

Title	溶融鉄合金による固体酸化物の濡れ性と溶鋼の脱酸過 程の界面化学的研究
Author(s)	野城,清
Citation	大阪大学, 1983, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/946
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

溶融鉄合金による固体酸化物の濡れ性 と溶鋼の脱酸過程の界面化学的研究

昭和58年

野城 清

						目次	
第1	蕫		• }	7	Ŵ		1
1	-	1			緒言		1
. 1		2			" 清	れ"の一般的概念	1
1	<u> </u>	3			濡れ	の測定原理	4
1	-	4			従来	の研究の概要	6
					文献		10
第2	蘣		į	容	融純	金属による固体酸化物の濡れ性	12
2	-	1			緒言		12
2		2			実験	ŧ	12
	2		2	-	1	試料	12
	2	_	2		2	装置および方法	13
2		З			結果		14
	2		3	-	1	溶融純金属の密度	15
	2		3	-	2	溶融純金属の表面張力	17
	2	-	3		3	溶融純金属と固体酸化物との接触角	19
	2		3		4	溶融純金属と固体酸化物との付着の仕事	21
2	-	4			考察		23
	2	-	4		1	溶融純金属の密度	23
	2	-	4	-	2	溶融純金属の表面張力	24
	2	-	4	-	3	溶融純金属と固体酸化物との接触角	25
	2		4		4	溶融純金属と固体酸化物との付着の仕事	27
2	; -	5			結言	5	3.0
					文献		31

第3	章	溶融線	英鉄による固体酸化物	の濡れ性	33
З	8 - 1	緒書			3 3
3	8 - 2	実緊	険		34
	3 - 2	- 1	試料		34
	3 - 2	- 2	装置および方法		34
Э	3 – 3	結果	H.		3 5
	3 – 3	- 1	溶融純鉄による固体	酸化物の濡れ性におよ	ばす表面粗さの影響
					3 5
	3 – 3	- 2	溶融純鉄による固体	酸化物の濡れ性におよい	ます温度の影響
					3 6
	3 – 3	- 3	溶融純鉄と種々の固	体酸化物との接触角	3 8
	3 – 3	- 4	溶融純鉄と種々の固	体酸化物との付着の仕	\$ 38
3	3 - 4	考察			39
	3 - 4	- 1	溶融純鉄による固体	酸化物の濡れ性におよ	ぼす表面粗さの影響
					3 9
	3 - 4	- 2	溶融純鉄による固体	酸化物の濡れ性におよ	ぼす温度の影響
					4 2
	3 - 4	- 3	溶融純鉄と種々の固	体酸化物との接触角	44
	3 - 4	. – 4	溶融純鉄と種々の固	体酸化物との付着の仕	\$ 44
	3 - 5	結合			47
		文献	πţ		4 8
第4	章	溶融	法合金による固体酸化	物の濡れ性	5 0
4	1 - 1	精			5 0
4	1-2	実	辏		50

4-2-1 試料	50
4-2-2 装置および方法	5 1
4-3 結果	51
4-3-1 溶鉄の表面張力におよぼすマンガン、シリコンの影響	51
4-3-2 溶鉄と固体酸化物との接触角におよぼすマンガン、シリコ	コンの影響
	53
4-3-3 溶鉄と固体酸化物との界面自由エネルギー、付寄の仕事に	こおよぼす
マンガン、シリコンの影響	53
4-4 考察	57
4-4-1 溶鉄の表面張力におよぼすマンガン、シリコンの影響	57
4-4-2 溶鉄と固体酸化物との接触角におよぼすマンガン、シリコ	コンの影響
	60
4-4-3 溶鉄と固体酸化物との界面自由エネルギー、付着の仕事に	こおよぼす
マンガン、シリコンの影響	60
4-5 結書	66
文献	67
第5章 溶鉄による固体酸化物の濡れ性におよぼすVI-b族元素の影響。	68
5-1 緒言	68
5-2 実験	68
5-2-1 試料	68
5-2-2 装置および方法	6 9
5-3 結果	71
5-3-1 溶鉄の表面張力におよぼす酸素、硫黄、セレン、テルルの	の影響
	71

5-3-2 溶鉄の表面張力におよぼす酸	素、硫黄共存の影響 72
5-3-3 溶鉄と固体酸化物との接触角	におよぼす酸素、硫黄、セレン、テル
ルの影響	73
5-3-4 溶鉄と固体酸化物との付薯の	仕事、界面自由エネルギーにおよぼす
酸素、硫黄、セレン、テルル	の影響 75
5-4 考察	77
5-4-1 溶鉄の表面張力におよぼすの	影響 ??
5-4-2 溶鉄の表面張力におよぼす酸	素、硫黄共存の影響 80
5-4-3 溶鉄と固体酸化物との接触角	におよぼすの影響 87
5-4-4 溶鉄と固体酸化物との付着の	仕事、界面自由エネルギーにおよぼす
酸素、硫黄、セレン、テルル	の影響 88
5-5 結言	93
文献	94
第6章 減圧下における溶融鉄合金による固	体酸化物の濡れ性 96
6-1 諸言	96
6-2 実験	9 6
6-2-1 試料	96
6-2-2 装置および方法	97
6-3 結果	99
6-3-1 高周波炉による測定	9 9
6-3-2 タンマン炉による測定	101
6-4 考察	104
6-4-1 高周波炉による測定	104
6-4-2 タンマン炉による測定	105

6 - 5	結書	112
	文献	114
第7章 浇	腎鋼の脱酸過程における界面現象の役割	115
7 - 1	精音	115
7 - 2	実験	116
7-2-	- 1 試料	116
7 - 2 -	- 2 装置および方法	116
7 – 3	結果	118
7 - 4	考察	124
7-4-	-1 脱酸生成物の核生成	125
7-4-	- 2 核の成長と凝集	127
7 - 4 -	-3 脱酸生成物の浮上	1 3 0
7 - 4 -	- 4 脱酸生成物の溶鋼からの分離	133
7 - 5	結畫	134
	文献	135
第8章	総括	136

第1章 序論

1-1 緒言

冶金学の分野において溶融金属と固体酸化物との界面が関与する現象は数多く 存在する。 たとえば複合材料の開発、金属と固体酸化物との接合、製鋼時の脱 酸現象などはいずれも溶融金属と固体酸化物との界面が重要な役割を演じている。

また溶融金属と固体酸化物とはそれぞれの結合様式がまったく異なったもので あり、これら界面の性質を把握することは界面化学的にも非常に興味がありまた 重要であると考えられる。しかしこの分野における研究で系統的に行なわれたも のは著者の知る限りでは皆無である.これは1つには溶融金属と固体酸化物との 界面性質を表わす尺度として考えられる接触角、付着の仕事、界面エネルギー等 には固体酸化物の表面性質あるいは溶融金属や固体酸化物中の不純物が著しい影 響を与えることまた気相の酸素分圧によって接触角、付着の仕事、界面エネルギ ー等の濡れの諸量がおおきく変化することによる測定の困難さ、さらにはこのよ うな界面性質の測定の重要性の軽視などによるものと考えられる。

本研究においては溶鋼による固体酸化物の濡れ性におよぼす種々の因子たとえ ば、固体酸化物の表面粗さ、組成、合金元素等について測定・検討を行なうとと もに実際に溶鋼の脱酸を行ない脱酸過程における界面性質(濡れ性)の重要性に ついても検討を行なう。

1-2 "濡れ"の一般的概念

固体と液体とが接触すると濡れの現象が生ずる。我々は日常生活においてもこ の現象を身近に経験している。たとえば洗浄、染色、接着、印刷などの分野にお いてはその基礎的な現象として重要である。さらに冶金学、金属学の分野におい ても製鋼プロセスにおける脱酸現象、複合材料の開発、研究等にも濡れの現象は 密接な関係を持っている。

1

また固体と液体との相互作用の現象が濡れであり、このような分子間相互作用を考えることは界面化学的にも興味のある問題である。

一般に濡れはFig. 1・1に示すように3つの型に大別される〔1〕。

^{0&}lt;180° adhesional wetting

接着、印刷、水蒸気の結露などに関係する濡れが付着濡れである。 またろ紙 や繊維などを液体が浸透していく時あるいは粉末などを液体中に浸漬したりする 時の濡れは浸漬濡れであり、またハンダ付け、金属鍍金、塗装、コーティングな どの濡れは拡張濡れである。このような濡れの現象がみられる場合には系の自由 エネルギーの減少が生ずる。いま濡れによる自由エネルギーの変化、W、を濡れ の型によって単位面積当たりの付着をWad , 拡張仕事をWsp , 浸漬仕事を Wim とすると

Wad		Y SV - Y SL + Y LV	$(1 \cdot 1)$
Wsp	=	Y SV - Y SL - Y LV	$(1 \cdot 2)$
Wim	=	Y SV T Y SL	(1 • 3)

Fig. 1 • 1 3 Types of Wetting

と書くことができる。ただし r_{sv} , r_{Lv} はそれぞれ固体および液体の表面自由 エネルギー、 r_{sL} は固体と液体との間の界面自由エネルギーである。 一方、濡れの現象に関連する重要な量に接触角、 θ 、がある。たとえば Fig. 1・2の θ がそれで r_{sv} , r_{Lv} , r_{sL} と θ との間にはYoung-Duprの式 (1・4)が成りたつ。

$$\gamma_{\rm SV} = \gamma_{\rm SL} + \gamma_{\rm LV} \cos \theta \qquad (1 \cdot 4)$$

Fig. 1 · 2 Sessile Drop on Solid Plane

一般に固体の表面自由エネルギー、ア_{5V}、の測定の精度は悪く信頼性も高くな い。従って式(1・4)を式(1・1)、(1・2)、(1・3)に代入し、そ れぞれの自由エネルギー変化を液体の表面張力と液体と固体との接触角で表わし ている。

Wad	=	$\gamma_{LV} (1 + \cos \theta)$	$(1 \cdot 5)$
Wsp	-	γ_{LV} (cos $\theta - 1$)	$(1 \cdot 6)$
Wim	=	γ _{LV} cos θ	$(1 \cdot 7)$

本論文の対象となる濡れは主として付蓄濡れであり、本論文における濡れの尺 度としては付着の仕事の値を用いる。 1-3 濡れの測定原理

1-2節でも述べたように、どのような型の濡れにおいても対象となる液体の 表面張力、液体と固体との接触角が得られてはじめて液体と固体面との親和力す なわち付着の仕事が求められる。

表面張力の測定法は古くから数多く知られており代表的なものとしては次のような方法があげられる。

- 1. 毛管法
- 2. 懸滴法
- 3. 静滴法
- 4. 最大泡圧法
- 5. 液滴法
- 6. 輪環法
- 一方、接触角の測定についても以下のものがあげられる。
- 1. 靜滴法
- 2. 傾板法
- 3. 回転円筒法
- 4. 毛管法
- 5. 圧力変位法
- 6. 浸透速度法

これらの測定法のうち高温の測定で表面張力、接触角を同時に精度よく求めら れる方法は靜滴法が唯一のものである。静滴法は水平な支持台上に静止している 液滴の形状から表面張力、接触角を求める方法でありその形状を連続的に測定す ることにより表面張力、接触角の時間変化の測定も可能である。

固体支持台上の液滴の形状は一般にFig.1・3に示すように乙軸に対して 回転対称形をなす。

Fig. 1 · 3 Sessile Drop on Solid Plane

Fig. 1・3において任意の点(x, z)における主曲率半径をR(径線方向)、および x / sin ϕ (Rに対して垂直な方向)とすると、Young-

Laplaceの式から式(1・8)が得られる。

 $\gamma (1/R_1 + 1/R_2) = \rho g z + C$ (1.8)

ここでρ:液体の密度(g/cm)、g:重力加速度(980cm/sec²)

 $R_1 = R, R_2 = x / sin \phi$ であるから式(1・8)は式(1・9)に書き換えることができる。

1/R + sin ϕ/x = ($\rho g z + C$)/ γ (1・9) 滴の頂点O, すなわち $\phi = 0$ (x = z = 0), においては式(1・9)は式 (1・10)で表わされる。

 $2/\gamma = 2/b$ (1 · 10)

ここで b: x = z = 0 における主曲率半径

式(1・10)を式(1・9)に代入すれば式(1・11)が得られる。

1/R + sin ϕ/x = 2/b + $\rho g z/r$ (1・11) BashforthとAdamsは1つの無次元量を導入することによって、 式(1・11)をさらに展開した、この無次元量は式(1・12)で表わされる。 $\beta = \rho g b^2 / \tau$ (1・12) 式 (1・11) と式 (1・12) から式 (1・13) が得られる。

1/(R/b) +sin φ/(x/b) = 2+β(z/b) (1・13)
 BashforthとAdams (2) は数値計算によって種々のβとφに対する (x/b), (z/b)の値を表にした。本論文では彼らの表を用いて液体の表面張力および接触角を算出した。また液体の密度についても彼らの表を用いることによって同時に求めた。

Photo.1・1に固体酸化物板(アルミナ)上の溶鉄滴の形状の一例を示す。

Photo 1 . 1 Shapes of Iron Drops on Solid Oxides

左の写真のような形状をとる場合には濡れない系、右の写真のような形状をと る場合には濡れる系と呼ばれている。

1-4 従来の研究の概要

現在までに溶鉄、溶鉄合金と固体酸化物との接触角、付着の仕事などについて 多くの研究者によって報告されてきた〔3~24〕。

Table 1・1に現在までに報告されている溶鉄と種々の固体酸化物との 付着の仕事を示す。

0xide	Wad (erg∕cni)	Atmosphere	Ref.
A1203	696	H ₂	-3
	540	H e	3
	1290	0.5atm. He	4
	225	Не	4
	485	Ar	4
	660	Не	5
	150	H ₂ , Ar	6
	380	Ar	7
	670	He	8
Mg0	460	He	3
	780	5 • 10 ⁻⁵ mmHg	9
Zr02	890	H 2	3
	1020	Нe	3
Th02	900	H ₂	3
	1080	Не	3
Be0	190	H ₂	3
	505	Нe	3
	805	H ₂	10
Ti02	900	H ₂	3
	700	Не	3
Si02	1480	Не	8

.

 Table
 1
 Values of Work of Adhesion between Molten Iron and Solid Oxide

Table 1・1からわかるように同一の系においても測定者が異なれば付 着の仕事の値にいちじるしい相違がみられる。この原因としては溶鉄中の表面活 性元素、特に酸素や硫黄、の影響、雰囲気中の酸素分圧の影響、固体酸化物の表 面の清浄あるいは純度の影響などが考えられる。このうちで溶鉄中の酸素が接触 角、付着の仕事におよぼす影響についてはPopelら(11)による溶鉄/ア ルミナ系の測定、およびMikiaschibiliら(12)による溶融純鉄 、溶鉄(0.023%O)/アルミナ、シリカ系の測定があるが、いずれの測定に おいても溶鉄中のOはその表面張力を減少させるのみではなく溶鉄/固体酸化物 間の接触角、界面張力をも減少させると報告されている。

またTable1・2に示すように溶鉄とアルミナとの接触角についても多くの研究者によって報告されているがその差異は大きい。

Temperature(°C)	Atm.	Contact	Ref.
		Angle(*)	
	Vac.	141	
1550	H 2	124.4	3
	He	128.7	
1550	He	128	15
1550	Ar	141	13
1600	He	130	14
1600	He	132	15
1550	Ar	118	16

Table 1.2 Contact Angle of Molten Iron on Alumina

容鉄/アルミナ系以外では溶鉄とベリリア、ライム、マグネシア、ジルコニア、 クロマイトとの接触角の報告がある〔17~19〕。

一方、溶融純鉄と2元系酸化物との接触角の測定は前述の測定の他に

Eremenkoら〔20〕、新谷ら〔21〕による溶鉄とアルミナークロマイ ト系との接触角の測定がある。

また溶融鉄合金による固体酸化物の濡れ性についてはKingery〔4〕に よる溶融Fe-Si合金とアルミナとの接触角の測定、Filippovら

[22] による溶融Fe-C合金とジルコニア、ベリリア、アルミナとの接触角の測定、Popelら [11] による溶融Fe-(C, Si, Mn, Ni)合金 とアルミナとの濡れ性の測定がある。

以上の測定以外にもEfimovら〔23〕による溶鉄とアルミナ、シリカと の濡れ性の測定などがあるが溶鉄あるいは溶鉄合金による固体酸化物の濡れ性の 研究のうちで濡れ性と凝固後の試料の界面状況の観察とを関連づけた報告はわず かにArmstrongら〔24〕による溶鉄とマグネシアとの測定以外には2 3の報告がみられるのみである。

第1章の文献

 たとえば佐々木 恒孝 他:"表面工学講座 3 界面現象の基礎"、(19 73)朝倉書店 p.204

2) F.Bashforth & J.C.Adams: "an Attempt to Test the Theories of Capillary Action", (1883) Cambridge Univ. Press

3) M.Humenik & W.D.Kingery : J.Amer.Ceram.Soc., 37 (1954) p.18

4) F.A.Halden & W.D.Kingery : J.Phys.Chem.,59 (1955) p.557

5) B.C.Allen & W.D.Kingery : Trans.Met.Soc.AIME 215 (1959) p.30

6) P.Kozakevitch & G.Urbain : Mem.Sci.Rev.Met.,58 (1961) p.401,517

7) B.V.Tsarevskii & S.I.Popel: Izv.VUZ.Cher.Met., (1960 No.8 p.15

8) A.M.Samarin et al : Izv.Akad.Nauk.SSSR, (1962) No.5 p.69

9) W.M.Armstrong & D.J.Rose : Trans.Met.Soc.AIME, 227 (1963) p.1109

10) V.N.Eremenko et al: Izv.Akad.Nauk.SSSR, (1958) No.7 p.1

- 11) S.I.Popel et al : "The Role of Surface Phenomena in Metallurgy",ed. by V.N.Eremenko Consulation Bureau, (1963) , New York p.96
- 12) Yu.M.Goliberidge et al: "Fiziko Khimicheskie Osnov Proizvodstva Stali", Nauk, (1968) ,Moskva p.26
- 13) B.V.Tsarevski & S.I.Popel: "The Role of Surface Phenomena in Metallurgy" ed. by V.N.Eremenko, Consulation Bureau, (1963) ,New York p.61
- 14) S.E.Volkov et al: Doklad.Akad.Nauk SSSR ,149 (1963) p.1131
- 15) V.F.Ukov et al : "Physical Chemistry of Interfacial Phenomena at High Temperature" Naukova Dumka,Kiev (1971) p.162

16) V.I.Nizhenko et al: Porosch.Met.,12 (1972) p.57

17) G.E.Economous & W.D.Kingery: J .Amer.Ceram.Soc., 36 (1953) p.403

- 18) A.M.Lead: in "Kontaktnie Iableniia v Metallicheskikh Rasplabakh" Akad.Nauk.Ukra.SSSR,Naukova Dumka, (1972), Kievp.66
- 19) P.V.Gelid : in "Kontaktnie Iableniia v Metallicheskikh Rasplavakh" Akad.Nauk.Ukra.SSSR,Naukova Dumka, (1972), Kievp.56
- 20) V.N.Eremenko et al : in "Kontaktnie Iableniia v Metallicheskikh Rasplavakh" Akad.Nauk.Ukra.SSSR,Naukova Dumka, (1972) Kiev p65
- 21) 新谷宏隆,玉井康勝 :"Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems "ed. by J.Pask & A.Evans, Materials

Science Research, Vol.14 p.433

- 22) Filippov A.A.Kuprianov & S.I.Popel: Izv.VUZ Cher.Met., (1969) No.9 p.14
- 23) Efimov et al: Izv.Akad.Nauk SSSR Metali, (1971) No.5 p.13
- 24) W.M.Armstrong & D.J.Rose : Trans.Met.Soc.AIME,227 (1963) p.1109

第2章 溶融純金属による固体酸化物 の濡れ性

2-1 結言

現在までに溶融金属による固体酸化物の濡れ性の研究は多くの研究者によって なされてきたが測定条件が異なるために単純にこれらの測定値を比較することは できず、また測定自体に問題を含んでいる報告もみられる。したがって溶融金属 による固体酸化物の濡れ性を界面化学的に検討するためには系統的な精度のよい 研究が必要である。

本章での研究においては溶融純金属として P b, S n, A g, A u, C u, 固 体酸化物としてアルミナ、マグネシア、ライム、シリカ、ジルコニアを用い、各 金属の融点近傍から固体酸化物との反応が生じないと思われる温度範囲で測定を 行なった。

得られた結果より濡れ性と固体酸化物の生成目由エネルギー変化との関係について考察を行なった。

2-2 実験

2-2-1 試料

本章における研究に用いた金属試料のうちAg, Auについては、99.99% のものを用い、Snについては試料中の不純物量がPb<0.01%,

Cu<0.005%, Fe<0.005%, Sb<0.01%, B<0.0003%,

As<0.001%のものを用いた。Cuについては電解鋼を里鉛ルツボ中で真空 解したものを用いた。一方、固体酸化物試料の不純物については

Table2・1にまとめて示す。各々の固体酸化物試料は表面を入念に研磨後 測定に供した。

Table 2-1 Composition of Solid Oxide

(W	t	%)
•				

MgO	S 1 O 2	ВеО
Mg0 98.93 Ca0 0.25 Fe ₂ 0 3 0.12 Al ₂ 0 3 0.21 Si0 2 0.18	Si0 2 99.98 Al 2 0 3 0.008 Fe 2 0 8 0.005 K 2 0 0.001	Be0 98.5 Si0 ₂ 0.5 Al ₂ 0 ₃ 0.5 Mg0 0.3
ZrO ₂	Al ₂ O ₃	
Zr0 z 94.0 Ca0 4.0 Si0 z 0.8	Al ₂ O ₃ 98.8 SiO ₂ O.3 Fe ₂ O ₃ O.8	

2-2-2 装置および方法

本章における測定に用いた炉はFig. 2・1に示すようなMo円筒(38¢, 120ℓ)を発熱体とし溶融金属滴の形状撮影のための観察窓を有している。炉 の熱効率向上のために発熱体の外部にはMoのシールドおよびアルミナ製の円筒 を置き、発熱体の上部にもMoの円板を設置した。固体酸化物板はアルミナ製の 支持台によって炉の均熱部に保持される。温度の測定は固体酸化物板直下のW・ 5 Re/W・26 Re熱電対によって行なう。一方、金属試料は測定温度に到達 前に固体酸化物板と接触し反応することを避けるために、Fig. 2・1に示す 滴下装置に装入し炉の低温部に保持する。

測定はまずあらかじめ表面を研磨した固体酸化物板をアルミナ支持台上にセットし水準器によって板の水平を調整する。金属試料は滴下装置に装入後炉の上部にセットする。ついで炉内を排気し10⁻³mmHg以下に到達したことを確認後浄化したH₂ ガスを導入する。H₂ ガス導入後約1時間経過してから昇温を開始する。所定温度に到達後滴下装置を固体酸化物板直上まで降ろし約5分間保持する。

金属滴を滴下後所定の時間間隔で滴の形状を撮影する。撮影後フィルム上の滴の 形状を万能投影機で1/1000mmの精度で読み取り、Bashforth と Adams [1]の表と式から表面張力、接触角の値を求める。なお表面張力の 算出の際に必要な試料の密度の値は測定終了後の試料の重量とフィルム上の滴の 体積とから求めた。

Fig. 2 • 1 Apparatus for Measurement
1) Metal Dropping Assembly 2) Alumina Radiation Shield
3) Window 4) Leveller 5) Electrode 6) Thermocouple
7) Oxide Plate 8) Mo Heater 9) Mo Radiation Shield

2-3 結果

2-3-1 溶融純金属の密度

Fig. 2・2~Fig. 2・6にそれぞれ溶融Pb, 溶融Sn, 溶融Ag. 溶融Au, 溶融Cuの密度の測定結果を従来の結果とともに示す。

1) Kirshenbaum etal (2) 2) Thresh et al (3) 3) Present Work

3) Serpan et al (6) 4) Present Work

1) Gebhardt et al (11) 2) Present Work

本章における実験で得られた密度の測定値には若干のばらつきがみられるが測 定誤差を考慮すればいずれの金属についても密度の値は温度の上昇とともに直 線 的に減少しているといえる。そこで最小二乗法によって測定結果を処理し、 以下に示すような密度と温度との関係が得られた。

 $P_{Pb} = 10.92 - 1.88 \times 10^{-3} (t (C) - 327) (g/cm^2)$ $(2 \cdot 1)$ $6.99 - 4.57 \times 10^{-4}$ (t (°c) - 232) PSn (g∕cm) $(2 \cdot 2)$ $9.31 - 7.80 \times 10^{-4}$ (t (°C) - 960) (g / cm) PAS $(2 \cdot 3)$ $17.52 - 2.49 \times 10^{-3}$ (t (°C) - 1063) (g/cm³) P AU $(2 \cdot 4)$ $8.05 - 1.14 \times 10^{-4}$ [t (°C) - 1083] (g/cm³) PCu $(2 \cdot 5)$

2-3-2 溶融純金属の表面張力

式(2・1)~式(2・5)の密度の値を用いて各金属の表面張力の値を求め た結果を従来の結果とともにFig. 2・7~Fig. 2・11に示す。

Fig. 2 • 7 Surface Tension of Molten Pure Lead

Mukai et al (14) 2) Kasama et al (14) 3) White (16)
 Hogness (17) 5) Bircumshaw (18) 6) Present Work

Fig. 2 • 11 Surface Tension of Molten Pure Copper
1) Naidich et al (23) 2) Kasama et al (15) 3) Gans (24)
4) Allen (25) 5) Borrel (26) 6) Rhee (27) 7) Present Work

溶融純金属の表面張力の値は若干のばらつきはみられるがそれぞれの図からあ きらかなように溶融純金属の表面張力は温度の上昇にともない直線的に減少して いる。そこで本章の研究で得られた測定値を最小二乗法により処理した結果、以 下に示す値が得られた。

 $\gamma_{Pb} = 441-0.10 \times [t(℃) - 327]$ (dyne/cm) (2・6) $\gamma_{Sn} = 551-0.09 \times [t(℃) - 232]$ (dyne/cm) (2・7) $\gamma_{A9} = 910-0.17 \times [t(℃) - 961]$ (dyne/cm) (2・8) $\gamma_{A0} = 1105-0.28 \times [t(℃) - 1063]$ (dyne/cm) (2・9) $\gamma_{C0} = 1320-0.28 \times [t(℃) - 1083]$ (dyne/cm) (2・10) 2-3-3 溶融純金属と固体酸化物との接触角

Fig. 2・12~Fig. 2・16に溶融純金属と種々の固体酸化物との接 離角と温度との関係を従来の結果とともに示す。

Fig. 2 · 12 Contact Angle of Molten Pure Lead on Solid Oxide

Fig. 2 • 15 Contact Angle of Molten Pure Gold on Solid Oxide

Fig. 2 • 16 Contact Angle of Molten Pure Copper on Solid Oxide

2-3-4 溶融純金属と固体酸化物との付着の仕事

溶融純金属の表面張力および固体酸化物との接触角が既知であれば付着の仕事 、Wad、は式(1・5)を用いることによって求めることができる。式(1・5))を用いて付着の仕事、Wad、を求めた結果をFig. 2・17 ~Fig. 2・21に示す。

Fig. 2 • 17 Work of Adhesion between Molten Pure Lead

and Solid Oxide

and Solid Oxide

Fig. 2 · 19 Work of Adhesion between Molten Pure Silver

and Solid Oxide

and Solid Oxide

溶融純金属と固体酸化物との付着の仕事は温度の上昇にともなって増大しいず れの金属に対しても固体酸化物板がシリカの場合が最も大きい付着の仕事を示し た。

- 2-4 <u>考察</u>
- 2・4・1 溶融純金属の密度

静滴法や最大泡圧法などによって表面張力を求める際に必要な密度の値を他の 測定者の値を用いている報告が多くみられるが、このような処理は非常に重大な 問題を含んでいる。本来静滴法や最大泡圧法は表面張力の測定法としてだけでは なく密度の測定法としても確立された方法でもある。もちろん表面張力、密度の 測定における最適条件(たとえば静滴法における滴の大きさ、最大泡圧法におけ る吹込管の径あるいは深さ)に相異はあるが、対象とする金属の特性(表面張力 、密度の値の大小、支持台、吹込管との濡れ性)を十分に考慮することによって 同一の測定で表面張力、密度を同時に求めることができる。またこのようにして 求められた密度の値を用いることによって静滴法によって生ずる誤差のうちで最 も表面張力に大きな影響をおよぼす滴の拡大率による誤差を少なくすることが可 能である。さらに得られた密度の値を他の文献値と比較することによって滴の回 転対称性をも考慮することも可能である。

このような理由から本章で対象とする溶融金属の表面張力の算出にあたっては 2・3・1項で得られた密度の値を用いた。

本 章 で 求められた 溶融 金属の 密度の 値は いずれの 金属についても 従来の 報告 と 良い 一致を示していることがわかる。

2・4・2 溶融純金属の表面張力

本章における研究の対象とした溶融純金属(Pb, Sn, Ag, Au, Cu) の表面張力は現在までに多くの研究者によって測定されており、本研究結果のう ちCu以外の金属の表面張力は従来の測定結果のいずれともかなり良い一致を示 している。

図中に示した各測定点はそれぞれ独立の実験から得られたものである。一般に 表面張力の温度係数を求めるにあたっては一回の測定で温度を適宜変えて求めて いるが、そのようにして表面張力の温度係数を求めようとすれば他の測定者の密 度の値を用いることは避けられずそれだけに誤差を多く含む可能性がある。例え

24

ば融点が低く, 蒸気圧も小さく比較的密度を精度よく求めることができると思わ れるSnの密度においてすら、800℃における測定値〔1~4〕は6.58~ 6.71の間にあり2%もの相異がある。このような密度の値の相異はそのまま表 面張力の値に反映し、Snの表面張力にも絶対値に対して2%の誤差を与えるこ とになる。ところが大部分の測定者は低融点金属の表面張力の測定における測定 誤差は±1~2%の範囲内にあるとしており、これに密度の値の相異を考慮する と報告されている表面張力の値の信頼性はさらに低くなる。このように表面張力 や粘性のように密度の値がそのままそれらの値の信頼性に反映される場合にはよ り以上の注意を払う必要があると考えられる。

本章における表面張力の温度係数の算出は測定回数が多くなり確かに面倒では あるが、少なくともそれぞれの温度における密度の値も同時に求めることができ るためその信頼性も高いといえよう。

2-4-3 溶融純金属と固体酸化物との接触角

Fig. 2・12~Fig. 2・16からあきらかなように溶融純金属と固体 酸化物との接触角の余弦(cos θ) はいずれの系についても温度の上昇にとも なって大きくなる(すなわち接触角は小さくなる)。また温度が一定の下では測 定したすべての金属についてシリカとの接触角が最も小さく、一般的な傾向とし ては低温域(1300℃以下)ではシリカ、アルミナ、(ジルコニア)、マグネ シアの順に大きくなる。高温域(1300℃以上)ではアルミナとの接触角の方 がマグネシアとのそれよりも大きくなる。また溶融純金属とマグネシア、ライム との接触角の余弦は温度に対して直線的に変化するのではなく、マグネシアにつ いては1130℃前後、ライムについては1430℃前後で屈曲点をもつ。

Fig. 2・22に酸化物の標準生成自由エネルギー変化と温度との関係を示 す。Fig. 2・12~Fig. 2・16の結果とFig. 2・22とを比較す ればあきらかなように酸化物が安定であるほど溶融純金属との接触角は大きくな

Fig. 2 · 22 Standard Free Energy of Formation of Various Oxides from Elements as a Function of Temperature (28)

Yu. V. Naidich (29) は溶融純金属と固体酸化物との接触角に関 する従来の報告を整理し、溶融純金属の酸化物の標準生成自由エネルギー、 ΔG' 、と固体酸化物の標準生成自由エネルギー、 ΔG'、の差、 ΔG、と接触角との 関係を得た。その結果を本章で求めた結果とともにFig. 2・23に示す。

Fig. 2 · 23 Relation between Contact Angle and Surface Free Energy Change

る。

図中で○は他の研究者によって測定された値を示し、●は本章で求められた値 を示している。Fig. 2・23からあきらかなように大まかな傾向として△G が大きくなれば接触角も大きい値をとることがわかる。しかし本章で求められた 値はいずれも120°よりも大きく全般的な傾向について述べるためには接触角 が90°以下になるような系の測定も行なう必要があろう。またこのような整理 の仕方では固体酸化物の結晶構造の違いなどについての考慮がなされておらずこ の点についても問題を含んでいる。

これらの点を解決するには今後さらに多くの測定を行なってデータの蓄積を必要とするであろう。

2-4-4 溶融純金属と固体酸化物との付着の仕事

Fig. 2・17~Fig. 2・21からあきらかなようにいずれの系について も溶融純金属と固体酸化物との付着の仕事は温度の上昇にともない増加の傾向を 示す。

第4章、第5章でも述べているが一般には酸化物の表面はFig. 2・24に示すように酸素で覆われていると考えられている〔30〕。

Fig. 2 • 24 Illustration of Surface of Solid Oxide

このような表面と溶融金属とが接触した場合には溶融金属と表面の酸素との親 和力が濡れ性を左右すると考えられる。溶融金属と酸素との親和力は溶融金属と 固体酸化物との界面での結合の強さをあらわす尺度として評価され、これには物 理的な力と化学的な力が含まれていると考えられる。 今、1モルの物質が原子(分子)の厚さに拡がるときの表面自由エネルギー変 化をWamelとすると、付着の仕事との関係は式(2・11)で与えられる(29)。

Wa mol = $(M \neq \rho)^{29} \cdot N^{3} \cdot f \cdot W_{ad} \neq 4.19 \times 10^{10} (Kcal/mol)$ (2 · 11) ここでM : 分子量 (g / mol)、 ρ : 密度 (g / cm)、 N : アボガドロ数 (6 × 10²³/mol)、 f : 充塡係数

式(2・11)を本研究結果に適用する際にfの値をどのように評価するかが 問題となってくる。このfの値は当然結晶構造、結晶の方位によってことなるが 本研究で用いたいずれの固体酸化物も焼結体であるため表面における結晶の方位 の同定はできない。したがってここではfの値を1と仮定し式(2・11)から 表面目由エネルギー変化の値を求めた結果のうちSn、AgについてFig. 2 ・25に示す。他の金属についても同様の傾向を示したが測定の対象とした固体 酸化物の種類が少なくここでは省略する。

Fig. 2・25からあきらかなようにSn、Agとも同様の傾向を示してお り、ライムを除いては酸化物の標準生成自由エネルギーの負の値が大きいほど、 すなわち酸化物が安定であるほど表面自由エネルギー変化は小さく、溶融金属と 固体酸化物との間では弱い結合力を示すことがわかる。

ライムについては例外であり、これは次のように考えられる。

一般に、酸化物はFig. 2・24に示すように結晶表面には酸素イオン(ア ニオン)が露出し、金属イオン(カチオン)は酸素イオンより内部に存在してい る。一般的にアニオンはカチオンよりイオン半径は大きく、したがってアニオン はカチオンより分極されやすい。この分極作用のためアニオンの外側(酸化物の 表面)では電子が内部に移動して電場は弱まる。この分極の程度はカチオンのイ オン半径に依存し、カチオンのイオン半径が小さいほど分極の程度は大きくなる と考えられている。本章で用いた酸化物を構成する金属イオンのイオン半径は Table2-2に示すようにかなりの相異がある。

Ion	Radius (Å)	Ion	Radius (Å)
Si	0.41	Al	0.50
Mg	0.65	Zr	0.80
Ca	0.99	0	1.40

Table 2.2 Ionic Radius of Metallic Ion and Oxygen Ion

Table2・2からあきらかなようにCaのイオン半径が最も大きく、ライム表面の酸素イオンが最も分極作用が小さい。その結果ライムの表面のイオン性は最も大きいと考えられる。したがってそのような酸化物の表面に溶融金属が接触した場合には溶融金属と酸化物の界面では溶融金属原子の電子が酸化物表面の酸素イオンによって強くひきつけられる。その結果、結合力が大きくなり付着の
仕事(表面自由エネルギー変化)も大きくなると考えられる。

このように溶融金属と酸化物との付著の仕事は単に酸化物の標準生成自由エネ ルギー変化に依存するだけではなく、酸化物表面のイオン性(酸化物を構成する 金属のイオン半径)にも依存すると言える。

2-5 結言

溶融純金属の表面張力および固体酸化物との接触角をm. p. から広い温度範囲にわたって測定した。

1) 溶融純金属の表面張力は以下の式で表すことができる。

 $7 c_{L} = 1 \ 3 \ 2 \ 0 \ -0.2 \ 8 \ (T \ (C) \ -1 \ 0 \ 8 \ 3) \qquad (dyne/cm)$ $7 A_{g} = 9 \ 1 \ 0 \ -0.1 \ 7 \ (T \ (C) \ -9 \ 6 \ 1) \qquad (dyne/cm)$ $7 s_{m} = 5 \ 5 \ 1 \ -0.0 \ 9 \ (T \ (C) \ -2 \ 3 \ 2) \qquad (dyne/cm)$ $7 A_{U} = 1 \ 1 \ 0 \ 5 \ -0.2 \ 8 \ (T \ (C) \ -1 \ 0 \ 6 \ 3) \qquad (dyne/cm)$ $7 A_{U} = 4 \ 4 \ 1 \ -0.1 \ 0 \ (T \ (C) \ -3 \ 2 \ 7) \qquad (dyne/cm)$

2) 溶融純金属と固体酸化物との接触角、付着の仕事は酸化物の標準生成自由 エネルギーと密接な関係を持ち、一部の系で温度変化に対して屈曲点を持つが、 その温度は酸化物の標準生成自由エネルギーの屈曲点に対応する。

3)溶融純金属と固体酸化物との付着の仕事をより良く理解するためには酸化物の標準生成自由エネルギーのみではなく、酸化物を構成する金属元素のイオン 半径をも考慮する必要がある。

第2章の文献

- 1) F.Bashforth & S.C.Adams: "An Attempt to Test the Theories of Capillary Action", (1883) Cambridge Univ. Press 2) A.D.Kirshenbaum et al : J.Inorg.Nucl.Chem., 22 (1961) p.33 3) H.R.Thresh , A.S., Crawley & D.W.G.White : Trans. Met. Soc. AIME, 242 (1968) p.819 4) E.Gebhardt & S.Dorner : Z.Metallkde., 43 (1952) p.292 5) G.Frohberg et al: Arch.Eisenhuttenw..35 (1964) p.877 6) A.Serpan: Trans.Met.Soc.AIME,221 (1961) p. ?) 渡辺 俊六、斉藤 恒三 :日本金属学会誌 35(1971) p.554 8) L.D.Lucas : Mem.Sci.Rev.Met., 61 (1964) p.1 9) A.D.Kirshenbaum et al : J.Inorg.Nucl.Chem., 24 (1962) p.33 10) Y.Matsuyama : Sci.Rep.Tohoku Imp.Univ., 20 (1937) p.8 11) E.Gebhardt & S.Dorner : Z. Metallk., 42 (1951) , p.353 12) EL-Mehairy & R.G.Ward : Trans. Met. Soc. AIME 227 (1967) p.1226 13) 川合 保治ら:日本金属学会誌,40(1976), p.634 15) 笠間 昭男、飯田 孝道、森田 善一郎:日本金属学会誌,40 (1976) p.1030 16) D.W.G.White : Met.Trans.,2 (1971) p.367 17) T.R.Hogness : J.Amer.Chem.Soc., 43 (1921) p.1621
- 18) L.L.Bircumshaw: Phil.Mag., 17 (1934) p.181
- 19) S.M.Kaufmann & T.J.Whalen: Acta.Met.,13 (1965) p.797
- 20) I.Lauermann et al : Z.Phys.Chem., 216 (1961) p.43
- 21) G.Bernard & C.H.P.Lupis: Met.Trans.,2 (1971) p.555

- 22) W.Kraus , F.Sauerwald & M.Michalce : Z.Anorg.Chem., 18 (1929) p.353
- 23) Y.V.Naidich & V.E.Eremenko : Fiz. Met. Metallov., 11 (1961) , p.62
- 24) W.Gans, F.Pawlek & A.Ropenack : Z. Metallk., 54 (1963) , p.147
- 25) B.C.Allen & W.D.Kingery: Trans. AIME, 215 (1959), p.30
- 26) J.P.Borel : Compt. Rend., 275 (C) (1972) p.845
- 27) S.K.Rhee: J.Amer.Ceram.Soc., 53 (1970) , p.639
- 28) O.Kubaschewskii & G.B.Alcock : "Metallurgical Thermochemistry " 5th ed., Pergamon Press, (1979), Oxford
- 29) Y.V.Naidich: in "Kontaktnie Iablenia v Metallicheskikh Rasplavakh" Akad. Nauk. Ukra. SSSR, Naukova Dumka, (1972), Kiev
- 30) たとえば Y.V.Naidich: in "Kontaktnie Iablenia v Metallicheskikh Rasplavakh" Akad. Nauk. Ukra. SSSR, Naukova Dumka, (1972), Kiev

第3章 溶融純鉄による固体酸化物の 濡れ性

3・1 結言

低融点金属や酸素との親和力の小さい金属による固体酸化物の濡れは金属と固 体酸化物との間に働く力が分子間力のみであり化学的な相互作用を考慮する必要 はほとんどないといえる。

しかし鉄のように融点が高くしかも酸素との親和力の大きい金属による固体酸化物の濡れ性は分子間力のみではなく化学的な相互作用の程度によっても大きく 影響されるためその濡れ挙動を解明することは界面化学的にも興味がある。

さらに実操業においても溶鋼と脱酸生成物との相互作用に関する研究は脱酸生 成物の生成、浮上、分離の問題を解明するためにも重要である。

このような観点から溶鉄による固体酸化物の濡れ性は多くの研究者によって研 究されている〔1~12〕。しかし高温での測定の困難さにくわえて微量の不純 物あるいは固体酸化物の表面粗さなどが濡れ性に大きく影響するために、これら 測定値間には大きな相違がみられる。また同一の研究者による系統的な研究もほ とんど行なわれていない。

本章においては、溶鉄と固体酸化物との相互作用に関する情報を得るため、静 滴法を用いてまず種々の表面粗さをもったアルミナ板上の溶鉄の接触角を測定し

接触角におよぼす固体酸化物の表面粗さの影響をもとめた.さらに各種固体酸 化物板上の溶融純鉄の表面張力、接触角を測定し界面での付着の仕事を求め、溶 鉄と固体酸化物との界面状況を凝固試料界面の光学顕微鏡およびEPMAによる 観察より考察を行なった。

3-2 実験

3-2-1 試料

本章での実験に用いた純鉄試料は、鉄鋼基礎協同研究会溶鋼溶滓部会の共通試 料でその組成をTable 3・1に示す.

·C	Si	Mn	P	S	Cu	Ni
0.001%	0.003%	0.002%	0.001%	0.001%	0.006%	0.001%
Cr	Ti	v	Al	Co	N	· · · · · · · · · · · · · · · · · · ·
0.001%	<0.005%	<0.001%	0.002%	0.007%	0.002%	

Table 3-1 Impurities in Iron

また使用した固体酸化物はアルミナ、マグネシア、ジルコニア、シリカおよび ライムで、ライム以外は市販の成品で、これら酸化物の組成はTable 2・ 1に示している。

ライムについては次の手順により作成した。まず市販の特級炭酸石灰(

CaCО₃)を黒鉛ルツボ中で1000℃,1hrの仮焼を行なったのち粉砕し

、1600℃で仮焼結を行なった。これをメノウ乳鉢中で細かく砕き、

1000kg/cmで板状にプレス成形した後酸素-アセチレンガス炉中で1800 ~2000で、6hrの焼結を行ない、試料板とした。

3-2-2 装置および方法

測定はFig. 3・1に示すようなMo線(1.2mmφ)を発熱体とする縦型水 素炉を用いて行なった。この炉は満の対称性の確認が可能なように互いに直交し 同時に2方向からの滴の形状撮影が可能な2個の観察窓を有している。さらに溶 鉄滴と固体酸化物板とが測定開始前に反応するのを避けるため保護管の先端の小 孔(1.5mmφ)から溶鉄試料を押し出すことが可能な滴下装置を備えている。

測定操作としてはまず固体酸化物を炉の中央の支持台に置き水準器によって表 面が水平になるように調整する。炉内を水素ガスで置換後昇温し、測定温度に到 達してから純鉄試料(約3g)を試料滴下装置に装入し、溶解後数分間保持して から、試料の一部(約2.0g)を酸化物板上に静かに滴下する。滴下直後から数 分間隔でその形状を撮影する。

Fig. 3 • 1 Apparatus for Measurement 1) O-Ring 2) Al₂ O ₃ Pipe & SiO₂ Pipe 3) Water

> Jacket 4) Pt/Pt · Rh Thermocouple 5) Mo-Wire 6) Rubber Packing 7) Leveller 8) Metal Drop 9) Solid Oxide

3-3 結果

3-3-1 溶融純鉄による固体酸化物の濡れ性におよぼす表面粗さの影響

Fig. 3・2に1600℃、H₂雰囲気中の種々の表面粗さをもったアルミ ナ板上の溶鉄の接触角と表面粗さとの関係を示す。

Fig. 3 • 2 Relation between $\cos \theta$ and Surface Roughness Factor, R, of Alumina

Fig. 3・2からあきらかなように、溶鉄とアルミナとの接触角は表面の粗さ が大きくなるほど大きくなる。ここで用いた表面粗さ係数は立体的な幾何学的モ デルをもとにアルミナの表面の粗度を直接に触針法によって求めた結果から算出 した。この詳細については(3-4)節で検討を行なっている。

3-3-2 溶融純鉄による固体酸化物の濡れ性におよぼす温度の影響

Fig. 3・3, Fig. 3・4にそれぞれAr-H₂雰囲気中における溶鉄 の表面張力および単結晶アルミナとの接触角におよぼす温度の影響を示す。溶鉄 表面張力は温度の上昇にともない減少の傾向を示し、式(3・1)で表わすこと ができる。

r = 1718 - 0.29 (T (°) -1534) ± 30 (dyne/cm) (3 · 1)

Fig. 3 · 3 Temperature Dependence of Molten Pure Iron

一方 Fig. 3・4 からあきらかなように溶鉄と単結晶アルミナとの接触角は 温度の上昇にともないほぼ直線的に減少する。接触角と温度との関係は式(3・

2) で表わすことができる。

 $\theta = 121 - 0.023$ (T (°) -1534) ± 1.5 (degree) (3 $\cdot 2$)

3-3-3 溶融純鉄と種々の固体酸化物との接触角

F i g. 3・5に1600℃、H₂ 雰囲気中における溶鉄純鉄と種々の固体酸 化物との接触角の時間変化を示す。溶鉄純鉄と固体酸化物との接触角は用いた固 体酸化物の種類によってその変化の傾向は異なるが、いずれの場合においても溶 鉄海を固体酸化物板上に滴下後30分後にはほぼ一定の値となる。

Fig. 3 • 5 Change in Contact Angle of Molten Pure Iron on Solid Oxides with Time at 1600 ℃

3-3-4 溶融純鉄と固体酸化物との付着の仕事

Table 3・2に式(2・5)を用いて溶融純鉄と種々の固体酸化物との 付着の仕事を計算した結果を示す。付着の仕事の算出に必要な表面張力、接触角 の値は、溶鉄滴を滴下後30分経過したときの値を採用した。

Table 3・2からあきらかなように溶融純鉄と固体酸化物との付着の仕事

は固体酸化物の種類によって大きく異なっている。

Table 3.2 Values of Wad

Solid oxide	Metal	Wad (erg /cm²)
Al 203		840
CaO		1106
BeO	Dura incr	595
MgO	rure tron	1400
SiO ₂		860
Zr0 2		1 1 4 0

3-4 考察

3-4-1 溶融純鉄による固体酸化物の濡れ性におよぼす表面粗さの影響

接触角と固体の表面粗さとの関係についてはWenzelの式が成立するとされている。

 $\cos \theta' = R \cos \theta \qquad (3 \cdot 3)$

ここで R:表面粗さ係数(粗い表面をもった試料の表面積/平滑な表面をもった試料の表面積)、 θ :真の接触角、 θ :見掛けの接触角

固体表面の形状から表面粗さ係数を求める方法については以下のように行なった。

表面の形状がFig. 3・6に示すように水平面とαをなす角度であり、さら に等方的であるとすると

R = Sr / Ss = 1 / (cos A)

= ((AH)² + (BH)²)^½/(AH) (3・4) ここで Sr : 粗い表面をもった試料の表面積(cm³)、Ss : 平滑な表面をも った試料の表面積(cm³)

となりFig. 3・6の(b)と(c)の表面粗さ係数は等しい値となる。

Fig. 3 · 6 Relation between Roughness Factor and Angle of Slope

一般にはFig. 3・7, Fig. 3・8に示すように水平面となす角度が一定 ではなくAiとAjは同一面上にはない。Fig. 3・7に示すような形状につ いての表面粗さ係数は式(3・5)で表わすことができる。

 $R = A_1 H_1 / L \cdot [(A_1 B_1) / (A_1 H_1)] + H_1 A_2 / L \cdot [(B_1 A_2) / (H_1 A_2)] + \cdots + (3 \cdot 5)$

ここで L:測定した水平距離(cm)

F 1 g. 3・8の場合についても同様に式(3・6)で表わすことができる. R=L⁻¹ [(A₁B₁) + (B₁C₁) + (C₁B₂) +・・・・・

 $(3 \cdot 6)$

Fig. 3 • 7 Relation between Roughness Factor and Angle of Slope

Fig. 3 · 8 Relation between Roughness Factor and Angle of Slope

Fig. 3・9に1例として本章で用いた固体酸化物の表面粗さを触針法で測定した結果を示す。

Fig. 3 • 9 Shape of Alumina Surface

図中に示した・印は式(3・6)を適用する際のBi:Ciの各点を表わして

いる。 式(3・6)を用いてFig. 3・9から表面粗さ係数をもとめると R=1.28となる。

このようにして求めた表面粗さ係数、R、と接触角、 8、 との関係を求めたの がFig. 3・2である.Fig. 3・2の実線は測定点を最小自乗法で処理し て求めたものであり、点線は式(3・3)によって求めたものである。 Fig. 3・2からもあきらかなように本章で算出した表面粗さ係数の値は接触 角の測定値とかなり良い直線性を示し、定性的にはWenzelの考え方の妥当 性を支持できる。またWenzelの式から得られる接触角の値よりも測定によ って求めた接触角の方が大きい値を示している。これは本章でのように触針法で 表面の粗さを測定した場合、用いた針の径(3µ)よりも小さい凹部は測定でき ないため固体酸化物表面の粗さが実際よりも低く見積られたことによるものと思 われる。高温での接触角と表面粗さとの関係をあきらかにした報告は見当たらず 比較はできないが、今後表面粗さの測定の精度を向上させることによってさらに 適確な情報が得られるものと考えられる。

3・4・2 溶融純鉄の表面張力におよぼす温度の影響

Fig. 3・3からあきらかなように溶鉄の表面張力は温度の上昇とともに減 少の傾向を示す。溶鉄の表面張力の温度依存性については現在までに多くの研究 者によって報告されている〔10, 14~18〕。Fig. 3・10にこれら研 究者による値を本章で得られた結果とともに示す。

溶鉄の表面張力の温度係数については鉄の融点が高く広い温度範囲にわたる測 定が困難なこともありかなりの相異がみられる。Fig3・10の結果から表面 張力の値が低い測定ではその温度係数は小さく、表面張力の値が高い測定ではそ の温度係数は大きい傾向にあることがわかる。

● Other Investigators (10,14 ~18) ○ Present Work

溶融純金属に第2成分(不純物)が含まれる場合の表面張力の温度係数は式(3・7)で表すことができるとされている。

 $-d\gamma/dT = [(S^{s}/A) - \Gamma_{1}^{s}S_{1} - \Gamma_{2}^{s}S_{1}] +$

 $[\Gamma_2 \circ - (N_2 \Gamma_1 \circ / N_1)] \exists \mu_2 / \exists N_2 \cdot \exists N_2 / \exists T (3 \cdot 7)$ ここで γ :表面張力 (dyne/cm)、S:表面エントロピー (erg cm⁻²deg)、

A:表面積(cm)、『i : i 成分の吸着量(mol /cm)、Ni : i 成分のモル 分率、μi : i 成分の化学ポチンシャル、T:絶対温度(K)

通常の表面活性な物質については D. McLean [19] がエントロピー項 にくらべてµ項は無視できることを示した。しかし表面活性性の高い物質につい ては負のµ項が適用されるために式(3・7)によって表される表面張力の温度 係数、-d γ/dT、は小さくなり極端な場合には正の温度係数をもとりうる。

すなわちF18.3・10に示されている表面張力の低い測定では溶鉄中に酸素、硫黄などの表面活性元素が存在することが考えられ、その場合には当然その 温度係数は小さくなる。 本章で用いた鉄試料の測定後の酸素量は0.0035wt%, 硫黄量は0.001wt %であり、その表面張力の温度係数、-0.29dyne/cm℃、は他の測定者の値と 比較しても妥当な値であると考えられる。

Fig. 3・4からあきらかなように、溶鉄と固体酸化物との接触角は温度の 上昇にともなって減少する。

3-4-3 溶融純鉄と種々の固体酸化物との接触角

Fig. 3・5からあきらかなように溶融純鉄と固体酸化物板との接触角の時 間変化は支持台として用いた固体酸化物板の種類によってかなりの相異がみられ る。この原因としては、固体酸化物を構成する金属-酸素間の結合力の違いから 生ずる表面エネルギーの相違、結晶粒の大きさの相違、結晶構造の相違、焼結の 程度の相違、不純物の影響などが考えられる。

本章の研究においてはTable 2・1にも示したように酸化物板の純度も 94.0~99.98%の間にあり、また焼結度も同じであるとはいえないから固体 酸化物板の種類を変えた場合の接触角の値や時間経過による変化を単純に固体酸 化物の表面エネルギーや結晶構造と直接に結びつけて考えることはできないがい ずれの場合も時間の経過にともなって接触角の値は減少するが、すべての系につ いて接触角の値はつねに90°より大きいことから、これらの系の濡れは付著濡 れ以外は起こらないと考えられる.

3-4-4 溶融純鉄と固体酸化物との付着の仕事

今、1モルの物質が原子(分子)の厚さに拡がるときの表面自由エネルギーの 変化、Wa mol と付着の仕事、Wad, との関係は式(2・11)で与えられてい る(20、21)。

本章の研究においてはf = 1とし式 (2 · 1 1) にT a b l e 3 · 2 から表面 自由エネルギー変化の値、Wa mol 、を求めた結果をT a b l e 3 · 3 に示す。

Solid oxide	Metal	Warmol(Kcal/mol.)			
Al 20 3		. 1 5. 8			
CaO		1 4. 5			
BeO	Duran inch	4. 9			
MgO	rute tion	1 4.8			
SiO ₂		1 5.6			
Zr0 2		18.5			

Table 3.3 Values of Wa mol

分子間力による結合エネルギーが5~10Kcal/mol 〔22〕、化学的な結合 エネルギーが~100Kcal/mol 〔22〕であることを考えるとTable3・ 4の値からあきらかなように、本章の実験条件下では溶鉄/固体酸化物の界面に おいては分子間力による結合が支配的であり、一部が化学的相互作用によるもの と思われる。

以上の結果をより詳細に検討するため凝固後の試料について鉄/酸化物界面の 光学顕微鏡およびEPMAによる観察を行なった。

Fig. 3 · 11 X-ray Intensity Curves at Interface between Molten Pure Iron and Alumina (0:26ppm)

光学顕微鏡による観察からは界面での化学的相互作用についてははっきりとは 確認しえなかったがEPMAによる観察によって界面状況に関する若干の情報が 得られた。

Fig. 3・11に鉄/アルミナ界面に直角な方向に走査したX線強度曲線を しめす。

Fig. 3・11からあきらかなようにアルミナ中に鉄の若干の濃度勾配がみ られる。この鉄が金属鉄の状態で存在するのか酸化鉄として存在するのかについ ての情報は得られなかったが、この鉄のアルミナ中への拡散のためにWa mol の 値が分子間力のみの場合よりも大きくなっているものと思われる。比較のために Fig. 3・12にH₂/H₂ O雰囲気中で行なった試料の凝固後のEPMAに よる観察結果をしめす。

Fig. 3 · 12 X-ray Intensity Curves at Interface between Molten Pure Iron and Alumina (0:285 ppm)

溶鉄中の酸素量の増大にともない付着の仕事の値は大きくなり(この点に関して は第5章で述べている。)、Fig. 3・12の場合の溶鉄中の酸素量は285 ppm、付着の仕事は1250erg /cm、表面自由エネルギー変化の値は27.5 Kcal/ molであった。この値はH2 ガス雰囲気中で行なった測定結果のいずれよ りも大きい。

Fig. 3・12からあきらかなように鉄とアルミナとの界面はH₂中での結 果とはいちじるしい相異を示している。 Fig. 3・12ではアルミナ中へ鉄 が優入しているのがあきらかに確認でき、その優入層の厚さは190~200 μ である。さらに優入層においては鉄の濃度勾配が生じている。この層はX線回折 の結果、ハーシナイト(FeO・Al₂O₃)であることが確認された。これが 溶鉄とアルミナとの界面において表面自由エネルギー変化を大きくしているもの と思われる。

3-5 結言

溶融純鉄による固体酸化物の濡れ性におよばす表面粗さ、温度の影響について 検討を行なうとともに種々の固体酸化物の濡れ性を測定した。

1) 溶融純鉄と固体酸化物との接触角におよぼす表面粗さの影響は定性的には Wenzelの考え方の妥当性を支持した。

2) A r - H₂ 雰囲気中での溶融純鉄の表面張力および固体酸化物(単結晶ア ルミナ)との接触角はそれぞれ以下の式で表すことができる。

 $\gamma = 1718 - 0.29 (T (°C) - 1534) (dyne/cm)$

 $\theta = 121 - 0.023 (T (C) - 1534)$ (degree)

3) H₂ 雰囲気中での溶融純鉄による種々の固体酸化物の濡れは付着濡れであ り、溶鉄と固体酸化物との界面における結合は分子間力によるものが支配的であ り、一部が化学的相互作用によるものと思われる。

第3章の文献

1)	M.Humenik & W.D.Kingery : J.Amer.Ceram.Soc.,37 (1954) p.18
2)	F.A.Halden & W.D.Kingery : J.Phys.Chem.,59 (1955) p.557
3)	B.C.Allen & W.D.Kingery : Trans.Met.Soc.AIME 215 (1959) p.30
4)	P.Kozakevitch & G.Urbain : Mem.Sci.Rev.Met.,58 (1961) p.401,517
5)	B.V.Tsarevskii & S.I.Popel: Izv.VUZ.Cher.Met., (1960 No.8 p.15
6)	A.M.Samarin et al : Izv.Akad.Nauk.SSSR, (1952) No.5 p.69
7)	W.M.Armstrong & W.J.Rose : Trans.Met.Soc.AIME, 227 (1963) p.1109
8)	V.N.Eremenko et al : Izv.Akad.Nauk.SSSR, (1958) No.7 p.1
9)	B.V.Tsarevski & S.I.Popel : "The Role of Surface Phenomena in
	Metallurgy"ed. by V.N.Eremenko Consulation Bureau, (1963)
	New York p.61
10)	S.E.Volkov et al: Doklad.Akad.Nauk SSSR ,149 (1953) p.1131
11)	V.F.Ukov et al : " Physical Chemistry of Interfacial Phenomena at
	High Temperature"Naukova Dumka, (1971) , Kiev, p.162
12)	V.I.Nizhenko & L.J.Floka: Porosch.Met.,12 (1972) p.57
13)	R.N.Wenzel: Ind.Eng.Chem.,28 (1936) No.9 p.15
14)	G.Becker et al: Arch. Eisenhuttenw.,20 (1949) p.363
15)	Van Tszin-Tan ,F.Hardes & F.Kornfeld : Russ. Met. and Fuels
	(English Transl.) ,1 (1960) p.21, 2 (1960) p.49
16)	P.P.Pugachevitch & V.L.Yashikichev: "The Role of Surface
	Phenomena in Metallurgy"ed. by V.N.Eremenko Consulation
	Bureau, (1963), New York p.49
17)	V.N.Eremenko ,Y.V.Naidich : "The Role of Surface Phenomena in

Metallurgy"ed. by V.N.Eremenko Consulation Bureau, (1963) New York p37

- 18) A.A.Kupriyanov & S.I.Popel: Izv.VUZ Cher.Met., (1969) No.9 p.14
- 19) D.Mclean: "Grain Boundaries in Metals" Clarendon Press, Chaps3,3,5 (1957)
- 20) V.N.Eremenko: "The Role of Surface Phenomena in Metallurgy" ed. by V.N.Eremenko Consulation Bureau, (1963) ,New York p.1
- 21) A.I.Bachinskii: "Izv.Fizicheskogo Instituta pri Moskovskhom Nauchnom Institute", 11 (1922) p.60
- 22) たとえば 藤代亮 一訳: "ムーア新物理化学" (1965) 東京化学同人 p.753
- 23) V.Naidich : in "Kontaktnie Iableniia v Metallicheskikh Rasplavakh" Akad.Nauk.Ukra.SSSR,Naukova Dumka,Kiev (1972)

第4章 溶融鉄合金による固体酸化物

の濡れ性

4-1 緒言

鋼中のマンガン、シリコンは鋼の合金元素として重要であるだけでなく、溶鋼 の脱酸剤としても広く用いられているがいずれの元素も炉壁の耐火物を侵食する ことがよく知られている。

これらマンガン、シリコンを含む溶鉄による固体酸化物の濡れ性の研究は脱酸 機構の解明や溶鋼による耐火物の侵食機構の解明のための基礎的なデータを与え るにもかかわらずほとんど行なわれていないのが現状である。これは1つには高 温における物性測定の困難さにくわえて、マンガン、シリコンは酸素との親和力 が強く気相の酸素分圧の影響を受けやすく再現性の良い測定を行なうのが困難で あることによると考えられる。

本章においてはマンガン、シリコンを含む溶鉄による固体酸化物(アルミナ、 ムライト)の濡れ性を異なる酸素分圧のもとで測定し、さらに凝固後の試料界面 をEPMAによって観察するとともに試料の化学分析を行ない検討を加えた。

4-2 実験

4-2-1 試料

本章で用いた鉄合金試料は電解鉄、炭素飽和鉄、電解マンガン、シリコンを所 定量配合し真空溶解して作成した。各試料中の炭素量はFe-Mn合金について は0.1wt%前後、Fe-Si合金については0.005wt%前後であった。

また固体酸化物として用いたアルミナは第2章に示したものとおなじ組成のものであり、ムライトについてはTable4・1に示す組成の焼結体である。

A1203	Si02	Ti02	Fe2 0 3	Ca0	Na ₂ O	K ₂ 0
55.1	41.3	0.2	0.5	0.7	0.5	1.5

Table4 · 1 Comoposition of mullite (wt%)

4-2-2 装置および方法

溶融 F e - M n 合金 / 固体酸化物系の測定には第3章で用いた横型の水素炉を使用し、また溶融 <math>F e - S i 合金 / 固体酸化物系の測定には第2章で用いた縦型の水素炉を使用した。それぞれの炉の特性については第2章、第3章で述べている。 測定は A r あるいは H₂ ガス雰囲気中で、1600℃で行なった。

4-3 結果

4-3-1 溶鉄の表面張力におよぼすマンガン、シリコンの影響

静酒法による表面張力の測定では滴の形状と重量とから密度の値も精度よく求 めることができるが、溶融Fe-Mn系では凝固鉄合金試料が酸化物と反応付着 する場合が多く試料重量の正確な測定が困難であった。したがって溶融Fe-Mn合金の密度の値はDzhemilevの値(1)を採用して表面張力を算出 した。 溶融Fe-Si系については本章の測定で得られた密度の値を用いて表 面張力を算出した。本章で得られた溶融Fe-Si合金の密度の値を従来の報告 値(2、3)とともにFig.4・1に示す。

Fig. 4・2に1600℃における溶融Fe-Mn合金の表面張力の結果を 従来の報告値〔4、5〕とともに示す。溶融Fe-Mn合金の表面張力は溶鉄中 のMn含有量の増加にともない減少の傾向を示す。またH₂ ガス雰囲気中での値 の方がArガス雰囲気中での値よりも全体的に高い値を示している。

Fig. 4 • 2 Effect of Manganese on Surface Tension of Molten Iron 1) Tsarevskii (4) 2) Present Work (in H_2 atm)

4) Present Work (in Ar atm)

Fig. 4・3に1600℃における溶融Fe-Si合金の表面張力の結果を 従来の報告値(6、7)とともに示す。溶融Fe-Si合金の表面張力はいずれ の結果も溶鉄中のシリコン含有量の増加にともない減少の傾向を示す。

3) Rudenko (5)

Fig. 4 • 3 Effect of Silicon on Surface Tension of Molten Iron

○: Kawai et al (6) △: Dzhemilev et al (7)
●: Present Work

4-3-2 溶鉄と固体酸化物との接触角におよぼすマンガン、シリコンの影響
 Fig. 4・4、Fig. 4・5にそれぞれ溶鉄と固体酸化物との接触角におよぼすマンガン、シリコンの影響を従来の報告値ととともに示す。

Fig. 4・4からあきらかなように溶融Fe-Mn合金と固体酸化物との接 触角は固体酸化物としてアルミナを用いた場合の方がムライトを用いた場合より も大きい値を示す。この傾向はH₂ ガス雰囲気、Arガス雰囲気のいずれにおい てもおなじである。Fig. 4・5に示した溶融Fe-Si合金とアルミナとの 接触角は溶融Fe-Mn/固体酸化物系とは異なり、単調な減少を示さずシリコ ン含有量がD.6 wt %近傍で極小値を示した。

5.3

Fig. 4 • 4 Change in Contact Angle of Molten Iron on Solid Oxide with Manganese Content in Molten Iron

Fig. 4 • 5 Change in Contact Angle of Molten Iron on Alumina with Concentration of Silicon in Molten Iron

∆:Tsarevskii (8) ○:Kingery (9) ●:Present Work

4-3-3 溶鉄と固体酸化物との界面自由エネルギー、付着の仕事におよぼす

シリコン、マンガンの影響

Fig. 4 • 2 ~ Fig. 4 • 5 の結果をもとに式(2-4)を用いて界面自 由エネルギーの値を求めた結果をFig. 4 • 6、Fig. 4 • 7に示す。

また式(2・5)を用いて付着の仕事の値を求めた結果をFig. 4・8、 Fig. 4・9に示す。

Fig. 4 • 6 Change in Interfacial Energy between Molten Fe-Mn Alloy and Solid Oxide with Mn Content O: on Alumina, in H₂ atm • • : on Mullite, in H₂ atm

\sim	•	QU	miunii na,	111	112		•	Q11	nurrice,	1.11	112	acm
Δ	:	оп	Alumina,	in	Ar	atm	:	оп	Mullite,	in	Ar	atm

Fig. 4 • 7 Change in Interfacial Energy between Molten Iron and Alumina with Si Content O: Kingery (9) • : Present Work

4-4 考察

4-4-1 溶鉄の表面張力におよぼすマンガン、シリコンの影響

Fig. 4・2からあきらかなように溶鉄の表面張力はH₂ ガス雰囲気中、 Arガス雰囲気中のいずれにおいてもマンガン含有量の増加にともない減少する。 またH₂ ガス雰囲気中での値の方がArガス雰囲気中での値よりも全体に高い値 を示している。これはH₂ ガス雰囲気の酸素分圧が2.6×10⁻¹ atmであるの に対し、Arガス雰囲気の酸素分圧が1.7×10⁻¹² atmと高くこの影響がでた ものと考えられる。酸素の影響が少ないH₂ ガス雰囲気中での溶融Fe-Mn合 金の表面張力の値を従来の結果と比較すると、本章での結果は

B. V. Tsarevskiら〔4〕の1550℃での結果と類似の傾向を示した。

またFig.4・3からあきらかなようにシリコンも溶鉄の表面張力を減少させる。本章で得られた結果は従来の結果と比較するとややシリコンの影響が大き いようである。

このように溶鉄中のマンガン、シリコンは酸素や硫黄ほどいちじるしくはない が溶鉄の表面張力を減少させる。これは定性的には以下のように考えることがで きる。

純マンガン、シリコンの表面張力(Mn:1090 dyne /cm at m.p. [10]
 、Si:865dyne /cm at m.p. (11))が溶鉄の表面張力(1720 dyne /cm at 1600 ℃)よりも低く、溶鉄中のマンガン、シリコンはパルク中に存在するよりも表面に存在する方が系の全体のエネルギーを下げることになり系は安定になることによる。

さて融体の表面張力に関してはこれまでに熱力学的なあるいは統計熱力学的 な観点から種々の理論的検討がなされている。とくにG1bbs [12]、 Guggenheim [13]、Belton [14] らの研究がよく知られて

いる。ここでは2成分融体の表面張力を統計熱力学的な観点から考察した

Guggenheimの式をもとに溶融Fe-Mn、Fe-Si合金の表面張力 について検討を行なう。

Guggenheimは2元系理想融体の表面張力は式(4・1)、2元系正 則融体の表面張力は式(4・2)で表されることを示した。

 $e \times p (-\gamma A / RT) = X : e \times p (-\gamma : A / RT)$

+X; exp(-r; A/RT) (4 · 1)

ここで r: 2元融体の表面張力 (dyne / cm)、A: 融体 1 モルを同一平 面上に広げた時に占める面積 (cm)、X i、X j : 成分 i j のモル分率

 $\gamma = \gamma_{1} + RT / A + Ln X_{1}^{s} / X_{1} - m WX_{1}^{2} / A + IW (X_{1}^{s} - X_{1})^{2} / A$

 $= r_{j} + RT / A \cdot Ln X_{j}^{s} / X_{j} - m WX_{j}^{2} / A + lW (X_{j}^{s} - X_{j}^{2} / A - (4 \cdot 2))$

ここで l,m :配位数に関する定数、W :混合のエネルギー

式(4・2)における1,mおよびXi,X;についてはその評価が難しくこ れらの値の取り方次第で求められる表面張力の値は大きく異なる。本章で対象と している溶融Fe-Mn、Fe-Si系のいずれも(特にFe-Si系)が理想 融体としてみなすことはできないことは混合熱の測定からあきらかになっている が上述のように式(4・2)における1,m,Xi,X;の評価が困難であるた め式(4・1)を用いて測定値との比較を行なった。

F1g.4・10、Fig.4・11にその結果を示す。

計算に必要な溶融純マンガン、シリコンの1600℃における表面張力の値は文 献の値を用いた[10、12]。

Fig. 4・10からあきらかなように溶融Fe-Mn系の表面張力の測定値 はGuggenheimの理想融体に関する式(4・1)から求めた曲線とかな り良い一致を示していることがわかる。一方、Fig. 4・11からあきらかな ように溶融Fe-Si系の表面張力の測定値は式(4・1)から求めた曲線から はかなり隔たっている。

Fig. 4 • 10 Surface Tension of Molten Fe-Mn Alloy - : Calculated by eq. (4 • 1)

Fig. 4 • 11 Surface Tension of Molten Fe-Si Alloy — : Calculated by eq. (4 • 1)

混合熱の測定から溶融F e - M n 系はほぼ理想融体として挙動するが、溶融 F e - S i 系は理想融体のみか正則融体からもいちじるしくはずれていることが あきらかにされており、G u g g e n h e i mの理想融体の表面張力に対する式 (4 · 1)が正しいとすればこれら融体の性質は本測定結果からも裏付けること ができる。 4-4-2 溶鉄と固体酸化物との接触角におよぼすマンガン、シリコンの影響

Fig. 4・4からあきらかなように溶鉄と固体酸化物との接触角におよぼす マンガンの影響は雰囲気、固体酸化物の種類によって異なる。固体酸化物として ムライトを用いた場合にはマンガン濃度が10%より高いと溶鉄/ムライト間の 反応がいちじるしく表面張力、接触角の測定はできなかった。これはムライト中 のシリカと溶鉄中のマンガンとの間に式(4・3)の反応が生じたことによるも のと考えられる。

 $2\underline{Mn} + (SiO_2) = 2MnO + \underline{Si} \qquad (4 \cdot 3)$

Fig. 4・5からあきらかなように溶鉄と固体酸化物との接触角におよぼす Siの影響はMnの場合とはいちじるしく異なっている。溶融Fe-Mn合金と アルミナ、ムライトとの接触角はいずれの雰囲気中においても単調に減少するの に対し、溶融Fe-Si合金とアルミナとの接触角はシリコン濃度が0.6wt% 付近で極小値をとる。溶融Fe-Si合金とアルミナとの接触角は以前に Kingeryら [9]によって測定されているが、溶鉄とアルミナとの接触角 はシリコン濃度の増加にともない単調に減少するとしている。第1章でも述べた ように溶鉄と固体酸化物との接触角は測定者による相異が大きく、彼らの測定条 件が詳細にはわからないので本章で得られた結果と彼らの結果とを単純には比較 できないが、4-4-3項でも検討するが、本研究においては気相の酸素分圧が 低く支持台として用いたアルミナの解離の影響によることも考えられる。この点 に関しては以下の項でさらに検討する。

4-4-3 溶鉄と固体酸化物との界面自由エネルギー、付着の仕事におよ ば すマンガン、シリコンの影響

溶融Fe-Mn合金と固体酸化物との界面自由エネルギー、付着の仕事は測定 雰囲気、固体酸化物の種類によりかなりの相異がみられ、界面の状況も異なって

いるものと思われる。

Fig. 4 • 12、Fig. 4 • 13に凝固後の試料界面をEPMAによって観察した結果を示す。

Fig. 4 \cdot 12 X-ray Scanning Profile at Interface (in H₂)

Fig. 4・12はH₂ 雰囲気中で測定したFe-4.8wt%Mn合金とアル ミナとの界面におけるX線強度曲線である。酸化物がアルミナである場合には界 面は明瞭に区別できることはあきらかである。Fig. 4・13はH₂ 雰囲気中 で測定したFe-4.8wt%Mnとムライトとの界面におけるX線強度曲線であ る。Fig. 4・12のアルミナの場合とは異なり酸化物(ムライト)中にかな りのマンガンの存在が認められ、また鉄中にはシリコンの存在が認められる。 Fig. 4・13を詳細に検討すると酸化物中ではMnのK α 線とSiのK α 線 の極大値はAlのK α 線の極小値とほぼ対応し、MnのK α 線とSiのK α 線の 極小値はAlのK α 線の極大値とほぼ対応していることがわかる。

これは本章で用いたムライト試料がTable4・1に示したようにアルミナ とシリカがそれぞれ55wt%、41wt%である焼結体であるために酸化物中 においてアルミナ粒子とシリカ粒子が未反応のまま存在し、このシリカ粒子と溶 鉄中のマンガンとが反応したことを示していると考えられる。

Table4・2にH₂およびArガス雰囲気中でムライトを用いて行なった 測定の凝固後のFe-Mn合金中のシリコン含有量を分析した結果を示す。

	Silicon in Ar	(wt%) in H 2
Fe-4.8wt%Mn	0.03	0.21
Fe-6.2wt%Mn	0.03	0.36
Fe-13.6wt %Mn	0.09	0.55
Fe-27.Owt %Mn	1.10	3.80

Table 4.2 Silicon Content in Fe-Mn Alloy after Experiment

Table4・2からあきらかなようにFe-Mn合金中のシリコン量は、

 H_2 ガス雰囲気、Arガス雰囲気のいずれの場合にもマンガン含有量の増加につ れて増大している。また同一マンガン濃度の試料では H_2 ガス雰囲気で測定した 試料の方がArガス雰囲気の場合よりも多くのシリコンが含まれていることがわ かる。これは前にも述べたように H_2 ガス雰囲気の酸素分圧はArガス雰囲気の それよりもかなり低く、そのために溶融Fe-Mn合金中のマンガンは雰囲気に よってはほとんど酸化されず式(4・1)によるシリカとの置換反応によって酸 化され、その結果生じたシリコンが溶融Fe-Mn合金中へ溶解する。一方、 Arガス雰囲気中では式(4・1)の反応よりもむしろ雰囲気中の酸素によるマ ンガンの酸化が優先し、メタル中のシリコンの増加が少なかったものと思われる。

ところでFig. 4・7、Fig. 4・9からあきらかなように溶融Fe-Si合金とアルミナとの界面自由エネルギー、付着の仕事は溶融Fe-Mn合金 とアルミナ、ムライトの場合とは異なった挙動を示した。また本章で得られた界 面自由エネルギーの結果はKingeryらの結果 [9] ともかなり異なってい る。Kingeryらはこのような結果をもとにGibbsの式を適用して溶鉄 とアルミナとの界面におけるSiの界面過剰量をもとめている。しかし、 Gibbsの吸着式の適用に際しては以下の点に注意を払う必要がある。

1) 界面において平衡が成り立っていること

2) 吸着は単分子層であること

3) 界面において吸着している成分が確認できていること

本研究においては上記3)に関しての確認が現時点では不可能である。もちろん、通常の系においても固体/液体の界面に吸着している吸着種を直接に確認する方法はいまだないが界面張力の変化からそれを予想することはできる。しかし溶融Fe-Si/アルミナ系については溶鉄の表面においてはともかくとして溶鉄とアルミナとの界面においてシリコンが吸着しているとは考え難い。 Fig ・4・14に凝固後の試料中のアルミニウムと酸素の分析結果と接触角、付着の 仕事、界面自由エネルギーの値とをまとめて示す。

Fig. 4 \cdot 14 Effect of Silicon on Wad, θ , and 0

Fig. 4・14からあきらかなようにアルミニウムと酸素の分析結果、特に 酸素の分析結果と付着の仕事の値とは明確な対応を示していると考えられる。

溶融Fe-Si合金とアルミナとが接触した場合のシリコン濃度と酸素あるい はアルミニウム濃度との関係は以前にA.McLeanら〔15〕によっても報 告されており、その結果をFig.4・15に示す。彼らの結果も本章で得られ た結果と同様にシリコン濃度が0.6wt%付近で酸素濃度の最大値が現れており

測定温度が異なるにもかかわらず良い一致を示している。またアルミニウム濃度の変化も類似の傾向を示している。

第5章でも述べているが、一般に酸化物の表面は酸素で覆われていると考えら

Fig. 4 • 15 Comparison of Al and 0 with Reported Values (15)

れておりそのような表面が溶融合金と接触した際には表面の酸素と最も親和力の 大きい合金元素が界面に集まると考えることは熱力学的にも妥当であると考えら れる。鉄、シリコンおよびアルミナの解離によって溶解したアルミニウムのうち で酸素との親和力の最も大きいのはアルミニウムであり、アルミナがある程度還 元されるような条件下では溶融Fe-Si合金とアルミナとの界面には Kingeryらが考えているようにシリコンが吸着するのではなくアルミニウ ムが吸着すると考えられるが、このことをあきらかにするためにはさらに多くの データの蓄積が必要であろう。また凝固後の試料界面のEPMAによる観察から は溶融Fe-Si合金とアルミナとの界面における反応に関する情報は得られな かったが、これは界面において反応が生じなかったのではなく反応層が溶融Fe -Mn合金/ムライト系のように厚いものではなく極めて薄いためにEPMAで は確認できなかったのであろう。
4-5 結言

溶鉄による固体酸化物の濡れ性におよぼすマンガン、シリコンの影響について 検討を行なった。

溶融Fe-Mn、Fe-Si合金の表面張力はマンガン、シリコンの添加
 によって減少する。溶融Fe-Mn合金の表面張力の測定値は

Guggenheimの理想融体に関する式をほぼ満足するが、溶融Fe-Si合金の場合にはかなりずれていることから、溶融Fe-Mn系はほぼ理想融体としてみなすことができるが溶融Fe-Si系は正則融体ないしは実存融体であると考えられる。

2) 溶鉄と固体酸化物(アルミナ、ムライト)との接触角、付着の仕事、界面 自由エネルギーにおよぼすマンガンの影響は雰囲気によって異なり、気相の酸素 分圧が重大な影響をあたえる。シリコンの影響については以前の報告とはかなり 異なったが、酸素分析の結果とは良い対応を示しこの場合も気相の酸素分圧が重 大な影響をあたえているものと考えられる。

3) 凝固後の試料のEPMAによる分析の結果溶融Fe-Mn合金と固体酸化物(ムライト)との界面ではムライト中のシリカとマンガンとの置換反応が観察され、これが接触角、界面自由エネルギーの値がアルミナの場合よりも小さい値となる原因であると考えられる。また溶融Fe-Si合金と固体酸化物(アルミナ)との界面での反応についての情報は得られなかったが、両者の間において反応がなかったからではなく反応が界面近傍の微小部に限られていたことによると思われる。このことは凝固後の試料のアルミニウム分析の結果からも予想される。

第4 童の文献

- N.K.Dzhemilev, S.I.Popel & B.V.Tsrevskii: Fiz.Metal. Metalloved., 18 (1964) p.468
- 2) C.Benedics, N.Ericsson & G.Ericsson : Arch.Eisenhuttenw.,3 (1930) p.403
- 3) A.Koniger et al : Giesserei,13 (1961) p.57
- 4) B.V.Tsarevskii & S.I.Popel: Izv.VUZ.Chern.Met., (1960) No.12,p12
- 5) V.A.Rudenko & N.V.Talstguzov : Izv.VUZ.Chern.Met., (1968) No.12, p.64
- 6)川合 保治、岸本 誠,下田 敏彦:溶鋼溶滓部会第5分科会、(1970)5月14日
- 7) N.K.Dzhemilev ,S.I.Popel & B.V.Tsarevskii : Fiz.Metal. Metalloved. 18 (1964) p.83
- 8) B.V.Tsarevskii & S.I.Popel : Izv.VUZ.Chern.Met. (1960) No.8, p.15
- 9) M.Humenik & W.D.Kingery: J.Amer.Ceram.Soc., 37 (1954) p.18
- 10) M.E.Nicholas: J.Phys.Chem., 65 (1961) p.1373
- 11) A.V.Grosse: J.Inorg.Chem., 30 (1968) p.1159
- 12) J.W.Gibbs : Collect.Works,1 (1873) p.219
- 13) E.A.Guggenheim: Trans. Farad.Soc.,41 (1945) p.150
- 14) J.W.Belton & M.G.Evans: Trans. Farad.Soc.,41 (1945) p.1
- 15) A.McLean & H.B.Bell : JISI., (1965) p.123

第5章 溶鉄による固体酸化物の濡れ性

におよぼすVI-b族元素の影響 5-1 <u>緒言</u>

液体による固体の濡れは、液体の表面張力によって大きく左右されることはよ く知られている〔1〕。

周期律表のVI-b族元素である酸素、硫黄、セレン、テルルは多くの金属、た とえばPb, Cuに対して表面活性元素として作用することが報告されている〔 2〕。しかし溶鉄の表面張力に対するこれら元素の影響については溶融Fe-O 系あるいは溶融Fe-S系についての報告は多くみられるが、溶融Fe-Se系 ではわずかにKingery〔3〕, Kozakevitchら〔4〕、 Schveschkov〔5〕の報告があるのみであり、Fe-Te系について

はさらに少なくKingery [3], Kozakevitch [4] らの報告 のみである。

さらにこれら表面活性元素が溶鉄による固体酸化物の濡れ性におよぼす影響に ついては現在までに報告されているのはわずかに酸素についてのみであり、他の 元素の影響についての報告はいまだみられない。

本 童においては 溶鉄の 表面 張力および 固体酸化物の 濡れ性におよぼすの 影響を 測定し検討をおこなった。

5-2 実験

5-2-1 試料

本章で用いた鉄合金試料は、Fe-O, Fe-S, Fe-O-S 合金については純鉄を所定の雰囲気中で溶解し、気相と平衡させた状態で測定した。Fe-

Se, Fe-Te合金については純鉄とFe-Se, Fe-Te母合金を所定の 割合で配合したものを高周波炉で溶解したものを測定に供した。各試料の組成は、 Table5・1に示す。

Alloy	Se or Te content (wt %)	Oxygen content (ppm)	Nitrogen content (ppm)
	0.000	16	3
	0.013	16	4
	0.022	29 .	5
Fe-Se	0.029	19	4
	0.120	13	4
	0.247	17	6
	0.410	59	12
	0.005	17	8
	0.012	17	7
	0.021	19	6
Fe-Te	0.043	18	10
	0.060	16	7
	0.099	16	10

Table 5 • 1 Oxygen and Nitrogen Content in Pure Iron, Fe-Se and Fe-Te Alloys

5-2-2 装置および方法

溶融Fe-O, Fe-S, Fe-O-S系の測定はそれぞれAr-H₂ - H₂ O, Ar-H₂ - H₂ O, Ar-H₂ - H₂ O, Ar-H₂ O-H₂ S雰囲気中で行なった ため測定は雰囲気のコントロールが可能な横型のMo巻線抵抗炉を用いた。これ は第3章の実験に用いたものと同一でありその詳細については先に述べた。

溶融Fe-Se, Fe-Te系の測定は、試料の急冷が可能なMoの円筒(35 φ×130 ℓ×0.15d)を発熱体とする縦型炉を用いて行なった。この炉 の詳細については第4章において述べた。さらにこれらの系についてはセレンお よびテルルが非常に蒸発しやすい元素であるため、溶鉄中のこれら元素の濃度と 気相とが平衡に達しているかどうかが問題となる。そのためセレンあるいはテル ル粒を適当な温度に保つことによって雰囲気中に所定のセレン、テルル蒸気の分 圧を与えることができるような炉を用いて実験を行なった。この炉の概略を Fig. 5・1に示す。

Fig. 5 • 1 Apparatus for Measurement
1) Thermocouple 2) Se or Te Shots 3) Water Jacket 4) Alumina
Reaction Tube 5) X-ray Film 6) Carbon Heater 7) Alumina Pipe
8) Thermocouple 9) Metal Drop 10) X-ray Source

測定はまずアルミナ板を水平に置き、その上に約2gの純鉄試料を置く。つい でセレンあるいはテルル粒を管内上部にあるアルミナ製の皿の中に入れた後、 Arガスで約3hr炉内雰囲気の置換を行なう。置換後昇温を開始し、測定温度 に到達後溶鉄滴とセレンあるいはテルル蒸気とが平衡に達するように30~40 min間保持したのち、滴の形状をX線撮影する。

気相中のセレンあるいはテルルの蒸気圧はセレン、テルル粒を入れたアルミナの皿を上下に移動しセレン、テルルの温度を変化させることによって調整した。

5-3 結果

5-3-1 溶鉄の表面張力におよぼす酸素、硫黄、セレン、テルルの影響 Fig. 5・2~Fig. 5・5にそれぞれ溶鉄の表面張力におよぼす酸素、 硫黄、セレン、テルルの影響を測定した結果を示す。

Fig. 5 • 2 Effect of Oxygen on Surface Tension of Molten Iron 1) Halden et al (8) 2) Kozakevitch et al (11) 3) Esche et al (10) 4) Present Work

Fig. $5 \cdot 3$ Effect of Sulphur on Surface Tension of Molten Iron \bigcirc : Halden et al (1570 °C) (8) \bigtriangleup : Kozakevitch (1550°C) (11) \blacktriangle : Dyson (1550°C) (16) \boxdot : Present Work (1600°C)

Fig. 5 • 4 Effect of Selenium on Surface Tension of Molten Iron △: Kozakevitch (1550℃) [4] ◇: Kingery (1570℃) [3] ○、 ④: Present Work (1600℃)

Fig. 5 • 5 Effect of Tellurium on Surface Tension of Molten Iron

5-3-2 溶鉄の表面張力におよぼす酸素、硫黄共存の影響

Table5・2に溶融Fe-O-S合金の表面張力を測定した結果をまとめ て示す。

Concentrat	ion (wt%)	Surface tension
oxygen	sulphur	(dyne⁄cm)
0.0025	0.001	1720
0.0035	0.001	1700
0.0050	0.001	1640
0.0034	0.003	1610
0.0022	0.008	1560
0.0030	0.008	1510
0.0025	0.011	1500
0.0053	0.006	1480
0.0092	0.001	1450
0.0027	0.012	1450
0.0100	0.002	1380
0.0085	0.006	1360
0.0058	0.015	1320
0.0169	0.001	1260
0:0034	0.032	1240

Table 5 • 2 Surface Tension of Molten Fe-O-S Alloy

5-3-3 溶鉄と固体酸化物との接触角におよばす酸素、硫黄、セレン、テル ルの影響

Fig. 5・6~Fig. 5・9に溶鉄とアルミナとの接触角におよぼす酸素、硫黄、セレン、テルの影響を示す。Fig. 5・10に溶融Fe-S合金とアルミナ,ライムとの接触角におよぼすSの影響を、Fig. 5・11に溶融 Fe-Te合金と種々の固体酸化物との接触角を示す。

Fig. 5 • 7 Effect of Sulphur on Contact Angle of Molten Iron on Alumina

Fig. 5.8 Effect of Selenium on Contact Angle of Molten Iron on Alumina

Fig. 5 • 9 Effect of Tellurium on Contact Angle of Molten Iron on Alumina

Fig. 5 · 10 Effect of Sulphur on Contact Angle of Molten Iron on Solid Oxides

Fig. 5 • 11 Effect of Tellurium on Contact Angle of Molten Iron on Solid Oxides

5-3-4 溶鉄と固体酸化物との付着の仕事、界面自由エネルギーにおよぼす 酸素、硫黄、セレン、テルルの影響

Fig. 5・2~Fig. 5・11の値をもとに式(1・5)を用いて付着の 仕事を求めた結果をFig. 5・12、Fig. 5・13に示す.また式(1・ 4)を用いて界面自由エネルギーを求めた結果をFig. 5・14、Fig. 5 ・15に示す。界面自由エネルギーを算出する際に必要な固体酸化物の表面目由 エネルギーの値はアルミナ,ムライト,マグネシア,ジルコニアについてそれぞ れ750 erg./cm, 500erg./cm, 710erg./cm, 620erg./cmを用い た。

Fig. 5 • 13 Effect of Tellurium on Work of Adhesion between Molten Iron and Solid Oxides at 1600 ℃

Fig. 5 •14 Effect of Alloying Element on Interfacial Free Energy between Molten Iron and Alumina at 1600 ℃

Fig. 5 •15 Effect of Tellurium on Interfacial Free Energy between Molten Iron and Solid Oxides at 1600 °C

5-4 考察

5-4-1 溶鉄の表面張力におよぼす酸素、硫黄、セレン、テルルの影響

Fig. 5・2, Fig. 5・3からあきらかなように溶融Fe-O系の表面 張力の方が溶融Fe-S系の表面張力よりも測定者による相違が大きい。これは、 溶融Fe-O系の方が雰囲気などの測定条件による影響を受けやすいことが原因 の一つとして考えられる。

溶融Fe-O系の表面張力はFig. 5・2に示した以外にも多くの研究者に よって報告されているが、F.A. Haldenら [8]

P. Kozakevitchら〔4〕の結果は多くの文献で引用されており、その信頼性も評価されているようである。本章で求めた結果は彼らの報告よりも酸素の影響が大きく、特に酸素濃度の高い領域での相違がいちじるしい。このような相違がみられる原因としては主に次の2点が考えられる。

1) 雰囲気の酸素分圧と溶鉄中の酸素量との間の平衡が達成されていない。

2) 凝固試料の酸素分析値が溶鉄中の酸素量を適切に表わしていない。

F. A. Haldenら〔8〕は浄化した不活性ガス雰囲気中でしかも0.5 atm. の減圧下で測定を行なったために溶鉄内部から表面に吸着した酸素が離脱

していく過程で表面張力を求めた可能性が考えられる。この場合に得られる表面 張力の値は平衡状態におけるよりも高くなる。(この点に関しては第7章で詳細 に検討している)またKozakevitchら〔4〕は不活性ガス雰囲気中、 H_2 / H_2 O雰囲気中のいずれにおいても測定を行ない両者の間に相違はみられ なかったとしているが、彼らのデータをみる限りにおいては H_2 / H_2 O雰囲 気中での値の方が不活性ガス雰囲気中での値より低い傾向にある。

本章で行なった測定では上記 1)、2)に起因する誤差を可能な限り除去す るために測定は H₂ / H₂ O雰囲気中で行ない、測定終了後は炉の降温を迅速 に行ない凝固試料の酸素分析を行なった。

Fig. 5・4, Fig. 5・5の溶融Fe-Se, Fe-Te系の表面張力 を求めた結果のうち〇印はH₂ 雰囲気中でアルミナ板上に溶融Fe-Se,

Fe-Te合金試料を滴化した直後に得た結果から求めた値であり、●印はセレンあるいはテルル蒸気を含んだAr雰囲気中で溶解した純鉄試料が気相のセレンあるいはテルル蒸気と平衡したものについて得られた値である。いずれの値も同一曲線上にあることから、H₂雰囲気中で得られた表面張力の値も溶鉄中のセレンあるいはテルル量に対応していると考えられる。

Fig. 5・16に本章で得られた表面張力の結果をまとめて示す。

Fig. 5・16からあきらかなように同一の at %では酸素の影響が最も小さ くその影響は原子番号の順に大きくなる。(O < S < Se < Te)

Fig. 5・2~Fig. 5・5の結果に、Gibbsの吸着式(5・1)を
 適用して各添加元素の表面過剰量、表面における占有面積を求めた結果を
 Table 5・3に示す。

 $\Gamma_{i} = -1/RT \cdot d\gamma/d\ln a_{i} \qquad (5 \cdot 1)$

ここで、 Γ_i :表面活性元秦 i の表面過剰量(mol /cm)、 γ :表面張力(dyne/cm)、 a_i : i の活量

Table 5 • 3Excess Surface Concentration of Alloying Element
and Area Per Atom Adsorbed at Metal Surface

System	Excess concentration (mol/cm ² x10 ¹⁰)	Area per atom (A ²)	Calculated area $(\overset{2}{A})$
Fe-0	23.0	7.2	6.0 closed packing of 0 ²⁻ 8.2 plane(111) of Fe0
Fe-S	14.9	11.2	10.6 closed packing of S ²⁻ 10.3 plane(010) of Fe-S
Fe-Se	12.8	12.9	12.6 closed packing of Se ²⁻ 11.5 plane(010) of Fe-Se
Fe-Te	10.4	15.0	15.4 closed packing of Te ²⁻ 12.6 plane(010) of Fe-Te

Table 5・3からあきらかなように、表面における吸着占有面積は酸素の7.2 Åからテルルの15.0 Å まで順次増加している。溶鉄表面において、これら元素が中性原子の形で吸着していると仮定して計算した結果は酸素、硫黄、セレン、テルルについてそれぞれ1.1 Å, 3.4 Å, 4.3 Å, 5.9 Åとなる.一方、これら元素が陰イオンとして表面に吸着しているとすれば、それぞれ6.0 Å, 10.6 Å, 12.6 Å, 15.4 Åとなる。また表面層がそれぞれFe-O, Fe-S, Fe-Se, Fe-Te構造の綱密面で形成されているとすれば、8.2 Å

10.3 Å, 11.5 Å, 12.6 Åとなる。本章で求めた結果とこれらの計算値と を比較すると溶鉄の表面ではこれら添加元素が中性原子として存在していると考 えるよりはむしろイオンとして存在していると考えることができる。しかしこれ らの占有面積を計算するもとになる表面過剰量の算出の際の誤差はかなり大きく , たとえば表面張力の値の精度(±25 dyne/cm),添加元素の分析精度等に よって大きな影響を受けると考えられるから断言はできない。

5-4-2 溶鉄の表面張力におよぼす酸素、硫黄共存の影響

単一の表面活性成分を含む溶鉄の表面張力の低下は、式(5・2)で表わされる(9)。

 $\gamma^{P} - \gamma_{i} = R T \Gamma_{i} \log (1 + k_{i} a_{i})$ (5.2)

ここで Υ : 溶融純鉄の表面張力 (dyne/cm)、 Υ : 表面活性成分: を含む 溶鉄の表面張力 (dyne/cm)、 Γ : 成分: の溶鉄表面における飽和吸蓄量 (mol/cm)、k: 成分: の吸む係数、a: : 溶鉄中の成分: の活量

式(5・2)は Szyszkowskiの式として表面活性物質の希薄水溶液の表面張力をよく記述することが知られており、近年多くの研究者〔10〕に よって溶融鉄合金系にも適用され、その表面張力をよく表わすことがあきらかに されている。

酸素および硫黄の飽和吸着量はTable5・3からそれぞれ23.0×10 mole/cm¹,14.9×10⁻¹⁰ mole/cm¹ である. a i = wt%i とし、Fig. 5・ 2、Fig. 5・3の結果から式 (5・2)における T^P , k i の値を求めると 溶融Fe-O系については式 (5・3)、溶融Fe-S系については式 (5・4)で表わされる。

r =1870-825 Log (1 + 210wt%0) (dyne/cm) (5・3)
r =1760-540 Log (1 + 185wt%S) (dyne/cm) (5・4)
式(5・3)、式(5・4)からあきらかなように溶融Fe-O系から求めら

れた溶融純鉄の表面張力の値と溶融Fe-S系から求められた溶融純鉄の表面張 力の値には相違がみられる。これは式(5・3)で示されるFe-O合金中には いずれの酸素濃度の試料中にも0.001wt%の硫黄が不純物として含まれ、式(5・4)で示されるFe-S合金中には0.0025~0.0034wt%の酸素が不 純物として含まれていたことによる。

式(5・1)は単一の表面活性成分:を含む場合の表面張力を表す式であり複数の表面活性成分:, よを含む溶液の表面張力を満足に表わす式は現在のところ 与えられていない。

今、2種類の表面活性成分;,; を含む場合の表面張力は式(5・5)で表わ されると仮定する.

 $\gamma = \gamma^{P} - RT\Gamma_{i} \log(1 + k_{i} a_{i}) - RT\Gamma_{i} \log(1 + k_{i} a_{i})$

(dyne/cm) (5 • 5)

溶融F e - O - S系の γ^{p} の値はF e - O 合金中に含まれるS (0.001wt%), F e - S合金中に含まれるO (0.0025~0.0034wt%)の溶鉄の表面 張力への寄与を式 (5・5)によってそれぞれ40 dyne / cm, 150~190 dyne / cm と見積もると硫黄を含まないF e - O 合金から求めた溶融純鉄の表面 張力は式 (5・2)の γ^{p} に40 dyne / cm を加算した1910 dyne / cm、酸 素を含まないF e - S合金から求めた溶融純鉄の表面張力は式 (5・3)の γ^{p} に150~190 dyne / cm を加算した1910~1950 dyne / cmとなる。し たがって酸素、硫黄を含まない溶融純鉄の表面張力の値として1910 dyne / cm を採用すると溶融F e - O - S系の表面張力は式 (5・6)で表わすことができ る。

 $r = 1910 - 825 \ log (1 + 210 wt \% 0) - 540 \ log (1 + 185 wt \% S)$

(dyne/cm) (5 ⋅ 6)

表面層がたとえば酸素で飽和しているとすると硫黄が添加されたとしても硫黄

の表面層への吸着は不可能である。硫黄が表面に吸着するためにはそれに対応す る量の酸素がバルク中へ戻らなければならない。したがって式(5・6)は表 面が酸素と硫黄の両者で飽和するまでの濃度で成立する。すなわち

○≤(酸素の吸着率)+(硫黄の吸着率)≤1(ただし吸着率=吸着量/飽和吸着量)が式(5・6)の適用範囲と考えられる。バルク濃度と吸着量とがほぼ直線関係を満足するのは酸素、硫黄濃度がそれぞれ0.0160wt%, 0.0300wt%までであったので溶鉄中の酸素、硫黄濃度の関数として式(5・6)の適用範囲を考えると式(5・7)で表わすのが妥当であろう。

○≤ wt%O/0.0160+ wt%S/0.0300 ≤1 (5・7) 式(5・6)を用いて各々の酸素、硫黄濃度に対応する表面張力を計算した結 果をTable 5・4, Fig. 5・17に示す。本章で測定した表面張力の 誤差が±30dyne/cmであることを考慮すると、式(5・6)による計算値は実 測値をよく表わしていると考えることができる。

Concentration (wt%)		. Surface tension(dyne/cm)		
oxygen	sulphur	experimental	calculation	
0.0025	0.001	1720	1719	
0.0035	0.001	1700 ,	1673	
0.0050	0.001	1640	1613	
0.0034	0.003	1610	1613	
0.0056	0.001	1610	1592	
0.0022	0.008	1560	1561	
0.0030	0.008	1510	1522	
0.0025	0.011	1500	1499	
0.0053	0.006	1480	1467	
0.0092	0.001	1450	1485	
0.0027	0.012	1450	1475	
0.0100	0.002	1380	1431	
0.0085	0.006	1360	1368	
0.0058	0.015	1320	. 1314	
0.0169	0.001	1260	1328	
0.0034	0.032	1240	1264	
<u> </u>				

Table 5 • 4 Surface Tension of Molten Fe-O-S Alloy

Fig. 5 • 17 Comparison of Experimental Values with Calculated Values of Surface Tension of Molten Fe-O-S Alloy

本章で測定した表面張力の誤差が±30 dyne/cmであることを考慮すると、式 (5・6)による計算値は実測値をよく表わしていると考えることができる。 式(5・6)の妥当性を確かめるために他の研究者による報告値に対して適用 を試みた。

溶融純鉄の表面張力については現在までに多くの研究者によって報告されてい るが、報告されている値の差異は大きい。Table5・5に現在までに報告さ れている溶融純鉄の表面張力の値のうち試料中の酸素、硫黄濃度が与えられてい るものについて式(5・6)を適用した結果を示す。

Table 5・5に示した測定の多くは1550℃で行なわれており、式(
5・6)は1600℃における表面張力を表わす式であるが、溶鉄の表面張力の
温度係数は-0.02~0.50dyne/cm℃であるとされており、50℃の温度差は
表面張力の値に1~25dyne/cmの相違を生ずるのみである。したがって
W. Escheら〔11〕, S. I. Popelら〔14〕の結果を除けば、
Table5・5の測定値と式(5・6)から求めた計算値とは良い一致を示し

ている。

Investigator	Year	Temp. (°C)	Oxygen (wt%)	Sulphur (wt%)	Yexp. (dyne/cm)	(dyne/cm)	Ref.
F.A.Halden et al	1955	1550	0.0006	0.005	1717	1714	8
W,Esche et al	1956	1550	0.007	0.004	1591	1456	11
P.Kozakevitch et al	1957	1550	0.0008	<u>tr.</u>	1835	1854	12
L.Bogdandy et al	1958	1550	0.001	0.005	1670	1688	.13
S.1.Popel et al	1961	1600	0.0042	0.004	1710	1553	.14
B.C.Allen	1963	1534	0.00006	tr.	1880	1910	15
V.N.Eremenko et al	1963	1550	0.0008	0.002	1830	1781	_16
B.F.Dyson	1963	1600	0.001	0.001	1754	1764	17
K.Mukai et al	1967	1560	0.0014	(0.001)	1680	1724	
			0.0024			1778	18
M.E.Fraser et al	1971	1600	40.001	c0.001	1813	1801	19
K.Mori et al	1975	1600	.0.001	-0.001	1735	1801	20
Present Work	1979	1600	0.0025	0.001	1720	1719	

Table 5 • 5 Surface Tension of Molten Pure Iron

W. Escheら〔11〕, S. I. Popelら〔14〕の値と本章で求めた値との相違の原因としては酸素、硫黄の分析精度が考えられる。

P. Kozakevitch [21] はこれら元素の分析誤差は20%にも達 するとしている。今、W. Escheらの分析値(0:0.07wt%,

S:0.004wt%)が20%高く評価されているとすると、1600℃における 表面張力の計算値は1530dyne/cm(0:0.0056wt%, S:0.0032wt %)となる。表面張力の温度係数を考慮すれば、1550℃における表面張力は 1531~1555dyne/cmとなり、測定値1591dyne/cmとは測定誤差を考 應すれば良い一致を示していると考えることができる.またS. I. Popel らの分析は測定前の試料についてなされたものであり、分析誤差以外に測定時に おける酸素、硫黄量の変化をも考慮しなければならず、ここでは評価できない。

このように溶鉄中の酸素、硫黄量の正確な値が与えられたならば、溶鉄の表面 張力は式(5・6)で表わすことが可能である。ただし溶鉄中の酸素、硫黄量に ついては式(5・6)では wt %を濃度規準として採用しているが他の元素、特に鉄中に通常含まれる炭素の硫黄の活量におよぼす影響は大きく、その表面張力 も炭素量によって大きく変化する。したがってこのような場合には式(5・6) は酸素、硫黄の活量で表わさなければならないことは言うまでもない。

さて、溶融Fe-O-S系の表面張力については以前にS. I. Popelら (6)によって報告されている。彼らは酸素濃度(at%)と硫黄濃度(at%)の 和が一定の条件では溶鉄の表面張力は O/(O+S)の濃度比に対して曲線的 に変化し、O/(O+S)=0.5、すなわち O/S=1、において表面張力の 極小値が存在することを見出している。

Table 5・6に彼らの結果のうち式(5・6)の適用範囲を満足するものについて表面張力を算出した結果を示す.

Oxygen	Sulphur	Surface tension (dyne∕cm)		
(wt%)	(wt%)	7 exp	rcal =	7 cal # #
0.0017	0.0020	1810	1750	1727
0.0059	0.0130	1360	1340	1334
0.0050	0.0200	1350	1375	1290
0.0082	· 0.0110	1260	1300	1290

Table 5 • 6 Surface Tension of Molten Fe-O-S Alloy

* : Calculated_by Popel * * : Calculated by eq (5.6) 式 (5・6)による結果は彼らの測定結果ともかなり良い一致を示しているこ とがわかる。

Fig. 5・18に式(5・6)を用いて求めた等表面張力曲線と本章で測定した結果とをまとめて示す。

Fig. 5・18において wt %S/ wt %O=0.5を表わしている。
Fig. 5・18からあきらかなように溶鉄の表面張力は wt %S+ wt %Oが
一定であれば wt %S/ wt %O≒0.5で極小値をとることがわかる。これは表

Fig. 5 • 18 Iso-Surface Tension Curves of Molten Fe-O-S System

面層におけるSとOとの相互作用を示唆しているとも考えられる。

式(5・6)を適用してS/O=一定のもとでの吸着量と占有面積を求めた結 果をFig.5・19に示す。ただし式(5・6)は表面層が酸素と硫黄で飽和 するまで成立する式であるので式(5・6)の適用限界におけるdr/dlnC から得られる吸着量を飽和吸着量として占有面積を求めた。実際の飽和吸着量は ここで求めた値よりも幾分大きく、したがってその占有面積もここでの値よりも 小さくなると考えられるがその傾向はかわらない。

Fig. $5 \cdot 19$ Calculated Curves of Occupied Area of Surface Active Element (0,S) at S/0 = constant

Fig. 5・19からあきらかなようにFe-O-S系の占有面積は下に凸な 傾向を示している。表面層において酸素と硫黄が占有している割合についてはあ きらかではないが、両者が共存する際の占有面積は酸素と硫黄が単独に存在する 際の占有面積よりも小さい値であることは酸素と硫黄との間の相互作用があるこ とを示しているものと考えられる。

5-4-3 溶鉄と固体酸化物との接触角におよぼす酸素、硫黄、セレン、テル ルの影響

Fig. 5-20に溶鉄とアルミナとの接触角におよばす酸素、硫黄、セレン、 テルルの影響をまとめて示す。

Fig. 5・20からあきらかなように溶鉄とアルミナとの接触角は溶鉄中に 酸素を添加した場合を除き、硫黄、セレン、テルルのいずれの添加によっても増 加の傾向を示す。特にテルルを0.04 at%するだけで接触角は136°から

Fig. 5 • 20 Effect of Alloying Element on Contact Angle of Molten Iron on Alumina

173 *にまで増大する。硫黄、セレン、テルルのいずれの添加によっても凝固 後の鉄合金とアルミナとの界面は明瞭に区別でき二相間の反応は観察されなかっ た。一方、酸素の添加による接触角の減少は溶鉄とアルミナとの界面での反応を 示していると考えられる。 この点に関しては、5-4-4項でさらに検討を行 なう。

溶融Fe-Te合金と種々の固体酸化物との接触角はFig. 5・11に示す ように用いた固体酸化物の種類によらず増加の傾向を示した。

5-4-4 溶鉄と固体酸化物間の界面自由エネルギー、付著の仕事におよばす 酸素、硫黄セレン、テルルの影響

Fig. 5・14からあきらかなように溶鉄とアルミナとの界面自由エネルギーは溶鉄中への酸素、硫黄、セレン、テルルいずれの添加によっても減少し、その影響は同一濃度(at%)では溶融Fe-O合金/アルミナ系を別にすれば、表面張力の場合と同様にS<Se<Teの順に大きくなっている.溶融Fe-O合

金/アルミナ系については溶鉄中の酸素量の増加により、式(5・7)の反応が 生じ、溶鉄とアルミナとの界面でハーシナイト(FeO・A & 2 O₃)が生成す るため他の系とは異なった挙動を示すものと思われる。

 $F e O + A l_2 O_3 = F e O \cdot A \ell_2 O_3 \qquad (5 \cdot 7)$

このことは溶融Fe-O合金/アルミナ系の凝固後の試料界面をX線回析によって調べた結果、ハーシナイトが確認されたことからもあきらかである。

Fig. 5・14の界面自由エネルギーの値にGibbsの吸着式(5・1) を適用してそれぞれの最大の界面過剰量、界面における占有面積を求めた結果を Table 5・7に示す.

System	Area per atom adsorbed (Å ²)	Excess concentration (mol / cm × 10")
Fe-S	1 2. 1	1 3. 7
Fe-Se	1 8. 0	9. 3
Fe-Te	2 3. 2	7. 2

Table 5 • ? Excess Interface Concentration of Alloying Element and Area Per Atom Adsorbed at Metal /Alumina Interface

溶融Fe-O合金/アルミナ系については式(5・7)の反応が生じ、

G i b b s の吸着式の適用条件を満足しないため計算は行なわなかった。 T a b l e 5・3とT a b l e 5・7との比較からあきらかなように過剰量 は界面におけるよりも表面の方が大きく、また1原子当たりの占有面積は界面に おけるよりも表面における方が小さい。

一般に酸化物の表面はFig. 2・24に示したように酸素イオンで覆われて いると考えられており、本章における吸着種である硫黄、セレン、テルルも陰イ オンになりやずい元素であるため、界面においてはこれら吸着種と表面酸素イオ ンとの間に斥力が働くことが考えられる。このことが界面過剰量の方が表面過剰 量よりも小さい値をとる原因とも考えられるが詳細な検討を行なうためにはさら に多くのデータの蓄積が必要である。

一方、溶鉄合金とアルミナとの付着の仕事はFig. 5・12からあきらかな ようにFe-O合金/アルミナ系を除いては溶鉄中の硫黄、セレン、テルル量の 増加にともなって減少する。特にテルル量が0.086wt%に達すると付着の仕事 は7erg / cm にまで減少する。

酸化物と溶融Fe-X(X;S,Se,Te)合金とが接触すれば接触界面の構 造は (AI-O) - Fe あるいは (AI-O) - Xとなっているものと思われる。 Fig. 5・14からあきらかなように溶鉄中の硫黄、セレン、テルルのいずれ も溶鉄とアルミナとの界面自由エネルギーを減少させ界面活性な性質をもつ。し たがって溶鉄とアルミナとの界面は溶鉄中の硫黄、セレン、テルル濃度の増加に ともない、 (AI-O) - Feから (AI-O) - Xへと急激に変化していくも のと思われる。

Eberhartら〔22〕は溶融純金属とアルミナとの付着の仕事と酸化物の生成自由エネルギー変化との関係を求め、式(5・8)に示すような直線関係を得た。

 $W = -a \Delta G^{\circ} + b \qquad (5 \cdot 8)$

ここでa, bは正の定数

本章での測定は溶融Fe-X二元合金とアルミナとの付着の仕事であり、 Eberhartらの報告は溶融純金属とアルミナとの付着の仕事の関係を求め たものであるために直接には彼らの報告を本章での結果には適用できない。

鉄、硫黄、セレン、テルルの酸化物の生成自由エネルギー変化は式(5・9) ~ 式(5・12)で表わされる。

 $F = (1) + \frac{1}{2}O_2 (g) = F = O(1)$ (5.9)

 $\Delta G_{FeO} = -35.3 \quad (Kcal/mol) at 1600 \ C \quad (5 \cdot 9') \\ S(g) + \frac{1}{2}O_2 (g) = SO(g) \quad (5 \cdot 10') \\ \Delta G_{SO} = -28.8 \quad (Kcal/mol) at 1600 \ C \quad (5 \cdot 10') \\ Se(g) + \frac{1}{2}O_2 (g) = SeO(g) \quad (5 \cdot 11') \\ \Delta G_{SeO} = -19.5 \quad (Kcal/mol) at 1600 \ C \quad (5 \cdot 11') \\ Te(g) + \frac{1}{2}O_2 (g) = TeO(g) \quad (5 \cdot 12') \\ \Delta G_{TeO} = -11.9 \quad (Kcal/mol) at 1600 \ C \quad (5 \cdot 12') \\$

(ここで採用した△G*の値は〔23、24、25〕によった。) 本章においては系は平衡状態であるとかんがえるられるので界面活性元素X(X ; S, Se, Te)は界面と液相とで平衡している、すなわちXの化学ポテンシ ャルは界面と液相内部でひとしく、この際のXOの生成反応の自由エネルギー変 化は式(5・13[´])で表わすことができる。

本章では<u>X</u>≦0.4 wt%でありヘンリーの法則が成立すると仮定するとこの際の 自由エネルギー変化は次式で表わすことができる。 $\Delta G^{\circ *} = \mu_{xo}(\underline{i},\underline{a}) - (\mu_{\underline{x}}^{\circ *} + \frac{1}{2}\mu_{o_{\underline{a}}(\underline{a})}^{\circ})$ $= \mu_{xo}(\underline{i},\underline{a}) - (\mu_{\underline{x}}^{\circ} + \frac{1}{2}\mu_{o_{\underline{a}}(\underline{a})}^{\circ}) - RT \ell n \tau_{\underline{x}}^{\circ}$ $= \Delta G^{\circ} - RT \ell n \tau_{\underline{x}}^{\circ} \qquad (5 \cdot 16)$

ここでア。は無限希薄状態での成分Xの活量係数

たとえば1600℃においては r_x *=0.1とするとRT lnr_x *は-8.6

(Kcal/mol)にもなる。しかも本章で対象となる酸化物で液体状態での
 △G。が与えられているのはFeOのみであり他の酸化物、SO,SeO,
 TeOはこの温度では気体状態である。したがって液体と気体状態との自由エネ
 ルギーの相違についても考慮されていないことになるが、式(5・9′)~式(
 5・12′)の値をそのまま用いると酸化物生成自由エネルギー変化と付着の仕
 冪との関係はFig.5・21で与えられる。

Fig. 5 • 21 Relation between Work of Adhesion and Standard Free Energy of Oxide Formation

酸化物生成自由エネルギー変化の算出に際して前述のような問題点があるため に厳密なことはいえないがFig. 5・21はほぼ直線関係を満足しているとい える。

すでに述べたように付着の仕事に対しては溶鉄中の酸素がいちじるしい影響を およばし、さらに用いたアルミナの性質も影響するために本章で求めた結果と E b e r h a r t らの結果とを単純には比較できないが硫黄、セレン、テルルの添加による付着の仕事の減少を定性的に説明することができる。

5-5 <u>結言</u>

溶鉄の表面張力および固体酸化物の濡れ性におよぼすVI - b族元素(O, S, Se, Te)の影響を測定した。

1) 溶鉄の表面張力は酸素、硫黄、セレン、テルルのいずれの添加によっても いちじるしく減少し、同一at%で比較するとTe>Se>S>Oの順になる。

2) 溶融Fe-O-S系の表面張力は次式で表わすことができる。

 $\gamma = 1910-825 \log (1+210 wt%0) -540 \log (1+185 wt%S) (dyne/cm)$ ただし 0 < wt %0 /0.0160 + wt%S /0.0300 ≤1

3) 溶鉄とアルミナとの接触角はセレン、テルルのいずれの添加によっても増 大しその影響はテルルのほうが大きい。一方、硫黄はわずかに接触角を増大させ るが酸素は接触角を減少させる。

4) 溶鉄中のテルルは本章で用いたいずれの固体酸化物との接触角も増大させる。

5) 溶鉄とアルミナとの付着の仕事は硫黄、セレン、テルルの添加によって減少し、同一at%ではTe>Se>Sの順になる。一方、酸素は付着の仕事を増大させる。

5章の文献

- 1)たとえば原崎勇次:"コーティングの基礎科学"槇書店、(1977)
- 2) 門間改三 須藤一:金属学会誌,25 (1961) p 65)
- 3) W.D.Kingery : J.Phys.Chem., 62 (1958) p.878
- 4) P.Kozakevitch & G.Urbain : Mem.Sci.Rev.Met.,58 (1961) p.517
- 5) yu.V.Schveskov &V.A.Kalmikov &B.P.Alferov : Fizicheskaya Khimiya Granits Razdela Kotaktinuyushikh Faz", Naukova Dymka Kiev (1976) p.71

6) S.I.Popel et al : Metalli (1975) No.4 p.54

- 7) B.V.Tsarevski & S.I.Popel : "The Role of Surface Phenomena in Metallurgy", ed. by V.N.Eremenko Consulation Bureau, (1963), New York p.96
- 8) F.A.Halden & W.D.Kingery : J.Phys.Chem.,59 (1955) p.557
- 9) Szyszkowskii: Z.Phys.Chem.,64 (1908) p.385
- 10) G.R.Belton : Met.Trans.,7B (1976) ,P.35
- 11) W.Esche & O.Oeter : Arch.Eisenhuttenw .,27 (1956) p.355
- 12) P.Kozakevitch & G.Urbain : JISI,186 (1957) P.167
- 13) L.Bogdandy,K.Schmolke & G.Winzer : Arch. Eisenhuttenw.,29 (1958) p.231
- 14) B.V.Tsarevskii et al: Fiziko-Khimicheskie Osnov Proizbodstba Stali, (1961) Moskva,p.97
- 15) B.C.Allen : Trans.Met.Soc.AIME,227 (1963) p.1175
- 16) V.N.Eremenko, Yu.N.Ivashchenko & B.B.Bogatyrenko : "The Role of Surface Phenomena in Metallurgy", ed. by V.N.Eremenko Consulation Bureau, (1963) ,New York p.37
- 17) B.F.Dyson : Trans.Met.Soc.AIME.227 (1963) p.1098

- 18) 向井楠宏 坂尾 弘:金属学会誌, 31 (1967) p.923
- 19) M.E.Fraser et al : Met. Trans. AIME 2 (1971) P.817
- 20) 森克己 et al : 金属学会誌, 39(1975) p.1301
- 21) P.Kozakevitch : "Surface Phenomena of Metals ",ed. by J.B.Cotton, Society of Chemical Industry, London (1968) p.223
- 22) J.E.McDonald & J.G.Eberhart : Trans.Met.Soc.AIME,233 (1965) p.512
- 23) O.Kubaschewski & G.B.Alcock : "Metallurgical Thermochemistry (5 th ed.) "International Series on Materials Science and technology Vol.24, Pergamon Press, (1979)
- 24) I.Barin & O.Knacke : "Thermochemical Properties of Inorganic Substances", Springer-Verlag, Berlin, Heiderberg, New York (1973)
- 25) I.Barin & O.Knacke : "Supplement of Thermochemical Properties of I Inorganic Substances", Springer-Verlag, Berlin, Heiderberg, New York (1977)

第6章 減圧下における溶融鉄合金

による固体酸化物の濡れ性

6-1 緒 言

溶鋼の真空処理は最近の十数年間に急速に発展し高級鋼の製造時にはもちろん 普通鋼の製造時にも採用されてきている。実際の真空処理の際には溶鋼への耐火 物あるいは一次介在物からの酸素の供給を考慮しなければならず、減圧下におけ る酸化物の挙動を知る必要がある。溶鋼と酸化物との反応は酸化物の種類により 異なり、酸化物を構成する金属が溶鋼に溶解度をもつ場合と溶解度が極めて小さ くかつ蒸気圧が大きい場合とでその反応の形態にいちじるしい相異がある。また 実際の真空処理の場合溶鋼の炭素減少量から計算される酸素の減少量よりも実際 の溶鋼中の酸素の減少量のほうが小さいことも認められている(1)。しかし減 圧下における溶鋼と酸化物との相互作用に関する研究は少なく、いまだ十分な解 明がなされていない。

本章においては減圧下における溶鋼と固体酸化物との相互作用を濡れ性の観点 から検討するために溶融Fe-C合金による種々の固体酸化物の濡れ性を減圧下 において測定し、さらに凝固後の試料界面の状況のEPMAによる観察および化 学分析を行なって検討を行なった。

6-2 実験

6-2-1 試料

測定に用いた鉄合金試料はFe-O, Fe-C合金でその組成をTable
6-1に示す。

固体酸化物試料は高純度のアルミナ、マグネシア、ジルコニアを用いた。 これらの酸化物の組成は第2、3章に示した。

	0(ppm)	C(wt%)	Al(wt%)
	135	0.01	0.007
Fe-0	440	0.01	0.005
alloy	1500	0,01	0.008
- -	49	0.22	0.004
Fe-C	29	0.76	0.117
alloy	20	1.14	0.069

Table 6 • 1 Chemical Composition of Sample

6-2-2 装置および方法

本章の測定において用い炉はMo管を発熱体とする高周波炉(10⁻⁵mmHs) ~ 10⁻²mmHs)および黒鉛を発熱体とするタンマン炉(1~10mmHs) である。それぞれの炉の概略をFig.6・1、Fig.6・2に示す。

高周波炉による測定ではまずアルミナ管(25 ϕ ×22 ϕ ×120 ℓ)内にお いた固体酸化物板(18 ℓ ×30 ℓ ×2d)上に円筒状の鉄合金試料(約2 ϵ) を置き炉内を減圧しながら、あらかじめ水平にセットした望遠レンズを装着した カメラを用いて酸化物板を水平になるように調整し昇温する。試料を1400℃ に約10分間保持した後測定温度まで急速に昇温する。測定温度に到達後溶鉄合 金酒の形状を所定の時間間隔で撮影する。撮影後急冷(約30分で室温になる) し凝固後試料を切断し界面の状況をEPMAによって観察した。

一方、タンマン炉による測定は固体酸化物(25 Ø × 4 d)を水準器を用いて 水平にセットした後約2 g の鉄合金試料を純鉄線(0.2 Ø)で試料滴下装置にと りつける。炉内を減圧した後浄化したArガスを導入し昇温を開始する。測定温 度に到達後約30分間保持し再度炉内を減圧した後鉄合金試料を酸化物板上に置 き溶解後の滴の形状の変化を所定の時間間隔で撮影する。

Fig. 6 • 1 Apparatus for Measurement

1 Cu Coil 2 SiO₂ 3 Sighting Window 4 0 Ring 5 ZrO₂ S hots 6 Mo Heater 7 Al₂O₃ 8 Metal Drop 9 Solid Oxide

 Metal dropping assembly 2 Furnace body 3 Graphite heating element 4 Metal dropping guide 5 Piston rod 6 Sample 7 Oxide plate 8 Pt -Pt • Rh13% thermocouple 9 Alumina tube 10 Alumina radiation shield 11 Optic al pyrometer 12 Camera

6-3 結果

6-3-1 高周波炉による測定

Fig. 6・3に1600℃、4×10mmHgの減圧下での溶融Fe-440 ppm0合金の表面張力、アルミナとの接触角および付着の仕事の時間変化を示 す。

- 5

Fig. 6 • 3 Change in Surface Tension,Contact Angle,and Work of Adhesion with Time

Fig. 6・4に溶融Fe-440ppmO合金とアルミナとの接触角におよ はす真空度の影響を示す。

Fig. 6・5、Fig. 6・6にそれぞれ1600℃、^{10⁻⁵}mmHgのもと での溶融Fe-0.22%C合金の表面張力およびアルミナあるいはマグネシアと の接触角、付着の仕事の時間変化を示す。

Fig. 6 • 4 Change in Contact Angle of Pure Iron on Alumina with Time at 1600 °C

Fig. 5 • 6 Change in Contact Angle, Surface Tension of molten Fe-C Alloy on MgO and Adhesion Work between Molten Fe-C Alloy and MgO under 7 \times 10 $^{-5}$ mmHg at 1600 C

Fig. 6・5、Fig. 6・6の比較からあきらかなように固体酸化物とし てアルミナとマグネシアを用いた場合とではその傾向はいちじるしく異なってい る。表面張力の値はいずれの酸化物の場合でも初期に増加する傾向がみられ、5 ~7分後に極大値を示したのち減少するがその減少量は固体酸化物としてマグネ シアを用いた場合の方がいちじるしい。また接触角、付着の仕事のいずれもアル ミナとマグネシアとではいちじるしい相異がみられる。アルミナの場合には10 分後に接触角の最小値および付着の仕事の最大値がみられ、以後接触角は増大し 付着の仕事は減少する。マグネシアの場合には付着の仕事は初期に最小値をとり 以後増加する。接触角は最大値を示した後減少する。

6-3-2 タンマン炉による測定

Photo. 6・1に6mmHgの減圧下でのアルミナ板上での溶融Fe-O含金滴の 形状の経時変化を示す。

Photo. 6 • 1 Shape of Molten Iron Drop on Alumina at 1600°C under CO of 6mmHg

溶鉄中の酸素量が135ppmよりも少ない試料では滴が正常な形状をとらず 表面張力、接触角の値を求めることはできなかった。

Fig. 6・7に溶融Fe-1500ppmO合金の表面張力の時間変化を示
 す。表面張力は滴下直後には1530dyne/cmであったものが30分後には
 1680dyne/cmに増加した。

Fig. 6 • 7 Change in Surface Tension of Molten Fe-O Alloy with Time

Fig. 6・8、Fig. 6・9に6mmHgの減圧下における溶融Fe-C合 金の表面張力の時間変化を示す。固体酸化物としてアルミナを用いた場合には滴 下直後の表面張力が1430dyne/cmであったものが時間の経過につれて増加し、 15分後にはほぼ一定の値となった。また固体酸化物としてマグネシアを用いた 場合の表面張力はいずれの炭素量の試料についても極大値を示した後減少した。

Fig. 6 • 8 Variation in Surface Tension of Molten Fe-C Alloy on Alumina with Time at 1600 ℃ under CO of 6mmHg

Fig. 6 • 9 Variation in Surface Tension of Molten Fe-C Alloy on Magnesia with Time at 1600℃ under CO of 6mmHgCO

6-4 <u>考察</u>

6-4-1 高周波炉による測定

Fis. 6・3における表面張力、接触角の減少および付着の仕事の増加はい ずれも溶鉄中の酸素量の変化に対応していると考えられる。所定の時間経過後に 急冷凝固させた試料中の酸素量は10分後では837ppm、30分後では 1113 ppmと増加の傾向を示した。第5章ですでに述べたように溶鉄中の酸 素は溶鉄の表面張力、アルミナとの接触角のいずれをも減少させる。Fis. 6 ・3の測定は平衡状態におけるものではなく、一方、第5章の測定は平衡状態の ものであるため厳密な比較は困難であるが、定性的には第5章の結果と矛盾しな い。

凝固後の試料界面をEPMAによって観察した結果をFig. 6・10に示す。

Fig. 6 • 10 Scanning Profile at Interface between Iron and Alumina

F 18. 6・10からあきらかなように鉄/アルミナ界面において界面層の形成がみられ、これが付着の仕事の増大(接触角の減少)の原因であると考えられ

Fig. B・4からあきらかなように溶融Fe-44 Oppm O合金とアルミナ との接触角は圧力の低下にともなって減少の傾向をしめす。

Table6・2に所定の時間毎に急冷凝固させた試料中の酸素量を示す。溶 鉄中の酸素量は同一時間では圧力が低いほど、また同一圧力では時間の経過にと もない増加しているのがわかる。このことも定性的には第5章の結果と矛盾しな い。

Start	10 min.	20 min.	30 min.	
	837	1028	1113	under 4x10 ⁻⁵ mmHg
440	1085	1385	1680	under 7x10 ⁻³ mmHg
	1224	1476	1593	under 5x10 ⁻² mmHg

Table 6.2 Variation of Oxygen Content in Fe-44OppmO Alloy (ppm)

Fig. 6・5、Fig. 6・6に示したように溶融Fe-C合金の表面張力、固体酸化物との接触角、付着の仕事は用いた固体酸化物の種類によっていちじるしい相異があった。このような相異は式(6・1)、式(6・2)の反応が溶融Fe-C合金と固体酸化物との間で生じたことによると考えられる.

 $Al_2 O_3 + 3C = 2Al + 3CO1$ (6・1) $M_SO + C = M_S\uparrow + CO\uparrow$ (6・2) 式(6・1)、式(6・2)の反応の結果生じたアルミニウムとマグネシウム は、アルミニウムが溶鉄中に溶解するのに対し、マグネシウムはほとんど溶鉄中 に溶解しない。したがってアルミナを固体酸化物として用いた場合には溶鉄中に 溶解したアルミニウムによって溶鉄中への酸素の溶解が妨げられる。Table 6・3に所定時間経過後急冷凝固させた試料の酸素分析の結果を示す。

る。

Cxide	Start	8 min.	15 min.	30 min.
Al203	49	24	74	52
MgO		43	116	403

Table 6.3 Oxygen Content in Fe-0.2 %C Alloy (ppm)

溶鉄中の酸素量はアルミナ、マグネシアのいずれの場合でも初期酸素量が49 ppm から8分後にはそれぞれ24ppm ,43ppm に減少し以後増加している。こ の増加の傾向はマグネシアの方がいちじるしい。Table6・3の酸素分析の 結果はFig.6・5、Fig.6・6の表面張力、接触角、付着の仕事の変化 の傾向を良くあらわしている。

このように用いた固体酸化物によって接触角、付着の仕事のいずれもかなり異なった挙動を示す。特に付着の仕事はアルミナの場合には20分後に380 erg / cm 、30分後には230 erg / cm と低い値を示すのに対しマグネシアの場 合には20分後に1540 erg / cm となり30分後には溶鉄/気相/酸化物の3 相界面にいちじるしい界面層が形成された。このような界面層の形成は W. A. Armstrongら (2)によっても報告されている。

凝固後の試料界面をEPMAによって観察した結果、溶鉄/アルミナ界面では 界面層の形成は確認されなかったが、溶鉄/マグネシア界面では界面層の形成が みられた。このような界面層の形成の有無が付着の仕事の大小を決定しているも のと思われる。

6-4-2 タンマン炉による測定

タンマン炉による測定はAr雰囲気中で昇温後減圧したため、Arガス中の微 量の酸素や炉内耐火物の解離による酸素が発熱体である炭素と反応し、炉内の雰 囲気はCOの減圧になっているものと思われる。

Photo. 6・1に示したように初期酸素量の低い試料では滴の形状がいび

つであった。これは6mmHgCOに相当する雰囲気中の酸素分圧は1600℃で は10⁻²⁰ a tmと非常に低く、支持台として用いたアルミナの急速な解離が生 じ、アルミニウムが溶鋼中に溶解することによるものと思われる。このことは凝 固後の試料のアルミニウム分析およびEPMAによる観察から確認できる。凝固 後の試料のアルミニウム分析の結果をTable6・4に示す。

	Al Content (wt%)		
Alloy	initial	final (30min)	
Fe-135ppm0	0.007	1.420	
Fe-1500ppm0	0.008	0.010	

Table 6 • 4 Aluminum Content in Sample

Table6・4からあきらかなようにFe-135ppmO合金中のアルミ ニウム量は測定前0.007%であったものが測定後には1.420%に増加してい るのに対し、Fe-1500ppmO合金中のアルミニウム量は測定前後でほと んど変化がみられなかった。またPhoto.6・2に示すように凝固後の鉄/ ガス界面において約50µの厚さでアルミニウムの濃化しているのが観察され、 このことが正常な形状の滴を形成しなかった理由であると思われる。一方、アル ミニウムの分析結果からも予想されるように、Fe-1500ppm合金の表面 のEPMAによる観察ではアルミニウムの濃化は確認されなかった。

今、発熱体として用いた黒鉛と気相との平衡を考えると式(6・3)が成り立つ。

 $C(s) + \frac{1}{2}O_2(g) = CO(g)$

 $(6 \cdot 3)$

 $\Delta G^{\circ} = 26700 - 20.95T (Kcal/mol)$ (6・3') $P_{co} = 6 mm Hg (7. 9 \times 10^{-2} a tm.)$ 、 $Ac = 1 \ge 0 < 2 \le \pi$ める $\ge Po_{z} = 2.5 \times 10^{-20} a tm. \ge tas (3)$ 。この酸素分圧に相当する溶 鉄中の酸素量は1600℃で3.85×10⁻⁹ %と計算されほとんど零になる。し

Composition Image

X-ray Image of Fe(K_w) in Interface

X-ray Image of Al(K_w) in Interface

Photo. 6 • 2 Composition Image and X-ray Image at Surface of Fe-135ppmO Alloy

たがってこのような条件の下では本章で用いた試料中の酸素量はいずれも平衡酸素量よりも多く測定時においては溶鉄中から気相中への酸素の移行が考えられる。またアルミナの解離酸素圧は1600℃では2.3×10 atm. であり溶鉄中の酸素量の減少にともなって溶鉄/アルミナ界面でアルミナの解離が生ずるも

のと思われる。

Fig. 6・7からあきらかなように溶融Fe-1500ppm0合金の表面 張力は滴下直後には1530 dyne/cmであったものが、30分後には 1680dyne/cmに増加した。第5章でも述べたように溶鉄の表面張力におよば す酸素の影響については現在までに多くの研究者によって測定され、その程度に 差異はあるがいずれも酸素は溶鉄の表面張力を減少させる表面活性元素であるこ とがあきらかになっている。第5章の測定結果から本章で得られた値、1530 dyne/cm、1680dyne/cmに対応する溶鉄中の酸素量はそれぞれ75ppm、 34 p p m となり、初期酵素量(1500 p p m)とはいちじるしい差がある。 Gibbsの吸着式(5・1)から求められるように溶融Fe-O合金と気相と が平衡している場合の溶鉄表面の酸素濃度は溶鉄内部の酸素濃度よりもいちじる しく高くなる。しかし気相の酸分圧が溶鉄との平衡酸素分圧よりも低い場合には 溶鉄表面から気相中への酸素の離脱が生ずる。このさいに溶鉄中の酸素の移動速 度よりも溶鉄表面での酸素の離脱速度の方が速ければ溶鉄の表面酸素濃度は平衡 状態での表面酵素濃度よりも低くなり、その結果表面張力は高くなる。このこと が溶鉄中の酸素量が1500ppmであるにもかかわらず高い表面張力の値(1 530~1680dyne/cm)を示す理由であると考えられる。このことは測定後 の試料の酸素濃度が240ppmに減少していることからもあきらかである。

またFig. 6・8、Fig. 6・9に示した溶融Fe-C合金の表面張力の 経時変化も支持台として用いた固体酸化物の種類によっていちじるしい相異がみ られる。アルミナを用いた場合には滴下直後の値が1430dyne/cm程度であっ たものが時間の経過にともなって増大し15分経過後にはほぼ一定の値となる。 初期炭素量が1.14%の試料ではその表面張力はほぼ2000dyne/cmにも達す る。本章での研究においては表面張力の算出の際に必要な溶鉄合金の密度の値は いずれの試料についても第3章で求めた溶融純鉄の密度の値、7.17g/cm、を 用いた。これは溶鉄合金滴と気相あるいは固体酸化物との反応により溶鉄合金の 組成、特に炭素量、の経時変化があることおよび減圧下での測定であるため蒸発 による滴の重量の変化があるために正確な密度の決定が困難であったことによる。 溶融Fe-C合金の密度については現在までに多くの研究者によって報告されて いるがその相異は大きい。初期炭素量が1.14%の試料の30分経過後の炭素量 はアルミナを用いた場合には0.60%であり、この炭素量に対応する溶融Fe-C合金の密度は測定者によって絶対値に相異はあるが、溶融純鉄の密度の値より 約1%程度低いとされている。さらに炭素量の減少が式(6・1)によるものと して溶鉄中へのアルミニウムの溶解を考慮してもこの結果生ずる密度の減少は約 1.3%程度である。したがって溶融Fe-C合金の表面張力の計算の際に溶融純 鉄の密度を用いることによる影響はたかだか2.3%程度であり2000dyne/cm の表面張力の値を約50dyne/cm下げることになる。この値、1950dyne/cm、 は測定誤差を考慮すれば第5章で求めた溶融純鉄の表面張力の値、1910 dyne/cm、と良い対応を示していると考えられる。

Fig. 6 • 11 Change in Work of Adhesion berween Molten Fe-C Alloy and Alumina with Time under CO of 6mmHg

一方、溶融Fe-C合金とアルミナとの付着の仕事はFig. 6・11からあ きらかなように溶鉄中の炭素量の増加にともない増大している。とくに炭素量が 1.14%の試料では30分後にはほぼ1500erg/cml にも達しており、これ は式(2・11)から求められる表面自由エネルギー変化の値に換算するとほぼ 28Kcal/molに相当し化学的な相互作用がかなり関与していると考えら れる。凝固後の試料の化学分析の結果をTable6・5に示す。

Metal	Aluminum concentration (wt%)		
	Initial	Final(30 min.)	
Fe-0.22%C	0.004	0.103	
Fe-0.76%C	0.117	0.540	
Fe-1.14%C	0.069	0.689	

Table. 6 • 5 Aluminum Content in Solidified Sample

Table6・5からあきらかなように30分後の試料中のアルミニウム量の 増加は初期炭素量の多い試料ほどいちじるしく、式(6・1)の反応を裏付けて いるものと考えられる。第4章でも述べているように、このようなアルミニウム の溶解がある場合には溶鉄とアルミナとの界面にはアルミニウムが吸着し、その 結果付著の仕事の増大があるものと思われるがこの点に関しては今後さらに検討 する余地があろう。

またFig. 6・6に示したように、固体酸化物としてマグネシアをもちいた 場合の溶融Fe-C合金の表面張力の値はいずれの炭素量の試料についても極大 値を示した後減少の傾向がある。 この極大値をとるにいたるまでの時間は溶鉄 中の炭素量によってことなり、炭素量の少ない試料ほど短時間で極大値に到達す る。このことは式(6・2)の反応によって溶鉄中の炭素が消費され、その結果 生じたマグネシウムとCOが溶鉄の表面近傍に存在している間は表面近傍の酸素 分圧は低く押さえられているが、溶鉄中の炭素が完全に消費されつくした後は溶 鉄の表面近傍の酸素分圧の上昇があることによると考えられる。

溶融Fe-C合金とマグネシアとの付着の仕事はいずれの炭素量についても アルミナとの付着の仕事よりも小さく、30分経過後の付着の仕事の値から計算 される表面自由エネルギー変化の値も最も大きい0.76%Cの場合ですら9.7 Kcal/molでありアルミナの場合の約1/3程度であり、このことからだ けでは化学的な相互作用もほとんどないものと考えられる。しかし実際には溶鉄 中の炭素の減少量はアルミナの場合よりも大きく、いずれの炭素量の場合も測定 後の試料中には炭素はほとんど含まれておらず溶融Fe-C合金とマグネシアと の反応はかなり大きいはずである。それにもかかわらず付着の仕事の値がアルミ ナの場合よりも小さいのは溶鉄中に炭素が存在している限り式(6・2)の反応 が生じ、常に界面においてCOの生成があるために溶鉄とマグネシアとの接触が 妨げられることによると考えられる。炭素が消費された後(多分、Fig.6・ 9の極大値に対応すると思われる)は表面張力の値がほぼ一定であることから溶 鉄の組成にもほとんど変化がなくマグネシアとの相互作用も少なくなっているも のと考えられる。

6・5 結言

减圧下における溶融鉄合金による固体酸化物(アルミナ、マグネシア)の濡れ 性の測定を行なった。

1) 同一の系であってもモリブデンを発熱体とする炉と黒鉛を発熱体とする炉 とではその表面張力あるいは接触角の時間変化は大きく異なった。これはモリブ デンを発熱体とする炉では測定圧力がそのままほぼ酸素分圧に対応していたのに 対し、黒鉛を発熱体とする炉ではCO分圧に対応していたことによる。

2)気相の酸素分圧がいちじるしく低いタンマン炉による測定では溶鉄中の酸 素量が高い場合でも得られる表面張力の値は非常に高いことから本章の実験条件 では溶鉄表面から気相への酸素の脱離速度は速く、その際の溶鉄の表面張力は溶 鉄中の酸素量によって規制されるのではなく気相の酸素分圧よって規制されてい るものと考えられる。

3) 溶融鉄合金によるアルミナ、マグネシアの濡れ性の相異は解離したアルミ ニウムは溶鉄中へ溶解するのに対し、マグネシウムは溶解度がほとんどないこと による。

第6章の文献

- 1) たとえば G.H.Bennett: JISI, 195 (1960) p.174
- 2) W.M.Armstrong & D.J.Rose : Trans. Met. Soc. AIME, 227 (1963) p.1109
- 3) G.J.M.Kinsman : JISI,204 (1969) p.1463

第7章 溶鋼の脱酸過程における

界面現象の役割

7-1 緒言

溶鋼の脱酸は製鋼過程において不可欠なプロセスであり、その可否が最終的な 製品の品質を左右すると言っても過言ではない。したがって溶鋼の脱酸に関する 研究は古くから行なわれてきており脱酸生成物の生成、浮上、分離の問題につい ても現象的にはかなり解明されてきているが、その機構が十分解明されたとは言 い難い。溶鋼の脱酸過程は溶鋼と固相あるいは液相の介在物との異相間現象であ り、当然界面化学的な現象として取り上げることができるが現在この立場からの 検討はほとんどなされていない。

溶鋼の脱酸の効果を左右するのは主として脱酸剤の添加によって生成する脱酸 生成物がいかに速やかに溶鋼中から分離除去されるかにかかっている。この脱酸 生成物の分離速度を求めるために古くはF. Hartmann [1],

G. Rangue [2] らによってStokes則によるとりあつかいが導入された。 しかしStokesの法則による限り脱酸生成物の浮上速度はrとAd (r:脱酸生成物の半径、Ad:溶鍋と脱酸生成物の密度差)に比例し、脱酸生 成物の大きさが同じであれば密度差の大きい、すなわち脱酸生成物の密度が小さ い、ほど浮上しやすいことになる。 しかしE. Plockingerら [3] は種々の脱酸剤を用いて溶鍋の脱酸を行ない、アルミニウムによる脱酸とシリコ ンおよびCa-Si合金による脱酸との比較を行なった結果、生成した脱酸生成 物の大きさはほぼひとしく、アルミナの比重がシリカあるいは珪酸塩の比重より も大きいにもかかわらずアルミナの方があきらかに浮上・分離しやすいとしてい る。彼らはこのような結果は溶調とアルミナ、シリカあるいは珪酸塩との濡れの 相異によるとしているがこのような考え方は現在のところかならずしも支持され ているとはいえない。 またアルミニウム脱酸の際に溶鋼中にテルルを添加することによって脱酸生成物の排出が助長されるという報告〔4~6〕もあるがその理由については何ら明 確な説明はなされていない。

本章では溶鉄の表面張力をいちじるしく減少させ固体酸化物との接触角を大きく するテルルに注目し、アルミニウム、Al-Si合金、ジルコニウムによる脱酸 の際にテルルを添加し鋼塊の清浄度と濡れの諸量との関係について検討を行なっ た。

7-2 実験

7-2-1 試料

脱酸剤として用いたアルミニウム、シリコン、ジルコニウムの純度はそれぞれ 99.99%,99.999%,99.8%であり、鉄試料としてはTable 7・1に示す組成の電解鉄を用いた。

Table 7.1 Chemical Composition of Electrolytic Iron (wt%)

С	S i	M n	Р	0
0.008	0.007	0.002	0.003	0.0350

7-2-2 装置および方法

本章で用いた炉の概略をFig. 7・1に示す。

炉は黒鉛の円筒(70 ϕ ×80 ϕ ×200 ℓ)を発熱体とする高周波炉である。 測定は浄化したArガス雰囲気中、1600℃で行なった。

実験はまず電解鉄800gを高純度アルミナルツボ(63φ×55φ×100 ℓ)中に装入し、脱酸剤およびテルル試料は鉄製の容器(約20g)中に入れ炉 の上部にセットした。

脱酸剤はアルミニウムによる脱酸の場合、電解鉄試料の0.2wt%, ジルコニウムによる脱酸の場合, 0.4wt%, Al-Si合金による脱酸の場合, Si:0.8

wt%, Al: 0.02wt%とし、テルルの添加量はいずれの場合も0.02wt%となるように配合した。

炉内を浄化したArガスで約5時間置換した後昇温を開始し所定の温度に到達 後約5分間保持した後酸素分析に供するため内径3mmの石英管で溶鉄約5gを吸 引採取する。その後ただちに脱酸剤およびテルル試料を装入した鉄製の容器を溶 鉄中心部に挿入する。所定時間保持した後、Heガスを溶鉄の自由表面に吹きつ けて鉄試料を急冷凝固した。

急冷凝固試料はまずその上部表面の状況を肉眼で観察したのち、内部の脱酸生成物の分布、形態、大きさ等を光学顕微鏡および走査型電子顕微鏡で観察した。 また酸素分析も同時に行なった。Fig7・2にその際の分析位置をしめす。

Fig. 7 • 1 Apparatus for Deoxidation Measurement

1) sampling hole 2) silica tube 3) deoxidizer
4) carbon heater 5) molten iron 6) refractry
7) thermocouple

Fig. 7 • 2 Location of Analysis for Ingot

7-3 結果

Photo. 7・1に溶鉄をアルミニウムで脱酸した試料の凝固後の上部表面 の状況を示す。

Photo. 7 • 1 Appearence of Surface of Ingot at 5min. after Al addition

溶鉄にテルルを添加した場合、肉眼観察の結果鋼塊の表面は白色の粉末で覆わ れていることが確認された。この白色粉末は鋼塊とは完全に分離しており静かに 息を吹きかけるだけで飛散した。この白色粉末はX線回折によって同定した結果 α-Al2O3であることが確認された。排出されたα-Al2O3の量は約 0.38で初期酸素量の約60%が除去されたことになる。一方、テルル無添加の 試料表面についてはテルル添加の際に観察されたα-Al2O3はみられなかっ た。表面を電解研磨後走査型電顕によって観察した結果、テルル無添加の鋼塊表 面近傍は板状の大きなクラスターで覆われていたのに対し、テルル添加の鋼塊表 面にはほとんど介在物は存在しなかった。ジルコニウムによる脱酸の結果もテル ルの影響についてはアルミニウムによる脱酸の場合と類似の傾向を示し、テルル 添加の際にはアルミニウムによる脱酸の場合と類似の傾向を示し、テルル 添加の際にはアルミニウムによる脱酸の場合よりも少ないが鋼塊表面にかなりの 量の脱酸生成物の排出が観察された。アルミニウムによる脱酸と異なる点はジル コニウムによる脱酸ではテルルの添加により鋼塊の側面部(ルツボとの界面)に も相当量の脱酸生成物の排出がみられたことである。

Si-Al合金による脱酸の際にもその表面状況はアルミニウムによる脱酸や ジルコニウムによる脱酸ほどいちじるしくはなかったが、テルルを添加した試料 では表面に薄い透明な脱酸生成物が排出されこれはX線回折の結果ムライト(mullite)であることが確認された。

Photo.7・2にSi-Al合金による脱酸を行なった鋼塊表面近傍を走 査型電子顕微鏡で観察した結果を示す。

テルルを添加した試料では鋼塊表面から脱酸生成物が排出されたため表面近傍 にはほとんど脱酸生成物は観察されないがテルル無添加の試料では多量の脱酸生 成物が排出されずに残存しているのがわかる。

119

without Te treatment .

with Te treatment

Photo 7・2 Scanning Electron Micrograph at Immediate Vicinity of Surface of Ingot Deoxidized with Al-Si Fig. 7・3~Fig. 7・6に脱酸剤としてアルミニウムを添加後それぞ

れ5分、10分後に急冷凝固した鋼塊中央部および鋼塊側面部における脱酸生成 物の面積百分率と酸素分析の結果を示す。

Fig. 7..6 Distribution of Inclusion in the surface zone of ingot (ingot /crucible interface) at 18 min. after Al addition

脱酸生成物の面積百分率はJISG05555に定められた格子を用い、400 倍の倍率で30視野観察した結果を算衛平均し求めた。酸素分析については同一 の部位を各2回分析した結果を平均した。

Fig. 7・3とFig. 7・4に示すように5分後に急冷凝固させた試料の 脱酸生成物の面積百分率は鋼塊頂部から底部にいたるまでテルルを添加した鋼塊 の方が小さい。またこの傾向は頂部においていちじるしい。この結果は先に述べ た鋼塊表面の肉眼観察および表面直下の走査型電顕による観察結果と矛盾しない。 また鋼塊中央部と側面部とでは中央部の方が脱酸生成物の総量は少ない。

Fig. 7・5とFig. 7・6のアルミニウム添加後10分の試料では Fig. 7・3とFig. 7・4の5分後の試料ほどテルルの効果は顕著ではな いが頂部においては明瞭な差がみられる。

Fig.7・7とFig.7・8にZr脱酸を行なった試料の脱酸生成物の面積百分率と酸素分析の結果を示す。

Fig. 7 • 7 Distribution of Inclusion in Center of Ingot at 5min after Zr Addition

Fig. 7.8 Distribution of Inclusion in Surface Zone of Ingot (Ingot /Crucible Interface) at 5min after Zr Addition

ジルコニウムよる脱酸の場合もアルミニウムによる脱酸と同様にテルルを添加 した靏塊の方が中央部、側面部のいずれにおいても脱酸生成物の量は少ない。 Fig. 7・3とFig. 7・4のアルミニウムによる脱酸と異なる点はジルコ ニウムによる脱酸では靏塊中央部より靏塊側面部の方が脱酸生成物の量が少ない ことであり、このことはジルコニウムによる脱酸ではテルルを添加した際に靏塊 側面部において多量の脱酸生成物の排出がみられたことに対応する。

Fig. 7・9とFig. 7・10にSi-Al合金によって脱酸を行なった 試料の脱酸生成物の面積百分率と酸素分析の結果を示す。

Si-Al合金による脱酸におけるテルルの効果はアルミニウムによる脱酸や ジルコニウムによる脱酸の場合ほど顕著なものではなく、Si-Al合金を添加 後6分経過した試料ではテルルの効果はほとんどみられなかった。3分後の試料 ではFig. 7・9とFig. 7・10からわかるように鋼塊中央部の頂部およ び鋼塊の側面部においてテルル添加の効果がみられた。

Fig. 7 • 9 Distribution of Inclusion in Center of Ingot at 5min after Si-Al Addition

Fig. 7 • 10 Distribution of Inclusion in Surface Zone of Ingot (Ingot /Crucible Interface) at 5min after Si-Al Addition

7-4 <u>考察</u>

本章で行なったいずれの脱酸においてもテルルの添加は程度の差はあるが効果的でありこの点に関して界面化学的な立場から検討を行う。

溶鋼の脱酸過程を速度論的な観点から考えると脱酸機構は次のような素過程に

分けることができる〔7〕。

1) 脱酸元素の溶鋼中への溶解と酸素との反応

- 2) 脱酸生成物の核生成
- 3) 核の成長と凝集
- 4) 脱酸生成物の浮上
- 5) 脱酸生成物の溶調からの分離

実際の脱酸過程は上記の各素過程が段階的に生ずるのではなく、

Lindburgら(7)が述べているように各素過程が並行して生じていると 考えられる。溶鋼と固体酸化物との間の界面自由エネルギー、付着の仕事、接触 角の値が影響をおよぼす素過程は2),3),4),5)であり、ここでは第5 章で得られたこれらの値をもとにこれら素過程について検討を行なう。

7-4-1 脱酸生成物の核生成

均質核生成の理論によれば、半径r(cm)の球形の脱酸生成物が生成する場合の熱力学的自由エネルギー変化 ΔG(erg / nucleus)は溶鉄と酸化物との間 で界面を形成するのに必要なエネルギーと酸化物の生成による自由エネルギー変 化の項で表わされる。

 $\Delta G = 4\pi r^2 r - 4/3 \cdot \pi r^3 \Delta G_{r}$ (7・1) ここでr:酸化物粒子の半径(cm), r:溶鉄と酸化物との間の界面自由エ ネルギー(erg / cm), ΔG_{r} :酸化物の生成による体積自由エネルギー変化(erg / cm)

生成した核が安定に存在しうるためにはその半径がある臨界半径 r* (cm)よりも大きくなることが必要であり、r* は式 (7・2)で表される。

 $\mathbf{r}^* = -2\gamma / \Delta \mathbf{G} \qquad (7 \cdot 2)$

したがって臨界核の生成に要するエネルギーは式(7・3)で表わされる。

 $\Delta G^* = 16 \pi \gamma / 3 (\Delta G_{\nu})^2 \qquad (7 \cdot 3)$

核生成が生ずる溶鋼中の過飽和度Sは式(7・4)で表わされる。

 $S = K_S / K_e$

 $(7 \cdot 4)$

ここで Ks: 過飽和溶鋼中の酸化物の溶解度積. Ke: 析出反応の平衡定数 過飽和度Sと脱酸生成物の生成による体積自由エネルギー変化△G ~との間に は式(7・5)が成立する。

 $S = \exp\left(\Delta G_{v} \cdot \sqrt{V}RT\right) \qquad (7 \cdot 5)$

ここで V:脱酸生成物のモル体積(cm/mol)

したがって式 (7・4), (7・5)より次のGibbs-Thomsonの 式を得ることができる。

 $r^* = 2\gamma \sqrt{RT \ln S} \qquad (7 \cdot 6)$

式(7・6)より臨界半径 r* は過飽和度が大きく界面自由エネルギーが小さ いほど小さくなる。

一方、脱酸生成物の核生成速度」は式(7・7)で表わされる。

 $I = A \exp(-\Delta G^* / KT) \qquad (7 \cdot 7)$

ここでI:核生成速度(nuclei/cm⁻・sec),K:ボルツマン定数 (1.381x10⁻¹⁶ erg /℃),A:頻度因子

式(7・7)における頻度因子Aは式(7・8)で与えられる。

 $A = n^* (a \gamma / 9 \pi KT) \cdot n (KT / h)$ (7.8)

式 (7・7)において a_{d}^{4} の値が通常1 0²⁵~10²⁸であり〔8〕、 Iの値を 1としても10³としても核生成の過飽和度の値にはほとんど影響しない〔8〕 ためここでは I = 1として式 (7・7)に式 (7・3)を代入することによって 式 (7・9)が得られる。

 $\Delta G_{r} = 2.7 (r^{3} / KT l \circ sA)$ (7・9) したがって I = 1 に対応する臨界過飽和度 S は、式 (7・9) を式 (7・4)

126

に代入することによって得られる。

S* = exp [2.7 *V*/RT・(r³/kTℓogA)¹⁰] (7・10)
 式(7・10)を用いて、テルルを添加した場合とテルル無添加の場合の臨界
 過胞和度を比較した結果をTable(7・2)に示す。Table(7・2)
 からあきらかなように溶鉄中にテルルを添加することによって ℓnS*/

ℓ n S Te* の値はいずれの酸化物についても 1.27~1.37の範囲にあり、テ ルルは核生成が生ずる臨界過胞和度を大きく減少させることが予想される。

oxide	$\ln S^* / \ln S_{Te}^*$
A1203	1. 27
3AL2 0 3 · 2Si02	1.37
Zr0 2	1.30

Table 7 • 2 Critical Supersaturation for Homogeneous Nucleation

7-4-2 核の成長と凝集

脱酸生成物の成長については比較的単純な仮定にもとづいた考え方が多く提出 されているが、実際の脱酸生成物の成長は種々の機構によって生ずると考えられ る。現在までに報告されている脱酸生成物の成長に関する理論には以下のような ものがある。

1) ブラウン運動による凝集成長(9)

2) 拡散による成長〔10〕

3) 粒子間の相互作用による成長〔7〕

4) 浮上途上での凝集と成長〔11〕

この他にも2)と4)とが組合わさったとする考え方〔11〕や強制的なかく はん下での凝集と成長〔12〕などがある。

本章においてはこれらのうちで沼鋼と脱酸生成物との界面の性質がその成長に

かなり鋭敏な影響を与えると考えられる3)、4)について検討を加える。

Lindburg, Torsselは脱酸生成物の成長速度は式(7・11) で表すことができることを示した〔7〕。

 $dr/dt = 2\gamma_{sL}VmCoD/RT(Cp-Co)/r^2(r/r_{cr}-1)$

ここで r_{sL}:溶鋼と脱酸生成物との間の界面自由エネルギー(erg / cm^{*})、 Vm:脱酸生成物のモル容積(cm^{*}/mol)、Co:溶鋼と脱酸生成物との界面に おける溶鋼中の脱酸生成物の構成成分の濃度、Cp:脱酸生成物中の構成成分の 濃度、D:溶鋼中における脱酸生成物の構成成分の拡散係数

また r cr は脱酸生成物の平均半径であり式(7・12)で表すことができる。 r cr ^a = 4 / 9・2 r sL Vm Co D / RT (Cp - Co)t (7・12) 式(7・12)からあきらかなように脱酸生成物の大きさは溶鑼と脱酸生成物 との界面自由エネルギーの値が大きいほど大きくなることがわかる。

Fig. 5・15からあきらかなように溶鉄中にテルルを添加することによっ て溶鉄と固体酸化物(脱酸生成物)との界面自由エネルギーはいちじるしく減少 しTeを添加しない場合には溶鉄/アルミナ、溶鉄/ジルコニア、溶鉄/ムライ トの界面自由エネルギーはそれぞれ2030erg /cm、1610erg /cm、

1740erg /cmであったのに対し、0.05%のチルルの添加によってそれぞれの界面自由エネルギーは1650erg /cm、1370erg /cm、1340erg /cmにまで減少する。

式(7・12)において界面自由エネルギーの値以外の定数(CoCp, D) はテルルの添加によって影響を受けないと考えられるのでテルルの添加の有無に よる脱酸生成物の半径の比は式(7・13)で表わされる。

(『cr/『crTe)³ = T_{SL}/T_{SLTe} (7・13)
 式(7・13)に各々の界面自由エネルギーの値を代入することによってアル
 ミナ、ムライト、ジルコニアの『cr/『crTe はそれぞれ1.07、1.06、

1.09となる。一方、走査型電子顕微鏡による観察から得られた結果によればア ルミナ、ジルコニアの比はそれぞれ1.75、200となりいずれもテルルの添加 によって粒子径は小さくなり式(7・13)の結果と定性的には一致するものの その差異はおおきい。この原因の一つとして7・4・1項で述べたようにテルル の添加による臨界過飽和度の減少が考えられるが現時点では定量的な解釈はでき ない。

一方、溶鋼中の脱酸生成物の凝集が浮上途上における体積拡散による焼結に要 する時間 t は式(7・14)で表わされる〔12〕。

t = X ⁵ RT/r² K *f*_{SL}VD (7・14)
 ここでX:粒子結合部の半径(cm), r:粒子の半径(cm), K:幾何学
 的形状因子(10~100), *f*_{SL}:溶鉄と脱酸生成物との界面自由エネルギー
 V:脱酸生成物の分子容(cm /mol)、D :体積拡散係数(cm²/sec)

塩原は式(7・14)を用いて2µの脱酸生成物の焼結に要する時間tを求め た結果15.8秒を得た(13)。彼の実験条件下ではアルミナ系脱酸生成物は浮 上途上で凝集焼結できると述べている。本章の研究結果では溶鉄内部の脱酸生成 物の平均粒子径はムライトの場合を除き、アルミナ、ジルコニアのいずれも2µ よりも小さくまたテルルを添加した場合の方がテルル無添加の場合よりも小さい

今、式(7-14)の界面自由エネルギーの値としてFig. (5・15)の 値を用い、D_vについてはKuczynskiの値 [14]、4.4X10⁻¹² cm/ secを採用し、また走査型電子顕微鏡による観察結果から粒子径としてアル ミナについては0.7µ(テルル無添加)、0.4µ(テルル添加)を、ジルコニア については1.0µ(テルル無添加)、0.5µ(テルル添加)としX=r/3と仮 定することによってtの値を求めるとアルミナについては7.8 sec(テルル無 添加) 1.7 sec(テルル添加)、ジルコニアについては38.0 sec(テルル

129

無添加) 8.5 s e c (テルル添加)となる。したがっていずれの脱酸においても テルルを添加することによって凝集焼結の進行が容易になると考えられる。

一方、溶鉄中の脱酸生成物の凝集にともなう自由エネルギー変化、 ΔG_{coh} は式(7・15)で表わされる(15)。

 $\Delta G_{coh} = 2 (r_{ss} - r_{sL})$ (7・15) ここで r_{ss} : 脱酸生成物間の界面自由エネルギー (erg / cm)

一般に、 $\gamma_{SS} \leq \gamma_{SV}$ であるが、 $\gamma_{SS} = \gamma_{SV}$ とおくことによって式(7・ 16)が得られる。

 $\Delta G_{\rm coh} = 2 \gamma_{\rm LV} \cos \theta \qquad (7 \cdot 16)$

式 (7・16) にFig. 5・5 , Fig. 5・11のγl, θの値を代入 することによってそれぞれのΔG_{coh} を求めた結果をTable 7・3に示す。

Table 7.3 Values of ΔG_{coh}

auida	∆Gcoh (erg ∕cm²)		
Oxide	without Te tr.	with Te tr.	
A1203	-2600	-2000	
Zr0 2	-1950	-1450	

Table 7・3からあきらかなように熱力学的にはTe無添加の方が脱酸 生成物の凝集には有利である。しかし現実にはテルルを添加することによって凝 集が進行している。これはTable 7・2に示したようにテルルの添加によ って核生成の段階で臨界過飽和度が小さな値をとることおよび凝集焼結が短時間 で進行することによるものと考えられる。

7-4-3 脱酸生成物の浮上

静止浴中の脱酸生成物は溶鋼と脱酸生成物との密度差によって浮上し、その際

の浮上速度はStokes則にもとづいて式(7・17)によって与えられると されている[15]。

 $\mathcal{V} = 2 g r^2 \cdot \Delta d / 9 \eta \qquad (7 \cdot 17)$

ここでV:脱酸生成物の浮上速度(cm/sec),g:重力加速度(980 cm/sec)), η :溶鉄の粘性(poise), Δ d:溶鉄と脱酸生成物との密度差(g/cm)

式(7・17)が成立するためには以下の条件を満足しなければならない。

(1)溶鉄は無限に拡がった非圧縮性流体である。

(2) 脱酸生成物は球状である。

(3) 溶鉄と脱酸生成物との間にはすべりがない。

(4) Reynolds数は1以下である。

宮下ら〔8〕は静止状態に保った溶鉄中の酸化物粒子の浮上速度を求めた結果 1次脱酸生成物の浮上速度は式(7・17)から計算される値の1~1.5倍で あると報告している。

式(7・17)に溶鉄と脱酸生成物との界面性質の寄与を考慮すると脱酸生成物の浮上速度は式(7・17)に式(7・18)に相当する係数を乗じた式(7・19)で表される。

 $k = (3\eta + \beta r) / (2\eta + \beta r)$ (7・18) ここで月:摩擦抵抗係数(0 ≤ β ≤ ∞)

 $\mathcal{V} = 2 \operatorname{gr}^2 / 9 \eta \cdot (3 \eta + \beta \operatorname{r}) / (2 \eta + \beta \operatorname{r}) \qquad (7 \cdot 19)$

宮下らの報告による1.5倍という値は式(7・19)においてβ=0、すなわち完全に滑る場合(濡れない)、に相当する。

またProkhorenkoは溶鋼と脱酸生成物との濡れ性が静止浴中での浮上
 速度におよぼす影響を考慮し式(7・20)を導いた[17]。

 $\mathcal{V} = 2/3 \,\eta^{-1} \,(r^2 \,g \,\Delta \,d \,/\,3 - (Wad - 2 \,\gamma_{\rm sv}) \,/\,\pi) \quad (7 \cdot 2 \,0)$

式(7・20)のもつ物理的意味に疑問はあるがアルミナが浮上する場合を考 え、 $\eta = 5.3$ (c. p.) (18), $\Delta d = 3.13$ (g/cm³), $\gamma_{sv} = 750$ (erg /cm³), $r = 10^{-3}$ (cm³) とするとテルルの添加によって浮上速度は1.42倍 となる。ここで η 、 Δd 、rの値としてどのような測定値を採用しても結果には 大差はない。

式(7・19)、式(7・20)からわかるように溶鉄にテルルを添加することによって脱酸生成物の浮上は促進される。

ところで凝固後の鋼塊内部の脱酸生成物の走査型電子顕微鏡による観察結果か らいずれの脱酸においてもクラスター状の脱酸生成物が観察され、この傾向は同 一の脱酸剤による脱酸ではテルルを添加した場合においてより顕著であった。

脱酸生成物がクラスター状であればその見掛けの半径は大きくなり、この場合 には式(7・17)からあきらかなように浮上速度は大きくなる。

このようなクラスター状の脱酸生成物の浮上に関しては以前にKnuppel ら〔19〕によって報告されている。彼らによれば溶鍋との濡れが悪い固体の脱 酸生成物(アルミナ)同志が接触した際にはその接触点の周囲に空隙が生じ、こ の空隙が生ずることによって脱酸生成物の見掛け密度が減少し、浮上速度の増大 がもたらされるとしている。

このように本章の結果からあきらかなようにテルルの添加によってより大きな クラスター状の脱酸生成物が生成された場合には見掛けの半径が増大するのみで なく見掛けの密度の減少も考えられ、その浮上速度はテルルを添加しない場合よ りもいちじるしく大きくなることが期待できる。

しかし本研究においては高周波炉を用いたため溶湯が激しく誘導かくはんされ 、脱酸生成物の浮上速度にはこの影響の方が大きく、テルル添加の効果について ははっきりと判断できないと考えるのが妥当であると思われる。

7-4-4 脱酸生成物の溶鋼からの分離

Photo.7・1に示したようにテルル添加の効果が最も顕著であったのは この過程であるが、この過程に関して速度論的に取り扱った報告は皆無でありわ ずかに熱力学的に検討したKozakevitchら〔14〕、統計力学的モデ ルを用いて解析したMathewら〔20〕の報告があるにすぎない。

Kozakevitchら〔14〕によれば溶鉄表面にから脱酸生成物が排 出される際の自由エネルギー変化、 Δ Grem,は式(7・21)で表わされる。

 $\Delta Grem = 2 \gamma_{sv} + \gamma_{Lv} - (\gamma_{sv} + \gamma_{sL}) = W_{ad}$ (7・21) したがって脱酸生成物がアルミナの場合の $\Delta Grem は500 erg / cm (テルル$ 無添加)、80 erg / cm (テルル添加)、ジルコニアの場合は820 erg / cm

(テルル無添加)、380erg /cm (テルル添加)となり、テルルの添加によって著しく減少する。しかしテルルの添加によっても△G_{rem} >0であり熱力学的には排出が生ずることはない。実際にはいずれの脱酸においても排出効果がみられ、この原因としては次のことが考えられる。

1) 溶鉄の対流による

2) 溶鉄表面の脱酸生成物があとから浮上してきた脱酸生成物によって押しあ げられる

Mathewら〔20〕によれば溶鋼に循環流があり、脱酸生成物が活発に運動している場合には濡れにくい介在物ほど小さい活性化エネルギーで循環流の外 側つまりルツボ壁、溶鋼の表面への移行が可能になるとしている。

本章での研究では高周波の誘導かくはんによる溶鉄の激しい対流があり溶鉄表 面に浮上した脱酸生成物が再度溶鉄中へ巻き込まれる可能性があるが、溶鉄と脱 酸生成物の付着の仕事が小さい場合には溶鉄表面に脱酸生成物がとりのこされる ものと思われる。

脱酸生成物の順次の押し上げ効果については時間の経過にともなって排出され

る脱酸生成物の量は多くなりこれを押し上げるほどのエネルギーをあとから浮上 してきた脱酸生成物が有しているとは考えられないためこの効果はほとんど期待 できない。

7・5 結 言

アルミニウム、Si-Al合金、ジルコニウムによる溶鉄の脱酸を行ない界面 化学的な立場から検討を加えた。

- 1) いずれの脱酸においてもテルルを添加することによって鋼の清浄度の向上 がみられる。
- 2) 脱酸機構の素過程において特に5)の溶調からの脱酸生成物の分離の過程 が鋼の清浄度を左右し、脱酸生成物の分離性はテルルの添加による付着の 仕事の減少で説明できる。

第? 章の文献

- 1) F.Hartmann: Stahl u. Eisen, 65 (1945) p.29
- 2) G.Rangue: Stahl u. Eisen, 64 (1949) p.459,473
- 3) E.Plockinger, R.Rosegger : Stahl u. Eisen, 80 (1960) , p.659
- 4) 堀籠、新名、佐藤、若林: 鉄と鋼,59 (1973) P.816
- 5) 向井, J.E.Elliott: 鉄と鋼, 60 (1974) s.45
- 5) 沢, 渋谷, 池田: 日特技報,11 (1976) p.1
- 7) U.Lindburg & K.Torsell: Trans.Met.Soc.AIME,242 (1968) p.94
- 8) M.L.Turpin & J.F.Elliott: JISI,201 (1966) p.217
- 9) 宮下芳雄:日本鋼管技報、4 (1965) p.41
- 10) E.T.Turkdorgan: JISI, (1966) p.914
- 11) 松下、佐野、塩見: 鉄と鋼、51 (1965) p.19
- 12) W.D.Kingery & M.Berg : J.Appl.Phys., 26 (1955) p.1205
- 13) 塩原 融: 早稲田大学学位論文 "溶鉄のAl系脱酸剤による脱酸の速度論的研究"(1979)
- 14) G.C.Kuczynski : Trans.Met.Soc.AIME,185 (1949) p.169
- 15) P.Kozakevitch : Mem.Sci.Rev.Met.,68 (1971) p.636
- 16) たとえば 成田 貴一: " 溶鋼の脱酸" 鉄鋼製錬の基礎、日本鉄鋼協会編,
 (1968)
- 17) K.K.Prokhorenko et al : "Voprosy Proizvodstva Stali", Naukova Dumka, (1965)
- 18) H.Schenck, M.G.Frohberg & K.Hoffmann : Arch. Eisenhuttenw., 34 (1953) p.93
- 19) H.Knuppel, K.Brotzmann & N.W.Forster: Stahl und Eisen, 85 (1965) , p.675
- 20) P.M.Mathew, M.G.Frohberg & M.L.Kapoor : Arch. Eisenhuttenw., 46 (1975) ,p.371

第8章 総括

本論文は冶金反応において重要な役割を演じている界面、特に気 - 液、固 - 液 界面、の性質をあきらかにするため溶鋼の表面張力および溶鋼による固体酸化物 の濡れ性について測定し考察を行なった。

本論文によって得られた結果の概要は次の通りである。

第1章は序論で、高温冶金プロセスにおける濡れ性の測定の重要性を述べると ともにその測定の原理、従来の研究の概要および問題点を指摘した。

第2章では溶融純金属による固体酸化物の濡れ性を測定し、これら両者の間に 反応がない場合には濡れ性は酸化物の標準生成自由エネルギーと固体酸化物を構 成する金属のイオン半径によって概ね決定されることを示した。

第3章では溶融純鉄による固体酸化物の濡れ性を測定し、濡れ性におよぼす固 体酸化物の表面の粗さ、測定温度の影響を求め、さらに溶融純鉄と固体酸化物と の間には一部化学的な相互作用が働いていることをあきらかにした。

第4章では溶鉄による固体酸化物の濡れ性におよぼす合金元素(マンガン、シリコン)の影響を測定し、これら元素を含む場合の濡れ性を考える際には気相の酸素分圧が重要な因子となることを示した。

第5章では溶融金属に対して表面活性元素として作用するVI-b族元素(O, S, Se, Te)に注目し、溶鉄の表面張力および固体酸化物の濡れ性におよば すこれら元素の影響について測定し、溶鉄の表面張力におよぼすこれら元素の影響は周期律表の原子番号の順に大きくなることをあきらかにするとともに溶鉄に セレン、テルルを添加することによって固体酸化物は濡れ難くなることをあきら かにした。

さらに界面化学的に興味があるだけでなく実操業においても重要であると考え られる複数の表面活性元素を含む場合の溶鉄の表面張力について検討するために 溶融Fe-O-S系の表面張力を測定し、その表面張力は次式で表すことができ ることを示した。

 γ =1910-825 log (1+210 wt%0) -540 log (1+185 wt%S)

ただし 0 <wt%0 /0.016 + wt%S /0.0300≤1 (at 1600 ℃)

またこの式を用いることにより従来の溶融純鉄の表面張力における測定の大き な相異は試料中の不純物としての酸素、硫黄によるものであることをあきらかに した。

第6章では減圧下での操業において問題となる耐火物の安定性を検討するため 溶融鉄合金による固体酸化物の濡れ性を減圧下で測定し、その挙動が大気圧下と は大きく異なることをあきらかにした。

第7章では製鋼反応において最も重要なプロセスである脱酸過程に本研究の結 果を適用し、従来明白な説明がなされていなかったアルミナクラスターの排出に およばすテルルの効果についてその原因を解明するとともに、テルルがアルミニ ウムによる脱酸以外のA1-Si合金による脱酸、ジルコニウムによる脱酸にも 有効に作用することを見出し、これら現象が溶鋼による固体酸化物の濡れ性で説 明できることを示した。
謝辞

本研究を遂行するにあたり、常に適切な御指導を賜りました大阪大学教授荻野 和巳先生に心より御礼申しあげます。また本研究の初期において御指導を賜りま した大阪大学名誉教授足立彰先生に厚く御礼申しあげます。

本論文を作成するにあたり、有益なる御助言と御教示を賜りました大阪大学教授岩本信也先生、幸塚謇作先生、森田善一郎先生に深く感謝いたします。

また本研究の計画、実行にあたり日頃から御援助を戴いた大阪大学助手西脇醇 先生、原茂太先生、また技術的な御援助を戴いた同技官中井正雄氏に厚く御礼申 しあげます。

さらに共同研究者として研究にあたり多大なる御協力を頂いた大阪大学工学部 冶金学教室荻野研究室の卒業生、在学生の皆様に心より御礼申しあげます。

本研究の遂行にあたり、大阪大学工学部冶金工学科・金属材料工学科の教職員の皆様には日頃より御指導、御鞭達戴きました。ここに厚く御礼申しあげます。

本研究の費用の一部は文部省科学研究費によるものであり、ここに記して感謝の意を表します。

発表論文

本論文に関する発表論文は次の通りである。

- 溶融純鉄による固体酸化物の濡れ性 鉄と鋼 59 (1973) p.1237
 溶鉄による固体酸化物の濡れ性におよぼす酸素の影響 鉄と鋼 59 (1973) p.1380
 溶鉄の表面張力および固体酸化物の濡れ性におよぼすSe、Teの影響 鉄と鋼 55 (1980) p.179
- 4) 溶融Fe-O-S系の表面張力 鉄と鋼 (投稿中 昭和57年11月11日受理)
- 5) Role of Interfacial Phenomena in Deoxidation Process of Molten Iron Intern. Sympo. on the Role of Interface in Metallurgical Reactions, Hamilton, Canada (1981) (Canad. Met. Q.; 22 (1983) No.1 (in press))
- 6) The Effect of Selenium and Tellurium on the Surface Tension of Molen Iron and Wettability of Solid Oxide ISIJ 23 (1983) No.3 (in press)
- 7) Wettability of Solid Oxides by Liquid Iron Technol. Rept. of Osaka Univ.20 (1970) p.509
- 8) Surface Chemical Study on Molten Iron -Solid Oxide System under Vacuum Proceedings of the 4th International Conference on

Vacuum Metallurgy p.47

 Wettability of Alumina by Iron Alloys and Dissolution of Alumina in Slag

The 6th Japan-USSR Joint Symp. on Phys. Chem. of Metallurgical Process (1977) Tokyo Japan p.1

- 10) 溶鉄合金による固体酸化物の濡れ性 学振19委 製鋼反応協議会 昭和50年 9月
- 11) 溶鉄の脱酸におよぼすTeの影響学振19委 製鋼反応協議会 昭和54年 5月
- 12) 減圧下における溶融鉄合金による固体酸化物の濡れ性

 鉄と鋼

 (投稿予定)