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Efficient Distortion-Free Neural Projector
Deblurring in Dynamic Projection Mapping

Yuta Kageyama Student Member, IEEE, Daisuke Iwai, Member, IEEE, and Kosuke Sato, Member, IEEE

Abstract—Dynamic Projection Mapping (DPM) necessitates geometric compensation of the projection image based on the position and
orientation of moving objects. Additionally, the projector’s shallow depth of field results in pronounced defocus blur even with minimal
object movement. Achieving delay-free DPM with high image quality requires real-time implementation of geometric compensation and
projector deblurring. To meet this demand, we propose a framework comprising two neural components: one for geometric compensation
and another for projector deblurring. The former component warps the image by detecting the optical flow of each pixel in both the
projection and captured images. The latter component performs real-time sharpening as needed. Ideally, our network’s parameters
should be trained on data acquired in an actual environment. However, training the network from scratch while executing DPM, which
demands real-time image generation, is impractical. Therefore, the network must undergo pre-training. Unfortunately, there are no
publicly available large real datasets for DPM due to the diverse image quality degradation patterns. To address this challenge, we
propose a realistic synthetic data generation method that numerically models geometric distortion and defocus blur in real-world DPM.
Through exhaustive experiments, we have confirmed that the model trained on the proposed dataset achieves projector deblurring in the
presence of geometric distortions with a quality comparable to state-of-the-art methods.

Index Terms—Projector deblurring, Geometric compensation, Dynamic projection mapping, Deep neural networks,

✦

1 INTRODUCTION

DYNAMIC Projection Mapping (DPM) is an advanced tech-
nique for rapidly mapping images onto moving objects using

a projector. Recent hardware advancements have significantly
enhanced the practicality of DPM [1]–[6]. In contrast, Projection
Mapping (PM) on static objects has already achieved significant
progress [7], [8], finding applications in various fields such as
medicine [9], industrial design [10], online conferencing [11],
office work [12], [13], and entertainment [14], [15]. Consequently,
the development of DPM is anticipated to augment the practicality
of PM applications in these established areas and in other domains
still under exploration. However, defocus blur poses a significant
challenge for DPM. This issue arises because a projector typically
has a very shallow Depth of Field (DoF) due to the large lens aper-
ture required for emitting high-brightness images. Consequently,
even a slight movement of the projected object in DPM may cause
it to move out of the DoF, resulting in defocus blur in the projected
image.

Numerous studies have focused on projector deblurring in PM,
with most of them grounded in the understanding that defocus blur
is modeled by the convolution of the projection image and the Point
Spread Function (PSF). Prior research has successfully addressed
defocus blur through PSF deconvolution [16]–[18], necessitating
precise PSF estimation. PSF measurement methods involve pro-
jecting dot patterns [16], [17] or a natural image [18], [19] and
capturing the projected light distribution with a camera. However,
these techniques are limited to static projected objects. While some
studies target dynamic scenes [20]–[22], they often involve the
installation of special optics, such as an Electrically Tunable Lens
(ETL), into the projector. This can result in significant image quality
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degradation, including color distortion due to optical aberrations.
Kageyama et al. recently proposed a method to compensate for
defocus blur in DPM without requiring special optics [23]. Instead,
it utilizes camera-based feedback and a Deep Neural Network
(DNN). While this technique demonstrates the feasibility of defocus
blur compensation in DPM, it lacks consideration for geometric
distortion of projected results and computation time, making
it impractical for real-world DPM scenarios. DPM necessitates
geometric registration of the projector to the projection target
whenever the target is moved to visually align the projected image
onto the moving target. Geometric registration typically involves
finding pixel correspondence between the projector and the camera.
The simplest method is projecting a sequence of Structured Light
(SL) pattern images encoding the projection image coordinates.
Although accurate, this technique is limited to static setups due to
the need for multiple pattern projections. Therefore, imperceptible
geometric registration techniques utilizing feature matching in
projected natural images [24]–[26], tracking markers [4], [5], and
spatio-temporal embedding techniques [27], [28] are essential
in DPM. It is important to note that all geometric registration
methods relying on the projected image cannot obtain exact pixel
correspondence between the projector and the camera if the image
is obscured by defocus blur.

This paper introduces an almost real-time approach to alleviate
defocus blur and geometric distortion in DPM, obviating the
necessity for specialized optical devices and aiming to achieve
an all-in-focus DPM. For geometric compensation, we employed a
state-of-the-art optical flow estimation network, GMA [29]. The
estimated optical flow establishes pixel correspondence between the
projector and camera images. To address projector deblurring, we
introduced two lightweight sub-networks: PSFNet and SharpenNet.
PSFNet is responsible for estimating the parameters associated
with image quality degradation in the projected result. On the
other hand, SharpenNet is tasked with optimizing the projection
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image by leveraging the estimated parameters. The projection of
the optimized image effectively eliminates geometric distortion and
defocus blur, as illustrated in Fig. 8.

The critical factor in achieving projection compensation in
DPM through a neural framework lies in the training methodology
of the network. The patterns of geometric distortion and defocus
blur observed in DPM are notably diverse, contingent upon the
position, posture, and characteristics of the projector, camera, and
projection target. It is not feasible to train networks capable of
compensating for these myriad degradation patterns from scratch
within a real-world environment. Consequently, pre-training the
network becomes imperative, necessitating a substantial dataset that
encompasses a wide spectrum of degradation patterns. Collecting
such extensive data in a real-world environment is impractical, and
currently, publicly available data is nonexistent. To address this
challenge, we have concentrated on recognizing the effectiveness
of synthetic data in training networks across various domains [30],
[31]. In other words, we propose an innovative method for
generating realistic datasets within the virtual PM that incorporate
both geometric and radiometric distortions.

Our novel dataset provides three significant advantages. Firstly,
our network is fully trained using synthetic data and its parameters
are optimized. Consequently, there is no need to adjust the
network’s parameters even when the projection target moves in
DPM. Secondly, our dataset-trained GMA demonstrates robustness
to image quality degradation in a PM environment. PM introduces
complex image quality degradation due to a combination of
nonlinear geometric distortions, luminance changes resulting from
light attenuation and camera gain, projector gamma characteristics,
and defocus blur. A pre-trained GMA, publicly available, is not
equipped to handle such image quality degradation, leading to
errors when tested in an actual PM environment. Conversely, GMA
trained on our dataset, accurately reproducing the described image
quality degradation, exhibits fewer errors. Finally, we can train
GMA using data augmentation that assumes geometric compen-
sation in DPM. The projection image in DPM with geometric
compensation is not a natural image, as illustrated in the upper
(b) of Fig. 3, but a non-linearly deformed image filled with black
pixels, as illustrated in the lower (b) of Fig. 3. GMA must effectively
perform the challenging task of estimating pixel-wise optical flow
from the deformed projection image and its captured image. To
address this challenge, we propose geometric data augmentation
that non-linearly distorts the projection image used to train the
GMA and fills the background of that image with black pixels.

Another contribution to realizing practical DPM is the
lightweight of the deblurring network. The state-of-the-art
method [23] for online deblurring requires more network pa-
rameters than necessary, making real-time compensated image
generation impossible. In contrast, the proposed network has
only 1% of the parameters of that method, significantly reducing
the computation time required to generate compensated images.
Through extensive experiments, we have verified that our method
can effectively compensate for defocus blur in practical scenes,
even with a significantly reduced number of parameters.

To summarize, our primary contributions are as follows:

• To the best of our knowledge, this study represents the first
attempt to compensate for defocus blur in nearly real-time
without special optical devices, even in the presence of
geometric distortion.

• To accomplish this, we devised a geometric compensation

network that demonstrates robustness to image quality
degradation in DPM. Additionally, we created a projector
deblurring network with a minimal number of parameters.

• We tackled the challenging task of collecting datasets
that cover a multitude of patterns of geometric distortion
and defocus blur in real-world DPM by replicating these
degradation patterns within a virtual PM environment.

• We showcased our compensation’s performance in terms of
image quality and computational time through experiments
involving various static and dynamic projection targets.

2 RELATED WORK

Two major research topics related to our study are geometric com-
pensation and projector deblurring, employing projector/camera
pairs known as ProCams (projector-camera systems). We will first
introduce previous works on these topics. Subsequently, we will
describe “combined compensation” that performs these compensa-
tions simultaneously. Finally, we will outline our contributions in
comparison to previous research.

2.1 Individual compensation
While geometric distortion and defocus blur often coincide in most
PM scenarios, simultaneous compensation for these two distortions
poses a significant challenge. As a result, many researchers have
opted for independent compensation for each.

2.1.1 Geometric compensation
Geometric compensation can be achieved by establishing correspon-
dence between projector and camera coordinates and warping the
projection image accordingly to be appropriately superimposed on
the target surface. The most well-known method is projecting
a series of SL patterns, such as gray code patterns, encoded
with the projector coordinates. The correspondence between
projector and camera coordinates is determined by capturing and
decoding these patterns with a camera. However, this method
necessitates the projection of multiple artificial patterns, disrupting
the PM application and limiting its use in a static environment.
Alternatively, several techniques leverage feature point matching in
natural images instead of artificial pattern images [24]–[26]. While
this technique is less visually intrusive than projecting artificial
patterns, feature detection is contingent on image contents and
tends to fail when high-frequency feature points, such as edges in
the projected image, are lost due to degradation factors, including
defocus blur.

The challenge of geometric registration significantly intensifies
in DPM, where the pose and location of the projection target
rapidly change. The difficulty arises because the geometric cali-
bration process must remain imperceptible to humans, requiring
seamless integration into the system without causing noticeable
disruptions or artifacts. One solution is to employ a coaxial
ProCam system [36]–[38]. This specialized system ensures that
the projector and camera pixels coincide regardless of the position
and orientation of the projection target. Other studies have utilized
the calibration pattern projection that is detectable by the camera
but imperceptible to humans. For instance, humans do not perceive
light sources flickering above 60 Hz, known as the Critical Flicker
Fusion (CFF) frequency. Focusing on this physical characteristic,
some researchers achieved geometric calibration by projecting
an image embedded with a gray code at high speed [27], [28].
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TABLE 1
Comparison of the proposed method with conventional defocus blur compensation algorithms using a single projector.

Methods Geometric calibration Online deblurring Additional devices Fine-tuning with real data

Non-DNN methods [16]–[18] Required No No requirement N/A
Non-DNN methods w/ ETL [20]–[22] Required Yes Required N/A

ProDebNet [19] Required No No requirement No requirement
OnlineProDeb [23] Required Yes No requirement No requirement

CompenNet++ family [32]–[35] No requirement No No requirement Required
Ours No requirement Yes No requirement No requirement

Another possibility is geometric calibration through infrared light
projection [39], [40]. Although the methods mentioned above are
capable of online geometric calibration, none supports projector
deblurring.

2.1.2 Projector deblurring
There are two categories of defocus blur compensation techniques:
the single-projector and multiple-projector approaches. In the
single-projector approach, the projection image undergoes pre-
sharpening to approximate the target appearance when projected,
thereby compensating for defocus blur. The parameters for this
pre-sharpening process rely on pixel-dependent PSFs. Therefore,
the pixel-wise PSF is measured by projecting dot patterns [16],
[17] or a target image [18]. The pre-sharpening process is achieved
by deconvolution of the image and the estimated PSFs. Although
sharpening with a Wiener filter is the most straightforward and
fastest method [16], [18], this technique often suffers from ringing
artifacts. While constrained iterative optimization can provide high-
quality compensation [17], the computational complexity becomes
a bottleneck. This trade-off between computational complexity and
image quality can be addressed by using a coded aperture [41] or a
DNN-based technique [19], [42]. All the mentioned methods share
a common drawback: they require projecting calibration images and
estimating the PSF each time the projection setup changes, making
them unsuitable for DPM. This problem can be mitigated by using
an additional optical component, such as ETL [20]–[22]. Kageyama
et al. recently introduced an online deblurring technique [23] with
the goal of achieving all-in-focus DPM without the need for special
optical devices. While this method is closely related to ours, it
lacks consideration for the geometric registration of the projector
and the projection surface. Moreover, the method is associated
with a significant drawback in terms of its long computation time,
making it far from practical for real-world DPM applications.

In the multiple-projector approach, various projectors are
focused on different positions. This arrangement enables the
selection of the projector with the best focus at a specific point
on the projection target, allowing the image to be projected from
that projector as much as possible. As a result, the projected result
avoids suffering from defocus blur [43], [44]. Additionally, the
accuracy of defocus blur compensation can be further enhanced
by optimizing the projection images to closely resemble the target
image when projected by multiple projectors [3], [45]. Thus, the
multiple-projector approach achieves projector deblurring in a
manner impossible with the single-projector approach. However,
complex geometric and radiometric calibration is required to
achieve this goal.

While numerous methods have been developed for projector
deblurring, all are based on the assumption that the pixel corre-
spondence between the projector and camera is known or that the
relationship between depth and PSF is known. This implies that

geometric calibration is necessary before projector deblurring can
be effectively implemented.

2.2 Combined compensation

Several researchers have tackled the challenging task of simulta-
neously compensating for geometric distortion and radiometric
distortion, including defocus blur. The most robust but compu-
tationally expensive method is to use the full Light Transport
Matrix (LTM) [46]. The full LTM can represent light transitions
between all pixels of the projector and all pixels of the camera,
thereby compensating for various image quality degradations
beyond geometric distortion and defocus blur. However, its matrix
is enormous (i.e., the product of the number of projector pixels and
the number of camera pixels), making it computationally expensive.
Additionally, the method requires sampling pattern projections to
determine those elements, which is far from realizing practical
DPM.

In recent years, some DNN-based combined compensation
methods have been proposed. CompenNet++ and similar networks
are pioneer works in this field, achieving end-to-end combined
compensation [32]–[35]. However, full-scratch training of these net-
works requires the projection and capture of hundreds of sampling
images in an actual PM setup. Therefore, these approaches share a
common drawback: they necessitate data collection and network
training every time the PM environment changes. To address this
problem, Li et al. proposed a fast physics-based optimization
method [47], which achieves combined compensation with the
same accuracy as CompenNeSt++ [33] with less training data.
Nevertheless, it still requires around ten pattern projections for
optimization, making it unsuitable for practical DPM applications.

2.3 Our contribution

One of our main contributions is that we have addressed two
unresolved challenges in the state-of-the-art deblurring method,
OnlineProDeb [23], enabling practical DPM. Firstly, our technique
can compensate for defocus blur even in the presence of geometric
distortion. To achieve this, our network consists of two parts: one
for geometric compensation and the other for projector deblurring.
While one might assume our two-part network is similar to existing
approaches achieving combined compensation [32], [33], [35], it
surpasses them by not requiring sampling image projections for
network training in an actual PM setup, allowing for the use of
pre-trained models in arbitrary setups. Secondly, our deblurring
network is significantly lighter, enabling real-time defocus blur
compensation. OnlineProDeb used networks with an excessively
large number of parameters for deblurring, which did not meet the
image generation time requirement of a common projector refresh
rate (i.e., ≥ 60 Hz). In contrast, we achieved qualitatively and
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Fig. 1. Description of our virtual PM setup. This configuration comprises
a projector, a camera, and a projection target that is uniformly white and
entirely diffuse. It is crucial to note that when points on the surface are
projected to the same coordinates of the projector, such as xs and x′s,
only the point closest to the projector is illuminated.

𝐷 𝑏

𝑠
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Lens aperture Projection
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Light
source

Fig. 2. Thin-lens model for computing the PSF of a projected pixel.

quantitatively better deblurring, even though we used a network
with 1% of the parameters compared to OnlineProDeb.

Our other main contribution, which helps realize the two
advantages mentioned above, is that we addressed the lack of
datasets needed for training the network to achieve all-in-focus
DPM. In DPM, the projection object of arbitrary shape moves
rapidly, and the degree of geometric distortion and defocus blur
changes each time it moves, resulting in myriad degradation
patterns. Therefore, it is not feasible to collect these countless
patterns in an actual PM setup. To tackle this problem, we propose a
realistic synthetic data generation method by numerically modeling
geometric distortion and defocus blur in real-world PM.

Since our primary focus is projector deblurring with a single
projector, Table 1 compares this study with previous single-
projector techniques that compensate for defocus blur.

3 DATASET SYNTHESIS

This section outlines the rendering process involved in capturing
an image projected onto a target in a virtual PM environment.
Subsequently, we outline the assumptions guiding the parameter
selection for data generation. Finally, we introduce the unique
data augmentation techniques designed to address geometric
compensation in DPM using our network.

3.1 Numerical modeling of PM

3.1.1 Geometric correspondence
As illustrated in Fig. 1, our setup in a virtual space consists of
a projector, a camera, and a white, diffuse, arbitrarily shaped
projection object. To render the captured image, it is essential to
identify the pixel correspondence between the projector and camera
images. To achieve this, we first determine the correspondence
between each pixel of the camera xc ∈ R2 and the surface point
xs ∈ R3 using the following equation.

xs = K−1
c x̄cdc, (1)

where, Kc ∈ R3×3 is the camera’s intrinsic parameter, x̄ is the
homogeneous coordinate of x, and dc is the depth of x̄c in the
camera coordinates. Let Kp ∈ R3×3 be the projector’s intrinsic
parameter and R ∈ R3×3, t ∈ R3 be the relative rotation and
translation of the camera from the projector. Then, the point xs
is illuminated by the point xp in the projector image, which is
obtained using the following equation.

x̄p = Kp[R|t]x̄s. (2)

It is important to note that several points in the camera image may
map to the same projector coordinates. For example, in Fig. 1, two
different camera coordinates xc and x′c map to the same projector
coordinate xp. In such a case, we employ a z-buffer to ensure that
only the surface point xs, closest to the projector, is illuminated by
the projector.

3.1.2 Intensity of reflected light
Now that the correspondence between the projector coordinate xp
and the camera coordinate xc has been established, the subsequent
step involves calculating the luminance on the projected result
captured by the camera when the projector displays the image. Let
Ip(xp) ∈ R be the pixel value at coordinate xp in the projection
image Ip. Then, the light emitted from the projector undergoes a
non-linear transformation, influenced by the display characteristics
(i.e., Gamma characteristics), expressed as follows:

L(xp) = {Ip(xp)}γ , (3)

where γ is the Gamma value of the projector. When the emitted
light reaches the point xs, its irradiance is attenuated by two primary
factors: the distance dp from the projector to the surface and the
incidence angle α of the light ray with respect to the surface.
This attenuation term is referred to as the form factor [48], and
by utilizing it, the irradiance at the surface point xs due to light
emitted from the point xp can be computed using the following
equation:

R(xc) =
cos(α)L(xp)

d2
p

. (4)

3.1.3 Reproduction of defocus blur
Next, we will delve into the reproduction of defocus blur. Similar
to certain prior studies [20], [23], we characterize the projector’s
lens as a thin lens. As depicted in Fig. 2, when the light emitted
from a source point reaches a plane at a distance dp, the light
is perceived as a circle. The diameter of the blur circle b can be
calculated using geometrical similarity as follows:

b = |D(
dp

s
−1)|, (5)
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TABLE 2
Description of the parameters randomly sampled during data generation.

Description Camera
intrinsic

Projector
intrinsic Rotation matrix Transition

vector Gamma Focal
distance

Lens
aperture

Camera
gain

Mark Kc Kp R t
γ s [m] D [m] Gfc( fx = fy) [px] fp( fx = fy) [px] rx, ry [°] rz [°] tx, ty, tz [m]

Value range [1500, 2000] [1000, 1200] [-3.0, 3.0] [-30, 30] [-0.3, 0.3] [1.0, 2.2] [0.5, 4.0] [1.5, 2.5] [1.0, 2.0]

where D is the diameter of the projector’s lens aperture, and s is the
distance between the lens and the focusing point. It is important
to note that the light source is not an ideal point source but rather
a pixel on the projector’s display. Consequently, the PSF of the
light emitted from there is approximated by following an isotropic
Gaussian function, rather than a pillbox function [16], [18], [19],
[23]. This approximation is expressed as follows:

PSF(r,b) =
2

πb2 exp(−2r2

b2 ), (6)

where r is the distance from the blur center. In accordance with
this PSF model, the light calculated in Equation 4 will spread
values to the surrounding area, representing defocus blur. Finally,
the captured image is rendered by multiplying a camera gain G by
the light emitted from the scene and adding slight Gaussian noise.
It is important to note that the camera’s DoF is sufficiently wide
compared to that of the projector. Therefore, the defocus blur of
the camera is disregarded in this study. Additionally, we assume
that the camera’s gamma characteristic is linear. This assumption is
based on the fact that the gamma characteristic of most projectors
is not user-adjustable, while most cameras provide users with the
option to adjust the gamma characteristic.

3.2 Assumptions in parameter selection
This section outlines the assumptions made in selecting parameters
for data synthesis. Since our PM environment is entirely virtual, we
possess the flexibility to assign arbitrary values to the parameters
of the projector and camera. This flexibility enables us to generate
data spanning various PM setups. However, to maintain the realism
of the rendered captured image and improve the training efficiency
of the network, we impose constraints on the range of values for
each parameter, as detailed in Table 2. The establishment of these
parameter ranges is grounded in the following conditions.

• The resolution of the projection image is set to 256×256
pixels, while the captured image is configured at 600×600
pixels.

• The depth range over which the projection object exists is
defined as [1.5 m, 2.5 m], and the depth image values are
normalized to fall within these ranges.

• The focal lengths ( fx and fy) of the intrinsic parameter K
are identical.

• The optical axes of the projector and camera intersect at
the center of each image.

• Light that does not hit the projection target diverges to
infinity and remains unobservable.

• It is ensured that at least a portion of the projection target is
within the projector’s field of view. Specifically, when the
camera’s optical axis intersects with the projection target at
point Xs, the projector is rotated after translation so that its
optical axis intersects with point Xs. The sampled rotation
angles are then used to appropriately adjust the projector’s
orientation.

(a) (b) (c)

(a) (b) (c)

Fig. 3. Two examples of our virtual PM. (a) represents the depth image
of the projection target, while (c) illustrates the outcome of projecting the
image in (b) onto this projection target using the parameters provided
below. It is important to highlight that the projection image in the example
below is deformed, a result of applying the geometric data augmentation
method proposed in Sect. 3.3.

It is important to note that the projector is initially oriented toward
the projection target even before applying the sampled parameters,
in adherence to the six conditions outlined above. Consequently, the
absolute values of the ranges for rx and ry in Table 2 are relatively
smaller compared to rz. Two examples of data synthesis under the
specified conditions are illustrated in Fig. 3.

3.3 Geometric data augmentation for DPM
In the context of PM with a static projection target, it suffices
to determine the pixel correspondence between the projector and
the camera once. However, in DPM, this correspondence must
be recalculated each time the projection target moves. In this
scenario, the projection image used to find the pixel correspondence
is a geometrically compensated image, which is non-linearly
deformed, and the background is filled with black pixels. To train
GMA to account for this situation, we propose a geometric data
augmentation that fills the background with black pixels after a
non-linear transformation of the projection image by combining
Affine and Thin-Plate Spline (TPS) transforms. The projection
image transformed by our data augmentation is depicted in the
bottom (b) of Fig. 3, and its appearance resembles a geometrically
compensated image.

4 COMPENSATION ALGORITHM

We introduce a neural framework designed to generate a projection
image that compensates for defocus blur, even in the presence of
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Fig. 4. An overview of our network, comprising two main components: the geometric compensation part and the defocus blur compensation part.
In the former, GMA estimates the optical flow between the projection image and the captured image of the previous frame, establishing pixel
correspondence between the projector and the camera. The latter includes PSFNet and SharpenNet. Initially, PSFNet calculates the pixel-wise PSF
map, the pixel-wise form factor map, and the projector’s gamma value from the projection and warped captured images. Based on the estimated
parameters, SharpenNet sharpens the geometrically compensated target image.
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Fig. 5. PSFNet and SharpenNet are detailed as follows: PSFNet begins
by extracting low-resolution features through convolution and downsam-
pling of the concatenated input images. Subsequently, three heads
are employed to output the projector’s gamma value, the 1/16 size
form factor map, and the 1/16 size PSF map. Bicubic interpolation is
then utilized to resize the maps to match the size of the projection
image. SharpenNet combines the resized maps with the geometrically
compensated target image in feature space. This process yields an
intermediate image, which undergoes gamma correction to produce the
final compensated projection image.

geometric distortion. This section delves into the specific details
of the proposed framework. It is important to note that in this
study, as in several previous studies [23], [32], [33], [47], the user’s
viewpoint is replaced by the camera viewpoint. Therefore, our
research goal is for the projected image captured by the camera to
match the target image.

4.1 Network design
In DPM, all frames of the projection image need to be compensated
while the object is in motion. For this reason, our framework aims
to generate a projection image that compensates for geometric
distortion and defocus blur based on both the projection image and
its captured image of the previous frame. However, accomplishing

this goal within a single network is a complex and challenging
task. Therefore, we have determined that the three processes of
geometric warping, radiometric degradation estimation, and image
sharpening are essential to achieving our objective. Consequently,
we have divided the entire network into these three distinct parts,
as illustrated in Fig. 4. The details of each part are explained in the
following sections. It is worth noting that although the images in
Fig. 4 and Fig. 5 are visualized in RGB color spaces, the network
processing is conducted solely on the value component of the
HSV-transformed image.

4.2 Geometric warping

As depicted in Fig. 4, the initial step in our framework is warping
the captured image to a projector viewpoint and applying geometric
compensation to the target image. To achieve this, it is crucial
to establish pixel correspondence between the projector and the
camera. For this purpose, we opted to detect the optical flow of all
pixels from the projection image to the captured image. Optical
flow is typically detected when the same scene is captured from
two different viewpoints. However, in this research, it is necessary
to detect the optical flow from two images in different domains: the
projection image and the captured image with geometric distortion
and defocus blur. Therefore, we utilized GMA [29], a DNN-based
optical flow estimation network, as classical optical flow detection
methods such as the Lucas-Kanade method [49] are unsuitable for
our task.

The input/output of GMA can be described by the following
equation:

Up2c = GMA(Ip,P(Ip)↓), (7)

where Ip ∈ RHp×Wp and P(Ip) ∈ RHc×Wc are the projection image
and the captured image of the previous frame (i.e., P is the
projection and capture function), and ↓ indicates that the captured
image is downsampled to the same size as the projection image.
Up2c ∈ R2×Hp×Wp represents the pixel-wise optical flow from the
projection image to the captured image. Hp and Wp represent the
height and width of the projection image, while Hc and Wc represent
those of the captured image. Using the optical flow, the captured
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image warped to the projector viewpoint W (P(Ip)) ∈ RHp×Wp

can be obtained from the following equation:

W (P(Ip))(x,y) = P(Ip)↓(x+ux,y+uy), (8)

ux,uy = Up2c(x,y). (9)

Similarly, the same warping process can be applied to the target
image Igt ∈ RHc×Wc to obtain a geometrically compensated image
W (Igt) ∈ RHp×Wp as follows:

W (Igt)(x,y) = Igt↓(x+ux,y+uy), (10)

ux,uy = Up2c(x,y). (11)

The loss function for GMA is described by the following equation:

Lmse(Up2c,Ugt
p2c), (12)

where, Ugt
p2c is the Ground-Truth (GT) P2C map, and Lmse

measures the mean squared error between each element in the
estimated and GT P2C maps. It is important to note that there are
points in the projection image that did not illuminate the projection
object or were not captured by the camera due to self-occlusion. In
the calculation of the loss, these coordinates are excluded.

4.3 Radiometric degradation estimation
After geometric warping, the subsequent task involves estimating
pixel-wise radiometric distortion in the projection image. As
discussed in Sect. 3.1, in addition to geometric distortion, the
primary factors influencing changes in the appearance of the
projected result’s captured image include the projector’s gamma
characteristics, the form factor, and defocus blur. To estimate these
three factors, we propose a three-headed PSFNet, denoted as NPSF .
The detailed structure of PSFNet is illustrated in the upper row of
Fig. 5.

The projection image and the warped captured image are
concatenated into the channel dimension and then input into the
convolution block. The input undergoes multiple convolutions and
downsampling operations within the network, followed by splitting
into three heads. The first head performs two convolutions and
downsampling of the branched features, finally estimating the
gamma value γ of the projector through an affine layer. The second
head estimates a form factor map M f orm ∈ RHp×Wp , representing
how much the luminance of the captured image has changed
relative to the projection image. The last head estimates the
PSF map Mps f ∈ RHp×Wp , representing pixel-wise PSFs. Here, as
indicated in Equation 6, we approximate the PSF using an isotropic
Gaussian distribution. Thus, each pixel in the estimated PSF map
contains the standard deviation of the Gaussian distribution.

To reduce the number of trainable parameters in the network
compared to OnlineProDeb [23], we implemented two design
improvements to streamline the network. Firstly, we structured the
network into a three-head architecture, enabling common weights
for feature extraction up to branching. Secondly, we reduced
the resolution of the map output from the convolution block to
1/16 of the projection image by employing bicubic interpolation
at the end of the head. Given that the majority of projection
surfaces in a typical PM exhibit smoothness, up-sampling the
maps through bicubic interpolation is a reasonable approach. These
simplifications significantly decrease the parameters of our network
to 1% of those in OnlineProDeb, as illustrated in Table 4.

In summary, PSFNet is represented by the following equation:

γ,M f orm,Mps f = NPSF(Ip,W (P(Ip))). (13)

We define the loss function for PSFNet using the following
equation:

Lmse(γ,γ
gt)+L (M f orm,Mgt

f orm)+L (Mps f ,Mgt
ps f ), (14)

L = Lmse +Ltv, (15)

where, γgt and Mgt
ps f are the GT values of the gamma and the PSF

map obtained from Equation 3 and Equation 6, respectively. Mgt
f orm

is the GT value of the form factor map and is obtained by the
product of the attenuation term described in Equation 4 and the
camera gain G. Ltv is the total variation [50] loss used to regularize
the estimated form factor map and PSF map.

4.4 Image sharpening
Our final task is to sharpen the geometrically compensated target
image W (Igt) according to three parameters estimated by PSFNet.
To achieve this, we introduce SharpenNet, denoted as NSharp. We
utilize the PSF map and the form factor map as attention maps
in the feature space to enhance image sharpness. Thus, we model
SharpenNet with the following equation:

I′p = NSharp(W (Igt), [Mps f ], [1−M f orm]), (16)

I∗p = (I′p)
1/γ , (17)

where, Equation 17 corresponds to gamma correction applied to
linearize the luminance of the projector. I∗p ∈RHp×Wp is a projection
image designed to compensate for geometric distortion and defocus
blur simultaneously, and the brackets indicate the injection of
the estimated maps into the middle layers. It is worth noting
that the form factor map is input into the network after being
subtracted from the matrix 1 ∈ RHp×Wp where all elements are 1.
This subtraction is performed because the form factor map reflects
the magnitude of luminance change due to image projection and
capturing. The further the value is from 1, the more compensation
is needed in that region.

The detailed flow of SharpenNet is depicted in the lower part
of Fig. 5. Initially, convolutional blocks extract features from the
geometrically compensated target image W (Igt). Subsequently,
we compute the Hadamard product of the extracted features with
the form factor map and the PSF map, respectively. After passing
through the convolution block, the features are added to the original
features. Finally, these features are concatenated in the channel
direction and subjected to several convolution operations to output
a single image. The resulting image is then gamma-corrected to
obtain the final compensation image I∗p.

The loss function for training SharpenNet is as follows:

Ll pips(P(I∗p),Igt)+Lmse(P(I∗p),Igt), (18)

where, Ll pips measures LPIPS [51], a DNN-based image quality
metric, between the two given images. Consequently, the training
of SharpenNet advances such that the projected result of the
compensation image approaches the target image. It is worth noting
that the loss function is differentiable since the projection function
P is implemented in our virtual PM setups.

5 EXPERIMENT

We evaluated the proposed network in physical setups. This section
begins with a detailed description of the experimental setup. In the
following sections, we discuss the efficacy of the proposed method
in both static and dynamic scenes, comparing it with state-of-the-art
methods.
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Free-formed screenCurved screenFlat screen

Fig. 6. Three types of screens used in the experiment: flat, curved, and
free-formed.

5.1 Experimental setup

5.1.1 Training details
To train our network, we utilized 201,000 images from Ima-
geNet [52] for the projection images, reserving 1,000 for validation.
Concurrently, we acquired 51,000 depth samples of the projection
target from the OmniObject3D dataset [53]. Among these, 50,000
were allocated for training and 1,000 for validation. Notably, we
excluded objects unsuitable for PM, such as toothbrushes and
asparagus, from the OmniObject3D dataset.

All trainable parameters in the proposed network were deter-
mined using the method by He et al. [54]. Optimization was
performed using the Adam optimizer [55] with a learning rate
of 1e-3, and momentum parameters were set to β1 = 0.9 and
β2 = 0.999. The training procedure involved initially training
only GMA. Once GMA was trained, its weights were frozen,
and PSFNet and SharpenNet were trained simultaneously. The
batch size and the number of epochs are 8 and 5, respectively. The
training times were approximately 19 hours for GMA and about 31
hours for the combined training of PSFNet and SharpenNet. The
source code is implemented using PyTorch, and the network was
trained on a shared workstation equipped with a GPU (NVIDIA
RTX A6000, GPU memory: 48 GB) and CPU (Intel Xeon Platinum
8260, CPU memory: 768 GB).

5.1.2 Testing details
Since our network does not require fine-tuning in any experimental
setting, we utilized frozen weights trained under the previously
described conditions in all experiments. We consistently employed
the same DLP projector (Optoma ML1050ST+) and industrial
CMOS camera (FLIR FL3-U3-13S2C-CS) across all subsequent
experiments. The number of pixels in the projection image is
256× 256, and the number of pixels in the captured image is
600× 600. The conditions for source code implementation are
consistent with those used for training.

5.2 Comparison with state-of-the-art methods

In comparison to the proposed method, we considered two state-
of-the-art methods with publicly available source codes. The
first method is OnlineProDeb, a state-of-the-art defocus blur
compensation method [23]. OnlineProDeb eliminates the need
for training the network for each projection environment and can
be applied immediately after downloading publicly available weight
parameters. However, it requires a separate geometric registration,
involving the projection of 42 gray-code SL patterns to establish
pixel correspondence between the projector and the camera. The
second method is CompenNeSt++, which concurrently performs
geometric and radiometric compensation [33]. Unfortunately,
CompenNeSt++ necessitates the projection of images to train
the network for each projection environment. Consequently, we

TABLE 3
Quantitative comparison between the proposed method and

state-of-the-art methods. It is important to note that the metrics for
uncompensated results are as follows: PSNR = 10.44, SSIM = 0.186,

LPIPS = 0.721, and DISTS = 0.344.

Metrics SL OnlineProDeb w/ SL CompenNeSt++ Ours w/o deblur Ours

PSNR (↑) 16.48 13.52 19.71 15.52 17.55
SSIM (↑) 0.500 0.462 0.599 0.398 0.511
LPIPS (↓) 0.561 0.562 0.466 0.558 0.477
DISTS (↓) 0.289 0.299 0.244 0.284 0.251

conducted this comparison experiment using a fixed setup of the
screen and the ProCam system. For training CompenNeSt++, we
projected and captured 125 sampling images, with a training time
of five minutes. Additionally, we compared our method’s results
with those achieved by solely performing geometric compensation
(denoted as “Ours w/o deblur”) and those obtained by combining
both geometric and defocus blur compensation (denoted as “Ours”).
To assess these techniques in various setups, we utilized three types
of screens: flat, curved, and free-formed, as illustrated in Fig. 6.

Figure 7 presents results from the comparison experiment.
The uncompensated results exhibit severe geometric distortion,
attributed to the complex geometry of the projection surface.
This distortion is effectively mitigated by projecting SL patterns.
Notably, in column six, “Ours w/o deblur” demonstrates compa-
rable geometric compensation to SL, despite not being explicitly
trained on these setups. However, the image quality is inferior
to the target image due to defocus blur. OnlineProDeb addresses
defocus blur, albeit with a slight reduction in brightness. This
reduction is attributed to the training approach of OnlineProDeb,
which considers the projector’s dynamic range, leading to lower
luminance in the output image [23]. CompenNeSt++ outperforms
OnlineProDeb as it exhibits a more profound understanding of light
transport in the experimental setups, facilitated by utilizing a large
number of sampling images during training. Results from “Ours” in
the rightmost column demonstrate effective geometric and defocus
blur compensation, similar to CompenNeSt++, despite our network
not being trained with sampling images in these specific setups.

We also conducted a quantitative evaluation of the results
obtained in this experiment. For each of the three setups depicted
in Fig. 7, we projected 100 evaluation images as presented in [33].
Subsequently, we assessed the similarity between these projected
results and target images using four metrics: PSNR (Peak Signal-
to-Noise Ratio), SSIM (Structural Similarity) [56], LPIPS [51], and
DISTS [57]. LPIPS and DISTS are DNN-based metrics, offering a
more human-sensitive evaluation than PSNR and SSIM.

Table 3 presents the evaluation values. Similar to the qualitative
evaluation results, we verified that “Ours” outperforms all other
methods, except CompenNeSt++, across all evaluation measures.
When comparing “Ours” with CompenNeSt++, a noticeable
distinction arises in the context of PSNR and SSIM. This disparity
stems from our compensation being solely applied to the value
component in the HSV space of the image, whereas CompenNeSt++
compensates for the entire image in the RGB space. Consequently,
disparate values were obtained for PSNR and SSIM, metrics
designed to gauge image differences in RGB space. In contrast,
LPIPS and DISTS, metrics more rooted in human perception, did
not exhibit significant differences. This underscores that our method
is comparable to CompenNeSt++ in terms of human perception,
despite our networks not being fine-tuned specifically for these
scenes.
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Target image Uncompensated SL OnlineProDeb w/ SL CompenNeSt++ Ours w/o deblur Ours

Fig. 7. Comparison of compensation results between the proposed method and state-of-the-art methods on three surfaces: (upper) a flat surface,
(middle) a curved surface, and (lower) a free-formed surface. The first and second columns represent the target and uncompensated captured
images, respectively. The subsequent columns illustrate the projected results compensated by various methods.

TABLE 4
Comparison of the number of parameters and computation time between

OnlineProDeb and our network. The generated image is of size
256×256 pixels.

Parameters Computation time (ms)
Methods OnlineProDeb Ours OnlineProDeb Ours
Warping N/A 5,867,329 N/A 49.70

Deblurring 12,307,211 130,264 111.1 5.941
Total 12,307,211 5,997,593 111.1 55.64

5.3 Dynamic PM
We proceeded to validate the effectiveness of the proposed method
in the context of DPM. The designed setup is illustrated in
Fig. 8(a), where a curved white screen is affixed to the robot
arm (UFACTORY xArm 7). In this experiment, we compared the
projected results under three conditions: “Uncompensated,” “Ours
w/o deblur,” and “Ours.” The projection target underwent the same
pre-determined movement controlled by the robot arm in each
condition. Notably, the images projected at each position of the
projection target were not identical due to the projector displaying
a movie in this experiment.

Figure 8(c) illustrates the uncompensated results, which exhibit
degradation from geometric distortion and defocus blur, causing
their appearance to deviate significantly from the target images of
each frame. Moreover, the position and orientation of the screen
vary in each frame, resulting in distinct degradation patterns. We
verified that the severe geometric distortion was notably alleviated
by “Ours w/o deblur.” This indicates that the geometric compensa-
tion introduced by the proposed method performs effectively in the

context of DPM. Although the image quality suffered from defocus
blur, the projection with “Ours” demonstrated an improvement in
image quality. This implies that our method successfully achieved
geometric compensation and projector deblurring in DPM.

5.4 Validation of geometric data augmentation

This section demonstrates the impact of the proposed geometric
data augmentation, as explained in Sect. 3.3. We trained the network
under the exact conditions as the proposed method, but without the
geometric data augmentation, referring to this network as “Ours
w/o aug.” To assess the compensation accuracy of this network
compared to the proposed network, we conducted video projection
in a static setup.

Figure 9 illustrates the outcomes of the first three frames of the
projected video. In both conditions, the projection of the first frame
is distorted because an uncompensated image is projected. The
result for the second frame is the projection of the compensated
image generated by each network from the projected image of
the first frame and its captured image. Similarly, the result for
the third frame is the outcome of projecting the compensated
image generated by each network from the projected image and
its captured image to which the compensation of the second frame
has been applied. We observed that while the results for the second
frame are similar for both conditions, the results for the third
frame exhibit distortion in “Ours w/o Aug.” (indicated by red
arrows). This distortion arises because the second frame projection
image used to generate the third frame projection image was a
geometrically compensated image, and there was no such input
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Fig. 8. Our compensation result for defocus blur in DPM, even in the presence of geometric distortion. (a) Our experimental setup, where a robotic
arm moves the curved white screen, and (b) target images. (c) Without compensation, when the projector displays the images on the moving screen,
the uncompensated results suffer from severe geometric distortion and defocus blur. (d) GMA, trained on our novel dataset, effectively eliminates
geometric distortion. (e) Our lightweight deblurring network, comprising PSFNet and SharpenNet, also real-time compensates for defocus blur.
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Fig. 9. Validation of geometric data augmentation in the static ProCam
setup. The projection results for the second frame exhibit approximately
the same compensation accuracy under the conditions of “Ours w/o aug.”
and “Ours.” However, for the third frame, differences in compensation
accuracy emerge between the two conditions, contingent on whether the
proposed data augmentation is utilized or not.

during the training of “Ours w/o aug.” On the other hand, during
the training of “Ours,” the input was a deformed projection image
due to the proposed data augmentation. This enables the results of
the third frame to maintain the same quality as the results of the
second frame.

We present these results quantitatively as well. The right
graph in Fig. 9 plots the PSNR between the target image and
the projection result in each frame. The results for the second
frame are similar for each condition, reflecting the removal of
distortion. However, in the third frame, the differences between
conditions become more pronounced, underscoring the efficacy of
the proposed data augmentation.

(a) (b)

(c) (d)

(e) (f) (g)

Fig. 10. Comparison of GMA pre-trained on the Sintel dataset and GMA
trained on our proposed dataset. (a) The projection image and (b) the
distorted projected result. The warped images of (b) by GMA pre-trained
on the Sintel dataset and our proposed dataset are represented in (c)
and (d), respectively. Additionally, (e), (f), and (g) present enlarged views
of a portion of (a), (b), and (c), respectively. Upon comparing (f) and (g),
it becomes evident that GMA trained on the proposed dataset performs
more accurate warping.

5.5 Comparison with pre-trained GMA

GMA [29], employed in the geometric compensation component,
is an exceptional network for estimating optical flow. Consequently,
the publicly available pre-trained model may suffice for geometric
compensation in PM. A previous study successfully demonstrated
geometric compensation using a pre-trained model [47]. This
section compares the pre-trained model and the GMA trained
on the proposed dataset. It is important to note that the dataset used
to pre-train GMA is the Sintel dataset [58].

Figure 10 presents the comparison results. The projection
results exhibit severe geometric distortion due to the image being
projected onto a free-formed screen. Figures 10(c) and (d) showcase
the outcomes of warping the captured images from these projections
using the pre-trained GMA and our GMA, respectively. While the
pre-trained GMA produces near-precise warping, we observed
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Fig. 11. Compensation results of the proposed method and Com-
penNeSt++ in the setup with occlusion. (a) Our projection setup. (b) The
projection image and (c) the uncompensated projected result. Notably,
the compensated result with CompenNeSt++ exhibits artifacts influenced
by the bunny, whereas our compensated result is free from such artifacts.

significant errors (see Fig. 10(f), a close-up of (c)). In contrast,
the GMA trained on our dataset does not exhibit such errors. This
outcome suggests that our dataset realistically reproduces the image
quality degradation in PM, thereby enhancing the robustness of
GMA.

5.6 Robustness to occlusion

When conducting PM on a screen with hard edges and/or in a setup
featuring obstructions in front of the projection target, the projected
results may encounter issues related to occlusion. To assess the
robustness of the proposed network under such circumstances,
we designed experiments using the setup depicted in Fig. 11(a),
incorporating the bunny positioned in front of a flat screen. The
image projected onto this scene includes a non-negligible occlusion
area, as illustrated in Fig. 11(c). For comparison, we also included
CompenNeSt++ [33] as a technique. Similar to Sect. 5.2, we
generated the training dataset by projecting 125 images onto this
screen and trained CompenNeSt++ over five minutes.

In the results presented in Fig. 11, it is evident that the
projection image generated by CompenNeSt++ exhibits artifacts,
likely stemming from the bunny’s presence. This occurs because the
warping process of CompenNeSt++ relies mainly on affine and TPS
transformations, making it challenging to handle non-contiguous
regions like occlusion. Consequently, the warped imaging results
contain numerous shadow areas. On the contrary, our method
warps the image by computing pixel-wise optical flow, which
proves robust in occluded scenes. We verified that our warped

images exhibit minimal shadows, resulting in artifact-free generated
projection images.

6 LIMITATION

6.1 Computational cost for image generation
The computation time for generating the projection image is crucial
to achieving delay-free DPM. Ng et al. [59] conducted a case
study on delay in video interaction, indicating that people cannot
perceive the projected image and touch interaction if the image
delay is less than 6.04 ms, which is an important benchmark in
DPM [60]. However, the generation speed of OnlineProdeb [23] is
significantly slower than this threshold, as demonstrated in Table 4.
This is attributed to the large number of parameters in the network.
In contrast, our lightweight deblurring network has only 1% of the
parameters of OnlineProDeb, enabling it to generate each image
in a swift 5.941 ms. This suggests that our deblurring network
can be seamlessly integrated with a coaxial ProCam system [36]–
[38], which obviates the need for online geometric registration, to
achieve complete real-time DPM. On the other hand, accomplishing
projection, imaging, and data processing within approximately 0.1
ms is not realistic. Therefore, there is a need to further decrease
the computational complexity of the deblurring network. One
potential approach to reduce computational time is to restrict the
processing area to the high-frequency components in the image.
This is because, even if defocus blur is present in regions of the
projected image with high low-frequency components, the degree
of degradation is minimal and not easily perceptible to humans.

Our method also has a limitation in terms of the time required
for both warping and deblurring, which amounts to 55.64 ms.
Given that the refresh rate of a typical commercial projector is 60
Hz, our method operates at approximately 18 Hz, slightly below
real-time. However, it is noteworthy that the target and our refresh
rate are within the same order of magnitude. We anticipate that this
slight difference can be addressed by replacing GMA with a more
efficient optical flow estimation network [61].

6.2 Complex PSF modeling
This study approximates the PSF with a simple isotropic 2D
Gaussian model, as in many previous methods [16], [18], [19],
[23]. This simplification allows the PSFNet to estimate only one
standard deviation of the Gaussian model, facilitating efficient
learning convergence. On the other hand, if the PSF can be
approximated by a more complex model, such as an anisotropic
two-dimensional Gaussian model [44], this could potentially lead
to improved accuracy in compensating for defocus blur. Therefore,
our next direction is to design a framework that incorporates more
complex PSFs. Furthermore, we believe it would be valuable
to evaluate the extent to which the simulated PSFs approximate
the actual PSFs. Additionally, analyzing the improvement in the
accuracy of defocus blur compensation by the proposed network
as the simulated PSFs approach the real PSFs is also essential.

6.3 Other image quality degradation
While our method successfully compensated for geometric distor-
tion and defocus blur, it is important to note the presence of various
image quality degradations in the PM, such as specular reflection
and sub-surface scattering [7], [8]. Moreover, although this study
assumed no impact of image quality degradation during image
capture, real-world scenarios necessitate consideration of factors
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like color conversion between the projector and the camera. The
proposed network is not equipped to handle these degradations.
Additionally, the warping performance by GMA may deteriorate
when these degradations are more pronounced.
On the other hand, we posit that incorporating these image quality
degradations into the dataset generation process or substituting
GMA with a more robust optical flow estimation network [62] can
mitigate the aforementioned issues. Consequently, developing a
network capable of compensating for a broader range of image
quality degradations, extending beyond geometric distortion and
defocus blur in DPM, remains an intriguing avenue for our future
research.

6.4 Shadowed regions

In Sect. 5.6, we confirmed that our network is robust against
shadowy scenes. However, as evident from the bunny shadows in
Fig. 11, our method has a limitation in that it cannot eliminate
shadowed regions, which is an inherent challenge when employing
a single projector. Generally, the mitigation of shadows is accom-
plished through the use of multiple projectors, but the geometric
and radiometric calibration of multiple projectors poses significant
complexity [1], [44], [63]. Our forthcoming research goal is to
streamline this intricate calibration process by extending our virtual
PM environment to accommodate multi-projection scenarios.

7 CONCLUSION

This paper addressed the challenging task of compensating for
defocus blur in DPM using only one projector and one camera.
The key to addressing this task lies in (1) geometric registration of
the ProCam coordinates based on the movement of the projection
target and (2) fast compensation. To fulfill these requirements, we
proposed a neural technique that combines two sub-parts for geo-
metric compensation and deblurring. Additionally, we introduced a
realistic data synthesis method with geometric data augmentation
in the virtual PM setup. We validated the proposed network through
extensive experiments and established three significant findings.
Firstly, our method provides compensation comparable to the
state-of-the-art method [33], achieving combined compensation,
even without fine-tuning in actual PM setups. Secondly, the
parameters of our deblurring network are approximately 1% of
those in the state-of-the-art technique [23], enabling practical
online deblurring. Thirdly, training the geometric compensation
network on the proposed dataset enhances its robustness in DPM
environments. In our future studies, we aim to enhance our
method and extend it to more real-time compensation systems,
going beyond geometric distortion and defocus blur. This involves
replacing GMA with other state-of-the-art networks [61], [62]
and incorporating more complex image quality degradation in the
dataset generation. Additionally, we plan to address the challenge
of simplifying complex calibration in multi-projection scenarios
using the proposed framework.
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