

Title	On modules that complement direct summands
Author(s)	Zöllner, Andreas
Citation	Osaka Journal of Mathematics. 1986, 23(2), p. 457–459
Version Type	VoR
URL	https://doi.org/10.18910/9470
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Zöllner, A. Osaka J. Math. 23 (1986), 457–459

ON MODULES THAT COMPLEMENT DIRECT SUMMANDS

ANDREAS ZÖLLNER

(Received October 5, 1984)

A module M is said to complement direct summands if every direct summand of M has the exchange property with respect to completely indecomposable modules, or in other words if for each direct summand B of M and for each decomposition $M = \bigoplus_{I} A_{i}$, where every A_{i} is completely indecomposable (i.e. has local endomorphism ring), there exists a subset K of I with $M = B \oplus \bigoplus_{r} A_{k}$.

There are several characterisations by a theorem of Harada [3, 3.1.2].

Theorem. Let $M = \bigoplus_{i} A_i$ be a c. indec. decomposition. Equivalent are

- (1) M satisfies the take-out property.
- (2) Every direct summand of M has the exchange property in M.
- (3) M complements direct summands.
- (4) $(A_i: I)$ is a locally-semi-T-nilpotent family.
- (5) $J' \cap End(M)$ is equal to the Jacobson radical of End(M).

One step of the proof, "(4) \Rightarrow (5)", does merit a certain attention. In an earlier version of the theorem by Harada and Sai [2, Thm 9], the proof of that step uses assumptions stronger than at hand [2, Lemma 12]. We would like to present an alternative and elementary proof of that step. In particular one does not need transfinite induction as in [3, Lemma 2.2.3]. All notation may be found in [3]. For the proofs let perpetually be $M = \bigoplus_{I} A_{i}$ a completely indec. decomposition and let $(e_{i}: I)$ be a related set of orthogonal idempotents (i.e. $e_{i}(M) = A_{i}$).

By definition, for an element f of $\operatorname{End}(M)$ not contained in J', there exist some elements $i, j \in I$ and $g \in \operatorname{End}(M)$ with $ge_j fe_i = e_i$. Thus the Jacobson radical of $\operatorname{End}(M)$ is always contained in $J' \cap \operatorname{End}(M)$, otherwise it would contain a nonzero idempotent.

Lemma 1. For all $t \in J' \cap End(M)$ and for all $i \in I$, $e_i t$ and te_i are elements of the Jacobson radical.

A. ZÖLLNER

Proof. Write $e_i = vp$, where v is the inclusion of A_i in M and p is the projection onto A_i induced by e_i . $J' \cap \text{End}(M)$ is an ideal, thus the composition *pstv* is not an isomorphism for all endomorphisms s. As $End(A_i)$ is local, 1_A -pstv is an isomorphism. By Beck [1, Lemma 1.1], 1_M -ste_i is also an isomorphism and so te_i is an element of the radical. The other case works similarly.

Corollaries.

- (a) For all $t \in J' \cap End(M)$, 1-t is a monomorphism.
- (b) $J' \cap End(M)$ does not contain nonzero idempotents.
- (c) Lemma 1 is also true for arbitrary local idempotents and for finite sums of orthogonal local idempotents.
- Suppose J is a finite subset of I, take $x \in \bigoplus_{i=1}^{n} A_i$ and $d := \sum_{i=1}^{n} e_i$. Then $x = (1 1)^{n-1} A_i$. (d) dt) $(1-dtd)^{-1}(x)$. (Condition (\S)).

Proofs. The definition of J' does not depend on a particular decomposition of M and this implies the first statement of (c). The second statement of (c) and (d) are obtained by a straightforward calculation. For (a), take $0 \neq x \in M$. There exists a finite subset J of I with $x \in \bigoplus A_j$. By (c), td is in the radical and 1-td is an isomorphism, where $d = \sum_{i=1}^{n} e_{i}$. Thus (1-t)(x) $=(1-td)(x) \neq 0$. (b) follows from that, as 1-e is not monic for each nonzero idempotent e.

Having (a) in mind, in order to complete the proof of " $(4) \Rightarrow (5)$ " it is enough to show 1-t is an epimorphism for all $t \in J' \cap \operatorname{End}(M)$. This is where (4) turns up. The idea is to apply the König-Graph-Lemma somehow.

Lemma 2. Let $(A_i: I)$ be a locally-semi-T-nilpotent family and take Then 1-t is an epimorphism. $t \in I' \cap End(M).$

Proof. For an arbitrary $j \in I$ and $x \in e_i M$ there is constructed a $f_x \in End(M)$ with $(1-t)f_x(x) = x$. Then $e_i M \subset (1-t)M$ for all $i \in I$ and 1-t is onto. Let $j \in I$ and $x \in e_j M$ be as above. Sequences $(f_n: N), (g_n: N), (h_n: N), (d_n: N)$ with elements in End(M) and $(K_n: N)$, $(I_n: N)$ with subsets of I are constructed by induction, having the following properties:

- (A) d_n is an idempotent
- (B) $K_n \cap I_{n-1} = \emptyset$ and $\{j\} \cup K_1 \cup \cdots \cup K_n = I_n$
- (C) $1-g_n = (1-t)f_n$ (D) $g_n(x) = \prod_{1 \le i \le n} \sum_{k_i \in K_i} e_{k_i}(1-d_i)th_i(x)$

n=1 Define $d_1:=e_j$, $I_0:=\{j\}$, $h_1:=(1-d_1td_1)^{-1}$, $f_1:=h_1$, $g_1:=1-(1-t)f_1$. (A) and (C) are valid per def. Now, $(1-g_1)(x) = (1-t)h_1(x) = (1-d_1t)h_1(x)$ $-(1-d_1)th_1(x)$. As by Condition (§), $(1-d_1t)h_1(x) = x$, follows $g_1(x) = x$

458

 $(1-d_1)th_1(x)$ and so $j \notin \operatorname{supp}(g_1(x)) =: K_1$ (for $y \in M$, $\operatorname{supp}(y)$ is the finite set of $i \in I$ with $e_i(y) \neq 0$). $g_1(x) = \sum_{k_1 \in K_1} e_{k_1}(1-d_1)th_1(x)$. Take $I_1 := K_1 \cup I_0$ and get (D) and (B).

 $n \rightarrow n+1$ Define $d_{n+1} := \sum_{i \in I_n} e_i$, $h_{n+1} := (1-d_{n+1}td_{n+1})^{-1}$, $f_{n+1} := f_n + h_{n+1}g_n$, $g_{n+1} := 1-(1-t)f_{n+1}$, $K_{n+1} := \sup p(g_{n+1}(x))$, $I_{n+1} := K_{n+1} \cup I_n$. Again, (A) and (C) are valid per def. For the rest:

$$(1-g_{n+1})(x) = (1-t)(f_n+h_{n+1}g_n)(x)$$

$$= x-g_n(x)+(\underbrace{1-d_{n+1}t}_{h_{n+1}}g_n(x)-(1-d_{n+1})th_{n+1}g_n(x))$$

$$= g_n(x) \text{ by } C \text{ ondition (\$)}$$

$$= 0$$

From $g_{n+1}(x) = (1-d_{n+1})th_{n+1}g_n$ one gets (D) by insertion. It is easy to see that $K_{n+1} \cap I_n = \emptyset$, which gives (B).

The construction is now complete. All summands in (D) are nonisomorphisms (as compositions with t) between certain A_i , and none of these A_i occur twice. Now by locally-semi-T-nilpotency and the König-Graph-Lemma there exists a natural number m with $g_m(x)=0$. (C) implies $x=(1-t)f_m(x)$.

References

- I. Beck: On modules whose endomorphism ring is local, Israel J. Math. 29 (1978), 393-407.
- M. Harada and Y. Sai: On categories of indecomposable modules I, Osaka J. Math. 7 (1970), 323-344.
- [3] M. Harada: Applications of factor categories to completely indecomposable modules, Publ. Dép. Math. Lyon 11 (1974).

Mathematisches Institut der Universität Theresienstrasse 39 8000 München 2 West Germany