<table>
<thead>
<tr>
<th>Title</th>
<th>Simple symmetric sets and simple groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nobusawa, Nobuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 14(2) P.411-P.415</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1977</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9463</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9463</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
SIMPLE SYMMETRIC SETS AND SIMPLE GROUPS

Dedicated to the memory of Dr. Taira Honda

Nobuo Nobusawa

(Received December 15, 1975)
(Revised October 12, 1976)

1. Introduction

A binary system \(A \) is called a symmetric set if \(a \circ a = a, (b \circ a) \circ a = b \) and \((b \circ c) \circ a = (b \circ a) \circ (c \circ a) \). These conditions imply that the right multiplication by an element \(a \), which we denote by \(S_a \) (i.e., \(b \circ a = bS_a \)), is an automorphism of \(A \) of order 2 leaving \(a \) fixed. Note that, if \(\tau \) is an automorphism of \(A \), then \((b \circ a)\tau = b\tau \circ a\tau \), or \(S_{a\tau} = \tau^{-1}S_a \tau \). Every group is a symmetric set by \(bS_a = ab^{-1}a \). Also the subset of involutions in a group is a symmetric set. For more of symmetric sets, see [3] and [4].

The group of automorphisms of \(A \) generated by all \(S_a \) \((a \in A) \) is denoted by \(G \), and the subgroup of \(G \) generated by all \(S_aS_e \) \((a, b \in A) \) is denoted by \(H \). The latter is called the group of displacements. It is easy to see that \(H \) is generated by \(S_aS_e \) \((e \) is a fixed element and \(a \in A) \). \(H \) is a normal subgroup of \(G \) of index 2. A subset \(B \) of \(A \) is called a symmetric subset if it is closed under the binary multiplication. Every one-point subset is a symmetric subset, and so is \(A \). All the other symmetric subsets are called proper symmetric subsets. A symmetric subset \(B \) is called quasi-normal if \(B\tau \cap B = B \) or \(\phi \) (the empty set) for every element \(\tau \) in \(G \). Now we define a simple symmetric set to be one which has no proper quasi-normal symmetric subset. Theorem and Corollary obtained in 2 state that if \(A \) is simple then \(H \) is either a simple group or a direct product of two simple groups which are conjugate each other in \(G \). If moreover \(A \) is finite, then \(|H| = |A|^2 \) in case \(H \) is not simple. Using this fact, we can show a new proof of the simplicity of the alternating group \(A_n \) \((n \geq 5) \) in 3 by showing that the subset of all transpositions in \(S_n \) (the symmetric group of \(n \) letters) is a simple symmetric set. This idea is carried out in 4 to obtain examples of simple symmetric sets in vector spaces with bilinear symmetric forms over \(F_2 \), the field consisting of two elements 0 and 1. As special cases, we obtain simple symmetric sets of positive roots of type \(E_6, E_7 \), and \(E_8 \) in Lie algebra theory.
Remark. The above definition of a simple symmetric set is stronger than a standard definition which should be based on non-existence of normal symmetric subsets (See [3]) rather than quasi-normal symmetric subsets. However, the main technique used in this note is to show non-existence of quasi-normal symmetric subsets. So, we keep our definition.

2. The group of displacements of a simple symmetric set

Theorem. If A is a simple symmetric set, then the group of displacements is either a simple group or a direct product of two simple groups which are conjugate each other in G.

Proof. First we note that if A is simple then it is transitive, i.e., $A=aG (=aH)$ for an element a in A. For, xG for any element x in A is seen to be a quasi-normal symmetric subset and xG can not be equal to x for all x in A, and hence $A=aG$ with some element a in A. Then of course $A=xG$ for any element x in A. Now suppose that H is not simple, and let N be a proper normal subgroup of H. Clearly $S_aNS_a=S_bNS_b$ for any a and b. Put $N'=S_aNS_a$. NN' and $N\cap N'$ are normal subgroup of G contained in H. Generally let J be a normal subgroup of G contained in H. Consider $B=eJ$ for an element e in A. B is a symmetric subset. Since $B\sigma=eJ\sigma=e\sigma J$ for σ in G, we have $B\sigma \cap B=B$ or ϕ, i.e., B is quasi-normal. Since A is simple by the assumption, $eJ=e$ or A. If $J=e$, then $eJ=a$ for every element a in A, because we have $e\sigma=a$ with some element σ in G due to the transitivity of A and then $eJ=\sigma J=\sigma=eJ=\sigma=a$. So, if $eJ=e$, then $J=I$. If $eJ=A$, then, for an arbitrary element a in A, $e\sigma=a$ with some element σ in J. Then $S_a=S_{e\sigma}=\sigma^{-1}S_a\sigma=\tau S_a$ for some element τ in J. This implies that S_aS_b is contained in J for every element a in A. Since H is generated by $S_aS_b (a\in A)$, we have $J=H$. Now especially let $J=NN'$. Since $NN'=1$, we have $NN'=H$. Let $J=J\cap J$. Since $N\cap N'\neq H$, we have $N\cap N'=1$. Thus H is a direct product of N and N'. Lastly, we show that N is simple. If M is a normal subgroup of N, then it is a normal subgroup of H. If $M\cap 1$, H is a direct product of M and S_aMS_a as above, which implies $M=N$. Hence N is a simple group.

The author owes the following corollary to Prof. H. Nagao.

Corollary. Suppose that A is a finite simple symmetric set. If H is not simple, then $|H|=|A|^2$.

Proof. Suppose that A is finite and simple and that H is not simple. Then $H=N\times N'$ (a direct product) as in Theorem. The mapping f of A in G defined by $f(a)=S_a$ is a homomorphism of symmetric sets. Therefore we can see that $f^{-1}(S_a)$ is a quasi-normal symmetric subset for every a in A.

From this, we can conclude that \(f^{-1}(S_a) = a \) for every element \(a \) and hence \(f \) is a monomorphism. On the other hand, \(A \) is transitive, i.e., \(A = aH \). So, \(f(A) = \{ \sigma^{-1}S \sigma \mid \sigma \in H \} \). Then \(|A| = |f(A)| = |H: C_H(S_a)| \). Here \(C_H(S_a) = \{ \sigma \in H \mid S \sigma = \sigma S \} \). \(H = N \times S_aN \) implies that \(C_H(S_a) = \{ \sigma S_a \sigma S_a \mid \sigma \in N \} \). Thus, \(|C_H(S_a)| = |N| \). Then \(|A| = |H| / |C_H(S_a)| = |N|^2 |N| = |N| \). Therefore, \(|H| = |A|^2 \).

3. Simple symmetric sets in the symmetric groups \(S_n (n \geq 5) \)

Let \(S_n \) be the symmetric group of \(n \) letters where \(n \geq 5 \). Consider the subset \(A \) of \(S_n \) consisting of all transpositions \((i, j) \) \((1 \leq i < j \leq n)\). \(A \) is a symmetric set. Here \((i, j)S_{(i, j)} = (p, q) \) where \(p = i^{(r-t)} \) and \(q = j^{(r-t)} \). We show that \(A \) is simple. Let \(B \) be a quasi-normal symmetric subset which contains at least two elements \(a \) and \(b \). Since \(a \neq b \) and \(n \geq 5 \), there exists an element \(c \) in \(A \) such that \(aS_c \neq a \) and \(bS_c = b \). The latter implies that \(BS_c = B \) due to the definition of quasi-normality of \(B \). Then \(aS_c \) is in \(B \). Let \(d = aS_c \). It is easy to see that \(aS_c = d, eS_c = a \) and \(dS_c = c \), i.e., \(a, c \) and \(d \) form a cycle. For example, \(a = (1, 2), c = (2, 3) \) and \(d = (1, 3) \). In this case, for any element \(x \) which is not equal to \(c \), we have that either \(aS_c = a \) or \(dS_c = d \). This implies that \(BS_c = B \) for every element \(x \) in \(A \). On the other hand, we can easily see that \(A \) is transitive. Therefore, \(B = A \) and \(A \) is simple. Clearly, \(|H| \neq |A|^2 \), and hence by Corollary \(H \) is a simple group. Of course, \(H = A \).

Remark. In the above, we can take the set consisting of all \((i, j) \) \((r, s) \) where \(i, j, r \) and \(s \) are all distinct. The set is also a simple symmetric set, whose order is greater than that of the set given in 3. For example, if we take \(n = 5 \), we get two simple symmetric sets. One has order 10 and the other 15. But both have the same group of displacements which is \(A_5 \).

4. Symmetric sets of vectors over \(F_2 \)

Let \(V \) be a finite dimensional vector space over \(F_2 := \{0, 1\} \). Given a bilinear symmetric form \(Q(x, y) \) on \(V \) with \(Q(x, x) = 0 \), we can give a symmetric structure on \(V \) by defining \(aS_b = a + Q(a, b)b \). In other words, \(aS_b = a \) or \(a + b \) according to \(Q(a, b) = 0 \) or \(\neq 0 \). A cycle in a symmetric set is defined to be a symmetric subset generated by two elements \(x \) and \(y \) such that \(xS_y = x \).

Proposition 1. Every cycle in \(V \) has order 3. If \(\{a, b, c\} \) is a cycle, then, for any element \(x \) in \(V \), at least one of \(a, b \) and \(c \) is left fixed by \(S_x \).

Proof. In our case, \(c = a + b \). Then \(Q(c, x) = Q(a, x) + Q(b, x) \). So at least one of \(Q(a, x), Q(b, x) \) and \(Q(c, x) \) is equal to 0.

Proposition 2. Let \(A \) be a symmetric subset of \(V \) and \(B \) a quasi-normal sym-
metric subset of A. If B contains a cycle, then $BS_x = B$ for every element x in A.

Proof. Proposition 2 is a direct consequence of Proposition 1 and the definition of a quasi-normal symmetric subset.

Proposition 3. Suppose that A is transitive. Suppose also that, if $xS_y = x$, there exists an element u such that S_u moves one of x and y and leaves the other fixed. Then A is a simple symmetric set.

Proof. Suppose that all the conditions in Proposition 3 are satisfied. Let B be a quasi-normal symmetric subset containing at least two elements x and y. If $xS_y = x$, then $BS_y = B$ for every element a in A by Proposition 2. So, assume that $xS_y = x$. Then we have an element u such that, say, $xS_u = x$ and $yS_u = y$. The latter implies that $BS_y = B$. Then $yS_a = B$. This contains a cycle $\{x, y, z\}$, and hence as in former $BS_x = B$ for every element a in A. Since A is transitive, we have $B = A$. So, A is simple.

In the following, we take a special Q as follows. Let $Q(x) = \sum_{i, j} x_i x_j$, where $x = (x_1, \ldots, x_n)$. $n = \dim V$. Let $Q(x, y) = Q(x+y) - Q(x) - Q(y)$. Then $Q(x, y) = \sum_{i, j} x_i y_j$. Denote by V^* the set of all non-zero vectors in V and by V_1 the set of all vectors x such that $Q(x) = 1$. We also denote by $V^{(i)}$ the set of all vectors that have exactly i non-zero components (i.e., i ones and $n - i$ zeros). For the following examples, also see [1] and [2].

Example 1. Let $n = 6$ and $A = V_1$. From the definition of $Q(x)$, we can see that $A = V^{(2)} \cup V^{(3)} \cup V^{(6)}$. First of all we note that $V^{(2)}$ is a symmetric subset which is isomorphic with the symmetric set consisting of transpositions in S_6. As a matter of fact, if we denote by $1(i, j)$ the vector which has 1 in the i-th and j-th positions and 0 everywhere else, the correspondence $1(i, j) \rightarrow (i, j)$ gives the isomorphism of symmetric sets. Elements in $V^{(3)}$ are denoted by $1(i, j, k)$ as above. Then $1(i, j)S_y\{i, j, k\} = 1(i, j)$ if and only if $\{i, j\} \cap \{s, t, u\} = \{r\}$ (one-point set). In this case, $1(i, j)S_y\{i, j, k\} = 1(j, t, u)$ if, say, $i = s = r$. $V^{(6)}$ contains only one element which we denote by $1(1, 2, \ldots, 6)$. Then $1(i, j)S_y\{1, 2, \ldots, 6\} = 1(i, j)$ and $1(i, j, k)S_y\{1, 2, \ldots, 6\} = 1(r, s, t)$ where $\{i, j, k, r, s, t\} = \{1, 2, \ldots, 6\}$. These rules determine the binary operation in A. Now we can show that A is a simple symmetric set. For it, we check the conditions in Proposition 3. A is seen to be transitive. Now let x and y be such that $xS_y = x$. If x and y are in $V^{(3)}$, we can easily find u such that $xS_u = x$ and $yS_u = y$. If $x = 1(i, j)$ and $y = 1(r, s, t)$, then $\{i, j\} \cap \{r, x, s\} = \phi$ or, say, $i = r$ and $j = s$. In the former case, let $u = 1(j, k)$ where $k = i, j, r, s, t$. In the latter case, let $u = 1(i, t)$. If x and y are $V^{(3)}$, $xS_y = x$ implies that, if $x = 1(i, j, k)$ and $y = 1(r, s, t)$, then $\{i, j, k\} \cap \{r, s, t\} = \phi$ (one element). We may assume that $i = h = r$. Then let $u = 1(j, g)$ where $\{j, g\} \cap \{r, s, t, k\} = \phi$. When lastly $x = 1(1, 2, \ldots, 6)$ and y any element such that
xS_y=x, it is not difficult to find \(u \) such that \(xS_u=x \) and \(yS_u=y \). Thus we have shown that \(A \) is simple.

Next, we consider basis or generators of \(A \). Clearly, we have generators \(1(1, 2)=a_1, 1(2, 3)=a_2, 1(3, 4)=a_3, 1(4, 5)=a_4, 1(5, 6)=a_5 \) and \(1(1, 2, 3)=a_6 \). In a similar sense as Coxeter diagram, we have a diagram

\[
\begin{array}{cccccc}
& a_1 & a_2 & a_3 & a_4 & a_5 \\
\downarrow & & & & & \downarrow \\
& & & a_6 & \end{array}
\]

From this fact, we can show that \(A \) is isomorphic with the symmetric set of positive roots of type \(E_6 \). Note \(|A|=36\). In this case, \(H=\Omega_6(F_2, Q) \). In the following examples, we state the results and details are omitted.

Example 2. \(n=6 \) and \(A=V^* \). \(A \) is simple and \(|A|=63\). \(A \) is isomorphic with the set of positive roots of type \(E_7 \). In this case, \(H=PSp_6(F_2) (=Sp_6(F_2)) \).

Example 3. \(n=8 \) and \(A=V_1=V^{(2)} \cup V^{(3)} \cup V^{(6)} \cup V^{(7)} \). \(A \) is simple and \(|A|=120\). \(A \) is isomorphic with the set of positive roots of type \(E_8 \). \(H=\Omega_8(F_2, Q) \).

Example 4. \(n=8 \) and \(A=V^* \). \(A \) is simple and \(|A|=255\). \(H=PSp_8(F_2) \).

Example 5. \(n=10 \) and \(A=V_1=V^{(2)} \cup V^{(3)} \cup V^{(6)} \cup V^{(7)} \cup V^{(10)} \). \(A \) is simple and \(|A|=496\).

Example 6. \(n=10 \) and \(A=V^* \). \(A \) is simple and \(|A|=1023\).

Example 7. \(n=11 \) and \(A=V^{(2)} \cup V^{(6)} \cup V^{(10)} \). \(A \) is simple and \(|A|=528\).

Example 8. \(n=12 \) and \(A=V^{(2)} \cup V^{(6)} \cup V^{(10)} \). \(A \) is simple and \(|A|=1056\).

University of Hawaii

References

