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Shape Optimization of Adhesives of Multi-materials under Multiaxial 

Stress Failure Criteria 

In recent years, multi-material design concept has been applied to many 

industries. Among various methods of joining dissimilar materials, adhesive 

bonding is quite suitable for the purpose of lightening the weight. In order to 

choose the most preferable adhesive for improvement of the strength, it is 

necessary to understand the failure criteria of adhesives. Experiments using pipe 

specimens with inclined surfaces bonded by an epoxy adhesive were performed, 

which can achieve multiaxial stress states while solely recurring to a uniaxial 

tensile test. The failure function of the epoxy adhesive, expressed by the mean 

stress and octahedral shear stress, was then obtained from the experiment data 

and compared with that of the acrylic adhesive in the previous research. The 

failure functions of both adhesives were then applied to the shape optimization of 

the adhesive layer under different loading conditions. The optimization object is 

to improve the strength of bonded structures. The optimal shape for different 

loading conditions differs for each adhesive because of the driving force due to 

the applied stress. Thus, the final shapes are numerically optimized to attain the 

highest mechanical integrity of the adhesive layer and show strong dependences 

on the initial shapes prior to optimization.   

Keywords: Adhesive; Epoxy adhesive; Acrylic adhesive; Failure criterion; 

Multiaxial stress state; Shape optimization 

 

Introduction 

In recent years, one of the most important technical trends of the automotive 

industry is to reduce the weight of structures so that emission of carbon-dioxide and 

energy consumption are also reduced. One strategy to lighten the structures is multi-

material design [1], that is, the combination of different materials with appropriate 

strength and stiffness. Multi-material design is generally applied to the flame of 

structures where the strength of the bonded parts is crucial. In order to join dissimilar 

materials, several methods have been developed such as laser welding [2], friction stir 
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spot welding [3], and combination of mechanical fastening with bolts and adhesive 

bonding [4]. Adhesive bonding is one of the most promising joining methods, which is 

widely used to bond materials with dissimilar properties together because the adhesive 

materials are lighter than other mechanical fastenings. There are many kinds of 

adhesives while two major groups are most widely used in many industries, epoxy and 

acrylic adhesives. The former is a typical and major one of structural adhesives, which 

can provide a high-performance for bonding large areas of sheet materials and produce 

a better finished appearance than the other joint methods such as welding or screws [5]. 

Epoxy adhesives are widely used in various industries especially for large size products 

such as aerospace, automotive and marine where higher strength is required. Acrylic 

adhesive used in the construction sector is an adhesive bond that comprises a denatured 

acrylic-based structural adhesive of 2-component type. As the molecular structures of 

these two adhesives are different, so too are their physical and mechanical properties. 

[6, 7] 

In order to understand the mechanical properties of epoxy and acrylic adhesives, 

adhesive failure assessment based on multiaxial stress states should be considered in the 

practical multiple material design. Therefore, the conventional lap joint tests are not 

accurate to perform structural design. Some failure criteria have been proposed such as 

quadratic stress criterion [8] and other stress-based failure criteria [9-12]. However, they 

have unknown parameters which are dependent on the properties of adhesive materials. 

As a result, it is necessary to identify those parameters from experiments before further 

research of adhesives. Those for the acrylic adhesive have been experimentally 

determined using pipe specimens which can tune the ratio of applied mean stress and 

shear stress to realize multiaxial stress state in the previous research. [13].  Also, the 

strength of adhesives is highly influenced by its thickness, the parent materials adhered 
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as well as the material property of adhesives. These complex factors suggest that 

mechanical integrity of bonded structures should be required. Therefore, a shape 

optimization of the adhesive interface was proposed to improve the strength of bonded 

structure under the proposed failure criterion. Some shape optimizations of adhesive 

layer have been demonstrated according to the failure criterion of acrylic adhesive. [14]  

As the strength of adhesives is influenced by both material and structural factors, 

this research aims to involve both these two factors and to discuss how those factors 

affect the strength of bonded structures. an epoxy adhesive is investigated using the 

same as the previous research [13], and the parameters defined in the failure criteria are 

experimentally determined. The comparison of adhesive materials between epoxy and 

acrylic adhesives was performed to identify the difference in the failure behaviors in 

multiaxial stress states. The shape optimization using the failure criteria obtained from 

the experimental data was also performed to improve the strength of structure, reflecting 

the difference of each adhesive’s properties.  

 

Failure Criterion of Adhesive 

In order to measure the strength of the adhesive layer, tests have been executed 

using lap joint tests such as single-lap shear test [15-17] and peel test [18,19]. However, 

these tests regard stress distribution in the finite adhesive layer which allows a stress 

singularity occurring at the free edge. As a result, these measurements are not 

appropriate to fit the failure criterion. To avoid the stress concentration effect, a shear 

stress test using a napkin-ring specimen has been proposed [20-23] and used in a 

tension-torque test method [24, 25] so that the failure criterion in multiaxial stress state 

can be estimated by experimental results. It is a good way to evaluate the failure 

criterion without a free-edge effect, but this method requires a highly accurate biaxial 
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testing machine which may be difficult to access for most institutions generally. In order 

to realize a multiaxial stress state only by using a simple uniaxial tensile test, a new 

method using cylindrical pipe specimens with inclined cutting surface has been 

developed [13].  

In the present paper, two cylindrical coordinate systems are established with two 

kinds of loadings, uniaxial tension and torque, but only the former is applied for the 

experiments to get the failure function and the obtained criteria are extended to the 

shape optimization of adhesives under the two kinds of loadings. The cylindrical 

coordinate system (𝑟, 𝜃, 𝑧) are transformed into (𝑟′, 𝜃′, 𝑧′) in terms of the angle 𝜑 

between the horizontal plane 𝑟𝜃 and the inclined plane 𝑟′𝜃′ parallel to the adhesive 

surface as shown in Fig. 1. 

 

Figure 1. Coordinate transformation of the cylindrical coordinate system from (r, θ, z) to 

(r′, θ′, z′) in terms of angle φ. [13] 

Because the thickness of adhesive layer is small enough and the stiffness of 

adhesive is much smaller than that of the parent material, the deformation of adhesive is 

assumed to be strongly restricted by the more rigid parent material. Then, the normal 
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strains acting in the radial and circumferential directions along the cutting surface can 

be assumed that: 

𝜀
𝑟′

𝜀𝑧
′ ≈ 0, (1) 

𝜀
𝜃′

𝜀𝑧
′ ≈ 0. (2) 

This assumption has been certified using finite element simulations for Poisson’s ratio 

with a range from 0.2 to 0.4 [13]. Constitutive equations are then derived from Eqs. (1) 

and (2): 

𝜎𝑟′ = 𝜎𝜃′ =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
𝜀𝑧′, 𝜎𝑧′ =

𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
𝜀𝑧′ . (3) 

where 𝜎𝑟′, 𝜎𝜃′  and 𝜎𝑧′  are the normal stresses in radial, circumferential and direction 

along the cutting surface, and 𝐸 is Young’s modulus and ν is Poisson’s ratio. According 

to Eq. (3), 𝜎𝑟′  and 𝜎𝜃′ are expressed as a function of 𝜎𝑧′. 

𝜎𝑟′ = 𝜎𝜃′ =
𝜈

1 − 𝜈
𝜎𝑧′. (4) 

The first invariant of stress tensor 𝐼1 and the second invariant of deviatoric stress tensor 

𝐽2 can be calculated as: 

𝐼1 = 𝜎𝑟′ + 𝜎𝜃′ + 𝜎𝑧′ =
1 + 𝜈

1 − 𝜈
𝜎𝑧′ , (5) 

𝐽2 =
1

2
{(𝜎𝑟′

2 + 𝜎𝜃′
2 + 𝜎𝑧′

2 + 2𝜏𝑟′𝜃′
2 + 2𝜏𝜃′𝑧′

2 + 2𝜏𝑧′𝑟′
2 ) −

1

3
𝐼1

2}

=
1

3
(

1 − 2𝜈

1 − 𝜈
)

2

𝜎𝑧′
2 + 𝜏𝜃′𝑧′

2 . (6)

 

Here, in Eq. (6), 𝜏𝑟′𝜃′ and 𝜏𝑧′𝑟′ are assumed to be infinitesimally small compared with 

𝜏𝜃′𝑧′ and 𝜎𝑧′.  
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According to the coordinate transformation in Fig.1, the normal stress 𝜎𝑧′  and 

shear stress 𝜏𝜃′𝑧′  acting in the adhesive layer can be expressed by the tensor 

transformation as: 

𝜎𝑧′ =
𝜎𝑧

2
+

𝜎𝑧

2
cos 2𝜑 − 𝜏 sin 2𝜑 , (7) 

𝜏𝜃′𝑧′ = −
𝜎𝑧

2
sin 2𝜑 − 𝜏 cos 2𝜑 . (8) 

For a uniaxial tensile test mentioned in the following chapter, only the tensile stress 𝜎𝑧 

exists. Thus, according to Eqs. (7) and (8),  𝜎𝑧′ and 𝜏𝜃′𝑧′ can be calculated as: 

𝜎𝑧′ = 𝜎𝑧 cos2 𝜑 , (9) 

𝜏𝜃′𝑧′ = 𝜎𝑧 sin 𝜑 cos 𝜑 . (10) 

From Eqs. (5) and (6), 𝐼1 and 𝐽2 are reduced to be the following linear relation: 

√𝐽2 = {
1 − 𝜈

1 + 𝜈
√

1

3
(

1 − 2𝜈

1 − 𝜈
)

2

+ tan2 𝜑} 𝐼1 = 𝑘(𝜑, 𝜈)𝐼1, (11) 

where 𝑘(𝜑, 𝜈) is the coefficient which can be calculated from angle 𝜑 and Poisson’s ratio 

𝑣. In the following results, mean stress 𝜎𝑚( =
1

3
𝐼1 ) and octahedral shear stress 𝜏oct( =

√
2

3
𝐽2 ) are employed instead of 𝐼1 and 𝐽2 for the practical usage.  

The failure function proposed by Mahnken and Schlimmer [9, 13] is 

𝑓 = 𝐶0𝐽2 +
1

3
𝐶1𝐼1 +

1

3
𝐶2𝐼1

2 + 𝐶3. (12) 
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If the parameters are taken as C1 = 0 and C2  0, the obtained failure criterion is the same 

as the one proposed by Green [26] which can be considered as equivalent to the quadratic 

delamination criterion proposed by Brewer and Lagace [27]. If C1 = C2 = 0, the failure 

function is equivalent to the conventional von Mises failure criteria.  

From Eqs. (5) and (6), it is clearly shown that the failure function can be estimated 

with three parameters of ν, φ and σz, which are determined by the results of tensile tests 

using the pipe specimens bonded by different adhesives. Poisson’s ratios ν of the 

adhesives are taken into the present research as 0.35 for epoxy adhesive and 0.4 for acrylic 

adhesive, respectively. As the failure criterion differs only by the parameters, the numbers 

of 1/3 before the coefficients of 𝐶1 and 𝐶2 in Eq. (12) do not have any meaning. As a 

result, the failure criterion can be simplified as: 

𝑓 = 𝑐0𝐽2 + 𝑐1𝐼1 + 𝑐2𝐼1
2 + 𝑐3. (13) 

where 𝑐0 = 𝐶0, 𝑐1 =
1

3
𝐶1, 𝑐2 =

1

3
𝐶2 and 𝑐3 = 𝐶3.  

Shape Optimization 

In order to perform the shape optimal design of adhesive structures which is 

induced to minimize the stress operated in the adhesive layer under the multiaxial stress 

state, the objective function should be formulated [14]. The multi-material region with 

the adhesive layer is shown in Fig. 2. 
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Figure 2. Multi-material model consisting of two materials of A1 and A2 bonded by 

adhesion of B; suppose that traction p is applied at boundary 𝛤2 and body force f acts in 

Ω. The region is kinematically supported at boundary 𝛤1. 

 

The following governing equations including equilibrium equation, boundary 

conditions and continuity conditions at the interface hold in the region 𝛺𝑚(𝑚 =

A1, A2, B) with the boundary region of 𝛤1, 𝛤2 and  𝛤𝑚B (𝑚 = A1, A2) in Fig. 2. 

𝜎𝑖𝑗,𝑗
𝑚 + 𝑓𝑖 = 0 in 𝛺𝑚 (𝑚 = A1, A2, B), (14)

𝑢𝑖 = 0 on 𝛤1, (15)

𝜎𝑖𝑗𝑛𝑗 = 𝑝𝑖  on 𝛤2, (16)

𝜎𝑖𝑗
𝑚𝑛𝑗

𝑚 = −𝜎𝑖𝑗
𝐵𝑛𝑗

𝐵 on 𝛤𝑚B (𝑚 = A1, A2). (17)

 

Here, 𝒑 is the surface traction vector, 𝒇 is the body force vector and 𝒏 is the normal 

vector of the boundary. The linear and bilinear functions are defined as following: 

𝑎𝑚(𝒖, 𝒗) = ∫ 𝜎𝑖𝑗
𝑚(𝒖)𝜀𝑖𝑗

𝑚(𝒗)𝑑𝛺
𝛺𝑚

(𝑚 = A1, A2, B), (18)

𝑙(𝒗) = ∫ 𝑝𝑖𝑣𝑖𝑑𝛤
𝛤2

+ ∫ 𝑓𝑖𝑣𝑖
𝛺

𝑑𝛺, (19)

ℎ1𝑚(𝒖, 𝒗) = ∫ 𝜎𝑖𝑗
𝑚(𝒖)𝑛𝑗

𝑚𝑣𝑖𝑑𝛤
𝛤𝐴1𝐵

 (𝑚 = A1, B), (20)

ℎ2𝑚(𝒖, 𝒗) = ∫ 𝜎𝑖𝑗
𝑚(𝒖)𝑛𝑗

𝑚𝑣𝑖𝑑𝛤
𝛤𝐴2𝐵

 (𝑚 = A2, B), (21)
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where 𝒗 is an adjoint variable of the function space 𝓤 expressed by the following 

equation: 

𝓤 = {𝒗 ∈ 𝐻1(𝛺; ℛ3)|𝒗 = 0 on 𝛤1 }. (22) 

The governing Eqs. (14) to (16) can be expressed using Eqs. (18) to (21) based on the 

principal of virtual work. 

𝑎𝐴1
(𝒖, 𝒗) − ℎ1A1

(𝒖, 𝒗) + 𝑎A2
(𝒖, 𝒗) − ℎ2A2

(𝒖, 𝒗) +

𝑎𝐵(𝒖, 𝒗) − ℎ1B(𝒖, 𝒗) − ℎ2B(𝒖, 𝒗) − 𝑙(𝒗) = 0, ∀𝒗 ∈ 𝓤. (23)
 

The displacement 𝒖 required to calculate the objective function must always satisfy the 

above governing Eq. (23).  

It is assumed that 𝒗 is a continuous function on the interface 𝛤A1B and 𝛤A2B as 

follows: 

𝑣𝑚 = 𝑣𝐵  on 𝛤𝑚B (𝑚 = A1, A2). (24) 

Then, according to Eqs. (17) and (24), governing Eq. (23) can be simplified as: 

𝑎A1
(𝒖, 𝒗) + 𝑎A2

(𝒖, 𝒗) + 𝑎B(𝒖, 𝒗) − 𝑙(𝒗) = 0, ∀𝒗 ∈ 𝓤. (25) 

The failure function 𝑓 based on Eq. (13) has a different value dependent to the 

stresses occurring in the adhesive layer and the failure happens when 𝑓 = 0. In order to 

enhance the strength of the adhesive structure, the values of failure function 𝑓 are 

supposed to become uniform throughout the adhesive layer for the applied stress to be 

minimized as much as possible. Therefore, the object function is to minimize it in the 

adhesive layer region 𝛺𝐵 as the sum of squares of failure function f occurring in the 

whole adhesive layer as follows [14].  

Find 𝛺B ∶  min
𝛺B

𝐹 , where 𝐹 =
∫ (𝑓 − 𝑐3)2𝑑Ω

𝛺B

∫ 𝑑Ω
𝛺B

. (26) 
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In order to avoid diminishment and disappearance of the adhesive layer region 𝛺𝐵, the 

constant volume constraint on 𝛺𝐵 is imposed. As a result, the shape optimization 

problem of the adhesive interface for the multi-material region becomes the following 

formulas. 

min 
𝛺B

𝐹(𝐼1, 𝐽2) ,  

subject to Boundary − value problem and   (27) 

𝑉B =   �̅�B where 𝑉B =  ∫ 𝑑Ω
𝛺B

. 

where �̅�𝐵  is the initial volume of the adhesive layer.  

The traction method [28] is used to calculate the adjoint velocity field 𝓥. For this 

purpose, it is necessary to derive the shape gradient function that acts as an external 

force term in the traction method. According to the optimization problem set in Eq. 

(27), a Lagrange functional is defined as: 

𝐿 =
∫ (𝑓 − 𝑐3)2𝑑Ω

𝛺B

∫ 𝑑Ω
𝛺B

− [
𝑎A1

(𝒖, 𝒗) − ℎ1A1
(𝒖, 𝒗) + 𝑎A2

(𝒖, 𝒗) − ℎ2A2
(𝒖, 𝒗)

+𝑎𝐵(𝒖, 𝒗) − ℎ1B(𝒖, 𝒗) − ℎ2B(𝒖, 𝒗) − 𝑙(𝒗)
]

+𝛬(𝑉B − �̅�B). (28)

 

Here, 𝛬 is the undetermined multiplier of Lagrange. Then, the time derivative of the 

Lagrange functional �̇� for the domain variation according to the velocity field 𝓥 

becomes the following formula: 

�̇� = −[𝑎A1
(𝒖, 𝒗′) + 𝑎A2

(𝒖, 𝒗′) + 𝑎B(𝒖, 𝒗′) − 𝑙(𝒗′)] 

− [𝑎A1
(𝒖′, 𝒗) + 𝑎A2

(𝒖′, 𝒗) + 𝑎B(𝒖′, 𝒗) −
2 ∫ 𝑓′(𝑓 − 𝑐3)2𝑑Ω

𝛺B

∫ 𝑑Ω
𝛺B

]

+𝛬′(𝑉B − �̅�B) + 𝑙𝐺(𝓥), (29)
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𝑙𝐺(𝓥) = ∫ 𝐺A1B
𝛤A1B

𝒏 ∙ 𝓥d𝛤 + ∫ 𝐺A2B
𝛤A2B

𝒏 ∙ 𝓥d𝛤, (30) 

𝐺𝑚B =
(𝑓 − 𝑐3)2

∫ 𝑑Ω
𝛺B

−
∫ (𝑓 − 𝑐3)2𝑑Ω

𝛺B

(∫ 𝑑Ω
𝛺B

)
2 − [𝜎𝑖𝑗

B(𝒖)𝜀𝑖𝑗
B(𝒗) − 𝜎𝑖𝑗

𝑚(𝒖)𝜀𝑖𝑗
𝑚(𝒗)]

+𝜎𝑖𝑗
B𝑛𝑗

B(𝑣𝑖,𝑘
B − 𝑣𝑖,𝑘

𝑚 )𝑛𝑘
B + 𝛬 (𝑚 = A1, A2), (31)

 

where it recalls that (∙)′ denotes the partial derivative for region variation. From Eq. 

(29), the term of the velocity field 𝓥 can be expressed by the shape gradient function 

𝐺A1B and 𝐺A1B on the adhesive interface 𝛤A1B and  𝛤A2B. According to Eq. (29), the 

optimal condition for u, v and 𝛬 of the Lagrange functional L is   

𝑎A1
(𝒖, 𝒗′) + 𝑎A2

(𝒖, 𝒗′) + 𝑎B(𝒖, 𝒗′) − 𝑙(𝒗′) = 0, ∀𝒗′ ∈ 𝓤, (32) 

 𝑎A1
(𝒖′, 𝒗) + 𝑎A2

(𝒖′, 𝒗) + 𝑎B(𝒖′, 𝒗) −
2 ∫ 𝑓′(𝑓 − 𝑐3)2𝑑Ω

𝛺𝐵

∫ 𝑑Ω
𝛺B

= 0, ∀𝒖′ ∈ 𝓤, (33) 

𝛬′(𝑉B − �̅�B) = 0. (34) 

Here Eq. (32) has the same meaning with the governing equation (25) calculating the 

displacement u by FEM analysis. Eq. (33) is the adjoint equation of the adjoint variable 

vector v and Eq. (34) is the constraint condition of the volume. According to the 

symmetry of 𝑎𝑚 (𝑚 = A1, A2) and the chain rule of partial derivative, Eq. (33) can be 

written as: 

𝑎A1
(𝒗, 𝒖′) + 𝑎A2

(𝒗, 𝒖′) + 𝑎B(𝒗, 𝒖′) − 𝑙2(𝒖′) = 0, (35) 

where 𝑙2(𝒖′) = ∫
2 ∫ 𝑓′(𝑓−𝑐3)2𝑑Ω

𝛺B

∫ 𝑑Ω
𝛺B

𝛺𝐵

𝜕𝑓

𝜕𝜎𝑖𝑗

𝜕𝜎𝑖𝑗

𝜕𝒖𝑘
𝒖′𝑘𝑑Ω, ∀𝒖′ ∈ 𝓤. 
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According to Eq. (35), the term of the external force l is replaced by 𝑙2 and the adjoint 

variable vector v can be calculated by FEM analysis.  

Finally, the velocity field 𝓥 is calculated, which is used to update the shape of 

the adhesive layer according to the traction method as 

𝑎(𝓥, 𝒘) = −𝑙𝐺(𝑤), 𝓥 ∈ 𝐶𝚯, ∀𝒘 ∈ 𝐶𝚯. (36) 

Here, 𝑎(𝓥, 𝒘) is the property value of adhesives, 𝑙𝐺(𝒘) is obtained according to Eq. 

(30) and 𝐶𝚯 is the allowable function space that satisfies the constraint condition of 

region variation.  

The flowchart of the numerical analysis for optimization is shown in Fig. 3 [14]. 

The displacement field u satisfying Eq. (32) is calculated by FEM analysis. The values 

of stress calculated from the FEM analysis are input into the failure function f of Eq. 

(13) and the objective function F is calculated. The result is then compared with the 

value of F in the previous step. If the difference of the values between the two steps is 

larger than 10−3, the analysis keeps going. The vector field v which satisfies the adjoint 

equation (35) is calculated by FEM analysis. The obtained displacement field u and 

vector field v are used to calculate the shape gradient function according to Eq. (31). 

The velocity field 𝓥 is then obtained from Eq. (36) by the traction method and is used to 

update the shape of the interface. The iteration keeps going until the change rate of 

objective function is less than 10−3. Finally, the output result is the optimal design of 

the adhesive interface.  
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Figure 3. The flowchart of the shape optimization process. The iteration will keep going 

on until the change rate of F is less than 10−3. 

 

Failure Criterion Obtained from Experiments  

Experiment using pipe specimens 

The parameters of the failure criterion of Eq. (13) for acrylic adhesive 

(HardlocTM: M-600-08, Denka Co., Ltd.) were already determined by the experiments 

in ref. [13]. The same experiments are performed using pipe specimens with inclined 

cutting surfaces bonded by epoxy adhesive (EP-171, CEMEDINE Co., Ltd.), which can 

realize the multiaxial stress states only by a uniaxial tensile test. A5052 aluminum pipe 

specimens, which have the tilted cutting surfaces by laser processing with the 

inclination angles 𝜑 of 20°, 45° and 75°, are shown in Fig. 4 (a). The outer radius and 

thickness of the pipe specimens are 45 mm and 3 mm, respectively. The load-

displacement curves obtained from the tensile tests (see Fig. 4 (b)) with the strain rate of 
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5.56 × 10−3 [ /s] are also shown in Fig. 5. The response of epoxy adhesive is almost 

linear compared with the case of acrylic adhesive with nonlinear response and shows 

the very sharp maximum point regardless of the thickness h of adhesive layer. In 

general, the fracture of adhesive layer has the visco-plastic characterization with mean 

pressure dependence because the void nucleation and its growth behaviors might be 

essential. As a result, the proportional limit as the rather clear threshold between the 

linear elastic and the nonlinear parts is adopted in this research.  

 

         (a) Test specimens                                  

(b) Tensile test process 

Figure 4. (a) Test specimens with inclined cutting surfaces and (b) tensile test process.  

 

 
                                       (a)                                                                (b) 
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                                      (c)                                                            (d) 

Figure 5. Load-displacement curves obtained from experiments; (a) 𝜑 = 0°, (b) 𝜑 =

20°, (c) 𝜑 = 45°, (d) 𝜑 = 75°. 

 

Failure criterion 

𝐼1 and 𝐽2 are calculated by the results of experiments according to Eqs. (5), (6), 

(7) and (8). The parameters 𝑐1, 𝑐2, and 𝑐3 are estimated by the least squares fit as it is a 

quadratic function. According to the fitting, the parameters for the epoxy adhesive are 

newly obtained;  𝑐1 is -9.03 [MPa], 𝑐2 is 0.199 and 𝑐3 is -11.5 [MPa2] under c0=1.00. 

The failure curve is obtained by 𝑓 = 0, as shown in Fig. 6 (a) with Poisson’s ratio v of 

0.35 and the reference thickness because each sample has a different thickness in the 

manufacturing process. The previous result for acrylic adhesive with v = 0.4 is drawn in 

Fig. 6 (b) as a reference with  𝑐1 = −0.200 [MPa], 𝑐2 = 0.0590 and 𝑐3 = −14.0 

[MPa2] under 𝑐0 = 1.00. The failure criteria were established only from the 

experimental data collected from single-material pipes. In present research, the failure 

function is also established from multi-material pipe specimens and compared with the 

previous results to check if the failure function established from single-material pipes is 

also applicable.  Fig. 6 is denoted using 𝜎𝑚 and 𝜏oct instead of 𝐼1 and 𝐽2 due to easier 

understanding of their magnitudes. The relationships between both quantities are 
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expressed as 𝜎𝑚 =
1

3
𝐼1 and 𝜏oct = √

2

3
𝐽2. Comparing these two curves, it is obvious that 

there is a relative maximum point at the case of epoxy adhesive, which shows the 

largest value 𝜏oct at some nonzero value of 𝜎𝑚. As a result, the failure function can be 

rewritten as:  

𝑓 = 𝑐0
′ 𝜏oct

2 + 𝑐2
′ (𝜎𝑚 − 𝑐1

′) 
2

+ 𝑐3
′ , (37) 

Where 𝑐0
′ =

3

2
𝑐0, 𝑐1

′ = −
𝑐1

6𝑐2
, 𝑐2

′ = 9𝑐2 and 𝑐3
′ = 𝑐3 −

𝑐1
2

4𝑐2
 . The new parameters are 𝑐1

′ =

7.56 [MPa], 𝑐2
′ = 1.79 and 𝑐3

′ = −114 [MPa2] under 𝑐0
′ = 1.5 for the epoxy, while on 

the other hand, 𝑐1
′ = 0.56 [MPa], 𝑐2

′ = 0.531 and 𝑐3
′ = −14.2 [MPa2]  under 𝑐0

′ = 1.5 

for the acrylic using the data obtained in ref. [13]. 𝑐1
′  suggests how large the hydrostatic 

pressure (mean stress) affects the maximum distorsional strength of adhesive material. 

The former is much larger than the latter and thus the epoxy adhesive can provide the 

maximum strength under dilatation circumstance of around 7.6 [MPa]. Recall that some 

linear dashed lines in Fig. 6 show the relationship of Eq. (11). Each slope equals to 

√6𝑘, where 𝑘(𝜑, 𝑣) is in Eq. (11) and determined only by the different angle 𝜑 for the 

same Poisson’s ratio.  

Whenever the failure of materials is discussed, it is usually determined only by 

the intrinsic strength of materials such as yield stress. However, in the adhesive 

problem, the factors affecting the strength are not only properties of adhesive materials 

but also the other geometric factors of structure. Among those factors, thickness of 

adhesive layer has the most significant effect. As a result, the failure function should be 

reconsidered as it is not applicable to adhesive layers with different thickness [29]. A 

scale function, 𝛿, which extends the failure criterion of Eq. (13) to different adhesive 

layer thickness, has been formulated based on the reference thickness ℎ∗[30]: 
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𝛿 =
(𝜎𝑚 − 𝑥0)2

𝑎2
+

𝜏oct
2

𝑏2
,

where |𝑎| =
1

3
√

𝑐1
2

4𝑐2
2 −

𝑐3

𝑐2
, |𝑏| = √

𝑐1
2

36𝑐2
2 − 𝑐3 and 𝑥0 = −

𝑐1

6𝑐2
. (38)

 

𝛿 was set to 1 when a point (𝜎𝑚 ,  𝜏oct) is located on the curve of failure function.  All 

the failure magnitude (𝜎𝑚 ,  𝜏oct)  of pipe specimen with different thicknesses ℎ have 

been substituted into Eq. (38) to get the 𝛿. And then, the power law of 𝛿 ∝ ℎ−0.20 for 

the epoxy adhesive is obtained in reference to 𝛿 ∝ ℎ−0.60 for the acrylic adhesive [13] 

by a least square fitting between log 𝛿 and log h. The reference thickness was found 

when log 𝛿 = 0 because the parameters in Eq. (13) are fitted under f  = 0. The reference 

thickness ℎ∗ is 0.3 mm for epoxy and 0.4 mm for acrylic. The absolute value of the 

power exponent of epoxy adhesive is much smaller than that of acrylic adhesive. This 

result suggests that thickness dependence to the failure of epoxy adhesive is much 

weaker than that of acrylic adhesive. A new coefficient 𝑐3
∗ of the failure function which 

indicates the dependence to the thickness was finally calculated according to Eq. (38) 

as: 

𝑐3
∗ = 𝑏2 {

𝑥0
2

𝑎2
− (

ℎ

ℎ∗
)

𝑝

} . (39) 

where 𝑝 is the power exponent which is -0.20 with ℎ∗ = 0.30 [mm] for epoxy and -0.60 

with ℎ∗ = 0.40 [mm] for acrylic. By modifying the new coefficient 𝑐3
∗, the failure 

function could be applied to adhesive layer with various thicknesses.   

While the thickness dependence is one of the most important structural factors, 

the material properties of adhered materials are also the other important factor which 

affects the strength of the adhesive structure. The red curve shown in Fig. 6 (b) is 

established from the experimental data of multi-material pipes jointed by acrylic 

adhesive, which consist of SS400 steel pipe and A5052 aluminum pipe with the outer 
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radius of 45 mm and the thickness of 3 mm.  As the numbers of samples are limited,  𝑐1 

is set to 0 in the least square fit because the previous result for the single-material pipes 

[13] gives us the  𝑐1 close to 0. The parameters are finally obtained as  𝑐1 = 0 [MPa], 

𝑐2 = 0.0515 and 𝑐3 = −19.8 [MPa2] under 𝑐0 = 1.00 for the multi-material curve and 

as 𝑐1 = −0.200 [MPa], 𝑐2 = 0.0590 and 𝑐3 = −14.0 [MPa2] under 𝑐0 = 1.00 for the 

single-material. Comparing the quantities of the parameters,  𝑐1s for both are almost 

zero and 𝑐2s for both also have similar value with the difference for just 10%. This 

result shows that the overall shapes of the single-material failure function and the multi-

material failure function are almost the same and the only difference is the coefficient 

𝑐3. In other words, this difference can be treated as the failure function for adhesive 

layer with different thickness. As a result, the function can be modified to make them 

applicable to each other just by changing a new coefficient 𝑐3
∗ which is modified by ℎ∗ 

according to Eq. (39). If the appropriate ℎ∗ is chosen, the multi-material failure curve 

can be transferred to keep identical with the single-material one which means they have 

the same property.          
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(a) Epoxy adhesive 

 

(b) Acrylic adhesive 

Figure 6. Failure criterion estimated from experiment results. The number beside the 

data point shows the average thickness of the adhesive layer of the pipe specimen. (a) 

Epoxy adhesive (EP-171) (b) Acrylic adhesive (M-600-08), the red data points indicate 

the experience data collected from pipes with different materials.  

Optimal Design of Adhesive Layer 

Model and conditions of optimization 

A thin-wall pipe joint model which has the thickness of adhesive with 0.13a, 

where a is the diameter of pipe (a = 20 mm), is used in the optimization calculation as 

shown in Fig. 7. The elastic properties of adhered materials as well as adhesives are 

shown in Table 1. In order to simulate the stress state of the bonding between different 

materials, the upper (A1 in Fig. 7) and lower (A2 in Fig. 7) pipes are made of steel and 

aluminum, respectively.  As mentioned in the previous section, there always exists a 

multiaxial stress state in the adhesive layer so that combined loading conditions should 
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be considered in optimal design of the adhesive layer.  Let 𝛼 (= 𝜎/𝜏) be a ratio of 

tensile stress 𝜎 by tension to shear stress 𝜏 by torsion, which are applied at both ends of 

the pipe far from the adhesive region. Three loading conditions are set as shown in Fig. 

8. When 𝛼 = 0, there is only torsion T. When 𝛼 = 2, a combined loading with both 

torsion T and tension F applied. When 𝛼 → ∞, there is only tension F.  

 

Figure 7. Dimension of the thin-wall pipe model used in the optimization analysis. Two 

halves are made of different materials and bonded by the adhesives.  
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Figure 8. Boundary condition and initial torsion-tension combined load of FEM model.  

Table 1. Material properties of FEM model 

 

Table 2. Material 

parameters of failure functions for adhesives (B)  

 

 

 

 

Comparison on the optimization results 

The optimization calculations using epoxy adhesives are obtained under three 

different loading conditions. These results are compared with the optimization results of 

acrylic adhesive in ref. [14]. The objective function and volume curves under three 

loading conditions are shown in Fig. 9. These data are normalized by the initial values 

of objective function and the volume of the adhesive layer. In most situations, the values 

of objective functions decrease as the number of iterations increases, which implies the 

Material Young’s modulus [GPa] Poisson’s ratio 

Steel (A1) 210  0.3 

Aluminum (A2) 70  0.3 

Epoxy adhesive (B) 1.2 0.35 

Acrylic adhesive (B) 0.35 0.4 

Material 𝑐0 𝑐1 𝑐2 𝑐3 

Epoxy adhesive 1.00 -9.03 0.199 -11.5 

Acrylic 

adhesive 
1.00 -0.200 0.0590 -14.0 
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reasonable success of the minimization. For the cases of epoxy with 𝛼 = 0 and acrylic 

with 𝛼 → ∞, the objective functions slightly increase or don’t change at all because the 

original shapes are optimal and thus the initial value of objective function is minimal.  

 
(a) 𝛼 = 0 

 
(b) 𝛼 = 2 

 

(c) 𝛼 → ∞ 

Figure 9. The objective functions according to the iteration number of optimizations 

under three different loading conditions. (a) 𝛼 = 0, (b) 𝛼 = 2 and (c) 𝛼 → ∞. 
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The final shapes of the optimized interfaces of adhesive layers for epoxy and 

acrylic [14] adhesives are shown in Fig. 10 under the ratios of 𝛼 = 0 (only torsion), 2 

and ∞ (only tension). The color map in Fig. 10 gives us equivalent stress (von Mises 

stress) distribution. From them, the averaged stress of 4.22 [MPa] is rather uniform in 

most parts of the adhesive layer and this value is much smaller than the averaged stress 

of 6.67 [MPa] in adhered material A1 and 6.56 [MPa] in A2. For different adhesives and 

different loading conditions, it is found that the optimization of adhesive structure has a 

strong dependence on the failure function of the employed adhesive material.  

 

Figure 10. Optimal design of the adhesive layer for epoxy and acrylic adhesives under 

three different loading conditions.  

 

Optimization process on the failure curve 

In order to examine the optimization process in failure space, each step of the 

optimization is traced. According to Eq. (37), the failure happens when 𝑓 = 0 and 
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therefore any point (𝜎𝑚 , 𝜏oct) on the curve indicates the failure state of adhesive. In 

order to compare the results of optimization with those of experiments, the starting data 

points of the optimization could be scaled onto the failure curve obtained by experiment 

data because all the calculations were performed within the linear elasticity. As a result, 

the initial data points (𝜎𝑚
0 , 𝜏oct

0 ) can be transformed to the modified data points 

(𝜎𝑚 , 𝜏oct) on the failure function curve by a multiplier A as follows: 

𝜎𝑚

𝜎𝑚
0

=
 𝜏oct

𝜏oct
0 = 𝐴, (40) 

where A can be calculated by the initial value of (𝜎𝑚
0 , 𝜏oct

0 ) and the parameters of the 

failure function as follows:  

𝐴 =
−𝑐1

′𝜎𝑚
0 + √(𝑐1

′𝜎𝑚
0 )2 − 4𝑐3

′ (𝑐0
′ 𝜏oct

0 + 𝑐2
′ 𝜎𝑚

0 2
)

2 (𝑐0
′ 𝜏oct

0 + 𝑐2
′ 𝜎𝑚

0 2
)

, (41) 

On the second issue, optimization is to minimize the objective function in order 

to increase the strength of the adhesive structure to the failure. The distance of the 

design data point of the optimization from the origin in the failure space should be 

shortened so that the data points will get sufficiently inside from the failure curve. 

According to Fig. 6, the distance to the origin 𝛿 in the failure plane of 𝜎𝑚 and 𝜏oct can 

be calculated as follows because 𝜎𝑚 is orthogonal to 𝜏oct in Haigh–Westergard principal 

stress space. 

𝛿 = √𝜎𝑚
2 + 𝜏oct

2  . (42) 

The data points of optimization results were multiplied by A and transformed to 

put the initial point (n=0) onto the failure curve. The modified data points through the 
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optimization processes under three different loading conditions are plotted in the failure 

space, as shown in Fig. 11. The enlarged views of the optimization processes, (I), (II) 

and (III), are shown in Fig. 12; (a) region (I) of 𝛼 = 0, (b) region (II) of 𝛼 = 2 and (c) 

region (III) of 𝛼 → ∞. The data points for each 10 steps through the optimization 

iteration were all multiplied by A and the direction of the optimization is shown along 

arrows. In order to check whether the optimization process minimizes the object 

function, the distances 𝛿 normalized by the initial value of 𝛿0 are calculated as shown in 

Fig 13. It is obvious that 𝛿 is decreasing as the iteration number n and the process 

improves the structural integrity of the adhesive layer. The same results for acrylic 

adhesive in ref. [14] are shown in Fig 14, 15 and 16, respectively. From Figs. 13 and 16, 

the optimization can reduce the applied stress level for less than 30% from initial shape 

for the epoxy adhesive and up to 50% for the acrylic adhesive.  
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Figure 11. The results of the optimization process on the failure function curve for the 

epoxy adhesive. The blue dots, red dots and green dots are the results for 𝛼 = 0, 𝛼 = 2 

and 𝛼 → ∞, respectively. n is the iteration number of the optimization. 

 

 

 

 
(a) Region (I) in Fig. 11 

 
(b) Region (II) in Fig. 11 
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(c) Region (III) in Fig. 11 

Figure 12. The enlarged view of the optimization results of the epoxy adhesive 

multiplied by A. (a) Region (I) of 𝛼 = 0, (b) Region (II) of 𝛼 = 2 and (c) Region (III) of 

𝛼 → ∞. 

 

Figure 13. The distance between the data points and the origin for the epoxy adhesive. 

 



29 

 

 

Figure 14. The results of the optimization process on the failure function curve for the 

acrylic adhesive. The blue dots, red dots and green dots are the results for 𝛼 = 0, 𝛼 = 2 

and 𝛼 → ∞, respectively. n is the iteration number of the optimization. 

 

 

 
(a) Region (I) in Fig. 14 
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(b) Region (II) 9n Fig. 14 

 
(c) Region (III) in Fig. 14 

Figure 15. The enlarged view of the optimization results of the acrylic adhesive 

multiplied by A. (I) 𝛼 = 0, (II) 𝛼 = 2 and (III) 𝛼 → ∞. 
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Figure 16. The distance between the data points and the origin for the acrylic adhesive. 

 

 Comparing the optimization process of epoxy and acrylic adhesives according 

to Figs. 12 and 15, the trends of the data points under loading conditions of 𝛼 = 0 and 

𝛼 → ∞ have the most obvious difference. Specifically, for 𝛼 = 0 (only torsion), the data 

points of epoxy adhesive stay at the original position while those of acrylic adhesive 

move through the optimization process. For 𝛼 → ∞ (only tension), the results are totally 

opposite. The movement of the data points indicates the change of ratio between 𝜎𝑚 and 

𝜏oct in the adhesive layer. As the loading applied to the model is kept constant, the ratio 

of  𝜎𝑚 to 𝜏oct observed in the adhesive layer can only be changed by the shape change 

of the adhesive layer. Looking back in Fig. 10, the shape of layer for the epoxy adhesive 

stays the original shape under 𝛼 = 0 and the shape of that for the acrylic adhesive keeps 

the original shape under 𝛼 → ∞. Considering the reason for these optimized behaviors, 

the shape gradient function of Eq. (30), has been investigated. According to Eq. (30), 𝑙𝐺 , 

which is calculated by the shape gradient function, indicates the change rate of the work 

done by the driving force on the adhesive interface which causes the shape change of 

the adhesive layer. The values of 𝑙𝐺  through the first several steps of the optimization 
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process for epoxy and acrylic adhesives are obtained, as shown in Fig. 17 for 𝛼 = 0 and 

Fig. 18 for 𝛼 → ∞, respectively. The red line shows the result of epoxy adhesive and the 

blue line shows that of acrylic adhesive. For 𝛼 = 0, the value of shape gradient function 

for acrylic adhesive is positive so that the driving force causes the shape change along 

the positive direction and then the angle of the adhesive layer gets larger. However, for 

epoxy adhesive, the value of shape gradient function is negative so that this 

optimization is impossible. As a result, the shape of the adhesive layer only stays at the 

initial one. For 𝛼 → ∞, the value of shape gradient function is positive for epoxy 

adhesive but negative for acrylic adhesive so that the shape change has an opposite 

pattern with that of 𝛼 = 0. This fact concludes that the initial shape for optimization is 

strongly affected to the final shape and the shape gradient function is the definite 

indicator wherever the present initial model is appropriate or not for the multi-material 

design.  

 

Figure 17. The shape gradient function of epoxy and acrylic adhesives for the first 5 

steps of optimization under the loading condition 𝛼 = 0.  
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Figure 18. The shape gradient function of epoxy and acrylic adhesives for the first 5 

steps of optimization under the loading condition 𝛼 → ∞.   

 

Conclusions 

The failure criterion expressed by the first invariant of stress tensor 𝐼1 and the 

second invariant of deviatoric stress tensor 𝐽2  for epoxy adhesive was obtained from 

experimental data using a simple uniaxial tensile test and plotted into the failure plane 

of 𝜎𝑚 from 𝐼1 and 𝜏oct from 𝐽2. The result was compared with the case for acrylic 

adhesive in reference [13]. The failure function of the epoxy adhesive has the center of 

ellipse failure curve with 𝜎𝑚 = 22.7 [MPa] while the acrylic does not have such a point. 

The major axis in the 𝜎𝑚 direction is almost 3 times and the axis in the 𝜏oct direction 

perpendicular to the former axis is 2.5 times larger than those of the acrylic adhesive. 

Therefore, both adhesives have the strong difference of the failure properties.    

Shape optimization problem that would improve the strength of the adhesive 

structure in multiaxial stress state, was proposed reflecting the difference between both 

failure functions of adhesive materials. The distances of the design data point from the 

origin in the failure plane of 𝜎𝑚 and 𝜏oct decrease through the optimization for both 
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adhesives, indicating that the optimization process satisfies the minimization of 

objective function. The optimal shape can reduce the applied stress level for less than 

around 30% from the initial one for the epoxy adhesive and 50% for acrylic. We found 

that these final shapes are numerically optimized to realize the higher mechanical 

integrity of the adhesive layer. The shape gradient function which induces the geometric 

change of the adhesive layer is the driving force under the applied mean stress and shear 

stress. The shapes of the adhesive layers have been not changed for epoxy adhesive 

under 𝛼 = 0 and acrylic adhesive under 𝛼 → ∞ because of the negative value of the 

shape gradient function and it becomes the indicator where the initial model is 

appropriate or not for the multi-material design. 
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