
Title

Long-lasting adverse effects of short-term
stress during the suckling–mastication
transition period on masticatory function and
intraoral sensation in rats

Author(s) Katagiri, Ayano; Yamada, Masaharu; Sato, Hajime
et al.

Citation Odontology. 2024, 112(3), p. 906-916

Version Type VoR

URL https://hdl.handle.net/11094/94639

rights This article is licensed under a Creative
Commons Attribution 4.0 International License.

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Vol.:(0123456789)

Odontology 
https://doi.org/10.1007/s10266-023-00887-w

ORIGINAL ARTICLE

Long‑lasting adverse effects of short‑term stress 
during the suckling–mastication transition period on masticatory 
function and intraoral sensation in rats

Ayano Katagiri1  · Masaharu Yamada1,2 · Hajime Sato3 · Hiroki Toyoda1 · Hitoshi Niwa2 · Takafumi Kato1

Received: 28 August 2023 / Accepted: 10 December 2023 
© The Author(s) 2024

Abstract
Early-life stress affects brain development, eventually resulting in adverse behavioral and physical health consequences 
in adulthood. The present study assessed the hypothesis that short-term early-life stress during infancy before weaning, a 
period for the maturation of mastication and sleep, poses long-lasting adverse effects on masticatory function and intraoral 
sensations later in life.
Rat pups were exposed to either maternal separation (MS) or intermittent hypoxia (IH-Infancy) for 6 h/day in the light/sleep 
phase from postnatal day (P)17 to P20 to generate “neglect” and “pediatric obstructive sleep apnea” models, respectively. The 
remaining rats were exposed to IH during P45–P48 (IH-Adult). Masticatory ability was evaluated based on the rats’ ability 
to chew pellets and bite pasta throughout the growth period (P21–P70). Intraoral chemical and mechanical sensitivities were 
assessed using two-bottle preference drinking tests, and hind paw pain thresholds were measured in adulthood (after P60).
No differences were found in body weight, grip force, and hind paw sensitivity in MS, IH-Infancy, and IH-Adult rats com-
pared with naïve rats. Masticatory ability was lower in MS and IH-Infancy rats from P28 to P70 than in naïve rats. MS and 
IH-Infancy rats exhibited intraoral hypersensitivity to capsaicin and mechanical stimulations in adulthood. The IH-Adult 
rats did not display inferior masticatory ability or intraoral hypersensitivity.
In conclusion, short-term early-life stress during the suckling–mastication transition period potentially causes a persistent 
decrease in masticatory ability and intraoral hypersensitivity in adulthood. The period is a “critical window” for the matura-
tion of oral motor and sensory functions.
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Introduction

The Developmental Origins of Health and Disease theory 
suggests that maternal conditions and other environmen-
tal factors during the early developmental period (“critical 
window”) contribute to later-life disease susceptibility [1]. 
Exposure to maltreatment, such as abuse and neglect, during 
childhood potentially results in long-term adverse behavioral 
and physical health outcomes in adulthood [2–6]. As the 
first 2 weeks of life in rodents have been recognized as the 
critical window for the development of motor and sensory 
functions and behaviors [7, 8], preclinical studies examin-
ing the effects of early-life stress on development have typi-
cally been designed to apply stress conditions during the first 
2 postnatal weeks in rodents [9]. In humans, the prenatal 
period and first 3 postnatal years are critical developmental 
periods for biological and behavioral maturation and pos-
sess high levels of opportunity for and vulnerability to mal-
treatment [2, 10]. However, rodents are altricial species that 
undergo considerable postnatal development. In rats, two 
weeks after birth is equivalent to the human fetal stage [11]. 
Therefore, the effects of childhood maltreatment on nervous 
system development have not been studied extensively in 
most preclinical studies. A few studies have indicated that 
early-life stress exposure after postnatal day (P)15 produces 
permanent microglial sensitization and neuronal death in 
the brain that persists into adulthood [12]. This suggests 
that early-life stress after the first 2 postnatal weeks poten-
tially impacts the development of specific functions, as not 
all physical and behavioral functions are entirely developed 
before the first 2 weeks of age in rodents.

Pronounced postnatal development involves mastication, 
an indispensable oromotor function for nutrient intake. Mas-
tication is characterized by a transition from suckling the 
mother’s milk to masticating solid food. Infancy is a crucial 
period for acquiring complex masticatory ability in humans 
and mammals [13, 14]. Masticatory function is acquired 
through various factors, such as molar eruption (after P17), 
central nervous system maturation, oral sensory inputs emer-
gence, and motor learning [13–18]. Behavioral studies have 
reported that infant rats commence food intake at approxi-
mately P17–P18 [19, 20]. Thus, P17–P20, before weaning 
on P21, is a critical window for the acquaintance of mastica-
tory function in rodents.

Notably, this period corresponds with sleep maturation 
[21, 22]. Pediatric obstructive sleep apnea (OSA), which is 
characterized by repetitive episodes of intermittent hypoxia 

(IH) during sleep, has become widely recognized; 1.2–5.7% 
of children may have OSA [23]. Pediatric OSA increases 
the risk of developing neuropsychiatric disorders, such as 
attention-deficit hyperactivity disorder (ADHD) [24]. This 
indicates that IH in the early life of vulnerable individu-
als can ultimately lead to long-lasting alterations in neural 
function.

Therefore, we assessed the hypothesis that early-life 
stress, with maternal separation (MS) and IH as “neglect” 
and “pediatric OSA” models, respectively, from P17 to P20 
before weaning exerts long-lasting adverse effects on later-
life masticatory function and intraoral sensation.

Materials and methods

The Animal Experiments Committee approved the proto-
col of this animal study, which was conducted at the Osaka 
University Graduate School of Dentistry (R-04–010). All 
experimental procedures were performed in accordance with 
the ARRIVE guidelines 2.0 (Animal Research: Reporting of 
In Vivo Experiments) [25]. Sixty male Sprague–Dawley rats 
(Japan SLC, Shizuoka, Japan) were evaluated in this study. 
Rat litters consisted of 6–9 pups. Data of three rats were 
excluded from the analysis because they could not habituate 
to the behavioral test environment. The rats were housed in a 
light-controlled environment and climate (dark/light period 
03:00–15:00/15:00–03:00; each day started at 03:00; tem-
perature: 23 ± 0.5 °C). The pups were weaned at 08:00 on 
P21 (Fig. 1). Food and water were provided ad libitum. The 
animals were randomly allocated to each treatment group. 
All efforts were made to reduce the number of animals used 
in the experiment.

Experimental procedures

The experimental design is illustrated in Fig. 1. Rats were 
divided into four groups: 1) a naïve group, 2) a group 
exposed to MS for 4 days during P17–P20 (MS group), 3) a 
group exposed to IH for 4 days during P17–P20 (IH-Infancy 
group), and 4) a group exposed to IH during P45–P48 (IH-
Adult group). All behavioral tests, excluding the recording 
of locomotor activity, were performed between 11:00 and 
15:00 in the dark/wake periods by a well-trained investi-
gator blinded to the models. Body weight and grip force 
were measured before fasting on P21, P28, P35, P42, P49, 
and P70. Pellet-chewing tests were performed at P21, P28, 
P35, and P42. Pasta-biting tests were performed on P21, 
P28, P35, P42, P49, P56, and P70. Sensory thresholds of 
the intraoral, ocular, and hind paw areas were measured in 
adulthood after P60. Locomotor activity was measured for 
24 h on P26 (starting at 15:00, light phase) –P27 (finishing at 
15:00, dark phase), P33–P34, P40–P41, P47–P48, P54–P55, 
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and P68–P69. Tear and saliva volumes were measured on the 
day all behavioral tests were completed after P71.

Neglect and OSA models

The pups allow to freely access food and water during 6 h 
of MS and IH exposure. Mothers were left undisturbed in 
their home cage during the separation procedure. At the end 
of the MS and IH (infancy) protocol, pups were returned to 
their home cage.

Neglect model (Maternal separation)

From P17 to P20, the pups were separated from their moth-
ers for 6 h/day during the light/sleep period from 15:00 to 
21:00. Cages containing rat pups were placed on a warm 
plate (38 °C) during MS.

OSA model (intermittent hypoxia)

Infant (separated from mothers) and adult rats were placed in 
a tightly sealed Plexiglas chamber (W 25 × D 41 × H 17  cm3) 
during P17–P20 (IH-Infancy) or P45–P48 (IH-Adult) for 
6 h/day in the light/sleep period from 15:00 to 21:00. Cages 
containing rat pups were placed on a warm plate (38 °C) 
during IH for infant rat. The IH protocol consisted of cycles 
of hypoxia reaching 5%  O2 at the nadir mixed with  N2 for 
3 min, followed by 3 min of normoxia.  N2 was delivered to 
the chamber at a rate of 7.0–8.8 L/min. The compressed air 
was delivered at a rate of approximately 21 L/min. The gas 
flushing into the chamber was automatically switched from 
compressed air to  N2 and subsequently back to compressed 
air (SEVENz Planning Inc., Tokyo, Japan). The IH protocol 
has been described previously [26].

Grip force test

Each rat was held by its tail and passed over a wire mesh grid 
connected to a strain gauge [27]. The maximum forelimb 
grip force during the three-to-four trials at 10-min intervals 
was determined.

Locomotor activity

A Nano-Tag® device (18.8 × 14.2 × 7.1  mm3, 2.7 g; Kissei 
Comtec Co., Ltd., Nagano, Japan) was implanted under the 
back skin of each rat under 3% isofluorane anesthesia on P21 
after weaning. The Nano-Tag® device was switched on > 2 h 
before the commencement of recording [29], and the data 
were percutaneously transferred to the Nano-Tag® Viewer 
program (Kissei Comtec Co., Ltd.) after recording using a 
FeliCa reader (RC-S360; Sony Corp., Tokyo, Japan) under 
light isoflurane anesthesia. Locomotor activity was recorded 
every 30 s and stored on the Nano-Tag® device. The data 
were represented as the average value for each hour. For 
measurements involving the Nano-tag® device, activity was 
defined as cross-count data, providing a count of the number 
of times the XYZ acceleration vector-synthesized waveform 
crossed the threshold levels from the bottom (170/min) to 
the top (170/min) per recording interval. Locomotor activity 
was measured in group-housed rats (two to three rats/cage) 
in each experimental group to prevent social-separation 
stress.

Masticatory functions (pellet‑chewing 
and pasta‑biting tests)

The rats were individually habituated to the experimen-
tal chamber in a Plexiglas chamber, fasted for 3 h prior to 
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Fig. 1  Experimental design. Body weight and grip force were meas-
ured on P21, P28, P35, P42, P49, and P70. Pellet-chewing tests were 
performed at P21, P28, P35, and P42. Pasta-biting tests were per-
formed on P21, P28, P35, P42, P49, P56, and P70. Sensory thresh-
olds of the intraoral, ocular, and hind paw areas were measured in 
adulthood after P60. Locomotor activity was measured for 24  h on 

P26 (starting at 15:00, light phase)–P27 (finishing at 15:00, dark 
phase), P33–P34, P40–P41, P47–P48, P54–P55, and P68–P69. Tear 
and saliva volumes were measured on the day all behavioral tests 
were completed after P71. IH intermittent hypoxia, MS maternal sep-
aration
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testing [28], and allowed to drink water freely. The amounts 
of pellet (MF#4 certified rat diet, diameter: 3.2 mm, length: 
10.0–20.0 mm; Oriental Yeast Co., Ltd., Tokyo, Japan) 
chewing for 10  s and pasta (diameter: 1.2 mm, length: 
2.0–8.0 mm) biting for 30 s were measured 5 times and cal-
culate the average of 3 times excluding the maximum and 
minimum values. The pellet-chewing test was conducted 
until P42 and was limited by pellet size.

Sensory‑threshold measurements

Eyeblink reflex (capsaicin and mechanical 
stimulation) 

Rats were habituated to a Plexiglas chamber for 1 h prior to 
testing. Eyeblinks were counted for 3 min after capsaicin 
(1.0 µM, 15.0 µL) stimulation or for 20 s after mechanical 
(0.04 g von Frey filament) stimulation of the ocular surface. 
Eyes were rinsed with saline immediately after capsaicin 
instillation. Mechanical stimulation was applied three times 
at intervals of > 30 min, and the average was calculated. Eye-
blinks included partial and complete lid closures. The details 
have been described previously [26].

Intraoral sensitivity (capsaicin 
and mechanicalstimulation)

The rats were deprived of water for 22 h, including 1 h of 
pre-testing habituation in the Plexiglas chamber. The two-
bottle preference drinking test was administered for 2 h. 
Rats were allowed free access to two adjacent bottles. Three 
types of stimulations were used for the two-bottle preference 
drinking test: vehicle-0.33 µM capsaicin, vehicle-1.0 µM 
capsaicin, and spout with/without mechanical stimulation. 
The bottles with spouts with/without mechanical stimulation 
contained distilled water. The spout (diameter: 6.0 mm) of 
the bottle subjected to mechanical stimulation was made of 
optical fibers. The optical fibers (diameter: 0.5 mm) were 
arranged in parallel around the spout without any spaces in 
between, and the tip of each optic fiber was randomly set at 
2.0–3.0 mm from the edge of the spout. Each experiment 
was performed on two successive days. On 2 consecutive 
days, the positions of two bottles (vehicle-0.33 µM cap-
saicin, vehicle-1.0 µM capsaicin, and spout with/without 
mechanical stimulation) were reversed each day to avoid 
positional preference. Each bottle was weighed before and 
after the 2-h drinking test session to measure the volume of 
fluid consumed. Consumption of 0.33 µM capsaicin, 1.0 µM 
capsaicin, and distilled water in bottle with mechanical stim-
ulation spout was quantified as the percentage of the total 
volume consumed during the 2-h drinking test sessions on 
each test day for each rat. The average ratio of 2 consecutive 

days was calculated. The rats received water ad libitum in 
their home cages during non-drinking-test periods. The 
details of the two-bottle preference drinking test have been 
described previously [26].

Hind paw sensitivity

The rats were habituated to a Plexiglas chamber with a wire-
mesh floor for approximately 15 min until major groom-
ing activity ceased. Mechanical sensitivity was assessed 
using calibrated von Frey filaments (2, 5, 8, 10, 15, 20, and 
25 g; cutoff: 25 g) applied to the mid-plantar left hind paw 
to avoid the footpads. The withdrawal threshold for hind 
paw mechanical stimulation was defined as the minimum 
pressure required to evoke at least three escapes in five tri-
als separated by 1-min intervals. A positive response was 
recorded when the paw was sharply withdrawn. Flinching 
immediately after the removal of the von Frey filament was 
also considered a positive response.

Tear and saliva volume measurement

Measurements of spontaneous tear and saliva volumes were 
performed for 2 min by increasing the wet length of the 
phenol red thread (Zone-Quick™, Ayumi Pharmaceuti-
cal Co., Tokyo, Japan) after fasting and water deprivation 
for 3 h under pentobarbital sodium anesthesia (80 mg/kg, 
intraperitoneal) before perfusion. The average tear volumes 
in bilateral eyes were calculated. For saliva-volume meas-
urements, a phenol red thread (Zone-Quick™) was gently 
placed in the sublingual area. Except for the tip, the thread 
was covered with a polyethylene tube (SP45, length: 3.0 cm, 
Natsume Seisakusho, Tokyo, Japan) to avoid contact with 
the mucosa and lower lip. The details has been described 
previously [30, 31].

Statistical analysis

The Kruskal–Wallis test, followed by the Dunn test, was 
used to analyze and compare threshold, tear volume, and 
saliva volume measurements in each group. Two-way analy-
sis of variance, followed by the Bonferroni test, was used for 
analysis and comparison at each time point to assess group 
differences and baseline directly (day 1 of each experiment) 
in body weight, grip force, pellet chewing, pasta biting, and 
locomotor activity (Prism version 7.02, GraphPad Software). 
The data are presented as the mean ± standard error of the 
mean. Statistical significance was set at p < 0.05. A sample 
size of five per treatment group was calculated to provide 
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80% power at p < 0.05. The actual numbers and p-values 
in each graph are summarized in the Supplemental Tables.

Results

General conditions

No significant differences were noted in body weight and 
grip force in MS, IH-Infancy, and IH-Adult rats compared 
with naïve rats. Body weight and grip force increased sig-
nificantly with age in each group (Figs. 2A–B and Sup-
plemental Tables; naive, n = 9; MS, n = 6; IH-Infancy, 
n = 9; IH-Adult, n = 5). MS, IH-Infancy, and IH-Adult 
rats did not exhibit any significant differences in hind paw 
withdrawal thresholds compared with naïve rats (Fig. 2C; 
naive, n = 15; MS, n = 11; IH-Infancy, n = 13; IH-Adult, 
n = 8). These results suggest that MS and hypoxic stress 
during the suckling-mastication transition period as well 
as 4 days of hypoxia in adulthood did not influence body-
weight gain, muscle-strength growth, or the body pain 
threshold of the limbs.

The number of locomotor activities during the light/
sleep and dark/wake phases gradually decreased with 
growth. Interestingly, the number of activities in the dark/
wake phase was significantly higher in MS and IH-Infancy 
rats than in naïve rats (Fig.  2D–E and Supplemental 
Tables; naïve, n = 5; MS, n = 5; IH-Infancy, n = 5). These 
results suggest that MS and IH during the suckling-masti-
cation transition period induces hyperlocomotor activity.

Underdevelopment of masticatory function

Pasta-biting (incision) and pellet-chewing tests were con-
ducted to evaluate masticatory ability because the mastica-
tory sequence starts with food preparation and incision fol-
lowed by chewing. Incision and chewing use different central 
neural system regions to generate rhythmic jaw movement 
[13, 32]. The amount of pellet chewing and pasta biting 
significantly increased with development in all the groups 
(Fig. 3A and Supplemental Tables; naive, n = 14; MS, n = 8; 
IH-Infancy, n = 9. Figure 3B; naïve, n = 8; MS, n = 8; IH-
Infancy, n = 9). IH-Infancy rats exhibited a lower amount 
of pellet chewing than naïve and MS rats (Fig. 3A). The 
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amount of pasta biting was significantly lower in both MS 
and IH-Infancy rats than in naïve rats (Fig. 3B and Supple-
mental Tables). To confirm the effect of IH during develop-
ment, adult rats were subjected to IH for 4 days from P45 
to P48 in the IH-Adult group. No significant difference was 
observed between IH-Adult and naïve rats throughout the 
experimental period (Fig. 3C and Supplemental Tables; IH-
Adult, n = 8), and IH-Infancy rats demonstrated less pasta 
biting than IH-Adult rats. These results suggest that MS and 
hypoxic stress during the suckling-mastication transition 
period, but not during adulthood, induce the underdevelop-
ment of masticatory function.

No effect on ocular sensitivity in adulthood

No significant differences in spontaneous tear volume were 
noted among all rat groups (Fig. 4A; naive, n = 15; MS, 
n = 8; IH-Infancy, n = 11; IH-Adult, n = 5). Furthermore, 
no significant differences in the number of eyeblinks in 
response to capsaicin and mechanical stimulations were 
observed among all rat groups (Fig. 4B–C; naive, n = 8; 
MS, n = 5; IH-Infancy, n = 9; IH adult, n = 8). These results 
suggest that MS and hypoxic stress during the suckling-
mastication transition period did not affect ocular sensitivity.

Hypersensitivity to capsaicin and mechanical 
stimulation of the tongue in adulthood

No significant differences in spontaneous saliva volume 
were observed among all rat groups (Fig. 5A; naive, n = 15; 
MS, n = 8; IH-Infancy, n = 10; IH-Adult, n = 5). Consump-
tion of capsaicin solution and distilled water from a spout 
with mechanical stimuli was significantly lower in MS and 
IH-Infancy rats than in naïve and IH-Adult rats (Fig. 5B; 
Naive, n = 11; MS, n = 10; IH-Infancy, n = 11; IH-Adult, 
n = 8; Fig.  5C; Naive, n = 11; MS, n = 11; IH-Infancy, 

n = 11; IH-Adult, n = 8; Fig. 5D; Naive, n = 9; MS, n = 9; IH-
Infancy, n = 7; IH-Adult, n = 8). Contrastingly, IH in adult-
hood did not affect the consumption of capsaicin solution 
or distilled water from a spout with a mechanical stimulus. 
There was no significant difference in the total volume con-
sumed during 2 h of the drinking test sessions among all four 
groups (data not shown). These results suggest that intraoral 
hypersensitivity induced by early-life stress was not due to 
mouth dryness [30].

Discussion

Present findings revealed that short-term early-life stress 
during a period for maturation of mastication and sleep 
results in the underdevelopment of masticatory function, 
intraoral hypersensitivity, and behavioral abnormality in 
adulthood. Additionally, IH had a stronger effect than MS 
on masticatory ability and intraoral sensory development.
MS and IH, as experimental stressors, disrupt normal devel-
opmental processes in pups. Previous studies have demon-
strated that MS [33] and IH [34] before P15 do not affect 
body weight increases and feeding behaviors in adulthood. 
Herein, body weight and grip force, which can estimate 
physical strength, did not differ among naïve, MS, and IH-
Infancy groups. This suggests that early-life stress during 
P17–P20 does not affect body growth, daily food intake, and 
the development of physical strength in later life. Additional 
assessments of ocular and hind paw sensitivity further sup-
port that short-term MS and IH during P17–P20 did not 
cause aversive effects in the extra-oral areas of the body in 
adulthood.

Nonetheless, MS and IH during P17–P20, but not in 
IH-Adults, resulted in lower masticatory ability in adult-
hood. The masticatory ability to consume the test food was 
assessed based on pellet chewing and pasta biting, in which 
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the jaw-closing muscles (i.e., masseter) play significant 
roles in biting, crushing, and grinding solid foods [13]. In 
addition, IH in adulthood did not alter masticatory func-
tion. Therefore, the present study clearly corroborates the 
hypothesis that early-life stress during the transition from 
suckling to mastication has long-lasting adverse effects on 
masticatory function later in life. Several factors should also 
be considered. In rodents, mastication behaviors emerge 
after P17 [13, 15, 19, 20] in association with neurochemical 
and anatomical alterations in the trigeminal motor system. 
In jaw-closing motoneurons, N-methyl-D-aspartate recep-
tors significantly increase [35–37], and phenotypic changes 
in inhibitory synapses from gamma-aminobutyric acid to 
glycine occur approximately on postnatal 3–4 weeks [38]. 
Furthermore, the first molars erupt and start to occlude 
between P17 and P18 [16], suggesting that the periodontal 
afferent feedback loop in molar chewing may mature during 
this period. Therefore, these changes in the nervous system 

are susceptible to MS and IH as they influence neuroplastic 
changes [39, 40]. Second, site-specific and time-specific sus-
ceptibility to IH is present in the skeletal muscles. Respira-
tory, limb, and geniohyoid (suckling) muscles, but not mas-
seter muscles, are vulnerable to gestational IH in adolescent 
rodents [41, 42]. The initial signs of the alpha motor end-
plates are found in the masseter muscle at P18 [43], followed 
by rapid growth in masseter muscle fibers [44]. Therefore, 
IH during P17–P20 potentially leads to reduced masticatory 
muscles growth. Third, tactile stimulation with the mother 
maintains the secretion of thyroid and growth hormones [45, 
46]. Deficiency of these hormones in MS and IH-Infancy 
can decrease the number of large masseter motoneurons and 
delay masticatory function [45].

This study yielded remarkable additional findings. First, 
MS and IH between P17–P20, as opposed to between 
P45–48, led to intraoral hypersensitivity. Notably, our pre-
vious study revealed that IH for 8–16 days in adulthood 
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Fig. 4  Tear volume and sensitivity of the eye to capsaicin and 
mechanical stimulation. A Average spontaneous tear volume of the 
left and right eyes. B Number of eyeblinks evoked by 1.0 μM capsai-
cin administration to the ocular surface for 3 min. C Number of eye-
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resulted in transient intraoral hypersensitivity to capsaicin, 
which disappeared after IH had ceased [26]. These findings 
underscore the importance of the timing of stress exposure, 
as MS and IH during infancy have long-lasting effects on the 
intraoral sensory system. Second, MS and IH during infancy 
induced mechanical allodynia in the oral structure but not in 
the cornea or hind paw in adulthood. Previous studies have 
indicated that the sensory and motor systems for explora-
tory behavior develop before mastication [8]. Eye opening, 
walking, and running typically commence at P15 [8] before 
the emergence of mastication and eruption of molars (i.e., 
P17) [16, 19, 20]. Differences in the timing of development 
among the eyes, limbs, and oral structures can be correlated 
with the critical window of pain sensation. The sensitive 
period for long-term alterations in nociceptive responses is 
reportedly limited to the first 2 weeks of neonatal life in rats 
[47]. MS during P2–P15 increased pain sensitivity in the 
hind paws of adult rodent offspring [4]. The maturation of 
these nociceptive pathways lasts more than 3 weeks after 
birth [48–50]. Interestingly, desensitization of C-fibers by 
subcutaneous capsaicin treatment at birth leads to the loss 
of pain perception in adulthood, while desensitization after 
P14 does not change pain thresholds [51, 52]. In addition, 
the descending pain facilitation pathway exerts a powerful 
excitatory influence on spinal nociception until P21, after 
which the inhibitory pathways begin to drive [49, 53]. This 
descending excitation in early life potentially contributes 
to the activity-dependent development of nociceptive path-
ways [7]. Considering the above information, the present 
study suggests that MS and IH during P17–P20 may alter 
the development of nociceptive sensory pathways. However, 
the critical window of nociceptive thresholds in the cornea 
and limbs, which precedes that in the intraoral structures, 
may contribute to the time-dependent development of the 
motor system.

As discussed above, decreased masticatory ability and 
intraoral hypersensitivity in adulthood were induced inde-
pendently after MS and IH during infancy in this study. 
However, decreased masticatory ability is possibly associ-
ated with intraoral hypersensitivity, as orofacial pain poten-
tially attenuates masticatory performance by decelerating 
rhythm and lowering force [54]. Contrastingly, decreased 
masticatory ability in infancy may alter pain perception in 
adulthood because hard-food mastication suppresses pain 
by driving an opioid descending system via the trigeminal 
sensory pathway and somatosensory cortex [55].

Consistent with our findings (MS or IH during P17–P20), 
IH during P7–P11 (nadir  O2: 10%, 6 h/day) has been found 
to induce hyperlocomotor activity during adulthood [56]. 
Contrarily, IH (nadir  O2: 5%, 16 days) in adulthood resulted 
in hypolocomotor activity (data not shown). Therefore, MS 
stress and pediatric apnea-induced hypoxia may be a poten-
tial mechanism contributing to the pathogenesis of ADHD 

[24]. Our locomotor activity findings suggest that MS and 
IH during the suckling-mastication transition period influ-
ences not only oral function development but also neurobe-
havioral development in the later life.

This study has some limitations. Only behavioral assess-
ments were made in this study; therefore, the possibilities 
discussed require further investigation of anatomical and 
neurophysiological changes. Second, this study assessed 
masticatory ability using pellet chewing and pasta biting 
over with short timeframes within each experimental period. 
Therefore, whether decreased masticatory ability changes 
feeding behavior, such as prolonged feeding, remains 
unknown. This should be further investigated in associa-
tion with the increased locomotor activity during dark/wake 
period. Third, this study did not examine the morphologi-
cal effects of stress, such as delayed tooth eruption. This is 
unlikely because stress is applied after the critical window 
for tooth eruption [57].

Here, MS and IH were used as “neglect” and “pediatric 
OSA” models, respectively. The results indicate that short-
term early-life stress during infancy potentially leads to a 
subsequent oral dysfunction. If appropriate masticatory 
function is not acquired during growth period, habilitation of 
mastication is reportedly impossible in adulthood in rodents 
[58]. Neuroimaging studies in humans have revealed that 
brain regions associated with memory and learning are acti-
vated during mastication, and impaired masticatory function 
induces dementia [59]. Hence, investigating the masticatory 
function in children affected by early-life stress and imple-
menting interventions to prevent future declines in masti-
catory ability and intraoral pain hypersensitivity is crucial.

In conclusion, the short-term early-life stress during a 
period for maturation of mastication and sleep (P17–P20) 
before weaning potentially causes a persistent decrease in 
masticatory ability accompanied by intraoral hypersensitiv-
ity and behavioral abnormality in adulthood.
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