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1. Introduction

The main object of this paper is to extend the result of K. Maruo and H.

Tanabe [4] on the eigenvalue distribution of symmetric elliptic operators to a

non symmetric case. Some amelioration of the result of [4] on the remainder

estimates in WeyPs formula as well as the formula under less restrictive smooth-

ness assumptions is also obtained.

Let Ω be a bounded domain in Rn having the restricted cone property. We

use the same notations as those of [4] to denote various norms and functional

spaces. In this paper it is assumed that 2m>n as in the previous paper [4].

Let ΰ b e a sesquilinear form denned in Hm(Ω) X Hm(Ω) satisfying

Re£[w, u]>80\\u\\2

m for any u^V a-( 1 )
o

where V is a closed subspace of Hm{Cί) containing Hm{Ω) and δ0 is some positive

constant independent of u. We assume that B has the following form

B[u,v]=B0[u,v]+Bλ[u,v] (1.1)

where Bo which is the principal part of B is a symmetric integro-differential

sesquilinear form of order m with bounded coefficients

B0[u, v] = I Σ a*fkx)T>*uO* vdx

and 5 j is a not necessarily symmetric sesquilinear form satisfying

UMIm-i + IML-ilML) «-(2)

for any uy v^V i.e. Bλ is the lower order part of B, Let A be the operator

associated with the form B: an element uoίV belongs to D(A) and Au=f^L2(Ω)

if B[u, v]~(f> v) holds for any v^V. A is a not necessarily symmetric

operator in L2(Ω) and all rays arg λ = θ different from the positive real axis are

rays of minimal growth of the resolvent of A, By N{i) we denote the number
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of eigenvalues of A whose real part does not exceed t. The main conclusion of

this paper is that the following asymptotic formula holds:

N(t) = C0t
n'2m + 0(tn'2m) as t->oo , (1.2)

if the coefficients of Bo are Riemann integrable,

and

N(t) = C0t
n'2m + 0(f»-<»'2m) as *->oo (1.3)

for any θ<hj{h + 2) if Bo has uniformly Hoelder continuous coefficients of order

h and for any θ<(h+ l)/(A + 3) if the coefficients of Bo belong to the class C1+h

in some domain containing Ω. The formula (1.3) is an improvement of the

corresponding result obtained for symmetric operators in [4] where (1.3) was

established only for #</z/(/i + 3) and θ<(h + l)l(h + 4) respectively making some

more restrictive assumptions and in order to prove (1. 3) for (/z+l)/(A + 4)<

#<l/2 still more hypotheses were required.

The author wishes to thank Professor H. Tanabe and Mr. M. Nagase for

suggesting this problem and helpful advices.

2. Main theorem

As was stated in the introduction let Ω be a bounded domain in Rn having

the restricted cone property (p. 11 of S. Agmon [1]) and it is assumed that

2m>n. For ^ e Ω w e write δ(#) = min {1, dist (x, 9Ω)}. Suppose that

ί S(x)-pdx<oo
JΩ

for some positive number p < 1 which will be specified later.

Since all coefficients of of Bo are bounded it follows from a — (2) that for

any u, v^V

\B[u,v]\<K\\u\\

for some constant K.

We state various smoothness assumptions on the coefficients of Bo:

they are Riemann integrable, i.e. continuous almost everywhere in Ω:

* - ( 0 )

they are uniformly Hoelder continuous of order /zinΩ: s — ( 1 )

they belong to C1+Λ(ΩX) where Ωx is some domain containing Ω and C1+Λ(Ωj)

is the subclass of functions in C^Ω^ with derivatives Hoelder continuous of

order h in Ωlβ s — ( 2 )
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Main Theorem. The following asymptotic formulas for N(t) hold as f—* oo:

N(t) = Cat
nlim + o (tn/2m) under s-(0)

N(t) = Cot
n<*m + Q (fn-<»'2m)

for any θ satisfying

0<θ<h/(h + 2) under s-( 1)

0<θ<(h+l)/(h + 3) under s-(2)

where

c sin (nβm)( C{χ)dχ

nβm JQ

REMARK. AS was mentioned in the Introduction the remainder estimates
described in the main theorem is an improvement of those established in [4].
Furthermore applying the theorem to the sesquilinear form (Auy Av) where A is
the elliptic operator satisfying the conditions of R. Beals [3] we may prove
Theorem C of [3] with 0<θ<h/(h + 2) instead of 0<θ<h/(h + 3) if the order of
A is greater than τz/2.

Following the method of S. Agmon [5] or Dunford-Schwartz [6] it is possi-
ble to show that the generalized eigenfunctions of A are complete in L2(Ω) under
our assumptions.

3. Some lemmas

As in the previous paper [4] we extend the operator A to a mapping on V
to F * where F* is the antidual of F. This extended operator which is again
denoted by A is defined by

B[u, v] = (Au, v) for any v^V

where the bracket on the right stands for the duality between F* and F in this
case.

Identifying L2(Ω) with its antidual we may consider F c L 2 ( Ω ) c F * alge-
braically and topologically, and as is easily seen V is a dense subspace of F *
under this convention. The resolvent of A thus extended is a bounded linear
operator on F* to F. We denote by p(A) the resolvent set of A and d(X) the
distance from the point λ to the positive real axis for a complex number λ.

Lemma 3.1. The resolvent set p(A) of A in either sense contains the set
{λ: rf(X)^C|X|1"1/2m, | λ | ^ C } for some constant C. The eigenvalues {λj}J=0

of A have finite multiplicity and eigenvalues of A can have only oo as a limite point.
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Proof. We put (A — λ) u =f for any u e D(A). We see that

B[u,u]-X(u,u) = (/,«) (3.1)

From (3. 1), (1. 1), α-(2) and Im50[M, w]=0, we get:

I Im λ I IMI?<||/lϋMI0+2iqMUI«IL,-1 (3.2)

Applying to the last term HWIUIMIL-X Young's inequality and then using the
interpolation inequality, for any positive constant St and δ2 < 1 we find that

SJIulli+er^lNll+Sr^r^lNIS} (3.3)

From (3. 1) and a—(1) we get

δ | |« | | i^ |λ | | | « | |3 + | |u | | β | | / | | β . (3.4)

Putting δ, = 8ψ = I λ I "1/2m and combining (3. 2), (3. 3) and (3. 4) we find that

(iimλi-^iλi-πNi^α+^iλi-'mi/iuNio (3.5)

If I Im λ I > CI λ 11"1/2m for large C, we know that

N | 0 < K 3 / | I m λ | | | / | | 0 . (3.6)

If Re λ < 0 we get

|Reλ | |M| 0

2 <: | | /H 0 N| 0 (3.7)

from (3. 1).
Combining (3. 6) and (3. 7) we find that there is a constant Kt independent
of λ such that

||M||0<ί:4/4λ)||/||0 (3.8)

On the other hand for an adjoint operator A* we find the same estimate (3. 8).
Thus the null space of the operator (A* — X)consists only of zero and we know

{λ:rf(λ)>C|λ|1-1/2" ί, \\\>C)ap(A).

Next we put (A — X)u = f for any M G F .
From (1. 1), a — {\) and a — (2) it follows that

^ } . (3.9)

For any number δ3 such that 0 < δ 3 ^ l we know

M^.^KάhML+zr^MW*}. (3.10)

From the inequality
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|λ||(«,c)|^||/|μiNL+^||«IUHL for any Ϊ E F

it follows that

IMII«llv£ll/llv+tf,IML (3.11)

Combining α - ( l ) , (3.9), (3. 10) and (3. 11) and putting δ 3 = |λ |" 1 / 2 m we get
the following estimate:

£\\f\\v \\«\L+κt\\\id(\){{i+\\\-^\\u\\m\\f\\y.

If <ί(λ)^C|λ|1-1 /*'" with | λ | sufficiently large there is a constant K10 in-
dependent of λ such that

ll«IL<^o|λ|μ(λ)||/|μ (3.12)

On the other hand we put (A* — X)u = f for any u^V. Then we find the same
estimate (3. 12) for A*. Thus we see that

The last part of the lemma is a simple consequence of Rellich's theorem.
Q.E.D.

For a bounded operator S on F * to V we use the notations

K*^L2 etc, to denote the norms of *S considered as an operator on V* to F, F*
to L2(Ω), etc.

Lemma 3. 2. There exists a constant Cx such that

i) WiA-xΓW^^KCjdix) ϋ)

iϋ) WiA-xyWy^vKCAWIdix) iv)

if d(X) > CI λ 11~1/2m, I λ I ̂  C where C is the constant in the statement of Lemma 3.1.

Proof. The statement i) is clear from (3. 8).
If M = (i4-λ)-1/for any/<EΞL2(Ω) we get;

from a — (1) and i).
The statement iii) is clear from (3. 12). Finally with the aid of (3. 12) and
the following inequality
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we can easily show iv). Q.E.D.

Lemma 3. 3. Let S be a bounded operator on V* to V. Then S has a
kernel M in the following sense:

Sf{x) = \aM(x, y)f{y)dy for

M(x, y) is continuous in Ω x Ω and there exists a constant C2 such that for any

\M(x,y)\

Proof, see [4]. Q.E.D.

Lemma 3. 4. There are positive constants Cz and C4 such that

B0[uyu]>C2\\u\\2

m-CA\\u\\l for any u<=V.

Proof. From a — (1) and the interpolation inequality, we can easily show
the statement. Q.E.D.

4. Estimates of the resolvent kernel

We shall estimate the difference between the resolvent kernel of A and that
of the operator Ao associated with Bo + C49 thus BQ\uy υ] + CA(u, v) = (Aouy v) for
any u, υ^V. Obviously for the operator Ao the analogues of Lemma 3. 2 hold.

Let£λ be the operator defined by

SJ =(A- λ ) " 1 / - (A - λ)" 1 / for any / e V* .

Lemma 4.1. There is a constant C7 such that for d(X) > C \ λ 11"1/IM, | λ | > C,

i) \\sλ\\v*+v<c5\x\id(\)

.... i l Q I (

iv) l |S λ | | ^ 2 <C 5 /</(λ) ( I λ I -

Proof. Let (A - λ ) " 1 / - (Ao - λ)~7= Sλf= u. Now we know that

(^_ λ)-i_μ o_ λ )-i = (A0-X)-\A0-A) (A-\)->.

On the other hand, since the operator Ao is self-adjoint we know
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(SJ, φ) = ((A0-A)(A-\y>f, (A0-\Γφ)

C4((^-λ)-1/, (Λ-^)-'Φ)

γ, (^0-X)-» (4.1)

for any φ e V*.
Combining (4. 1), Lemma 3. 2 and the interpolation inequality we find that
there are constants K1 and K2 such that

+ \\(A-\y1f\\m_1\\(A0-xTφ\\m}

<κ2( i x i /φ,))21 λ r I / 2 Ί i/i ivi IΦI w
Then we get

||Sλ |l™,*<C51λ Ild(\)( I X I '-

The remaining inequalities can be proved in a similar manner. Q.E.D.

Since m>n/2 there exist the resolvent kernels Kλ(x, y) and K%(x, y) of the
operator A and ̂ 40 such that

(A-XΓf(x) =

(Λ-λΓ/(*) = \QKΪ(X, y)f(y)dy for any /eL2(Ω).

Theorem 4. 2. .For #;ry ^^// positive numbers py S and any non-negative
integer j , the following inequality holds:

I Kk(x, x)- C(x)(-xy^>» I <CJίI λ I ^2mld(X){Ύ

h+i I λ I /d(λ)

+ (T11 λ 11"1/2W/d(\)Y + I λ I ^^-/^(λ) + (I λ I ''^Six)d(X)Y}] (4. 2)

/or </(λ)>|λΓ 1 / 4 w -{-£, γ > 0 , T ' Ί λ l 1 " 1 ' 1 1 " / ^ ) ^ ! , α/zrf | λ | sufficiently large,
where ί = 0 wwrfβr ί—(1) ami i = l z/w&r 5 —(2). C 6 is a constant depending on
p, S,j but not onX, y or x, and C(x) is the function defined in the main theorem.

Proof. Combining Lemma 4. 2, 6. 2, 7.2 and 7.3 of [4] we get

\Kl(x, x)-C{x){-X)-^^\ <K3[\XΓ'»»ld(X){Ύ»+ηd(X)

+ (7-1\X\1-1/2m/d(X)y + (\X\1-1'2ml8(x)d(X)Y) + I λ l ^ " 1 ^ - 1 ] (4. 3)

where i = 0 or 1 according as we assume s — (1) or s — (2).
Formally we replaced d(X) by some power of | λ | at this point (Theorem
7. 1 of [4]); however, in this paper we postpone this replacement for a little while
to obtain better remainder estimates as was stated in the introduction.
On the other hand applying Lemma 3. 3 and Lemma 4. 1 to Sλ we get
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I Kk(x, y)-K°(x, y) \ <K4( | λ | /</(λ))21 λ | c«-iv*«-i (4. 4)

Combining (4. 3) and (4. 4) the desired estimate (4. 2) is obtained. Q.E.D.

Next we shall consider the case of the assumption s — (0). We denote Paβ

the set of points where aaβ is continuous and put P= Π Paβ. We fix a
l * l = l/3l = m

point xo^P and set

B*'[u> »] = ( Σ aΛβ(x0)DauD^vdx for «, v

Lemma 4. 3. There exist positive constants C7 and C^independent of u and
x0 such that

Proof. There is a constant Ks such that

o

for any ξ^Rn. That the desired inequality holds for any u^Hm(Ω) is a well
known fact. Q.E.D.

We put B2[u, v]=B2'[u, v\ + C2(u, v) for u, υ^Hm(Ω). We know that

B2[u, u]>K6\\u\\i for ueHm(ίl) (4.5)

from Lemma 4. 3.

We denote by A2 the operator associated with B2 under the Dirichlet

boundary condition. By definition for any u, v^Hm(Ω) we have

Bt[u, υ] = (A2u, v)

where the bracket on the right denotes the pairing between the antidual H_m(Ω)
o o

of Hm(Ω) and Hm{Ω) this case. Obviously for the operator A2 the analogues of
Lemma 3. 1 and Lemma 3. 2 hold.

We denote by ξ(x) a function in Co(Rn) the support of which is contained
in the set {x^Rn: \x\ <1} and which takes the valued 1 at the origin. We
write ξs(x) — ξ((x — #o)/δ) where δ is any positive number <δ(#0).

Let 5 λ δ be the operator defined by
Sλ8f=ξδ{(A-\Γf-(A2-X)-\rf)} for / E P

o

where rf is the restriction o f / G P to Hm(Ω).
o

Obviously Sλζ is a bounded operator on F* to Hm(Ω) and hence a fortiori
to V. Since aaβ is continuous at x0 for any a and β with | a \ = \ β \ = m there
is a positive number θ8 such that
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O as δ^O and

\aaβ(x)-aaβ(x0)\<θs for \x-xo\<8 (4.6)

Lemma 4.4. IfXis real < 0 and S'ι\\\ ~1/Zm < 1 we get

ϋ) \\SJ\y^<Ct{θB+δ"11 λ I ~^m} I λ I

iϋ) \\Su\\L^v<ZC.{et + SrlI λ I -^m} I λ I "

iv) ||Sχ,|L«

Proof. Let M=(^-λ)" 1 /-(^ 2 -λ)" 1 (r/)andf = |δίί=S' λ S/. Noting that
o

we have

- B2[Ό, V]-BJU, ξBΌ]+BJu9 fa»]-λ(M, fβ»)

λ)-1/, ξδ^] . (4. 7)

In view of (4. 5) we get

\B2[v,v]-X(v,v)\>K,{\\v\\m+\\n\v\\0γ. (4.8)

Next from (4. 7)

\BJV,V]-\(Ό,V)\

< \Bt[v, v]-B2[u, ξ,v]\ + \(B2-B)[(A-\yιf, ξBv]\

*>y\y

ί Σ M
jΩ|«|=-|β|=ι»» γ

Σ {aaβ(x)-aaβ(x
| β | " «

= 7 1 + / 2 + / 3 + / 4 . (4.9)

Noting that ||r/||_OT<||/||v» we get, by Lemma 3. 2

for / e p (4.10)

for / E L ! ( Ω ) (4.11)

if 0<l<m.
We have

(4.12)
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From (4. 10) and (4. 12) it follows that

\\v\\m for any / e F * (4.13)

and

. (4.14)

for a n y / e F * .
From (4. 6) it follows that

I/, g
<κ1A\\f\\v*\Mm+ iλi^iHi.). (4.15)

From a — (2), (4. 12) and the interpolation we know

<Ku\xm\f\\v<ML+\M1/2\Mo). (4.16)

Combining (4. 8), (4. 13), (4. 14), (4. 15) and (4. 16) we find that

where K17 is a positive constant independent of X and δ.
Thus the statements i) and ii) are clear. The inequalities iii) and iv) can be
proved similarly. Q.E.D.

Lemma 4. 5. For any x^P we have

lim(-\γ-n'2mKλ(xy x) = C(x).

Proof. From Lemma 3. 3 and Lemma 4. 4, it follows that if λ < 0 and

I Kλ(x0, x0)-K°(x0, x0) I < i £ 1 8 ( 0 δ + δ " 1 ^ ) I λ I -1+»<2m (4. 17)

where Kl(x, y) is the kernel of the operator (A2 — λ)"1.
On the other hand, from Agmon [2], we get

+ I λ I -1 + c w~^ / 2 > w/δ^0)) (4. 18)

where p is the any positive constant.



ASYMPTOTIC DISTRIBUTION OF EIGENVALUES 557

In view of (4. 17) and (4. 18) with p = 1/2 we find

| * x ( * . , * , ) - ( - λ ) - 1 + 1 ^ G ( * β ) |

<κ20(θs+δ"11 λ i -1/2m+s(χoy
1/21 x i - 1 / t m ) i x | -ι+nμm.

Thus we know

lim ( - xy-^mKλ(x0 x0)) = C(x0) Q.E.D.

5. Proof of the main theorem

First we shall consider the relation between the resolvent kernel and eigen-
values.

Lemma 5.1. We get the following equality and estimates:

under s — (0) tfί λ-» — co.

iii) //

+ 0 [ I λ I «+i

] a; I λ I

ί = 0 or 1 M«i/er ί = ( l ) o r s "~(2) respectively p is the any positive number such

that 0 < £ < 1 and C l o = ί C(Λ)rf^.
JΩ

Proof. For the statement i) see § 13 of Agmon [1].
From Lemma 3. 2 and Lemma 3. 3 we see that

λ l ^ - 1 . (5.1)

Since aaβ(x) are Riemann-integrable functions we find that the measure of
(Ω — P) is zero. Using Lemma 4. 5, (5. 1) and Lebesgue theorem we know that

lim ( (-\γ-n/2fnKλ(xy x)dx = [ lim (-\Y'n/2mKJx, x)dx .

Thus ii) is proved.
Putting 7 = 1711~1/2fn+zjd{\) in (4. 2) and integrating both sides over Ω we
get the desired estimate since the second term is smaller than the first if j is
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sufficiently large and the third term is dominated by the integral of the last.
Q.E.D.

Lemma 5. 2. Under s—(0) it follows that

N(t) = C0t
nί2m+S(tnf2m).

Proof. Using Lemma 5. 1 (ii) and arguing as in § 14 of Agmon [1] we get

the desired statement. Q.E.D.

Lemma 5. 3. There is a constant Cn such that

Re λy > Cny
2m/H for large j .

Proof. From j<N(Rt λy) and Lemma 5. 2 we can easily show the estimate.
Q.E.D.

L e m m a 5. 4. If d(\)>C\\\1~ί/2m+ζ and | λ | is sufficiently large then we

have the following estimate

Proof. We have the following equality

Σ (λy-λ)" 1 - ! ] (Re λy-λ)"1 = - Σ Im λy(λy-λ)"1 (Re λy-λ)"1

= - Σ - Σ =Λ+Λ.
Rβλ^.^2|λ| Rβλ >2|\|

If Re λy<21 λ I there is a constant K2 such that

λ l 1 " 1 ^ (5.2)

from Lemma 3. 1.

On the other hand, if rf(λ)>C|λ11"1/2m+e and | λ | is sufficiently large,
then an elementary geometrical observation shows that there is a positive constant
K3 such that

(5.3)

for any j .
In view of Lemma 5.2, (5.2) and (5. 3) we get

IΛI< Σ | Imλy | I λ y - λ ΓM Re λ y - λ Γ 1

Rλ^2|λ|

Next from Lemma 5. 3 and Re λy >21 λ | we see
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Thus we find

Σ I λ y - λ I '^K9 I λ I -1+«/2~+* f j |"Ci+ >
Reλ.>2|\| i=»0

< ί Γ 7 | λ Γ 1 + " / 2 w + β . (5.4)

On the other hand, from Lemma 3. 1 and Re Xj>2 \ X |, we get

I Im λ y 11 Re λ,—λ | ̂ K, | X | "1 / 2 m . (5. 5)

From (5. 4) and (5. 5) we know that

Σ | I m λ , | Iλy-λΓMReλ,—λ, - λ Γ 1

λ/>2|λl

Σ
Rβλ/>2|λl

Q.E.D.

Now we follow the method of Agmon [2]. We put

λ - λ ) - 1 and /(*) = (ZwiV'f /(λ)<ίλ

where L(^) is an oriented curve in the complex plane from z to z = t + iτ not
intersecting [0, oo).

Thus for t>0, τ > 0

\I(z)-(τ/π) Re/(ar)-iV(ί) + iV(O)| < C 1 2 τ | I m / ( ^ ) | . (5. 6)

First we consider the asymptotic formula for N(t) under s — (1). If d(\)>

(5.7)

from Lemma 5. 1 and Lemma 5. 4.
We put z = t + if-h'2nκh+2^* and take

L(z) = {X =

U {λ; |

where t is a sufficiently large positive number.
From (5. 6), (5. 7) and JV(O) = O we find

\I(z)-N(t)\ <K12t
n/2m-h/2m(h+2>+z. (5. 8)

On the other hand we know the following equality

f(X)d\ = (2τrO"1( {/(λ)-C 1 0(-λ)- 1 + n / 2 w} dX
LCzϊ J LCz)

-1 \ C10(-X)\-1+n'2mdX = / , + / , .
J LCzϊ
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In view of Lemma 5. 1 and Lemma 5. 4, putting 1 >p>hβ we get that

Iii I < ^ i 3 { ( I λ 11+*+ί»-w»+ηd(x)2+hl dx I
J L(z~)

I ^

_ι j l

Noting that

—.(
2πiJi

nπβm

from (5. 8) and (5. 9) we obtain the desired estimate.

In case of s—(2) assuming that a — (3) holds for somep>(h-\-1)/2 if

and for any/><l if λ = l , we can prove the desired result in the same method as

above.
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