,z)Z = 7\2]2, A]a'(Z,Z)]Z =NZ.

By (4.22), we have

(4.23) KR(JZ,2)A02,2(J2), 2> = NH(Z).

By (4.22), (1.3), Lemma 1, and Lemma 11, we have

(4-24) <4§(/Z,Z)¢(Z,Z)(]Z)’ Z>
=<R(JZ,2)0(2,2),s(]Z,2)>
=<RYJZ,2)0(Z,2),0(JZ,2))—[Aoz,2, Aot1z,0)JZ, 2>
= Xo(R(JZ,2)2,2),6(JZ,Z)>—20\*
= N{R(JZ,2)2, JZ>—<R(]Z,2)]Z,Z)} — 2!
= 22\H(Z)—2\*.
Thus, by (4.21), (4.23), (4.24), and (3.1), we have
2K(Z,0(Z,Z)) = —H(Z)+ 6% q.e.d.
Combining Lemma 17 with Lemma 18, we have

(4.25) H(Z) =42 and H(Z) = 2)\?
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for any unit vector Z of M. Thus we have proved the following

Proposition 19. If M is \(>0)-isotropic Kdihler submanifold in M with
parallel second fundamental form, then M has constant holomorphic sectional cur-
vatures 2\%.

Now we calculate the curvature of the totally geodesic Kihler submani-
fold N. The connection on N induced by ¥ will be denoted by the same ¥.
We define a tensor field 7 on N by

(4.26) <7(4,B)C,D) = N*{<B,C><4,D>+<{JB,C><JA4,D>—<4,C><B,D)
—<JA4,C><JB,D>+2(4, JB><JC,D>}

for tangent vectors 4,B,C,D of N. Then <7(,), > is a curvature-like tensor
with the holomorphic sectional curvatures 4A? such that <#(J4, JB)C,D>=
<7(4,B)C,D} and v7=0.

Lemma 20. For tangent vectors X,Y,Z of M,
RX,Y)Z =7X,V)Z.

Proof. <E(X,Y)Z,W> and <P(X,Y)Z,W> are curvature-like tensors on
M such that <R(JX,JY)Z,W>=<R(X,Y)Z,W> and <F(JX, JY)Z, W)=
<HX,Y)Z,W)>. Since they have the same holomorphic sectional curvatures
4)\? by (4.25), the theorem of F. Shur shows that

RXYVZWY =<PX,V)Z,W).

Since R(X,Y)Z and 7(X,Y)Z are tangent vectors of M, we have R(X,Y)Z
=PX,Y)Z. q.e.d.

Lemma 21. For tangent vectors T,S,X,Y of M,
R(T,S)e(X,Y) = 7(T,S)s(X,Y).
Proof. By (#+.25) and Shur’s theorem,
4.27) R(T,S)X = %2 LS, XOT+<JS, X> JT—<T,X>S—JT,X>]S
+2{T,JS>JX} -
By (1.3), Lemma 1, Lemma 11, Lemma 12, and (4.27), we have

(4.28) <R(T,8)o(X,Y),a(Z,W))
= <R'L(T: S)G'(X, Y): O'(Z’W)>_<[Aa(x,y): Ao‘(Z,W)] T,8>
= {H(R(T,S)X,Y),0(Z,W)>+<a(X,R(T,S)Y),a(Z,W)>
—LAoz Ty At 9SO+ <A aix 0 Ts Aotz SO
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= 2T, JSO>KZ, X5 JY,WHHLJY, ZX X, WH+<Y, Z> {JX,W>
+<Z, JX> <Y, WD} .
On the other hand, by (4.26) and Lemma 11, we have
(4.29) <H(T,S)o(X,Y),a(Z,W)>

= MXT, JSHLZ, X5 {JY, WH+L]JY,Z> KX, WH+<Y, 2> {JX, W)
+<Z, JX> <Y, W}

Thus we have
<E( T, S)O'(X: Y), U(Z: W)> = <7(T1 S)U(X: Y)’ G'(ZJ W)> .

Since R(T,S)s(X, Y) and #(T,S)o(X,Y) are normal vectors by Lemma 13, (2),
and (4.26), we have R(T,S)a(X,Y)=#T,S)s(X,Y). q.e.d.

Lemma 22. For tangent vectors X,Y,Z,T of M,
R(X,s(T,Y)Z = ¥(X,o(T,Y))Z .

Proof. Note that the equation (4.16) was derived from only VR=0.
Thus, by ¥7=0, we have

(4.30) (T, 7(X,Y)Z)+o(JT,7(JX,Y)Z)
= 2%(X,o(T, V) Z+7(X,Y)o (T, Z)+7(JX,V)o(JT, Z) .

By (4.16), Lemma 20, and Lemma 21, we have

#31)  o(LAXNZ)+e(THIX.Y)E)
= 2R(X,o(T,Y))Z4+7(X,Y)o(T,Z2)+7(JX,Y)o(JT,Z) .
Thus we have R(X,o(T,Y))Z=FX,o(T,Y))Z by (4.30) and (4.31). q.e.d.
Similarly, by (4.6), (4.11), and (4.12), we have the following
Lemma 23. For X&T,(M) and H,H,,H,& N;(M), with p& M, we have

R(X,H)H, = 7(X,H,)H,,
R(H,H)X = 7(H,,H)X ,
R(H,,H\)H,= 7(H,,H,)H, .

Summing up Lemma 20, Lemma 21, and Lemma 22, we have R=7 on
N. Thus we have proved the following

_ Proposition 24. The complete totally geodesic Kdhler submanifold N in
M is holomorphically isometric to a complex projective space with constant holo-
morphic sectional curvatures 4)\>.
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By Propositions 15, 19, and 24, M is a complete Kahler submanifold in
the complex projective space N with constant holomorphic sectional curvatures
4\? such that

(1) M has constant holomorphic sectional curvatures % (4%

(2) M i1s not contained in any proper complete totally geodesic Kahler
submanifold of M.
It is known (E. Calabi [1]) that such a submanifold M is the Veronese sub-
manifold of degree 2 in NV, up to holomorphic isometries of N. Thus we have
the following

Theorem 25. Let M be a Hermitian symmetric space. If M is a complete
(> 0)-isotropic Kahler submanifold in M with parallel second fundamental form,
then there exists a unique complete totally geodesic K dhler submanifold N in M such
that

(a) N is holomorphically isometric to a complex projective space with constant

holomorphic curvatures 4\%,
and
() M is the Veronese submanifold of degree 2 in N.

Corollary 26. If M is a Hermitian symmetric space whose holomorpnic
sectional curvature is non positive for any holomorphic plane, then there exists no
nonzero isotropic Kdahler submanifold in M with parallel second fundamental form,

ReMARK 27. On the classification of complete nonzero isotropic Kihler
submanifolds with parallel second fundamental form in Hermitian symmetric
space, the classification of totally geodesic K#hler submanifolds /V in Theorem 25
has been still left, but the maximum complex dimension n(M) of such N in an
irreducible compact Hermitian symmetric space M is calculated easily by using

the result of S. Thara [9]. The value of n(M) is; q for M=SU(p-+q)/S(U(p) X
Ulg) (15 p=); p—1 for A=SOQR)U(p) (p25) or S,(p)IUP) (p22)3 | 2 ]

for M=SO0(p-+2)/S(O(p)x O(2)) (p=5); 5 for M=E,/Spin(10)-T; 6 for M=
E,JE,-T.
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