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Formulation of energy loss due to
magnetostriction to design ultraefficient soft
magnets
Hiroshi Tsukahara 1,2, Haodong Huang3, Kiyonori Suzuki 3 and Kanta Ono 1

Abstract
The mechanism of energy loss due to magnetostriction in soft magnetic materials was analytically formulated, and our
experiments validated this formulation. The viscosity of magnetic materials causes the resistive force acting on
magnetic domain walls through strain due to magnetostriction, and magnetic energy is eventually dissipated by
friction even without eddy currents. This energy loss mechanism explains the frequency dependence of the excess
loss observed in the experiments, and the excess loss is dominated by the contribution of magnetostriction when the
magnetostriction constant exceeds approximately 20 ppm. The random anisotropy model was extended by
considering the effect of local magnetostriction as a correction to the magnetocrystalline anisotropy. The effect of
magnetostriction was considerably suppressed by the exchange-averaging effect. The estimated effective random
magnetoelastic anisotropy for nanocrystalline α-Fe reached as low as 18.6 J/m3, but this static effect could not explain
the high excess loss at high frequencies observed in the experiments. The results of this research could provide new
design criteria for high-performance soft magnetic materials based on low magnetostriction to reduce the excess loss.

Introduction
Soft magnetic materials are one of the main compo-

nents of electric motors that govern the energy efficiency
of electric vehicles1–3. Since reducing the core loss of soft
magnetic materials is essential for improving the energy
efficiency of motors, the core loss mechanism has been
extensively studied. Conventionally, materials with high
electrical resistance and low coercivity have focused on
reducing the core loss. However, it has been reported that
the core loss of amorphous and nanocrystalline materials
is not always reduced by focusing on these two well-
known aspects because of the considerable loss compo-
nent commonly referred to as the excess loss4,5. Thus,
clarifying the origin of the core losses in advanced soft

magnetic materials and establishing new design criteria
for efficient magnetic cores are indispensable.
Under the operation frequency of typical electric

motors, the magnetization dynamics are governed almost
entirely by the motions of magnetic domain walls. The
coercivity reflects the extent to which the wall motions are
hindered, and a low coercivity is needed to reduce the
hysteresis loss. Nanocrystalline soft magnetic materials
(NSMMs) are representative low coercivity materials due
to the low random magnetocrystalline anisotropy of their
nanostructure6–9. Thus, the hysteresis loss of NSMMs is
reduced, and the energy efficiency is greatly improved by
nanoscale grain refinement. However, despite the low
coercivity, eddy currents could still cause energy losses,
i.e., classical and anomalous eddy current losses10.
Magnetization rotation causes eddy currents in mag-

netic materials, and eddy currents generate energy losses
regardless of the coercivity. Since the strength of eddy
currents depends on the temporal variation in magneti-
zation, these energy losses depend on the frequency of the
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external magnetic field. When the magnetization is uni-
formly rotated, the energy loss increases with the square
of the operation frequency. This phenomenon is referred
to the classical eddy current loss11–13. In addition to this
classical effect, motions of the domain wall cause the
anomalous eddy current loss, which typically increases
with frequency to a power of 1.514–16. This additional loss
is caused by the local eddy currents associated with the
moving domain walls. The exponent of 1.5 is attributed to
the changes in the number of active domain walls.
The energy losses due to eddy currents can be reduced

by increasing the electrical resistance. Owing to their
small thickness (typically ~20 μm), amorphous alloys and
NSMMs exhibit high electrical resistance, and the classi-
cal eddy current loss is suppressed in these materials. In
contrast, it has been reported that the excess loss in soft
magnetic materials remains considerable even if the
electrical resistance is high4,5. This strongly suggests that
the excess loss could be caused by a mechanism unrelated
to eddy currents.
It has been reported, for both amorphous alloys17 and

NSMMs18, that the excess loss depends on the saturation
magnetostriction, although the mechanism underlying
this correlation remains unknown. Recently, we con-
ducted micromagnetic simulations, including an effective
field due to magnetostriction, to clarify the energy loss
mechanism in NSMMs19. Our simulation results showed
that the strain due to the magnetic domain walls dis-
sipated the magnetic energy induced by an external
magnetic field. However, an analytical formulation is
indispensable for identifying how magnetostriction gen-
erates energy loss in NSMMs.
In this paper, we formulated the mechanisms of coer-

civity and energy dissipation due to magnetostriction and
validated the formulation via comparison with the
experimental results. The former was accomplished by
extending the random anisotropy model by including the
effect of the local magnetoelastic anisotropy, while the
latter was achieved by framing the energy loss due to the
viscous resistance caused by magnetostriction based on
the Landau–Lifshitz–Gilbert equation. The mean coercive
field due to magnetostriction was reduced by the ran-
domness of the crystal axis of the nanocrystallites within
the exchange length, and uniaxial anisotropy could be
caused in the presence of a domain wall. Nevertheless, we
found these magnetoelastic effects to be too small to
account for the mechanism of the high energy loss
observed in the experiments. Thus, we must consider
domain wall motions to explain the high energy loss
observed in the experiments. When the domain wall in
the magnetic material moves, the viscous resistance acts
on the magnetic domain wall due to magnetostriction,
and the viscosity of the magnetic material causes mag-
netic energy dissipation. We found that the energy loss

due to magnetostriction increased with the frequency of
the external magnetic field to power of 1.5. This frequency
dependence was the same as that of the excess loss
observed in the experiments.

Models and methods
Extended random anisotropy model with the local
magnetoelastic anisotropy
Electron spins interact with each other in the crystal

lattice of a magnetic material20–27. Since the interaction
between electron spins is a function of the interatomic
distance, lattice distortion affects the magnetic energy of
the magnetic material. When strain ξ ij occurs, the mag-
netic material contains magnetoelastic energy, which can
be written as:

Emagel ¼ c12 � c11ð Þ ξ11e11 þ ξ22e22 þ ξ33e33ð Þ
�4c44 ξ12e12 þ ξ23e23 þ ξ31e31ð Þ ð1Þ

where c11, c12 and c44 are elastic constants in cubic
symmetry, and eij is the stress-free strain28. The stress-free
strain is a spontaneous distortion in a single crystal without
external stress. The stress-free strain can be written as:

eij ¼
3
2 λ100 m2

i � 1
3

� �
i ¼ jð Þ

3
2 λ111mimj i≠ jð Þ

(
ð2Þ

where λ100 and λ111 are magnetostriction constants and
mi is the normalized magnetization vector along the xi
direction. The stress-free strain can be obtained by the
stabilization of the sum of the magnetoelastic energy
Emagel and elastic energy Eel, which can be written as

Eel ¼ 1
2
c11 ξ211 þ ξ222 þ ξ233
� �þ 2c44 ξ212 þ ξ223 þ ξ231

� �
þc12 ξ22ξ33 þ ξ33ξ11 þ ξ11ξ22ð Þ:

ð3Þ
The magnetoelastic energy and elastic energy are functions
of the magnetization and direction of the crystal axis. Since
NSMMs comprise many nanocrystallites with random
crystal axes29–32, the stress-free strain is different between
nanocrystallites even when the magnetization is uniformly
oriented. A strain mismatch causes stress at the interface
between the nanocrystallites, and the nanocrystallites
interact mechanically. Hence, the strain inside the nano-
crystallites deviates from the stress-free strain in NSMMs.

The strain can be decomposed into homogeneous strain
εij and heterogeneous strain ηij

33,34. When the nano-
crystallites are strained, a mean strain can occur in the
NSMM. This strain is referred to as the homogeneous
strain. An NSMM is an isotropic elastic and magnetos-
trictive material because of the random orientation of the
crystal axis of the nanocrystallites. Figure 1 shows a
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schematic illustration of the model for the NSMM. In this
paper, we assumed that the homogeneous strain can be
written as:

εij ¼
λw α2i � 1

3

� �
i ¼ jð Þ

λwαiαj i≠ jð Þ

(
ð4Þ

where αi is the principal axis of the homogeneous strain
and λw denotes the strength of the homogeneous strain.
Considering that the stress-free strain does not affect the
nanocrystallite volume, we assumed that the homoge-
neous strain also does not affect the volume. Moreover,
the strain exhibits a local structure, i.e., heterogeneous
strain owing to the magnetic distributions and stresses
between the nanocrystallites. We divided the magnetic
material into nanocrystallite regions to analyze the effect
of the heterogeneous strain. We assumed that the
heterogeneous strain can be written as:

ηgij ¼
λd βgi

2 � 1
3

� �
i ¼ jð Þ

λodβ
g
i β

g
j i≠ jð Þ

8<
: ð5Þ

where g is an index for each nanocrystallite, βgi is a
random unit vector, and λd and λod denote the strengths
of the heterogeneous strains. The strain ηgij varies
randomly between the nanocrystallites, and this strain
also does not affect the volume of the nanocrystallites.
Next, we can obtain the magnetoelastic energy using Eqs.
(4) and (5). Substituting Eq. (4) into Eq. (1), we can
obtain the magnetoelastic energy due to the homoge-
neous strain:

Eh
magel ¼ Kh

u

X3
i

α2i �
1
3

� �
m2

i �
1
3

� �
þ 2Kh

c

X3
i≠j

αiαjmimj:

ð6Þ

In the above, the constants corresponding to the
homogeneous strain can be defined as:

Kh
u ¼

3
2

c12 � c11ð Þλ100λw ð7Þ

Kh
c ¼ �3c44λ111λw: ð8Þ

After rearranging Eq. (6), considering that αi and mi are
unit vectors, we can obtain:

Eh
magel ¼ Kh

þ þ Kh
�

� �
α1m1 þ α2m2 þ α3m3ð Þ2 � 1

3

� 	
�4Kh

� α1α2m1m2 þ α2α3m2m3 þ α3α1m3m1ð Þ;
ð9Þ

where the effective anisotropic constants due to the
homogeneous strain can be written as:

Kh
þ ¼ Kh

u þ Kh
c

2
; Kh

� ¼ Kh
u � Kh

c

2
: ð10Þ

The first term of Eq. (9) corresponds to the uniaxial
anisotropy. In the same way, we can obtain the
magnetoelastic energy due to the heterogeneous strain,
which can be written as:

Eg
magel ¼ KG

þ þ KG
�

� �
βg1m1 þ βg2m2 þ βg3m3
� �2 � 1

3

� 	
�4KG

� βg1β
g
2m1m2 þ βg2β

g
3m2m3 þ βg3β

g
1m3m1

� �
;

ð11Þ
where the effective anisotropy constants due to hetero-
geneous strain are:

KG
þ ¼ KG

u þ KG
c

2
; KG

� ¼ KG
u � KG

c

2
; ð12Þ

and the constants corresponding to the heterogeneous
strain can be defined as:

KG
u ¼ 3

2
c12 � c11ð Þλ100λd ð13Þ

KG
c ¼ �3c44λ111λod: ð14Þ

The magnetizations within the exchange length are
oriented along the same direction, and the magnetizations
are collectively rotated by the external magnetic field.
Hence, if there are many nanocrystallites within the
exchange length, as in NSMMs, the magnetization
dynamics are affected by the mean magnetoelastic energy.
In the next step, we clarified the exchange softening effect
of the magnetic anisotropy due to magnetostriction.

x1

x2

x3

Fig. 1 Schematic illustration of the model for an NSMM. The
system is constructed of nanocrystallites whose crystal axis is
randomly oriented, and the strain distribution is nonuniform. αi is the
principal axis of the homogeneous strain. αi points along the same
direction for all of the nanocrystallites. βgi is the principal axis of the
heterogeneous strain. The orientations of βgi randomly vary among
the nanocrystallites.
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For simplicity of analysis, we assumed that the crystal
axis, magnetization, αi and βgi varied only in the x1x2
plane35. Under this assumption, the magnetoelastic
energy due to the homogeneous strain can be simply
written as:

Eh
magel ¼ Kh

þ þ Kh
�

� �
α1m1 þ α2m2ð Þ � 1

3

� 	
� 4Kh

�α1α2m1m2:

ð15Þ
The magnetization and principal axis of the homogeneous
strain are oriented along the same direction between the
nanocrystallites. In contrast, the unit vector βgi for the
heterogeneous strain varies randomly. We defined the
polar angles of those quantities as shown in Fig. 2, and Eq.
(15) can be rewritten as:

Eh
magel ¼ 1

2K
h
þ cos 2 θ � ϕð Þ þ 1

2K
h
� cos 2 θ þ ϕ� 2φg

� �
þ 1

6 Kh
þ þ Kh

�
� �

:
ð16Þ

Note that Eqs. (4) and (5) are valid in a crystal frame in
which the coordinate is established by the crystal axes. In
the same way, the magnetoelastic energy due to the
heterogeneous strain can be rewritten as:

Eg
magel ¼ 1

2K
G
þ cos 2 θ � ψg

� �
þ 1

2K
G
� cos 2 θ þ ψg � 2φg

� �
þ 1

6 KG
þ þ KG

�
� �

:

ð17Þ
After shifting the origin of the magnetoelastic energy to
remove constant terms, we can obtain:

Emagel ¼ 1
2K

h
þ cos 2 θ � ϕð Þ þ 1

2K
h
� cos 2 θ þ ϕ� 2φg

� �
þ 1

2K
G
þ cos 2 θ � ψg

� �
þ 1

2K
G
� cos 2 θ þ ψg � 2φg

� �
:

ð18Þ
Nanocrystallites can also have magnetocrystalline aniso-
tropy K1, which is usually greater than the anisotropy due
to magnetostriction. When we consider cubic symmetry,

the magnetic anisotropy energy Eani can be written as:

Eani ¼ �K cry

2
cos 4 θ � φg

� �
; ð19Þ

where K cry ¼ K1=4. Hence, the total magnetic anisotropy
energy Etotal can be written as:

Etotal ¼ Eani þ Emagel: ð20Þ
Since magnetization is affected by the contributions of the
nanocrystallites within the exchange length, we must
consider a summation of the magnetoelastic energy. To
obtain the amplitude of the summation of the total energy
with respect to θ, we calculated the root mean square
Etotalh i, which can be defined as:

Etotalh i ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2π

Z 2π

0

XN
g¼1

Etotal

 !2

dθ

vuut ; ð21Þ

where N is the number of nanocrystallites within the
exchange length. Note that we defined the root mean
square of each nanocrystallite in Eq. (21). After a
straightforward calculation and considering that ψg and
ϕg are independently varied, we can obtain:

Etotalh i ¼ 1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kh

þ
2 þ 1

N
Kh

�
2 þ KG

þ
2 þ KG

�
2 þ K 2

cry

� �r
:

ð22Þ
After summation of the nanocrystallites, the magnetoe-
lastic energy exhibits the lowest symmetry of anisotropy,
i.e., uniaxial anisotropy, which can be written as:

Etotal ¼ 1
2

Kh i 1� cos 2 θ � φKð Þ½ �; ð23Þ

where Kh i is the random magnetic anisotropy, which
includes a magnetostriction contribution, and φK denotes
the direction of the uniaxial anisotropy. Since the root
mean square of the oscillation term of Eq. (23) is
Kh i=2 ffiffiffi

2
p

, the random magnetic anisotropy including
magnetostriction contribution can be written as:

Kh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kh

þ
2 þ 1

N
Kh

�
2 þ KG

þ
2 þ KG

�
2 þ K2

cry

� �r
:

ð24Þ
Next, we determined the dependence of the magnetic
anisotropy constant due to magnetostriction on the
nanocrystallite size. The number of nanocrystallites
depends on the exchange length, which depends on the
random magnetic anisotropy:

N ¼ L3ex
D3 ; ð25Þ

a1

a2

x1

x2

Fig. 2 Definition of the angles of the magnetization, crystal axes,
αi, and βgi . â1 and â2 denote the crystal axes. All quantities are rotated
only in the x1x2 plane.
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Lex ¼ ζ

ffiffiffiffiffiffiffiffi
A
Kh i

s
; ð26Þ

where Lex is the exchange length, D is the diameter of the
nanocrystallite, ζ is a constant corresponding to the
symmetry of the magnetic anisotropy, and A is the
exchange constant. Substituting Eqs. (25) and (26) into
Eq. (24), we can obtain:

Kh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kh

þ
2 þ Kh i32D3

ζ3A
3
2

Kh
�
2 þ KG

þ
2 þ KG

�
2 þ K2

cry

� �s
:

ð27Þ
If Kh

þ is negligible, the effective magnetic anisotropy is
proportional to D6, i.e., we can obtain:

Kh i ’ D6 1

ζ3A
3
2

Kh
�
2 þ KG

þ
2 þ KG

�
2 þ K2

cry

� �� 	2
:

ð28Þ
In contrast, when Kh

þ is much larger than the other terms
in Eq. (27), we can obtain:

Kh i ’ Kh
þ þ D3

2ζ3A
3
2

Kh
�
2 þ KG

þ
2 þ KG

�
2 þ K2

cry

� � ffiffiffiffiffiffiffi
Kh

þ
q

:

ð29Þ

Figure 3 shows the nanocrystallite size dependency of
the effective magnetic anisotropy Kh i calculated by Eq.
(27). The magnetic anisotropy due to magnetostriction
exhibits the same trend as the random magnetocrystalline
anisotropy when an induced anisotropy Ku ¼ Kh

þ exists in
the NSMM36. When the mean magnetostriction is
�8:9´ 10�6, i.e., the NSMM comprises α-Fe nanocrys-
tallites19,20, the curve of Kh i starts to deviate from Eq.
(28). The induced anisotropy generated by the homo-
geneous strain is 18:6 J/m3, which is much smaller than
the crystal anisotropy of α-Fe. With decreasing homo-
geneous strain, the effect of magnetostriction on the
induced anisotropy also decreases. When λw is
�0:89´ 10�6, Kh i is not sensitive to magnetostriction
until the diameter of the nanocrystallite is smaller than 10
nm.
The homogeneous strain affects the motion of the

magnetic domain wall in the same way as the induced
anisotropy Ku, as expressed in Eq. (29). However, the
effect of magnetostriction on the magnetic anisotropy
energy depends on the mode of magnetization dynamics.
When the magnetization is uniformly rotated in a mag-
netic material, the homogeneous strain also rotates, and
the magnetoelastic energy is not affected by the homo-
geneous strain since the angle between mi and αi is
constant. In this case, the homogeneous strain does not
affect the effective magnetic anisotropy.

However, the most important point conveyed by Fig. 3
is that the random magnetic anisotropy, including the
magnetostriction contribution Kh i, cannot explain the
excess loss, which is enhanced by the magnetostriction
constant. Even if we consider the NSMM to be con-
structed of α-Fe nanocrystallites, the contribution to
Kh i is very small and independent of the frequency of
the external magnetic field. Hence, we must consider
other mechanisms of energy dissipation to explain the
excess losses observed in the experiments5. In the fol-
lowing section, we formulate the mechanism of energy
dissipation due to magnetostriction, focusing on chan-
ges in the strain caused by magnetic domain wall
motion.

Energy dissipation due to magnetostriction by magnetic
domain wall motion
Numerous magnetic domains are formed inside soft

magnetic materials37–40. When an external magnetic
field is applied, the magnetic domain wall moves, and
the strain distribution changes accordingly. Schematic
illustrations of the strain distribution accompanying the
magnetic domain wall are shown in Fig. 4. When static

λw = -8.9×10-6

 -1.78×10-6

 -0.89×10-6

λw = 0

K1 = 4.72×104 J/m3

Kcry = K1/4

K   = 18.6 J/m3 

A = 25 pJ/m
ζ = 1.0

λ100 = 20.7×10-6

λ111 = -21.2×10-6

λd = λ100

λod = λ111

10-4

10-3

10-2

10-1

100

K 
   

(K
cr

y)

10 405
Nanocrystallite diameter (nm)

3020

Fig. 3 Effective magnetic anisotropy hKi, as calculated by Eq.
(27). The red line is the effective magnetic anisotropy when λw is
�8:9´ 10�6, which is the homogeneous strain of the NSMM
constructed by α-Fe nanocrystallites. The green and blue lines denote
the effective magnetic anisotropy when λw is �1:78´ 10�6 and
�0:89´ 10�6, respectively. The elastic constants c11, c12, and c44 are
2:41´ 1011, 1:46 ´ 1011, and 1:12 ´ 1011, respectively. λd and λod are
the same as λ100 ¼ 20:7 ´ 10�6 and λ111 ¼ �21:2 ´ 10�6, respectively.
The crystal anisotropy K1 is 4:72 ´ 104 J/m3, the exchange stiffness
constant A is 25 pJ/m, and ζ is 1:0.
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magnetic domain walls produce stable strain distribu-
tions, the total energy, including the elastic energy,
attains a local minimum value. Suppose that the mag-
netic domain wall moves due to the external magnetic
field. In this case, the strain distribution also changes,
but the change in the strain distribution is delayed
because of the viscosity of the magnetic materials. Since
this retardation causes an increase in the total energy,
the viscous resistance acts on the magnetic domain wall
to decrease the total energy. In the following, we for-
mulate the energy loss due to the viscous resistance
caused by magnetostriction based on the
Landau–Lifshitz–Gilbert equation. When the strain
changes with time, the elastic energy is dissipated due to
internal friction. This energy dissipation is expressed by
the dissipation function R, which can be written as:

R ¼ 1
2 ζ11

_ξ
2
11 þ _ξ

2
22 þ _ξ

2
33

� �
þ 2ζ44 _ξ

2
12 þ _ξ

2
23 þ _ξ

2
31

� �
þ ζ12 _ξ22 _ξ33 þ _ξ33 _ξ11 þ _ξ11 _ξ22

� �
;

ð30Þ
where ζ ij is the viscosity constant41. The strain can be
obtained by calculating spatial derivatives of the displace-
ment vector ui, and the equation of motion can be
expressed as:

ρ€ui � ∂

∂xj
σ ij þ σ 0

ij

� �
¼ 0; ð31Þ

where ρ is the mass density of the magnetic material, σ ij is
the stress caused by the strain ξij, and σ 0ij is the dissipative
stress due to the viscosity of solids. Hereinafter, repeated

subscripts are summed from 1 to 3. The stress and
dissipative stress can be calculated as:

σ ij ¼ ∂Eme

∂ξ ij
; σ 0

ij ¼
∂R

∂ _ξ ij
; ð32Þ

where Eme is the total energy caused by magnetostriction,
which can be obtained as:

Eme ¼ Emagel þ Eel: ð33Þ

H. Suhl examined the contribution of magnetostriction
to the magnetic damping constant by considering only the
shear strains42. Following his theory, we can obtain the
damping constant for magnetic domain wall motion due
to magnetostriction. When we consider only the shear
strain, Eme and R can be rewritten as:

Eme ¼ 2μξ2ij þ 2Bξijmimj; R ¼ 2η _ξ
2
ij; ð34Þ

where μ ¼ c44, and η ¼ ζ44. In NSMMs, the direction of
the crystal axis differs between the nanocrystallites, so it is
impossible to describe the shear strain in the entire region
using Eq. (34). However, since the total energy due to
magnetostriction and the dissipation function are aver-
aged within the exchange length, we can consider using
isotropic elastic materials to clarify domain wall motion,
and the shear strain can be described by Eq. (34). When
the force acting on the displacement vector is balanced,
we can obtain:

_ξ ij þ λξ ij þ
B
2η

mimj ¼ 0; ð35Þ

where λ is μ=η. Hence, the strain can be described by the
integral of the magnetization:

ξ ij ¼ � B
2η

Z t

�1
dt0mi t

0ð Þmj t
0ð Þe�λ t�t0ð Þ: ð36Þ

This equation shows that the strain provides historical
information on the magnetization when magnetic
materials are viscous. In other words, the strain is
delayed from the magnetic domain wall. The effective
field due to magnetostriction can be obtained using the
strain ξ ij. The effective field can be calculated by the
partial derivative of the total energy due to magnetos-
triction:

Hme
i ¼ � 1

μ0Ms

∂Eme

∂mi
¼ � 2B

μ0Ms
ξ ijmj; ð37Þ

where Ms is the saturation magnetization and μ0 is the
vacuum permeability. Substituting Eq. (36), we can

Magnetic 
domain wallStrain

Force

Velocity

(a)

(b)

Fig. 4 Schematic illustrations of the strain distribution and
magnetic domain wall. a Stability distribution of the strain caused by
the magnetic domain wall. b Change in the strain distribution when
the magnetic domain wall moves with velocity _q. The gray and
orange colors indicate the magnetic domain wall region and the
strain distribution, respectively.
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obtain:

Hme
i ¼ B2

μ0Msη

Z t

�1
dt0Fiðt; t0Þe�λ t�t0ð Þ; ð38Þ

where:

Fi t; t
0ð Þ ¼ mi t

0ð Þmj t
0ð Þmj tð Þ: ð39Þ

The integral of Eq. (36) can be expanded by
using integration by parts. After expanding the
integration to the second order with respect to λ�1,
we can obtain:Z t

�1
dt0Fiðt; t0Þe�λ t�t0ð Þ ¼ 1

λ
mi tð Þ � 1

λ2
_mi tð Þ þ O λ�3� �

:

ð40Þ

In this paper, we assumed that the terms above the third
order can be neglected to simplify the problem. In this
case, the torque Tme acting on the magnetization due to
magnetostriction can be given as:

Tme ¼ λ2s Dm ´
dm
dt

; ð41Þ

where:

D ¼ 9γMs

μ0M
2
s

η; λs ¼ � 1
3
B
μ
: ð42Þ

Hence, the effective field due to magnetostriction
attenuates the rotation of the magnetization. The
Landau–Lifshitz–Gilbert equation, including the effect
of magnetostriction, can be written as:

dm
dt

¼ �γm ´Heff þ αþ λ2s D
� �

m ´
dm
dt

; ð43Þ

where α is the Gilbert damping constant and Heff is the
effective field constructed by the exchange field and the
external magnetic field.

When the frequency of the external magnetic field is
low, soft magnetic materials are magnetized by
the magnetic domain wall motion. The equation of
magnetic domain wall motion can be directly obtained
from the Landau–Lifshitz–Gilbert equation43.
Considering a 180° domain wall, the equation of
motion is:

m€q þ βdw _q þ kq ¼ 2μ0MsHext; ð44Þ

where q is the center position of the magnetic domain
wall, m is the mass of the magnetic domain wall, k is the
spring constant, Hext is the external magnetic field, and

the damping coefficient βdw can be written as:

βdw ¼ 2μ0Ms αþ λ2s D
� �
γδw

; ð45Þ

where δw is the domain wall width. From Eq. (44), a time
variation of the energy of the magnetic domain wall can
be written as:

d
dt

m
2
_q2 þ k

2
q2

� 	
þ βdw _q

2 ¼ W dw; ð46Þ

where W dw ¼ 2μ0MsHext _q. This equation shows that the
energy dissipation of the magnetic domain wall Pdw is:

Pdw ¼ Sβdw _q
2 ¼ Sβdwκ

2
dw

_M
2
; ð47Þ

where S is the area of the magnetic domain wall, M is the
magnetization of the entire soft magnetic material along
the direction of the external magnetic field and κdw is a
constant that converts the moving distance of the
magnetic domain wall into the variation in the magneti-
zation, as follows:

Δq ¼ κdwΔM: ð48Þ
The magnetization process in soft magnetic materials is
caused by the movement of numerous magnetic domain
walls. In this case, the magnetization change caused by a
single magnetic domain wall is ΔM=ndw, where ndw is the
number of magnetic domain walls, and the energy
dissipation is:

Pdw ¼ Sβdwκ
2
dw

ndw
_M
2
: ð49Þ

G. Bertotti explained the frequency dependence of the
anomalous eddy current loss by using local eddy currents
due to domain wall motion16,44. We formulated the
energy loss associated with wall motion by considering
magnetostriction instead of eddy currents. Analogous to
W dw, the energy dissipation due to the damping terms
can be rewritten as:

Pdw ¼ 2Sμ0MsHexc _qj j; ð50Þ
where:

Hexc ¼ βdwκdw
2μ0Msndw

_M
�� ��: ð51Þ

As the external magnetic field intensifies, the number of
active domain walls ndw increases because the pinned
magnetic domain wall begins to move. As indicated by Eq.
(46), the external magnetic field is partially consumed to
increase the kinetic and potential energies of the magnetic
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domain wall. To increase the number of active domain
walls, the remaining magnetic field, i.e., Hexc, is used in
magnetic domain wall depinning. Hence, in a simple
approximation, the number of active domain walls can be
written as:

ndw ¼ n0 þ Hexc

V 0
; ð52Þ

where n0 is the number of active domain walls in the
absence of an external magnetic field and V 0 is the
phenomenological parameter of the soft magnetic mate-
rial. Substituting Eq. (52) into Eq. (51), Hexc can be
rewritten as:

Hexc ¼ n0V 0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2βdwκdw

μ0Msn20V 0

_M
�� ��

s
� 1

" #
: ð53Þ

When we consider the limit of high time variation in the
magnetization, this magnetic field becomes:

Hexc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βdwV 0κdw
2μ0Ms

s
_M
�� ��12: ð54Þ

Substituting Eq. (54) into Eq. (50), we can obtain:

Pdw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βdwV dwSκ3dw

q
_M
�� ��32; ð55Þ

where V dw ¼ 2Sμ0MsV 0. The energy losses obtained in
the experiments are time-averaged values caused by the
numerous magnetic domain walls. Thus, the time
variation in the magnetization can be roughly approxi-
mated as:

_M
�� �� � Mmax

4
T

¼ 4Mmaxf ; ð56Þ

whereMmax is the peak magnetization and T and f are the
period and frequency, respectively, of the external
magnetic field. Finally, the energy loss due to magnetos-
triction can be expressed as:

Pdw � 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βdwV dwSκ3dw

q
Mmaxfð Þ32: ð57Þ

Note that Eq. (57) must be divided by the system volume
to obtain the energy loss density. The energy loss due to
magnetostriction has the same form as that of the
anomalous eddy current loss. In the formulation in this
paper, we considered the energy dissipation caused by
magnetic domain wall motion inside a soft magnetic
material with magnetostriction and viscosity. The energy
dissipation mechanism does not depend on eddy currents.
Hence, even when there is no eddy current present due to
high resistance, the energy loss, which has the same
frequency dependence as the anomalous eddy current
loss, is caused by magnetostriction.

Results and discussion
The damping constant for the magnetic domain wall

due to magnetostriction can be obtained by expanding the
shear strain to the second order with respect to λ�1, and
the obtained damping constant is λ2s D. The dimensionless
parameter D is proportional to the viscosity constant.
When the viscosity constant decreases to zero in Eq. (36),
the strain is proportional to mi tð Þmj tð Þ, and the torque
due to magnetostriction vanishes. Hence, the dynamic
viscosity is essential for the energy loss due to
magnetostriction.
The viscosity constant can be obtained by dynamic

viscoelastic measurements in which alternating stresses
are applied to viscoelastic bodies. P. Rösner performed
dynamic viscoelastic measurements of amorphous alloys
to obtain a loss modulus G

0 0 45. The loss modulus repre-
sents the energy dissipation of the viscoelastic body due to
the viscosity, and we can obtain the viscosity constant
using η ¼ G

0 0
=ω, where ω is the angular frequency of the

alternating stress46. According to Rösner’s experiment,
the viscosity constant is approximately 1:49 ´ 102 Pa∙s at
350 K. Since a residual amorphous phase is contained in
NSMMs, we used this value of the viscosity constant to
analyze the energy loss due to magnetostriction.
Figure 5 shows the energy loss versus the frequency

calculated by Eq. (57) for different magnetostriction
constants. In the energy loss calculation, the saturation
magnetization μ0Ms is 2:15 T, the vacuum permittivity μ0
is 1:26 ´ 10�6 H/m, and the gyromagnetic ratio in the
Landau–Lifshitz–Gilbert equation γ is 2:21 ´ 105 m/As,
with α ¼ 0:02 and β0dw ¼ 2μ0Ms=γδw. From these para-
meters, D becomes 1:38 ´ 108. The frequency dependence
of the energy loss due to magnetostriction is consistent
with that of the excess losses observed in the experi-
ments5, in which the electrical resistance of the magnetic
material is high and the classical eddy current loss is
suppressed. Thus, it is expected that the governing origin
of the excess loss is magnetostriction. When the magne-
tostriction constant increases, the line of the energy loss
shifts upward because the damping constant due to
magnetostriction cannot be neglected compared to the
Gilbert damping constant.
In the discussion of coercivity, magnetostriction is

neglected in amorphous and NSMM alloys because its
effects are limited. In contrast, magnetostriction sig-
nificantly contributes to the energy loss caused by mag-
netic domain wall motion. Figure 6 shows the relationship
between the energy loss due to magnetic domain wall
motion and the magnetostriction constant λs. When the
magnetostriction constant is close to zero, energy loss
occurs due to the Gilbert damping constant47–49. The
energy loss increases linearly and attains almost the same
value at the different Gilbert damping constants when the
magnetostriction constant is greater than approximately
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20 ppm, i.e., the effect of magnetostriction dominates the
energy loss.
To confirm the effect of magnetostriction on the

dynamic loss behavior of soft magnetic materials, we
performed core loss measurements of a commercial
amorphous alloy (Fe80Si9B11) and a range of nanocrys-
talline (nc) alloys. Magnetic hysteresis curves under an
alternating current (AC) field were measured on an
Iwatsu SY-8219 B-H analyzer at 2 kHz. Static hysteresis
curves were also acquired on a DC B-H tracer. The details
of the DC and AC hysteresis measurements, including the
sample geometry and coil configurations, are available
elsewhere. Four disc-shaped samples with a diameter of
10 mm were used with strain gauges for measuring the
saturation magnetostriction. The saturation magnetos-
triction λs of the alloys are 40 ± 2´ 10�6 for the amor-
phous alloy, 25:6 ± 2 ´ 10�6 for nc-(Fe0.8Co0.2)86B14,
14 ± 2 ´ 10�6 for nc-Fe86B13Cu1, 2:4 ± 0:5 ´ 10�6 for nc-
Fe80Nb6B14 and near zero (� 10�7) for nc-Fe85Nb6B9.
Figure 7 shows the AC hysteresis curves acquired at 2

kHz for these 5 alloys. The maximum magnetic polar-
ization was limited to 1 T for all the measurements. In
each AC hysteresis plot, a static minor loop obtained by
the DC B-H tracer with the same maximum polarization
is also shown for comparison. This is denoted by the
hysteresis loss in the plots. We also estimated the classical
eddy current loss at 2 kHz by following Bertotti’s
approach, where the additional field due to the eddy
current was predicted using Maxwell’s equations44. The

results are included in the AC hysteresis loops. Hence, the
residual area of each AC hysteresis loop after subtracting
both the static hysteresis loss and the classical eddy cur-
rent loss corresponds to the excess loss component, often
referred to as the anomalous eddy current loss.
Regardless of the samples investigated here, the classical

eddy current loss is only a minor component of the total
loss at 2 kHz because of the small sample thickness of the
melt-spun ribbons (typically between 15 and 25 µm). In
contrast, the excess loss component varies considerably
depending on the saturation magnetostriction. The excess
loss component remains a minor component for the near
zero-magnetostrictive nc-Fe85Nb6B9, and the core loss at
2 kHz is governed primarily by the hysteresis loss, whereas
the excess loss governs the total loss for the amorphous
alloy with a large λs value.
Figure 8 shows the change in the excess loss (i.e., the

area of the excess loss in Fig. 7 multiplied by the fre-
quency) as a function of λs. Notably, the excess loss lin-
early increases with saturation magnetostriction, revealing
that the energy dissipation due to magnetostriction
dominates the excess loss, and the excess loss attains a
finite value even when the magnetostriction constant
approaches zero. Since these behaviors are fully consistent
with those of the analytical calculation results shown in
Fig. 6, the experimental results verify the formulation of
the magnetostrictive effect on the energy loss.
The effect of magnetostriction on the coercivity caused

by residual strains has been examined in terms of its slight
effect. The results of this paper indicated that
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magnetostriction directly contributes to the energy loss
due to the viscosity of the magnetic material. The energy
loss in soft magnetic materials can be explained by the

sum of the hysteresis loss, classical eddy current loss, and
anomalous eddy current loss, but magnetostriction also
generates energy loss with the same frequency depen-
dence as the anomalous eddy current loss. Thus, the total
energy loss of the soft magnetic material Ptotal can be
decomposed as:

Ptotal ¼ Phys þ Pec þ Pex; ð58Þ
where Phys is the hysteresis loss, Pec is the classical eddy
current loss and Pex is the excess loss. Both the anomalous
eddy current loss Pea and Pdw are components of Pex, and
if their contributions can be summed linearly, Pex can be
expressed as:

Pex ¼ Pea þ Pdw: ð59Þ

These two components are indistinguishable from each
other in terms of frequency dependence. However, for
amorphous and NSMMs, the energy loss due to magne-
tostriction dominates the excess loss. Consequently, the
focus of alloy development in these classes of materials
should be to reduce the saturation magnetostriction.

Conclusion
The analytical calculations clarified how magnetostric-

tion causes energy loss in NSMMs, and this mechanism

-30 -20 -10 0 10 20 30

-1.0

-0.5

0.0

0.5

1.0

-30 -20 -10 0 10 20 30

-1.0

-0.5

0.0

0.5

1.0

-30 -20 -10 0 10 20 30

-1.0

-0.5

0.0

0.5

1.0

Excess loss

Applied field, H (A/m)
-30 -20 -10 0 10 20 30

-1.0

-0.5

0.0

0.5

1.0

-30 -20 -10 0 10 20 30

-1.0

-0.5

0.0

0.5

1.0

M
ag

ne
tiz

at
io

n 
po

la
riz

at
io

n,
 J

(T
)

nc-Fe85Nb6B9 2kHz

Classical eddy 
current loss

Hysteresis loss

Classical eddy 
current loss

Hysteresis loss

Excess loss

M
ag

ne
tiz

at
io

n 
po

la
riz

at
io

n,
 J

(T
)

Applied field, H (A/m)

nc-Fe80Nb6B14 2kHz

Classical eddy 
current loss

Hysteresis loss

Excess loss

Applied field, H (A/m)

M
ag

ne
tiz

at
io

n 
po

la
riz

at
io

n,
 J

(T
)

nc-Fe86B13Cu1 2kHz

Classical eddy 
current loss

Hysteresis loss

Excess loss

Applied field, H (A/m)

M
ag

ne
tiz

at
io

n 
po

la
riz

at
io

n,
 J

(T
)

nc-(Fe0.8Co0.2)86B14 2kHz

Classical eddy 
current loss

Hysteresis loss

Excess loss

Amorphous alloy Fe80Si9B11 2kHz
M

ag
ne

tiz
at

io
n 

po
la

riz
at

io
n,

 J
(T

)

Applied field, H (A/m)

Fig. 7 AC hysteresis curves of nanocrystalline and amorphous alloys observed in the experiments. Cyan and orange indicate the
contributions of the hysteresis loss and classical eddy current loss, respectively. Green denotes the excess loss, i.e., the remaining energy loss.

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25  30  35  40

Magnetostriction constant λs (10-6)

Ex
ce

ss
 lo

ss
 (k

W
/m

3 )

nc-Fe85Nb6B9

nc-Fe80Nb6B14

nc-Fe86B13Cu1

nc-(Fe0.8Co0.2)86B14

Amorphous alloy Fe80Si9B11

Peak magnetization 1T
Frequency 2 kHz

Fig. 8 Excess losses observed in the experiments as a function of
the magnetostriction constant λs. The frequency of the external
magnetic field is 2 kHz, and the peak magnetization is 1 T. The dotted
line denotes the least squares line.

Tsukahara et al. NPG Asia Materials           (2024) 16:19 Page 10 of 12    19 



was validated by experiments. In NSMMs, homogeneous
and heterogeneous strains are caused by distortions of
each nanocrystallite due to magnetostriction. Since the
magnetoelastic energy caused by heterogeneous strains is
reduced by averaging within the exchange length, the
effect of magnetostriction on the magnetic anisotropy is
decreased. In contrast, the magnetic anisotropy due to the
homogeneous strain is not averaged by the randomness of
the crystal axes of the nanocrystallites and yields the same
effect as the induced magnetic anisotropy. However, this
magnetic anisotropy due to magnetostriction cannot
explain the excess loss observed in the experiments
because the effect on the magnetic anisotropy is limited.
If a magnetic domain wall is present, the magnetic material

is distorted by magnetostriction to stabilize the total energy
of the magnetic domain wall. As the magnetic domain wall
moves, the local strain also changes to reduce the total
energy. However, the change in the strain is retarded with
respect to magnetic domain wall motion due to the viscosity
of the magnetic material. This retardation could generate a
viscous resistance acting on the magnetic domain wall.
Following H. Suhl, we formulated the viscous resistance

of the magnetic domain wall motion due to magnetos-
triction by considering only the shear strain. The viscous
resistance increases with the square of the magnetostric-
tion constant and is proportional to the viscosity constant.
The energy loss due to magnetic domain wall motion can
be obtained by using this viscous resistance, according to
G. Bertitti. The obtained energy loss exhibits the same
frequency dependence as the anomalous eddy current
loss, and this dependence is consistent with the experi-
mental observations. In the discussion of coercivity, the
contribution of magnetostriction is negligible, but the
energy loss due to magnetic domain wall motion is
dominated by the energy dissipation caused by magne-
tostriction. The clarification of the new energy loss
mechanism due to magnetostriction provides useful sug-
gestions for improving the energy efficiency of soft mag-
netic materials.
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