

Title	Simple symmetric sets and simple groups
Author(s)	Nobusawa, Nobuo
Citation	Osaka Journal of Mathematics. 1977, 14(2), p. 411-415
Version Type	VoR
URL	https://doi.org/10.18910/9463
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Nobusawa, N.
Osaka J. Math.
14 (1977), 411-415

SIMPLE SYMMETRIC SETS AND SIMPLE GROUPS

Dedicated to the memory of Dr. Taira Honda

NOBUO NOBUSAWA

(Received December 15, 1975)

(Revised October 12, 1976)

1. Introduction

A binary system A is called a symmetric set if $a \circ a = a$, $(b \circ a) \circ a = b$ and $(b \circ c) \circ a = (b \circ a) \circ (c \circ a)$. These conditions imply that the right multiplication by an element a , which we denote by S_a (i.e., $b \circ a = bS_a$), is an automorphism of A of order 2 leaving a fixed. Note that, if τ is an automorphism of A , then $(b \circ a)\tau = b\tau \circ a\tau$, or $S_{a\tau} = \tau^{-1}S_a\tau$. Every group is a symmetric set by $bS_a = ab^{-1}a$. Also the subset of involutions in a group is a symmetric set. For more of symmetric sets, see [3] and [4].

The group of automorphisms of A generated by all S_a ($a \in A$) is denoted by G , and the subgroup of G generated by all S_aS_b ($a, b \in A$) is denoted by H . The latter is called the group of displacements. It is easy to see that H is generated by S_aS_e (e is a fixed element and $a \in A$). H is a normal subgroup of G of index 2. A subset B of A is called a symmetric subset if it is closed under the binary multiplication. Every one-point subset is a symmetric subset, and so is A . All the other symmetric subsets are called proper symmetric subsets. A symmetric subset B is called quasi-normal if $B\tau \cap B = B$ or \emptyset (the empty set) for every element τ in G . Now we define a simple symmetric set to be one which has no proper quasi-normal symmetric subset. Theorem and Corollary obtained in 2 state that if A is simple then H is either a simple group or a direct product of two simple groups which are conjugate each other in G . If moreover A is finite, then $|H| = |A|^2$ in case H is not simple. Using this fact, we can show a new proof of the simplicity of the alternating group A_n ($n \geq 5$) in 3 by showing that the subset of all transpositions in S_n (the symmetric group of n letters) is a simple symmetric set. This idea is carried out in 4 to obtain examples of simple symmetric sets in vector spaces with bilinear symmetric forms over F_2 , the field consisting of two elements 0 and 1. As special cases, we obtain simple symmetric sets of positive roots of type E_6 , E_7 and E_8 in Lie algebra theory.

REMARK. The above definition of a simple symmetric set is stronger than a standard definition which should be based on non-existence of normal symmetric subsets (See [3]) rather than quasi-normal symmetric subsets. However, the main technique used in this note is to show non-existence of quasi-normal symmetric subsets. So, we keep our definition.

2. The group of displacements of a simple symmetric set

Theorem. *If A is a simple symmetric set, then the group of displacements is either a simple group or a direct product of two simple groups which are conjugate each other in G .*

Proof. First we note that if A is simple then it is transitive, *i.e.*, $A=aG$ ($=aH$) for an element a in A . For, xG for any element x in A is seen to be a quasi-normal symmetric subset and xG can not be equal to x for all x in A , and hence $A=aG$ with some element a in A . Then of course $A=xG$ for any element x in A . Now suppose that H is not simple, and let N be a proper normal subgroup of H . Clearly $S_aNS_a=S_bNS_b$ for any a and b . Put $N'=S_aNS_a$. NN' and $N \cap N'$ are normal subgroup of G contained in H . Generally let J be a normal subgroup of G contained in H . Consider $B=eJ$ for an element e in A . B is a symmetric subset. Since $B\sigma=eJ\sigma=e\sigma J$ for σ in G , we have $B\sigma \cap B=B$ or ϕ , *i.e.*, B is quasi-normal. Since A is simple by the assumption, $eJ=e$ or A . If $eJ=e$, then $aJ=a$ for every element a in A , because we have $e\sigma=a$ with some element σ in G due to the transitivity of A and then $aJ=e\sigma J=eJ\sigma=e\sigma=a$. So, if $eJ=e$, then $J=1$. If $eJ=A$, then, for an arbitrary element a in A , $a=a\sigma$ with some element σ in J . Then $S_a=S_{a\sigma}=\sigma^{-1}S_\sigma\sigma=\tau S_\sigma$ for some element τ in J . This implies that S_aS_e is contained in J for every element a in A . Since H is generated by S_aS_e ($a \in A$), we have $J=H$. Now especially let $J=NN'$. Since $NN' \neq 1$, we have $NN'=H$. Let $J=N \cap N'$. Since $N \cap N' \neq H$, we have $N \cap N'=1$. Thus H is a direct product of N and N' . Lastly, we show that N is simple. If M is a normal subgroup of N , then it is a normal subgroup of H . If $M \neq 1$, H is a direct product of M and S_aMS_a as above, which implies $M=N$. Hence N is a simple group.

The author owes the following corollary to Prof. H. Nagao.

Corollary. *Suppose that A is a finite simple symmetric set. If H is not simple, then $|H|=|A|^2$.*

Proof. Suppose that A is finite and simple and that H is not simple. Then $H=N \times N'$ (a direct product) as in Theorem. The mapping f of A in G defined by $f(a)=S_a$ is a homomorphism of symmetric sets. Therefore we can see that $f^{-1}(S_a)$ is a quasi-normal symmetric subset for every a in A .

From this, we can conclude that $f^{-1}(S_a)=a$ for every element a and hence f is a monomorphism. On the other hand, A is transitive, i.e., $A=aH$. So, $f(A)=\{\sigma^{-1}S_a\sigma \mid \sigma \in H\}$. Then $|A|=|f(A)|=|H| \cdot |C_H(S_a)|$. Here $C_H(S_a)=\{\sigma \in H \mid S_a\sigma=\sigma S_a\}$. $H=N \times S_a N S_a$ implies that $C_H(S_a)=\{\sigma S_a \sigma S_a \mid \sigma \in N\}$. Thus, $|C_H(S_a)|=|N|$. Then $|A|=|H| \cdot |C_H(S_a)|=|N|^2 \cdot |N|=|N|$. Therefore, $|H|=|A|^2$.

3. Simple symmetric sets in the symmetric groups S_n ($n \geq 5$)

Let S_n be the symmetric group of n letters where $n \geq 5$. Consider the subset A of S_n consisting of all transpositions (i, j) ($1 \leq i \neq j \leq n$). A is a symmetric set. Here $(i, j)S_{(s,t)}=(p, q)$ where $p=i^{(s,t)}$ and $q=j^{(s,t)}$. We show that A is simple. Let B be a quasi-normal symmetric subset which contains at least two elements a and b . Since $a \neq b$ and $n \geq 5$, there exists an element c in A such that $aS_c \neq a$ and $bS_c=b$. The latter implies that $BS_c=B$ due to the definition of quasi-normality of B . Then aS_c is in B . Let $d=aS_c$. It is easy to see that $aS_c=d$, $cS_d=a$ and $dS_a=c$, i.e., a , c and d form a cycle. For example, $a=(1, 2)$, $c=(2, 3)$ and $d=(1, 3)$. In this case, for any element x which is not equal to c , we have that either $aS_x=a$ or $dS_x=d$. This implies that $BS_x=B$ for every element x in A . On the other hand, we can easily see that A is transitive. Therefore, $B=A$ and A is simple. Clearly, $|H| \neq |A|^2$, and hence by Corollary H is a simple group. Of course, $H=A_n$.

REMARK. In the above, we can take the set consisting of all (i, j) (r, s) where i, j, r and s are all distinct. The set is also a simple symmetric set, whose order is greater than that of the set given in 3. For example, if we take $n=5$, we get two simple symmetric sets. One has order 10 and the other 15. But both have the same group of displacements which is A_5 .

4. Symmetric sets of vectors over F_2

Let V be a finite dimensional vector space over $F_2=\{0, 1\}$. Given a bilinear symmetric form $Q(x, y)$ on V with $Q(x, x)=0$, we can give a symmetric structure on V by defining $aS_b=a+Q(a, b)b$. In other words, $aS_b=a$ or $a+b$ according to $Q(a, b)=0$ or $\neq 0$. A cycle in a symmetric set is defined to be a symmetric subset generated by two elements x and y such that $xS_y \neq x$.

Proposition 1. *Every cycle in V has order 3. If $\{a, b, c\}$ is a cycle, then, for any element x in V , at least one of a , b and c is left fixed by S_x .*

Proof. In our case, $c=a+b$. Then $Q(c, x)=Q(a, x)+Q(b, x)$. So at least one of $Q(a, x)$, $Q(b, x)$ and $Q(c, x)$ is equal to 0.

Proposition 2. *Let A be a symmetric subset of V and B a quasi-normal sym-*

metric subset of A . If B contains a cycle, then $BS_x=B$ for every element x in A .

Proof. Proposition 2 is a direct consequence of Proposition 1 and the definition of a quasi-normal symmetric subset.

Proposition 3. Suppose that A is transitive. Suppose also that, if $xS_y=x$, there exists an element u such that S_u moves one of x and y and leaves the other fixed. Then A is a simple symmetric set.

Proof. Suppose that all the conditions in Proposition 3 are satisfied. Let B be a quasi-normal symmetric subset containing at least two elements x and y . If $xS_y \neq x$, then $BS_a=B$ for every element a in A by Proposition 2. So, assume that $xS_y=x$. Then we have an element u such that, say, $xS_u \neq x$ and $yS_u=y$. The latter implies that $BS_u=B$. Then xS_u is in B . B contains a cycle $\{x, xS_u, u\}$, and hence as in former $BS_a=B$ for every element a in A . Since A is transitive, we have $B=A$. So, A is simple.

In the following, we take a special Q as follows. Let $Q(x)=\sum_{i < j} x_i x_j$, where $x=(x_1, \dots, x_n)$. $n=\dim V$. Let $Q(x, y)=Q(x+y)-Q(x)-Q(y)$. Then $Q(x, y)=\sum_{i \neq j} x_i y_j$. Denote by V^* the set of all non-zero vectors in V and by V_1 the set of all vectors x such that $Q(x)=1$. We also denote by $V^{(i)}$ the set of all vectors that have exactly i non-zero components (i.e., i ones and $n-i$ zeros). For the following examples, also see [1] and [2].

EXAMPLE 1. Let $n=6$ and $A=V_1$. From the definition of $Q(x)$, we can see that $A=V^{(2)} \cup V^{(3)} \cup V^{(6)}$. First of all we note that $V^{(2)}$ is a symmetric subset which is isomorphic with the symmetric set consisting of transpositions in S_6 . As a matter of fact, if we denote by $1(i, j)$ the vector which has 1 in the i -th and j -th positions and 0 everywhere else, the correspondence $1(i, j) \rightarrow (i, j)$ gives the isomorphism of symmetric sets. Elements in $V^{(3)}$ are denoted by $1(i, j, k)$ as above. Then $1(i, j)S_{1(s, t, u)}=1(i, j)$ if and only if $\{i, j\} \cap \{s, t, u\}=\{r\}$ (one-point set). In this case, $1(i, j)S_{1(s, t, u)}=1(j, t, u)$ if, say, $i=s=r$. $V^{(6)}$ contains only one element which we denote by $1(1, 2, \dots, 6)$. Then $1(i, j)S_{1(1, 2, \dots, 6)}=1(i, j)$ and $1(i, j, k)S_{1(1, 2, \dots, 6)}=1(r, s, t)$ where $\{i, j, k, r, s, t\}=\{1, 2, \dots, 6\}$. These rules determine the binary operation in A . Now we can show that A is a simple symmetric set. For it, we check the conditions in Proposition 3. A is seen to be transitive. Now let x and y be such that $xS_y=x$. If x and y are in $V^{(2)}$, we can easily find u such that $xS_u \neq x$ and $yS_u=y$. If $x=1(i, j)$ and $y=1(r, s, t)$, then $\{i, j\} \cap \{r, s, t\}=\emptyset$ or, say, $i=r$ and $j=s$. In the former case, let $u=1(j, k)$ where $k \neq i, j, r, s, t$. In the latter case, let $u=1(i, t)$. If x and y are in $V^{(3)}$, $xS_y=x$ implies that, if $x=1(i, j, k)$ and $y=1(r, s, t)$, then $\{i, j, k\} \cap \{r, s, t\}=\{h\}$ (one element). We may assume that $i=h=r$. Then let $u=1(j, g)$ where $\{j, g\} \cap \{r, s, t, k\}=\emptyset$. When lastly $x=1(1, 2, \dots, 6)$ and y any element such that

$xS_y=x$, it is not difficult to find u such that $xS_u=x$ and $yS_u\neq y$. Thus we have shown that A is simple.

Next, we consider basis or generators of A . Clearly, we have generators $1(1, 2)=a_1$, $1(2, 3)=a_2$, $1(3, 4)=a_3$, $1(4, 5)=a_4$, $1(5, 6)=a_5$ and $1(1, 2, 3)=a_6$. In a similar sense as Coxeter diagram, we have a diagram

$$\begin{array}{cccccc} a_1 & - & a_2 & - & a_3 & - & a_4 & - & a_5 \\ & & & & \downarrow & & & & \\ & & & & a_6 & & & & \end{array}$$

From this fact, we can show that A is isomorphic with the symmetric set of positive roots of type E_6 . Note $|A|=36$. In this case, $H=\Omega_6(F_2, Q)$. In the following examples, we state the results and details are omitted.

EXAMPLE 2. $n=6$ and $A=V^*$. A is simple and $|A|=63$. A is isomorphic with the set of positive roots of type E_7 . In this case, $H=PSp_6(F_2)$ ($=Sp_6(F_2)$).

EXAMPLE 3. $n=8$ and $A=V_1=V^{(2)} \cup V^{(3)} \cup V^{(6)} \cup V^{(7)}$. A is simple and $|A|=120$. A is isomorphic with the set of positive roots of type E_8 . $H=\Omega_8(F_2, Q)$.

EXAMPLE 4. $n=8$ and $A=V^*$. A is simple and $|A|=255$. $H=PSp_8(F_2)$.

EXAMPLE 5. $n=10$ and $A=V_1=V^{(2)} \cup V^{(3)} \cup V^{(6)} \cup V^{(7)} \cup V^{(10)}$. A is simple and $|A|=496$.

EXAMPLE 6. $n=10$ and $A=V^*$. A is simple and $|A|=1023$.

EXAMPLE 7. $n=11$ and $A=V^{(2)} \cup V^{(6)} \cup V^{(10)}$. A is simple and $|A|=528$.

EXAMPLE 8. $n=12$ and $A=V^{(2)} \cup V^{(6)} \cup V^{(10)}$. A is simple and $|A|=1056$.

UNIVERSITY OF HAWAII

References

- [1] N. Bourbaki: *Groupes et algèbres de Lie*, Chaps IV, V et VI, Hermann, Paris, 1968.
- [2] H.M.S. Coxeter and W.O.J. Moser: *Generators and relations for discrete groups*. 3rd ed., Springer-Verlag, Berlin, New York, 1972.
- [3] M. Kano, H. Nagao and N. Nobusawa: *On finite homogeneous symmetric sets*, *Osaka J. Math.* **13** (1976), 399–406.
- [4] N. Nobusawa: *On symmetric structure of a finite set*. *Osaka J. Math.* **11** (1974) 569–575.

