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0. Introduction

Throughout this paper we shall only be concerned with the combinatorial
category, consisting of simplicial complexes and piecewise-linear maps. Itis the
purpose of the paper to prove intuitively obvious topological theorems which are
interesting in the Morse theory of 3-manifolds. The theorems concern ‘knot
types” of embeddings of a closed (=compact, without boundary), connected and
orientable surface M, of genus p into the 3-dimensional sphere S°.

As widely known, a surface M, in S°, denoted by (M,CS°), is obtained
from some 2-spheres by adding handles, Fox [3] and Homma [5]. Using the
fact, we shall define a complexity {s, £>, a pair of natural numbers, for the knot
type of the (M,CS°) in §1. After establishing a canonical representative for
the knot type of (M,C.S?) in §2, we first consider some non-existence results
in §3. In §4 and §5, we construct some pairs (M, S°)’s for some complexities
{8y B)s.

In the paper, homeomorphism is denoted by ==, while =~ and ~ refer to
homotopy and homology, respectively. 98X, cl (X) and °X denote, respectively,
the boundary, the closure and the interior of a manifold X. By D" and S"!
we shall denote the standard n-cell and the standard (n—1)-sphere 0D", respec-
tively, and particularly, D'=[—1, 1].

1. Definitions and notation

First let us explain several definitions and notation, and formulate our main
theorem.

In general, we shall denote by M a compact orientable surface, and * M)
and g(M) stand for the number of connected components of M and the total
genus of M, respectively.

We shall say that a submaifold X of a manifold Y is properly embedded (or
simply proper) if X N0Y=0X.

By (M c M®) we denote a pair of mainfolds such that a 3-manifold M? and
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a properly embedded surface M. Throughout §§1, 2, 3 and 4, we do not give
any orientation on M and M® Two pairs (M C M®) and (M’ C M?®) are said to
be congruent, or of the same knot type, if there is a homeomorphism r: M"—M®
such that Y(M)=M’. We denote the congruence class of a pair (M C M?) by
(M c M?)>, so the (M C M?) is a representative of {(M C M?®)>.

For a pair (M c M?), a simple loop J (=2.S") on M is said to be a co-unknotted
loop, if J bounds a 2-cell D(J)in M?® with D(J)N M=8 D(J)=], and D(J) will
be called an associated disk. Especially, a co-unknotted loop J is said to be
essential if J is not contractible in M, and otherwise, J is inessential. Note that
J is contractible in M if and only if J bounds a 2-cell on M, see Epstein [2].

We may say a 3-manifold F°® has Fox’s property, if for any pair (M CF?)
with g(M)>0 there exists an essential co-unknotted loop on M, and throughout
the paper by F* we will denote a 3-mainfold which has Fox’s property.

1.1. Proposition. (Kinoshita [8], Fox [3], Homma [5]) Any orientable
3-manifold whose fundamental group is either finite or a finitely generated free
group has Fox’s property. (Refer to Haken [4]).

For a pair (M C M®), let h: D'x D*->°M?® and d: D*x D'—°M?* be embed-
dings of 3-cells such that

(i) h(D'x D) M=h(3D"x D?),
(i) d(D'x D) M=d(dD*x D).

Then we have another embedded surfaces

(i) M(h)=M—h(dD*x D*) Uk (D*x 8D?),
(ii) M(d)=M—d(0D*x D')Ud (D*x dD").

We will say that “M(hk) is formed from M by adding a handle A” and
similarly, “M(d) is formed from M by adding a dome d”. It will be noticed
that:

1.2. (i) {M(h)=4M)—1 and g(M(h))=g(M) if h({0} x 8D?)~0 in M(k),
and ¥(M(h))=M) and g(M(h))=g(M)+1 if h({0} X 8D*)0 in M(h).

(i) {M(d))=4M)-+1 and g(M(d))=g(M) if d(dD*x {0})~0 in M, and
Y M(d))=*M) and g(M(d))=g(M)—1 if d(0D*x {0} ) 0 in M.

Then, as an immediate consequence of 1.1 and 1.2, we have:

1.3. Proposition. For any {(M,CF°)>, there exists a representative
(M ,C F°) such that M , is formed from P,=3,U --- U Z;, a union of non-intersecting
2-spheres in F°, by adding one by one s+p—1 handles h,, -, hy, ., .

Of course, this representative (M ,CF®) in 1.3 is not uniquely determined.
If r handles &,,, --+, &;,, 1<i1<--- <ir<s+p—1, are mutually independent, that
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is, b,y (D' X D?), -+, h;,(D"'X D?) are mutually disjoint in F*, we can add these 7
handles at a time. Therefore, the (M ,CF*) is formed from P, by # times, 1<t<
s+p—1, as a process

(1’4) @o = EIU o0 UZS_)Q)I = EZ)o(ku’ °tty h1r(1)) ‘
—-P, = g)l(hzn R hzr(z))

—

—>g); = g)t—l(htu R htr(t)) = MP’

where 7(1)47(2)+---+r(f)=s+p—1. A handle &;;, 1<i<t, 1=<i=<r(i), is said
to belong to P;, and we denote k;;E P;.

Now, to the pair (M,CF®) we associate a pair <{s, > NXN of natural
numbers, and we define a total order <(or>) in{<s, £} CNX N as follows:

(1.5) <, <L, ¢ if s<s’ or if s=s" and t<¢t'.
Then, for every congruence class {(M,CF°)> we can define an invariant

<s, t) as follows:

1.6. Definition. {((M,CF?)> is with compelxity {s, t> if there exists a
representative (M,CF°) with (s, £> and for any representative (M;CF°) with
<5y 1) of (M, CF?)), <s, H =<5, t).

It is clear that the complexity <s, £> is an invariant of a congruence class
{(M,cF?)>. Now we can state our version of a special case of Proposition 1.1.

1.7. Proposition. Every {(M,CF?®)) is with complexity {1,1).

In the notion of (1.4) and 1.3, if there is a handle &;; such that #;;({0} x 0D?)
is inessential on &;_, (#;;), then the handle %;; and one of the 2-spheres %, -+, 3
can be omitted from the definition of complexity. Consequently, we have:

1.8. Proposition. For every p=1 and for every {(M ,C F?)) with complexity
<s, 0, <1, D=L, =L, s+p—1D=Lp, 2p>.

More sharp statements will be given later.

We call a disk-sum of p copies of D*x S* a solid-torus of genus p, and denote
it by p(D*x S*). Since p(D*x S*) is embeddable in any 3-manifold, the following
is obvious.

1.9. Proposition. For any p>1, there exists a {(M ,C F*)) with complexity
<1, .

In §4, we will prove the following:

1.10. Theorem. For any p=2, there exists a (M ,C F*)) with complexity
<8y £ such that s, t)><1, 1>. (Refer to Kneser [10]).
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2. Handle-isotopy and canonical representative

Let (M CF®) be a pair and let A: D*XD*—F® be a handle for M. Let

D2,=h({—1} X D?) and Di=h({1} xD?), and let D’* be a 2-cell on M with
D”*N (D%, UD3)=¢, and let v be a simple arc on M with v (D”?UD%, UD})=
v N (0D U aD3)=0dy.
Then, sliding the end D} of the handle % along v in a regular neighborhood
N(Di;UvyUD”*;F°), we have a new handle #’: D'x D*-F® for M such that
({1} X D*)=D"* and A’ ({—1} x D*)=D%,. 1t is easily seen that this deforma-
tion of a handle can be extended to an ambient isotopy of F?*; and so {(M(k)C
FY>={(MMH)CF")>. We will call this deformation a handle-isotopy (along 7).
Of course, the above remains valid if D%, is substituted for D2

An immediate consequence is:

2.1. Lemma. In the notation of (1.4), a handle h;; can be deformable by a
handle-isotopy along a simple arc v on M, if the associated loop h;; ({0} X 0D?) is
co-unknotted and vC M ,—h;;(D'x0D?). Especially, every handle h,; can be
deformable by a handle-isotopy along v, provided that v C M ,—h,;(D' X 0D").

By successive application of 2.1, we deduce:

2.2. Theorem. In the notation of (1.4), every handle h;;&P; can be
deformable by a handle-isotopy along v by deforming handles belonging to P;,,U -+
U P, suitably, provided that v C P;— h;;(D* X 0D?), for i=1, -, t.

REMARK. In 2.1 and 2.3, the handles belonging to P, U --- U %P, with h,;
(D*x0D* N v=¢ may be considered to be changed by the handle-isotopy, but
there may be no confusion if we denote them by the same symbols.

2.3. Theorem. For any {(M,CF?°)) with complexity {s,t>, we can take a
canonical representative (M¥ C F®) as follows:

(0) M¥ consists of s 2-spheres %, U -+ UZ, and s+p—1 handles.

(i) In the s+-p—1 handles, there are just p handles, say h,,, -+, h,,, such that
h,, (D' X D®) is contained in one of =,, +++, Z;i=1, -+, p. (So, hy ({0} X 0D
0on M}%.)

(ii) In the s+p—1 handles, there are just s—1 handles, say h,,, -+, h,,_, such
that h.({—1} X D?) and h,, ({1} X D?) are contained in different 2-spheres of .,
ey By t=1, o, s—1. (So, k., ({0} X0D*)~0 on M3}.)

Proof. Let (M,CF°) be a representative of {(M,CF?)> which consists of
s 2-spheres %, U --- UZ and s+p—1 handles &,, -+, k., ,_,. For brevity, we will
call a handle k; c-handle if h; connects two of 3, ---, =, that is, &, ({—1} X D?)
and £, {1} x D?) are contained in different 2-spheres of =, ++-, 3.

If in the s4p—1 handles, there are exactly s—1 c-handles, we are finished,
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and so we assume that there are more than s—1 c-handles. Suppose that there
are at least two c-handles for =,; and let &,, and A, be such c-handles which
connect %, with =, and 3; with 3, respectively. We may assume that 4,
P, and by € P,,and 1=u,<v,<¢. Then, we can take a simple arc ¥ on P,,—h,,
(D' x 0D?) such that v runs from =, to =, through 4, (D'x90D?). By 2,2, there
is a handle-isotopy along v so that A, connects %; with %;. Note that if 7,57,
then A, must be now a c-handle, and if 7, =j, then A, is not a c-handle now.

Repeating the procedure, we may assume that there is only one c-handle,
say h,,, for 3, and that %, connects 3, with =,.

Next we observe X,. Since M, is connected, there are some c¢-handles for
%, other than &, if s>2. Let 4,, and h,, be c-handles such that #,, connects =,
with =, and Ay, connects X;, with =,, and we may assume that #,,& P,,, h,,= P,
and 1=<u,<v,<t. Then, we have a handle-isotopy so that A,, connects X,, with
S.;,- Repeating the procedure, we may assume that there is exactly one ¢-handle,
say h,, for 3, other than 4., and that 4, connects =, with =,.

By the repetition of the procedure, we can assume that there is only one
c-handle for each of =, and 3, and there are exactly two c-handles for =, for
i=2, ---,s—1. Thus, we have a required representative (M} CF°) which
satisfies (0) and (ii), and so ().

On a surface M,, we can choose a system of 2p simple loops {a,, -+, a,} U
{b,, +++, b,} such that a;Nb; consists of one crossing point and a;Na;=¢, b;N
bj=¢, a;Nbj=¢ for i3=j. We will call such a system canonical.

24. Corollary. (Homma [5]) For any (M,CF®), there exists a canonical
system {a,, ---,a,} U {b,, -+, b,} on M, such that a,U --- Ua, are the boundaries of
mutually disjoint 2-cells D} U --- U D5,

Of course, this canonical system is not uniquely determined, and a; is not
always co-unknotted.

3. Non-existence results

In this section, we will give some non-existence theorems by contrast to

Theorem 1.10.

3.1. Theorem. For any p=2 and s=2, there is no (M ,CF°)> with com-
plexity s, 1>.

Proof. Suppose that there exists a {(M,CF?)> with complexity <{s, 1> for
p=2and s=2. Then, by Theorem 2.3 there exists a canonical representative
(M} CF?) of the (M,CF?°)), and let k., -+, h,,_, be handles of type (ii) in 2.3.
From the definition of complexity, all handles of M} belong to P, i.e. all
handles are mutually independent. So, P,(k.,, +-, k.,_,) must be a 2-sphere,
hence the {(M,C F?)>is with complexity <1,1>, which contradicts our hypothesis.
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In general, we claim:

3.2. Proposition. For any p=2 and s=2,if {(M ,CF?)) is with complexity
s, t, then for a canonical representative (M C F*) of the {(M ,C F*)) in Theorem
2.3, every handle h,;= P, is of type (i) in 2.3.

Remainder of the paper, we consider only pairs (M CS?®’s. For a pair
(M c8?), the residual space S°—M consists of M )-+1=g non-intersecting 3-
manifolds. We denote the closures of these manifolds in S* by W,(M cS°)U ---
U We(M,C S®) or simply by W, U --- U W,, and call the disjoint union of them
the closed complement of (M S®). We record the following well-known theorem
due to J.W. Alexander.

3.3. Proposition. (Alexander [1]) For any pair (M,CS°), W(M,C S%)=
Wy (M, S?)=D°. (Remember that M,=S>)

3.4. Theorem. For any p=2, there is no {(M,CS?)> with complexity

Proof. Assume the contrary, then there is a {(M,CS?)> with complexity
{p, 2p—1) for p=2, and let (M¥ CS®) be a canonical representative of it in
Theorem 2.3.

Let £,=%,U---UZ, be the 0-th step of M, and let W (P,cS*)U---U
W (P, S°) be the closed complement. It will be noticed that for every =,
there exists only one handle of type (i) in 2.3. From the definition of complexity,
to each step &;, =1, ---, 2p—1, only one handle, say #;, belongs.

For clarity, the proof will be divided into five steps.

Step 1: From Proposition 3.2, &, is of type (i) in 2.3. Without loss of
generality, we may assume that 4,(0D' X D?) is contained in X, and k,(D' X D?) is
contained in W, ($,CS°). Moreover, we may assume that W, (P,CS’)NW,
(P,cS°)=%=, by 3.3. Then, the complement of (P,CS%)=(P,(h,)CS®) con-
sists of

W(P,C 8% = (WP, S*)—h,(D'x D)),
WA(P,C 8% = WP, S*)Uhy(D'x D?),
Wy(P,CS%) = W(P,C S for k= 3, -+, p+1.

Step 2: If h, is of type (ii) in 2.3, then A,({0} X 8D?) is contractible on P,
(h,) because &, consists of only one closed orientable surface of genus 1 and p—1
2-spheres. So, {(M,CS°)> must be with complexity smaller than or equal to
{p—1, 2p—2>, which contradicts our hypothesis. We know that £, is of type
(i) in 2.3, and A, (0D'X D?) is contained in one of X, .-, =, say Z,. Since A,
(D*x °D*) N hy(D* X D*) %= ¢, h,(D* x D*)C W(P,C S?), and we may assume that
W(P, S )N W(P,CS*=S,. Then, the closed complement of (£,CS°)=
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(Py(h,) = S®) consists of

W(P,c 8% = W(P,CS?,

WAP,CS%) = (WP, S*)—hy(D* x D?)),
WP, S%) = W(P,CS®)Uh(D' x D),
Wi(P,cS%) = W (P,CS?) for k=4, -, p+1.

Step 3: 1If hy is of type (ii) 2.3, there are four cases to be considered: 4,
connects i) Z,(k,) with Z,(h,), ii) Z,(h,) with =, k=3, ---, p, iii) Z,(h,) with 3,
k=3, -+, p, and iv) 3, with 3;, k=+j, k, j=3, ---, p. Since hy(D'x °D*)N k,
(D'x D*)* ¢, hy(D'x D) C WP, S?). For Z,(h,) N Wy(L,C S%)=¢, the case i)
cannot occur actually. Moreover, every case of ii), iii) and iv) cannot occur
by the same reason as that of Step 2. Now, we know that £, is of type (i) in 2.3,
and A (0D'X D?) is contianed in one of 3, -+, =, say =,. Note that 3, UZ,
UZ, are considered to be concentric. We may assume that Wy(P,CS*)n W,
(P,cS%)=%,. Then, the closed complement of (P,CS*)=(Py(h;)C.S;) con-

sists of

W(P,CS) = W(P,CS), W(P,CS") = Wy(P,C S,
WP, S%) = cl(Wy(P.C S*)—hy(D* X D?)),

W(P,CS*) = W(P,CS*) Uh(D'x D?),

Wy (P, S?) = W(P,cS?) for k=5, -+, p+1.

Step 4:  Repeating the same arguments in Step 3, we may assume that

(i) Ay, -+, b, are of type (i) in 2.3, and &, consists of closed orientable
surfaces =,(h,), -+, = ,(h,) of genus 1,

(ii) the closed complement of (P, S®) consists of

W(P,C 8% = l(W(P,C S*)—h(D'x D)),
W(P,CS%) = cl(Wy(PoC S*) Uy (D' x D?)—hy(D' x D?)

for k=2, -, p,
W ,l(P,C8°) = W, (P S°) U b (D' X D?).

In particular, it will be noticed that X, U -+ U X, are concentric.

Step 5:  After Step 4, we know that all handles 4,.,,*, k,,-, belonging to
Py U UP,, , are of type (ii) in 2.3. Since h,(D'X °D*) N\ h,, (D' X D*)=%=¢,
by D' D?)C W, (P,CS?). But, since W ,,,(P,CS*)=Z ,(h,), h,:, cannot
be of type (ii) in 2.3, so the {(M,CS®)> must be with complexity smaller than

After all, we obtain a desired contradiction, and completes the proof of
Theorem 3.4.
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We note the following, which is easily derived from the same argument as
above.

3.5. Proposition. For any p=2 and t=2, if (M ,C S?)) is with complexity
{p, ), then for a canonical representative (M%CS°) of the {(M,CS%)) in 2.3,
every handle h,; € P, is of type (ii) in 2.3.

We summarize our results Proposition 1.8 and Theorems 3.1 and 3.4 as
follows:

3.6. Proposition. For every p=1 and for every {(M ,C S*)> with complexity
(s, £, the positive integers p, s and t satisfy one of the followings:

(1) s=1,1=5t<p,
(2) 2=s=p—1,2stss+p—1,
(3) s=p,25t<2p—2.

4. Some existence results

In this section, we will give some existence theorems, and Theorem 1.10
is a direct consequence of these results.

4.1. Theorem. For any p=2, there exists a {(M,C S%)> with complexity
(s, t> such that s=2 and t=2.

Proof. The following Fig. 1 shows the case p=2, which is due to Homma
[5]. First, we will show that the {(M,cS®)> in Fig. 1 is with complexity <2, 2>.
From the construction, W, is homeomorphic to V z+ of Suzuki [12, Fig. 2]. So,
we conclude that z,(W,) is indecomposable with respect to free products and

Fig.1 : (M,CS?%)
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not free, that is, there is no essential co-unknotted loop J on M, with J=1 in
W, by the bounded Kneser’s theorem, Jaco [6], see [12,§2]. On the other hand,
we know that W, is a disk-sum of two copies of a closed complement Vy of the
so-called clover-leaf knot. Since 7,(Vx) is indecomposable with respect to free
products and not free, we know that the essential co-unknotted loop J,, on M,
is unique up to isotopy by [12, Cor. 3.5]. Now, we can easily conclude that the
(M, 8% is with complexity <2, 2>.

By the same way as that of the proof [12, Th. 5.2], using the pair (M,CS?)
we can construct required pair (M,CS°) for any p>2. The following Fig. 2
illustrates the case p=3.

Fig.2 : (M,CSY

From the construction, the closed complement I, in Fig. 2 is homeomorphic to
Vg, of [12, Fig. 3]. 'Thus, =,(W)) is also indecomposable and not free, that is,
there is no essential co-unknotted loop J on M, with J=1 in W,. On the
other hand, W, in Fig. 2 is a disk-sum of three copies of V, the closed comple-
ment of the clover-leaf knot. So, for any essential co-unknotted loop J on M,,
we conclude that / ~0 on M,, Jaco [6], see [12, Prop. 2.15]. Now, we can easily
conclude that the {(M,C S®)> satisfies the required condition.

The proof of the case p>3, which is omitted here, is the same as that of
the case p=3.

ReEMARK. It can be shown by a long geometric proof that the {(M,C S%)>
in Fig. 2 is with complexity <3. 2>. In fact, the author suspects, but cannot
prove, that the every class {(M,CS°)) obtained in the proof of 4.1 is with com-
plexity <{p, 2>.

As shown in the proof of 4.1, for every essential co-unknotted loop J on
M, in Fig. 1, J~0 on M,. With reference to Proposition 1.1, we record the
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following, but the proof is omitted.

4.2. Proposition. For any pair (M,CF°), there exists an essential co-
unknotted loop J on M, with | ~0 on M ,, provided that p=2.

4.3. Theorem. For any p=2, there exists a {(M,C S*)) with complexity
{1, t> such that t=2.

Proof. The following (M;CS°) in Fig. 3 shows the case p=2. From the
construction, it is easy to check that W{ is homeomorphic to the W, of the

~

Fig.3 : (M;CS

(M,c S?) in Fig. 1; so there is no essential co-unknotted loop J on M; with J=1
in W’. On the other hand, W} is a disk-sum of D*X S* and V. By [12, Cor.
3.6], the essential co-unknotted loop /,, on M; with J,»<0 on M3, is unique up to
isotopy, and now we can conclude that the {(M}C S®)> is with complexity <1, 2.

The following (M;C.S?) in Fig. 4 shows the case p=3, which is obtained
from the (M};C S®) by adding a handle ks, where k,,(D* X D?) is shown by an arc
in the figure. In the other cases p >3, we can construct required pairs inductively
using this (M4 S?), and so on.

From the construction, the W7 in Fig. 4 is a disk-sum of the W, of the
(M,c 8% in Fig. 1 and D*x S*. We have the essential co-unknotted loop J,=h;
({0} x8D? on M; with J,»0 on M;, and J, is unique up to isotopy by [12,
Cor. 3.6]. On the other hand, the W} in Fig. 4 is a disk-sum of V and the W,
of the (M, .S?) in Fig. 1. So, there is no essential co-unknotted loop J on M;
with J=1 in W} and J<0 on M. Since the (M;C.S?)is obtained from the
(M} S®) by adding a dome along the 2-cell A,({0} X D?), we can conclude that
the {(M;C S®)) is with complexity <1, 3>.
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Fig.4 : (M;CS?)

In general, if p=2n, then W] of (M,C.S®) is a disk-sum of n copies of the
W, of the (M, S°) in Fig. 1, and W} of (M, S®) is a disk-sum of D*x S*, Vi
and n—1 copies of the W, of the (M,C.S?) in Fig. 1. If p=2n-1, then W/ of
(M, §°) is a disk-sum of D*X.S* and n copies of the W, of the (M,CS°) in
Fig. 1, and W; of (M, S°) is a disk-sum of V and n copies of the W, of the
(M,cS%) in Fig. 1. So, in every case,as a system of mutually disjoint and
homologically independent essential co-unknotted loops on M}, we can take a
system which consists of exactly one loop, and completing the proof.

REMARK. In the above, an essential co-unknotted loop J on M, with
J»0 on M is not unique up to isotopy for p>3, but the every {(M,cCS?)>
may be with complexity <1, p>.

ReMARK. In the proof of Theorems 4.1 and 4.3, we based on the Homma’s
example (M, .S®) in Fig. 1. To construct another examples, we refer the reader
to Jaco [7], Kinoshita [9] and Suzuki [11], etc..

5. Remarks and questions

In the preceding section, we have constructed some pairs and actually deter-
mined its complexity in some of the simplest cases. In more complicated cases
we will need much information on 3-manifolds in S®. While, the author suspects,
but cannot prove, that:

5.1. Qusetion. For positive integers p, s and t satisfying one of the (1), (2)
and (3) in Proposition 3.6, does there exist a (M ,C S*)> with complexity {s, £>?
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In fact, Theorems 4.1 and 4.3 and Proposition 1.9 imply that in the case p=2
Question 5.1 is affirmative. In the case p=3 we can easily give some ((M,C.S?)>’s
with complexity (s, £>4=<1,1>,<1, 3> and <{3,2>. Generally, using {(M »CS%))’s
whose complexities have been known, we can construct some kind of {(M,C
S?)>’s.  For example:

5.2. Example. (Fig. 5) There exists a {(M,C.S%))> with complexity {2,2).

Proof. Using the pair (M,c.S?) in Fig. 1, we give the following (M, C S?)
in Fig. 5. From the construction, it is easy to check that W/ is a disk-sum of

Fig.5 : (M;CS?)

D?x S* and the W, in Fig. 1, and W7 is a disk-sum of three copies of V. As
homologically non-trivial co-unknotted loops, we have a unique loop J,; on M.
From the definition of complexity, we can easily conclude that the {(M% C.S®)>
is with complexity <2, 2.

5.3. Example. (Fig.6) For any p=2, there exists a {(M,CS°) with
complexity <1,2).

Proof. The case p=2 is Theorem 4.3 (Fig. 3). Using the (M;CS?) in
Fig. 3, we give the following pair (M} .S®) in Fig. 6 for p=3. It is easy to
check that W{” is a disk-sum of (p—2) (D*x S") and the W, in Fig. 1, and W}”
is a disk-sum of D*x S* and p—1 copies of V. So, we can choose at most
p—1 mutually disjoint and homologically independent essential co-unknotted
loops on M,”. Now, we can easily conclude that the {(M,"” CS°)) satisfies
the required condition.

Examples 5.2 and 5.3 also suggest an interesting point: The complexity of
a {(M,cS?) is connected with its prime decompositions, [12, Th. 1.6]. In
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Fig.6 : (M;CS?)

remainder of the paper, we consider only pairs (M,CS8°%)’s such that M, is
oriented and S° has the right-handed orientation. In the sense of [12, Def. 1.11],
the complexity <s, > is also an invariant of the congruence class, denote it also
by {(M,cS%), of a pair (M,CS°). For the other notation, see [12, §1].
From the definitions of complexity and composition of pairs [12], we have at
once:

5.4. Proposition. Let (s, t>, <{s,, t,> and <s,, t,> be the complexities of
(M, 8%, (M, CS?)> and {(M,,C S°)>, respectively. Suppose that (M,C S°)
=(M, CS° #(M,,CS°.

Then,
<S, t>§<s1+sz“1’ max. {tv lz} >

5.5. Question. Does it hold in the above 5.4 the equality

<s) t> = <Sl—|—52—1, max. {tn tz}>?

In view of 5.4, we deduce the following:

5.6. Theorem. Every {(M,C S°)) with complexity {p, t) is prime.

Proof. The case p=1 is obvious from 1.7 and [12, Prop. 1.5], so we assume
that p>2. Suppose that there exists a {(M,C 8°)> with complexity {p, ¢> that
is not prime. Let (M,C S°)=(M,,C S°) #(M,,C S°) be a non-trivial decomposi-
tion, and let {s,, ¢,> and <s,, #,> be the complexities of the {(M, CS°)> and
{(M,,C S°)>, respectively. From Proposition 3.6 and [12, Prop. 1.3], 1=s,=
p:<p, (=1, 2), and p,+p,=p. Then, s,+s,—1=p,+p,—1=p—1<p, hence
for any ¢
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<s1+sz_1’ max. {tn tz}><<P) t>-

This contradicts to 5.4, and the proof completes.

5.7. Theorem. If Question 5.5 is affirmative, then every {(M,C S°)) with
complexity either s, s+p—1> or {p—1, 2p—3> is prime.

- Proof. By virtue of Proposition 3.6, we may assume that p>s>1and p=2
for (s, s+p—1>, and p=3 for {p—1, 2p—3)>. As the same way as that of 5.6,
we suppose that there exists a {(M,CS°)> with complexity either <s, s+p—1>
or {p—1, 2p—3> that is not prime. Let (M,CS°)=(M, CS°)#(M,,CS°) be
a non-trivial decomposition, and let {s,, ¢,> and <s,, ¢,> be the complexities of
(M, c8%> and {(M,,CS°), respectively. From Proposition 3.6 and [12,
Prop. 1.3], we have 1<5,< p;< p, (=1, 2), and p,+p,=p.

Case (i) <s, s+p—1>: By our assumption, we have s+1=s,+s5,, and so
5;=s and s5,<s. Hence, #,<s,+p,—1<s+p—1 for i=1, 2 by Proposition 3.6
(or 1.8),

These contradict to our assumption.

Case (i) {p—1, 2p—3>: By our assumption, p—1=s,+s,—1. While, by
Proposition 3.6 (or 1.8), if s,=p; then #;,<2p,—1, and if 5, < p, then ¢,=<s,+p;,— 1.
So, if s;=p; then #;<s;+p;,—1=2p,—2=2p—4<2p—3, and if 5;<p; then
LEsi+p,—1= (p—2)+(p—1)—1<2p—3.

These contradictions complete the proof.

ReMARK. Theorems 5.6 and 5.7 are, of course, sufficient conditions for a
{(M,c S®)> to be prime, because the examples of prime pairs given in [12, Th.
5.2] are with complexity {1,1>. In fact, there may be a prime {(M,C S8°)> with
every <s, .
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