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The imputation of unmeasured genotypes is essential in human genetic research, particularly in enhancing the power of genome-
wide association studies and conducting subsequent fine-mapping. Recently, several deep learning-based genotype imputation
methods for genome-wide variants with the capability of learning complex linkage disequilibrium patterns have been developed.
Additionally, deep learning-based imputation has been applied to a distinct genomic region known as the major histocompatibility
complex, referred to as HLA imputation. Despite their various advantages, the current deep learning-based genotype imputation
methods do have certain limitations and have not yet become standard. These limitations include the modest accuracy
improvement over statistical and conventional machine learning-based methods. However, their benefits include other aspects,
such as their “reference-free” nature, which ensures complete privacy protection, and their higher computational efficiency.
Furthermore, the continuing evolution of deep learning technologies is expected to contribute to further improvements in
prediction accuracy and usability in the future.

Journal of Human Genetics; https://doi.org/10.1038/s10038-023-01213-6

INTRODUCTION
The research investigating the impact of genetic variations on
complex human traits has witnessed remarkable progress in recent
years, which can largely be attributed to the advent of genome-wide
association studies (GWAS). GWAS enables the identification of
associations of genotypes with target phenotypes by testing for
differences in the allele frequency of genome-wide genetic variants
between phenotypically different individuals [1]. This has been
facilitated by genotyping arrays that can simultaneously collect
genotype data covering tens of thousands to millions of single-
nucleotide polymorphisms (SNPs) within individual samples at
relatively low costs. However, a single chip possesses the ability to
collect genotypes for a smaller percentage of whole-genome
variants [2]. Hence, achieving wider coverage of variants is warranted
for not missing significant associations and to enhance the power of
GWAS, and also for identifying causal variants directly associated
with the phenotypes of interest (i.e., fine-mapping) [3, 4]. While
whole-genome sequencing is optimal for these purposes, it remains
expensive and presents technical challenges for very large sample
sizes. Therefore, genotypes for unmeasured variants are generally
inferred using inter-variant correlations (i.e., linkage disequilibrium,
LD) constructed from reference panels to facilitate the maximal
coverage of variants. This procedure known as genotype imputation,
also enables the integration of different genotyping platforms,
allowing exploration of previously unattainable sample sizes.
Majority of the current standard genotype imputation tools

use statistical or conventional machine learning methods to infer

genotypes of each variant based on predefined haplotype
hypotheses [5, 6]. Deep learning techniques have recently emerged
as a powerful paradigm in various research and industrial domains
[7]. The deep learning models are able to extract intricate patterns
and learn complex intervariable relationships from vast amounts of
data, and as a result have achieved a higher prediction accuracy in a
wide variety of fields when compared to statistical and conventional
machine learning methods. Indeed, deep learning has been applied
to develop novel genotype imputation methods based on of the
assumption that these models could learn complex LD patterns.
In addition, deep learning-based imputation has been further
applied to the major histocompatibility complex (MHC), which is a
distinct genomic region, specifically referred to as human leukocyte
antigen (HLA) imputation. After introducing basic knowledge about
genotypic imputation, this review describes the currently available
deep learning-based genotype and HLA imputation methods,
focusing on their specific adaptations for imputation tasks, as well
as the underlying deep learning models. Moreover, this review
also addresses the challenges, advantages, and future directions
regarding deep learning-based genotype imputation.

GENOTYPE IMPUTATION IN HUMAN GENETIC STUDIES
Genotype imputation infers genotypes at ungenotyped, mainly
single nucleotide variants and short indels, or missing genotypes
in target sample sets using LD structure from phased haplotype
reference panels comprising samples with denser genetic maps,
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typically from whole-genome sequencing. Current standard
genotype imputation tools, including the Impute5 [8], Minimac4
[9], and Beagle5.4 [10], employ the Li and Stephens haplotype
model [11] to infer genotypes of each variant. This model
proposes that the genome sequence of an individual can be
represented by recombination and a small number of mutations
from those of other individuals. Thus, these tools estimate
haplotypes that match the input genotypes by considering the
recombination of haplotypes present in the reference panels to
infer genotypes of unobserved variants. Hidden Markov models
(HMMs) are practically used to impute, where the observed
processes of the HMMs are represented by the observed
genotypes of unknown phase in a study sample, while the hidden
states of the HMMs are represented by an underlying and
unobserved set of phased genotypes. Independent benchmarking
reported the competitive imputation accuracy of these tools, with
a sensitivity of over 97 and 99% for minor allele frequency of
greater and less than 5% respectively [12]. Specifically, common
variants were more accurately detected by Beagle 5.4, while low
frequency and rare variants were better imputed by Impute5 and
Minimac4. As for computational burden, the shortest processing
time was demonstrated by Beagle5.4 when compared to
Minimac4 and Imput5, while the least memory was utilized by
Minimac4. Minimac4 and Impute5 can take advantage of a two-
step process for alleviating computational burden: target sample
genotypes are haplotype phased before imputation, which is
referred to as pre-phasing. The history, methodologies, and
applications of these conventional genotype imputation methods
have been intensively reviewed in some previous literature [5, 6].
Reference panels have also been updated along with the

methodological development. The HapMap Consortium [13] and
1000 Genomes Project (1KGP) [14] are the widely used sources of
haplotype reference panels in GWASs. More than 80 million
variants on all autosomes and the X chromosome from 2504
individuals comprising of 26 different ancestry populations can be
found in the phase III 1KGP reference panel. It is necessary to
employ reference panels consisting of individuals from the same
ancestral groups as the target samples due to the inter-ancestry
variations in haplotype structures. Thus, multi-ancestral resources
have been crucial in facilitating accurate imputation and enabling
subsequent studies for diverse ancestral populations. The
Haplotype Reference Consortium (HRC), which offers 40 million
variants from more than 30 thousand samples has practically
replaced these resources [15]. The HRC reference panels improve
imputation for samples with undetected admixture ancestry or
rare haplotypes by incorporating data from the multi-ancestry
1KGP individuals.
Genotype imputation servers enable users to perform genotype

imputation remotely solely by uploading genotype data of target
samples. These servers eliminate the need to obtain reference
panels and computational skills required to implement imputation
pipelines, thereby streamlining human genetic research. The
Michigan Imputation Server, provided by the University of
Michigan, is a secure cloud-based imputation platform that
incorporates Minimac3 for imputation [9], while the Wellcome
Sanger Institute provides a comparable imputation platform, the
Sanger Imputation Service [15], employing PBWT for imputation
[16]. Both servers provide various reference panels, including the
1KGP and HRC.

DEEP LEARNING-BASED GENOTYPE IMPUTATION METHODS
Deep learning is a type of machine learning that simulates the way
the human brain processes information to perform tasks by using
artificial neural networks [7]. These neural networks consisting of
multiple interconnected layers, which are basically input, hidden,
and output layers, enable extraction and learning of complex
features from data. The two main steps involved in the application

of deep learning models are: 1) training models with input and
correctly labeled output data, and 2) using the trained models to
predict outputs based on target input data. Thus, in a general
workflow involved in the application of deep learning to genotype
imputation, reference panels are used to train models, with limited
genotypes as inputs for predicting target genotypes as outputs.
The trained models are then applied to impute the genotype data
of target individuals. Most of the current deep learning-based
methods output the target genotype corresponding to a particular
input haplotype. pre-phasing of the input genotype data by other
software is necessary, potentially impacting imputation accuracy.
Existing deep learning-based imputation methods have been
summarized in Table 1.
An autoencoder, which is a type of a neural network used for

unsupervised learning, that aims to learn a compressed representa-
tion of the input data, was used in the first attempt to apply deep
learning models to genotype imputation [17]. An autoencoder
consists of an encoder, which performs the function of compressing
the data into a lower-dimensional representation, and a decoder,
which reconstructs the original data from the compressed
representation (Fig. 1a). Autoencoders are commonly used for
dimensionality reduction, feature learning, data denoising, and
anomaly detection. Chen et al. proposed a sparse convolutional
denoising autoencoder (SDCA), which analyzes corrupted input
data with missing genotypes and reconstructs the output. The
encoder of the SDCA extracts essential features and learn a robust
representation of the LD structure via convolutional kernels [17].
Convolution in deep learning is described in the subsequent
section. Song et al. implemented a customized training loop with
modification of the training process involving only a single batch
loss, thereby resulting in a superior imputation accuracy over SDCA
[18]. The autoencoder-based approach developed by Dias et al.
employed a large, commonly used reference panel that spanned an
entire human chromosome [19]. Their method achieved superior
imputation accuracy compared to the standard imputation tools
across different allele frequency spectra and ancestries. Notably,
their unique encoding method uses unphased genotype data as
input, eliminating the dependency on pre-phasing performed by
other tools, unlike the other methods.
RNN-IMP is a genotype imputation method that employs

recurrent neural networks (RNNs) [20]. RNNs are designed to process
sequential data by maintaining hidden states that capture temporal
information (Fig. 1b). Due to the presence of loops in their
architecture, RNNs can persistently process and store information
from previous time steps, unlike traditional feedforward neural
networks. Natural language processing is a typical application
of RNNs. Application of RNNs to genotype imputation is reasonable,
given the sequential nature of genotype data. RNN-IMP employs
a bidirectional longer short-term memory [21] with gated recurrent
unit [22] in its architecture. RNN-IMP was competitive with
the standard tools which explicitly require reference panels
and outperformed them when imputing genotypes of East
Asian individuals on the condition that East Asian individuals
were excluded from the 1KGP reference panel to simulate de-
identification.
Attention is a mechanism that enables a model to focus on

specific parts of input data that are the most relevant for the task
[23], and enhances the model’s ability to selectively process
information by assigning different weights or importance to
different elements of the input. Transformer is an attention-based
deep learning architecture, which relies solely on self-attention
mechanisms, enabling the capturing of long-range dependencies
in the input sequence (Fig. 1c). This architecture has demonstrated
a stellar performance across various tasks, primarily natural
language processing, thereby enhancing the importance of
attention mechanisms [24]. Mowlaei et al. recently developed
STI, a Transformer-based genotype imputation method, which
demonstrated significantly higher imputation accuracy compared
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to the current standard software and other deep learning-based
methods [25].

APPLICATION OF DEEP LEARNING TO IMPUTATION IN
DISTINCT GENOMIC REGIONS REPRESENTED BY THE MHC
Certain genomic regions have unique LD structures and variant
compositions, exemplified by the MHC region, necessitating
genotype imputation methods tailored to their unique character-
istics. The MHC region is located at 6p21.3 and encodes multiple
genes related to immune responses and inflammatory pathways
[26, 27]. The highest number of disease associations in GWAS,
particularly autoimmune diseases, have been reported for the
MHC region [28]. Among the genes in the MHC region, HLA genes,
which are involved in the key role of presenting antigens to T cells,
have been considered to explain most risk (i.e., heritability) of
the MHC. Particularly, the risk in HLA variants is presumed to be
attributed mainly to amino acid variants of HLA proteins or their
combinations (i.e,. 4-digit HLA alleles) since they can directly affect
the antigen binding and recognition. Therefore, comprehensive
HLA allelic typing for target individuals is needed to perform fine-
mapping this region. However, genotyping the MHC region
requires specialized techniques due to its high degree of
polymorphism and structural variants [29], and these techniques
are often expensive. Thus, imputation-based approaches known
as HLA imputation are often resorted to for determining
genotypes and HLA allelic types based on LD between such
HLA variants and regional SNPs. HLA imputation methods have
conventionally followed the same principle as general genotype
imputation [30], occasionally incorporating the standard genotype
imputation software optimized for HLA imputation [31]. Existing
HLA imputation methods and insights obtained from fine-
mapping the MHC region have been described elsewhere [32].
The overall concordance rate between imputed and correct alleles
for each HLA gene is generally greater than 90% for widely-used
software, when high-quality reference panels are used [33].
However, the accuracy tends to be lower for less frequent alleles
or hyper-multi-allelic genes, such as HLA-B and HLA-DRB1.
Deep*HLA is an HLA imputation tool that employs convolu-

tional neural networks (CNNs) in its architecture [34]. CNNs
consist of two key components: 1) convolutional layers that take
the input data with small filters for detecting patterns or local
features and 2) pooling layers that down-sample feature maps
by summarizing the presence of features (Fig. 1d). With notable
achievements in image recognition, CNNs have been applied to
diverse domains [35]. The rationale behind the development of
Deep*HLA was that the ability of CNNs to learn local complex
features would enable capturing of the intricate LD structure of
the MHC region. Its architecture employs multi-task learning,
which simultaneously imputes alleles of multiple HLA genes
belonging to the same preset LD-based groups. Deep*HLA
outperformed other methods, particularly for imputing low-
frequency and rare alleles. The abundance of rare alleles in the
HLA genes makes this a rather valuable advantage, and is all the
more beneficial when conducting cross-ancestry fine-mapping,
as different ancestry datasets need to be integrated despite
diverse allele frequency spectra between ancestries. Application
of Deep*HLA to the cross-ancestry fine-mapping of type 1
diabetes revealed risk-associated HLA variants shared across
different ancestries. Deep*HLA was found to be computationally
efficient enough to be applied to biobank-scale data. Deep*HLA
has already been practically applied for fine-mapping in the
MHC region for different diseases [36, 37]. In the more recent
years, Transformer has been deployed also in HLA imputation as
HLARIMNT, has achieved higher imputation accuracy than
Deep*HLA [38]. This suggests that self-attention can successfully
be applied to capture the long-range LD structure of the MHC
region, and make finer predictions.Ta
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CHALLENGES, ADVANTAGES, AND FUTURE PERSPECTIVES FOR
DEEP LEARNING-BASED GENOTYPE IMPUTATION
Despite their proposed advantages, deep learning-based imputa-
tion methods have not yet been accepted as standard. One
plausible explanation for this can be attributed to the fact that
current deep learning-based methods demonstrated only modest
improvements in prediction accuracy over widely used conven-
tional methods. This contradicts the observations that deep
learning models outperformed competitive methods for other
tasks in the field of genetics and genomics, such as predictions of
functional effects of genomic sequences [39, 40] and clustering of
functional genomics data [41, 42]. The limited accuracy improve-
ment of deep learning-based methods could be attributed to the
relative simplicity of the task of learning LD structure. Notably,
considering the successful application of the Transformer, it can
be safely assumed that adopting more sophisticated deep
learning techniques in the future can enable overcoming this
limitation [25, 38]. Furthermore, deep learning models can further
enhance their performance with the increasing volume of data
increases, because which they can significantly outperform other
methods for new larger panels [43].
Another potential obstacle for users is that the current deep

learning-based genotype imputation methods lack a function to
output the imputation reliability metrics like the INFO score
implemented in the standard software tools, which enables the
filtering out of poorly imputed variants. However, metrics that
do not require true genotypes can be calculated for imputation
results obtained from deep learning-based methods [44]. Addi-
tionally, performing cross-validation using reference panels could

be a simple alternative approach for obtaining such filtering
criteria [34], although this process can be time-consuming.
Furthermore, Bayesian deep learning methods, which allow
models to estimate concurrently prediction uncertainties [45],
may provide the potential to identify incorrectly imputed variants
[34]. Thus, future research should focus on to determining the
most suitable reliability measure for deep learning-based imputa-
tion through comprehensive benchmarking.
An inherent advantage of model-based imputation methods is

that reference panels are no longer required after models are
trained with these panels unlike the standard software tools
(Fig. 2a, b). This is a common advantage of imputation methods
that construct portable predictive models, such as HIBAG [46] and
ADDIT [47], as well as deep learning-based ones. This attribute has
been also referred as “reference-free” in some literature [17–19].
Trained models can be publicly distributed or transferred without
requiring ethical permission, considering the fundamental impos-
sibility of reconstructing individual genotype information from
model parameters [20]. This could further facilitate collaboration
between an institution with target genotype data and another
institution with reference panels. Furthermore, this advantage can
also be harnessed into remote imputation systems. The existing
public imputation servers are associated with ethical issues in
handling private information, since the users need to upload
target individual genotype data (Fig. 2a). In contrast, users would
merely need to submit the SNP lists of target genotype data,
enabling the creation of models tailored to them using reference
panels on the server (Fig. 2b). Subsequently, users could perform
imputation locally upon receiving the trained models. Moreover,

Fig. 1 Simplified application of different deep learning architectures to genotype imputation. In each illustration, the leftmost layer represents the
input; the genotypes of input variants have been shown in black and the genotypes of target missing variants are gray. The middle and rightmost
layers depict the hidden and output layers, respectively. a An autoencoders-based approach: An encoder compresses input data into a lower-
dimensional representation and a decoder reconstructs the original data from the compressed representation. Genotypes of target variants are
masked (collapsed) in genotype imputation. b An RNNs-based approach: Each variant is sequentially processed to predict genotypes of next variants
by the self-loop structures. To note, the figure displays a unidirectional RNNmodel, whereas RNN-IMP employs bidirectional RNNs. c A self-attention-
based approach: Input data undergo positional embedding and are transformed into three types of vectors: query, key, and value. The normalized
similarity scores between the query and key vectors are then applied to the value vectors of other data points, resulting in a weighted sum, which
represents the contextualized representation of the current data point. d A CNNs-based approach: Convolutional filters capture local features and
pooling layers down-sample features. Fully-connected layers are typically used to integrate pre-step layers to make final predictions

Fig. 2 Remote imputation with privacy protection using deep learning-basedmethods. a The standard genotype imputation tools need to be at the
same institutions or servers, since they require reference panels with target genotype data to impute. bModels can be trained solely with reference
panels and SNP lists of target genotype data, and these trained models can be used for performing imputation. Therefore, imputation can be
conducted by transferring the SNP lists and trained models, even when reference panels and target genotype data are at different institutions
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Dias et al. reported that though not tuned for SNP lists of target
genotypes, their autoencoder-based method achieved competi-
tive performance with the standard tools [19]. This highlights the
potential of deep learning based-methods to enable us to perform
accurate imputation merely by publishing pre-trained models,
irrespective of SNP lists (i.e., SNP array platforms) of the target
genotype data. Last but not least, the relatively low computational
burden, both in terms of processing time and memory usage
[25, 34], may further bolster the appeal of deep learning based-
methods in the future.

CONCLUSION
We have reviewed the existing tools and discussed the challenges
and future perspectives associated with deep learning-based
genotype imputation methods. Though the current deep learning-
based imputation methods may not consistently demonstrate a
remarkable improvement over standard tools in terms of prediction
accuracy, they possess unique characteristics that could be
harnessed for various applications. Specifically, inter-institution or
remote imputation with complete privacy protection can be
facilitated considering their reference-free characteristics after
training. Furthermore, considering that the basic technologies are
still evolving, further improvements in deep learning-based-
genotype imputation methods can be expected in the future.
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