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Introduction

The main purpose of this article is to explain new methods in studying Galois
covers of algebraic varieties forS4, the symmetric group of degree 4 andA4, the al-
ternating group of degree 4, and to apply them to studying thetopology of the com-
plements to plane curves.

Branched Galois covers has been playing important roles in the study of alge-
braic varieties. Double covers have been intensively used to construct algebraic sur-
faces having a prescribed Chern invariants (for example, [18]), and cyclic covers have
been used to investigate the topology of the complements to plane curves (for exam-
ple, [11], [29]). In most cases, however, they are abelian covers, i.e., Galois covers
with abelian Galois groups. This is because the systematic methods to study abelian
covers have been established and it is, in fact, quite user-friendly. On the other hand,
there seem to be few systematic methods for non-abelian covers which are as useful
as those for abelian covers; and there do not seem to be many results by using non-
abelian Galois covers. Therefore it seems worthwhile to make a study of non-abelian
Galois covers even for elementary non-abelian groups.

The author has studied Galois covers having dihedral groupsas their Galois
groups in [21], and applied such covers to the study of the complements to plane al-
gebraic curves ([22], [23], [24]). As it is well-known, dihedral groups are a class of
so-calledregular polyhedral groups. Thus, as a next step, it is natural to consider Ga-
lois covers having such groups as their Galois groups. In [27] Tsuchihashi has made
a study of singularities which appear in Galois covers with Galois groups, 2 , A4

and S4. In this article, being inspired Tsuchihashi’s work, we consider Galois covers
of algebraic varieties withA4 and S4 as their Galois groups.

One could say that the difference between Tsuchihashi’s results and ours is the
one betweenlocal and global. In [27], Tsuchihashi’s condition for constructing Galois
covering singularities are given by the germs of holomorphic functions and the group
action over them. In this paper, in order to describe our conditions for constructingS4

covers, we use rather global language: divisors and their linear equivalences.
Both Tsuchihashi’s approach and ours are based on Galois theory for A4 and S4.

Research partly supported by the research grant 11640034 from JSPS.
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More explicitly, it is based on Lagrange’s method in solving quartic equations ([10]).
We try to understand Lagrange’s method by geometric language. This is our goal for
the first half of this article (Part I).

In Part II, we apply the results forS4 covers in Part I to studying the topology
of the complements to plane sextic curves. In order to make our problem clear and to
see the role ofS4 covers, let us review our fundamental question and previousknown
results about it.

The fundamental question throughout Part II is as follows:

Question 0.1. Let be a reduced plane curve inP2. What can one say about
P2 \ just from the data of local topological type of singularities? For example, can
one determine whether the fundamental groupπ1(P2\ ) is abelian or non-abelian just
from such data?

In what follows, we simply say the configuration of singularities instead of the
data of local topological types of singularities.

From the viewpoint of Question 0.1, there do not seem to be many results on the
non-commutativity onπ1(P2 \ ), while there are several results on the commutativity
(see [3], [8], [12], [19]).

In [25], the author gave a statement on the non-commutativity. We need some no-
tations to explain it.

Let be as before and assume that has at most simple singularities. We use
the lower cases, , and to describe the types of them. For∈ Sing( ),
we denote its Milnor number byµ . We define the total Milnor number,µ , to be∑

∈Sing( )µ . We next define a non-negative integer, , for an odd prime as fol-
lows:

if = 3, 3 = the number of singularities of types3 −1 ( ≥ 1) and 6, and
if ≥ 5, = the number of singularities of type −1.
Using these notations, we have

Theorem 0.2 ([25]). Suppose thatdeg is even. If there exists an odd prime
such that

+ µ > 2− 3 + 3

then there exists a surjective homomorphism

π1(P2 \ )→ D2 = 〈σ τ | σ2 = τ = (στ )2 = 1〉

In particular, π1(P2 \ ) is non-abelian.

Corollary 0.3. The notations are the same as inTheorem 0.2. Suppose that
has only nodes and cusps and let and be the number of nodes and cusps, respec-
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tively. If + 3 > 2 − 3 + 3, then π1(P2 \ ) is non-abelian.

The proof of Theorem 0.2 is based on an existence theorem onD2 covers
branched along . Hence the inequality in Theorem 0.2 seems togive a very rough
estimate. For sextic curves and = 3, however, the inequalityis sharp from the fol-
lowing result:

Theorem 0.4 ([5], [16], [23], [24]). There exists a pair of irreducible sextic
curves( 1 2) as follows:
(i) Both 1 and 2 have the same configuration of singularities; and it is one of the
following:

3 5 + 3 1 6 2 + 3 1 3 6 6 + 4 2 + 2 1

(ii) There exists a surjective homomorphismπ1(P2 \ 1) → S3 for 1, while there is
no such homomorphism for2.

Also the inequality in Theorem 0.2 is sharp for = 5 ([1]). On the other hand, it
is known that there exist sextic curves,3, having the configurations of singularities:
3 5 + 4 1, 6 2 + 4 1, 6 + 4 2 + 3 1, 3 6 + 1. For 3, the inequality in Theorem 0.2
is satisfied for = 3. Hence there exists a surjective morphismπ1(P2 \ 3) → S3.
In particular,π1(P2 \ 3) is non-abelian.

These examples seem to be rather interesting, since the difference of the config-
urations of singularities between1 in Theorem 0.2 and 3 is just the number of
nodes. From observation from the commutativity statementsas in [3], [8], [12], [19],
the number of nodes does not seem to give much effect on the non-commutativity on
the fundamental group of the residual space. In fact, Oka posed the following conjec-
ture in [15]:

Conjecture 0.5 ([15], p. 402). The fundamental group of the complement to
a curve does not change by a degeneration which puts only nodes.

Moreover, by [5], the Alexander polynomials for1 in Theorem 0.4 and those for

3 are 2− + 1. This shows that one can not measure the difference of the topology
betweenP2\ 1 and P2\ 3 by the Alexander polynomials, while they are likely to be
different.

Now S4-covers come in to our picture. We need them to see that the topology of
P2 \ 1 is different fromP2 \ 3; and it is the goal of Part II.

Let be a reduced sextic curve with at most simple singularities, and let
: ′ → P2 be the double cover branched along and letµ : → ′ be the canoni-

cal resolution (see [9] for the canonical resolution). By the assumptionµ is a minimal
resolution, and is a 3 surface. Let NS( ) be the Néron-Severi group of and
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let be the subgroup of NS( ) generated by all the irreducible components of the
exceptional divisor ofµ. Both NS( ) and are lattices with respect to the intersec-
tion product. Note that has a natural orthogonal decomposition =

⊕
∈Sing( ′) ,

where is the subgroup of NS( ) generated by the exceptional divisor arising from
. As we assume that has only simple singularities, is isomorphic to one of the

so-called - - lattices. The graph of means the dual graph of the exceptional set
for . We denote it by ( ) and the graph, ( ), of is

∑
∈Sing( ′) ( ). Note

that the involution induced by the double cover◦ µ canonically acts ( ). By our
assumption, ( ) is one of the Dynkin graphs, which we denote bythe bold charac-
ters A , D and E . (Note that these types correspond to those of lattices.) Let 1 be
a subgraph of ( ). We denote the subgroup (or lattice) of NS( ) generated by the
vertices of 1 by L( 1).

Now we are in position to state our main result (for the terminology of Galois
covers, see§1 and§3):

Theorem 0.6. Let be a reduced sextic curve with at most simple singulari-
ties, and let : ′ → P2 be the double cover branched along . If there exists an
S4-cover π : → P2 of P2 such that (i) π is branched at2 and (ii) π factors

: ′ → P2. Then ( ) contains a subgraph eitherA⊕9
2 or A⊕6

2 ⊕ A⊕4
1 .

Theorem 0.7. Suppose that ( ) containsA⊕6
2 ⊕ A⊕4

1 such thatA⊕4
1 is a in-

variant block under the involution induced by the covering transformation. Then there
exists an S4-cover of P2 such that (i) π is branched at2 and (ii) π factors

: ′ → P2.

By Theorem 0.6, we can infer that there is noS4-cover for 1 in Theorem 0.4,
while there exists anS4-cover for 3 as above.

REMARK 0.8. By Theorems 0.6 and 0.7, we know that Conjecture 0.5 is false
in general. In fact, there is a family of sextic curves{ } ∈ , = { ∈ C | | | < 1}
such that 0 is a sextic curve having 36 + 1 as its singularities, while ( 6= 0)
is a sextic curve having 36 as its singularities. By Theorems 0.6 and 0.7, we know
that there exists anS4-cover branched at 20, while there exist no such covers for
( 6= 0). This impliesπ1(P2 \ 0) 6∼= π1(P2 \ ) ( 6= 0).

Recently, Oka and Pho have figured outπ1(P2 \ ) explicitly ([17]):

π1(P2 \ ) ∼= Z/2Z ∗ Z/3Z ( 6= 0)

while

π1(P2 \ 0) ∼= 4(P1)

where 4(P1) is the braid group of 4 strings forP1.
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General theory forS4- and A4-covers

1. Galois covers of algebraic varieties

In this section, we introduce some notations and terminologies, which we use
throughout this article to describe Galois covers. Let be a normal projective va-
riety. Let be a normal variety with a finite surjective morphism π : → .
The field of rational functions,C( ), of is a finite extension of that of ,C( ),
with [C( ) : C( )] = degπ. We call a Galois cover of ifC( ) is a Ga-
lois extension ofC( ). Let be a finite group. IfC( ) is a Galois extension with
Gal(C( )/C( )) ∼= , we simply call a -cover. Let be a subgroup of , and
let C( ) be the -invariant subfield ofC( ). We denote theC( ) -normalization
of by ( / ). Note that there are canonical morphisms:

β1(π ) : ( / )→ β2(π ) : → ( / )

such that (i) β2(π ) is a -cover, and (ii)π = β1(π ) ◦ β2(π ). We call
( / ) the intermediate cover with respect to . Note that if is a normal sub-

group of , thenβ1(π ) : ( / )→ is a / -cover.
We define the branch locus ofπ to be the subset given by

{ ∈ | π is not locally isomorphic over }

We denote it by ( / ) or π. In what follows, we assume that is smooth. By
the purity of the branch locus ([29]), π is an algebraic subset of codimension 1. Let

π = 1 + · · · + be the decomposition into its irreducible components. Therami-
fication index ofπ along is the one along the smooth part of . If we say that
a -coverπ : → is branched at 1 1 + · · ·+ (resp. at most 1 1 + · · ·+ ),
it means that (i) π = 1 + · · ·+ (resp. π ⊂ 1 + · · ·+ ), and (ii) the ramification
index along is (resp.≤ ).

Now we formulate our basic problem on Galois covers.

Problem 1.1. Let be a finite group and let be a normal subgroup of .
Put 1 = / .
(i) Function field versionLet : → be a 1 cover of . Find a condition
for the existence of an extension, , ofC( ) such that (a) is a Galois exten-
sion of C( ) with Galois group , and (b) =C( ). Note that the -normalization
of gives a cover of .
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(ii) Geometric versionLet : → be a smooth 1-cover of , and let be
an effective divisor on . Find a condition on for the existence of an -cover,

: → , satisfying (a) ◦ gives a -cover of such that (/ ) = and (b)
( / ) ⊂ Supp( ).

(ii) ′ Let : → be a smooth 1-cover of , and let be an effective divisor
on . We denote its irreducible decomposition by =1 1 + · · · + . Find a con-
dition on for the existence of an -cover, :→ , satisfying (a) ◦ gives a

-cover of such that (/ ) = and (b) is branched at at most .

In Problem 1.1, we divide a construction problem for -coversinto two parts:
/ -covers and -covers. By this approach, we could reduce our difficulty of
-covers to that of rather elementary ones. This method, however, does not work at all

for simple groups. Thus we need a new strategy to attackA5-covers. Now we go on
to two specific cases:S4 and A4. To this purpose, we first review Lagrange’s method
in solving quartic equations.

2. Lagrange’s method

Let us recall Lagrange’s idea to solve a quartic equation ([10], [20]). Let be
a field of ( ) = 0 containing the fourth and third primitive rootof unity. Consider
an algebraic equation of degree 4 over :

4 + 1
2 + 2 + 3 = 0

We denote its four roots byα = 1, 2, 3, 4. Suppose that Gal( (α1 α2 α3 α4)/ ) ∼=
S4. We fix an action of 4 on the set{α1 α2 α3 α4} in a canonical way. Namely,
σ : α 7→ ασ( ) Let 4 be the subgroup ofS4 given by

4 = { (12)(34) (13)(24) (14)(23)}

i.e., the Klein group. Put

γ1 = (α1 + α2)− (α3 + α4)

γ2 = (α1 + α3)− (α2 + α4)

γ3 = (α1 + α4)− (α2 + α3)

Then one can easily check

Lemma 2.1. γ2
1, γ2

2, γ2
3 are 4-invariant.

Put ϕ = γ2, and let =ϕ1 + ϕ2 + ϕ3, = ϕ1ϕ2 + ϕ2ϕ3 + ϕ3ϕ1 and =γ1γ2γ3.
Then one can also check:
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Lemma 2.2. , and areS4-invariant. In particular, , , ∈ .

Consider the cubic equation given by

3− 2 + − 2 = 0

The left hand side is in [ ], andϕ1, ϕ2 andϕ3 are the solutions of the above cubic
equation. Then we have

Lemma 2.3. (ϕ1 ϕ2 ϕ3)/ is a Galois extension with Galois groupS3, and
(ϕ1 ϕ2 ϕ3) = (α1 α2 α3 α4) 4.

Proof. By Lemma 2.1, (ϕ1 ϕ2 ϕ3) ⊂ (α1 α2 α3 α4) 4. Consider a bi-
quadratic extension: = (ϕ1 ϕ2 ϕ3)(γ1 γ2). Since γ3 = /γ1γ2, γ3 ∈ .
Hence, with

∑
α = − 1 ∈ , one can check allα ∈ . This implies that

(α1 α2 α3 α4) = and [ (α1 α2 α3 α4) : (ϕ1 ϕ2 ϕ3)] = 4. Thus we have
(ϕ1 ϕ2 ϕ3) = (α1 α2 α3 α4) 4. Since 4 is a normal subgroup ofS4 such that

S4/ 4
∼= S3, we have the assertion on the Galois group by the fundamentaltheorem

of the Galois theory.

Thus one can obtain anS3 extension from the givenS4 extension canonically.
We next consider the converse of this. Namely we show how we obtain an S4

extension from a givenS3 extension.

Lemma 2.4. Let be anS3 extension of . HereS3 = 〈σ τ | σ2 = τ3 = (στ )2 =
1〉. Suppose that there exist three elementsϕ1, ϕ2 and ϕ3 of such that
(i) ϕ 6∈ ( ×)2,
(ii) ϕσ

1 = ϕ2, ϕσ
3 = ϕ3; and ϕτ

1 = ϕ2, ϕτ
2 = ϕ3, ϕτ

3 = ϕ1, and
(iii) ϕ1ϕ2ϕ3 = 2 for some ∈ .

Then the bi-quadratic extension(
√
ϕ1
√
ϕ2 ) is an S4 extension of .

Proof. By
√
ϕ3 = /

√
ϕ1
√
ϕ2 , we know that (

√
ϕ1
√
ϕ2 ) is a Galois exten-

sion of . To see Gal
(

(
√
ϕ1
√
ϕ2 )/

)
, defineα1, α2, α3, α4 as follows:



α1

α2

α3


 =

1
4




1 1 1
1 −1 −1
−1 1 −1





√
ϕ1√
ϕ2√
ϕ3




and

α4 = −(α1 + α2 + α3)

Then (
√
ϕ1
√
ϕ2 ) = (α1 . . . α4); and by checking the action of the induced au-

tomorphisms explicitly, we have Gal
(

(
√
ϕ1
√
ϕ2 )/

) ∼= S4.
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REMARK 2.5. As for theA4-case, we replaceS3 by Z/3Z, and repeat the same
argument. We omit its detail.

3. S4-covers of algebraic varieties

We keep the same notation as before, and attackS4-covers under the settings
in §1. We choose 4 as in §1. Then from what we have seen in the previous sec-
tion, we have the following proposition immediately:

Proposition 3.1. Let : → be an S3-cover of . Suppose that there exist
three distinct rational functions, ϕ1, ϕ2 and ϕ3 with the following properties:

(i) ϕ 6∈
(
C( )×

)2
for each .

(ii) If we denoteGal(C( )/C( )) = 〈σ τ | σ2 = τ3 = (στ )2 = 1〉, then
(ii-a) ϕσ

1 = ϕ2, ϕσ
3 = ϕ3, and

(ii-b) ϕτ
1 = ϕ2, ϕτ

2 = ϕ3, ϕτ
3 = ϕ1.

(iii) ϕ1ϕ2ϕ3 ∈
( ∗C( )×

)2
.

Then the bi-quadratic extension = C( )(
√
ϕ1
√
ϕ2 ) is an S4 extension

of C( ) such that 4 = C( ). In particular, the -normalization, , of is an
S4-cover of with ( / 4) = .

Conversely, if there exists anS4-cover π : → with ( / 4) = , there
exist three rational functionsϕ1, ϕ2, and ϕ3 in C( ) satisfying the three properties
(i), (ii) and (iii) as above.

Proposition 3.1 gives an answer to Problem 1.1 (i) in the caseof = S4, = 4.
We now go on to the second question.

Proposition 3.2. Let : → be a smoothS3-cover of . Suppose that there
exist three different reduced divisors, 1, 2 and 3 on as follows:
(i) With the same notation onGal( / ) as those inProposition 3.1,
(i-a) σ

1 = 2 and σ
3 = 3, and

(i-b) τ
1 = 2, τ

2 = 3, τ
3 = 1.

(i-c) there is no common component among1, 2, and 3.
(ii) There exists a line bundle, L , such that 1 ∼ 2L .

Then there exists anS4-cover π : → satisfying (i) ( / 4) = and (ii)
( / ) = Supp( 1 + 2 + 3).

Proof. Choose effective divisors 0 and ∞ so thatL ∼ ∞ − 0. Then we
have 1 + 2 0 ∼ 2 ∞. Hence there exists a rational function,ψ, on such that

(ψ) = ( 1 + 2 0)− 2 ∞
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Define three rational functions,ϕ1, ϕ2 andϕ3 as follows:

ϕ1 = ψψσψτ2

ψστ2

ϕ2 = ψψσψτψστ ϕ3 = ψτψτ2

ψστψστ2

Then one can easily check the following:
(i) ϕσ

1 = ϕ2, ϕσ
3 = ϕ3, ϕτ

1 = ϕ2, ϕτ
2 = ϕ3, ϕτ

3 = ϕ1.

(ii) ϕ1ϕ2ϕ3 = (ψψσψτψστψτ2
ψστ2

)2 ∈
( ∗C( )×

)2
.

(iii)

(ϕ1) = 2 + 3 + 2( 1 + 0 + σ
0 + τ2

0 + στ2

0 )− 2( ∞ + σ
∞ + τ2

∞ + στ2

∞ )

(ϕ2) = 1 + 3 + 2( 2 + 0 + σ
0 + τ

0 + στ
0 )− 2( ∞ + σ

∞ + τ
∞ + στ

∞ )

(ϕ3) = 1 + 2 + 2( 3 + τ
0 + τ2

0 + στ
0 + στ2

0 )− 2( τ
∞ + τ2

∞ + στ
∞ + στ2

∞ )

In particular,ϕ 6∈ (C( ))2 ( = 1, 2, 3).
Now the existence for anS4 cover with property (i) follows from Proposition 3.1.

The assertion on (/ ) follows from (iii).

Conversely we have

Proposition 3.3. Let π : → be anS4-cover. Suppose that(i) ( / 4) is
smooth and(ii) β2(π 4) 6= ∅. Then there exist three effective divisors, 1, 2 and 3

on ( / 4) satisfying the conditions(i) and (ii) in Proposition 3.2.

Proof. Chooseϕ1, ϕ2 and ϕ3 as in the second half in Proposition 3.1. We may
assume that

(ϕ ) = + 2 0− 2 ∞ ( = 1 2 3)

where is reduced and 0 and ∞ are effective for each . Then these1, 2

and 3 are the desired ones.

4. A4-covers of algebraic varieties

In this section, we consider the construction problem ofA4-covers. A4 is the
unique index-2-subgroup ofS4; and 4 ⊂ A4 such thatA4/ 4

∼= Z/3Z. Hence, af-
ter we knew how to attackS4-covers, it is rather easy for us to consider the same
problem for A4. To describeA4-covers, we simplyforget the condition concerningσ
in Proposition 3.1. Namely it is as follows:

Proposition 4.1. Let : → be a Z/3Z-cover of . Suppose that there exist
three rational functionsϕ1, ϕ2 and ϕ3 as follows:
(i) ϕ 6∈

(
C( )×

)2
for every .

(ii) Put Gal(C( )/C( )) = 〈τ | τ3 = 〉. Thenϕτ
1 = ϕ2, ϕτ

2 = ϕ3.
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(iii) ϕ1ϕ2ϕ3 ∈
( ∗C( )×

)2
.

Then the bi-quadratic extension = C( )(
√
ϕ1
√
ϕ2 ) is an A4 extension ofC( )

such that 4 = C( ). In particular, the -normalization, , of is an A4-cover
of with ( / 4) = .

Conversely, if there exists anA4-cover π : → with ( / 4) = , there
exist three rational functionsϕ1, ϕ2, and ϕ3 in C( ) satisfying the three properties
(i), (ii) and (iii) as above.

We also have the geometric version as follows:

Proposition 4.2. Let : → be a smoothZ/3Z-cover of . Suppose that
there exist three different reduced divisors, 1, 2 and 3 on as follows:
(i) With the same notation onGal( / ) as those inProposition 4.1, τ

1 = 2,
τ
2 = 3, τ

3 = 1, and there is no common component among1, 2 and 3.
(ii) There exists a line bundle, L , such that 1 ∼ 2L .

Then there exists anA4-cover π : → satisfying (i) ( / 4) = and (ii)
( / ) = Supp( 1 + 2 + 3).

The converse of the above proposition is as follows:

Proposition 4.3. Let π : → be anA4-cover. Suppose that(i) ( / 4) is
smooth and(ii) β2(π 4) 6= ∅. Then there exist three effective divisors, 1, 2 and 3

on ( / 4) satisfying the condition(i) and (ii) in Proposition 4.2.

We omit our proofs for Propositions 4.1, 4.2 and 4.3, since they are almost the
same as those for Propositions 3.1, 3.2 and 3.3.

5. S4- and A4-covers of algebraic surfaces

Throughout this section, always meansS4 or A4. 4 denotes the Klein group
and we put 1 = / 4. In Propositions 3.2 and 4.2, we assume that the intermediate
cover is smooth. This assumption, however, seems to be too strong when we consider
their application. In this section, we show that we are able to drop such assumption
when is a surface.

Let : → be a 1-cover of , and letµ : ˜ → be the minimal resolution.
Then, by the uniqueness of the minimal resolution,µ is a 1-equivalent resolution.
Namely we can consider 1 as a finite automorphism group of̃ over . Taking this
into account, we can easily modify our previous results intomore useful form.

Proposition 5.1. The case = S4. Let 1, 2 and 3 be reduced divisors
on ˜ such that
(i) (a) σ

1 = 2, and σ
3 = 3; (b) τ

1 = 2, τ
2 = 1 and τ

3 = 1, and
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(ii) there exists a line bundle, L , on ˜ such that 1 ∼ 2L .
Then there exists a(Z/2Z)⊕2-cover : ˜ → ˜ with the following properties:

(i) = Supp( 1 + 2 + 3).
(ii) the Stein factorization, , of ◦ µ ◦ gives rise to anS4-cover, , of with

( / ) = ∪ ◦ µ(Supp( 1 + 2 + 3)).
The case = A4. Just by dropping the condition(i) (a) in the S4 case, the same

statement holds forA4-covers.

Corollary 5.2. Under the same assumption and notations as inProposition 5.1,
if Supp( 1 + 2 + 3) is a subset of the exceptional divisor ofµ, then there exists
a -cover ( = S4 or A4) of with branch locus .

The converse of Proposition 5.1 also holds:

Proposition 5.3. Let π : → be a -cover ( = S4 A4) of a smooth
algebraic surface , and let µ : ˜ → ( / 4) be the minimal resolution of

( / 4). If β2(π 4) 6= ∅, then there exist three reduced divisor, 1, 2 and 3

on ˜ such that
(i) 1, 2, and 3 satisfy the conditions(i) and (ii) in Proposition 5.1,and
(ii) ( / ) = β1(π 4) ∪ β1(π 4) ◦ µ(Supp( 1 + 2 + 3)).

Propositions 5.1 and 5.3 still involve a condition concerning linear equivalences.
We next rewrite them into the ones concerning only algebraicequivalences. In what
follows, we always assume
(∗) The Ńeron-Severi group of̃ , NS(˜), is torsion free.

Note that NS(̃ ) is a lattice with respect to the intersection pairing underthe as-
sumption (∗).

Let 1 . . . be irreducible divisors oñ satisfying the following properties:
(i) Let be the subgroup of (̃) generated by 1 . . . . Then is a sublattice
of rank . We call atrivial subgroup(or trivial sublattice) generated by 1 . . . .
(ii) is 1-invariant.

Since is 1-invariant, 1 acts
(
NS(˜)/

)
. Suppose that

(
NS(˜)/

)
con-

tains a 1-invariant subgroup isomorphic toZ/2Z ⊕ Z/2Z. This implies that we
have a homomorphismρ : 1 → (2 Z/2Z). Let ˜ be the semi-direct product de-
termined byρ. If ρ is injective, then˜ is S4 (resp.A4) for 1 = S3 (resp.Z/3Z).

Under these circumstances, we have the following:

Theorem 5.4. If ρ is injective, then there exists a(Z/2Z)⊕2-cover : ˜ → ˜
such that
(a) the Stein factorization, , of ◦ µ ◦ gives rise to anS4-cover, , of with

( / 4) = , and
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(b) ⊂∑σ∈ 1
Supp( σ

1 + · · · + σ)

Proof. We only prove for the case of1 = S3, as our proof for theZ/3Z case
goes almost the same way as that for theS3 case.

Let α1, α2, α3 be three non-trivial elements of . We putS3 = 〈σ τ | σ =
(12) τ = (123)〉 and may assume thatS3 acts onα1, α2, α3 by the permutation of the
subindices. Choose a divisor, , oñ so that givesα1. Since 2 ∈ and 6∈ ,
2 is represented by a divisor in the form of

= 1 + · · · + + 2 ′ ′ ∈

By replacing by − ′, we may assume that 2 is represented by the reduced di-
visor = 1 + · · · + . Since isS3-invariant, σ, τ , τ2

, στ and στ2
give

rise to non-trivial elements in and correspond toα2, α2, α3, α3 and α1, respec-
tively. By replacing by a suitable algebraically equivalent one, if necessary, we may
assume that

∼ 2

Hence there exists a rational functionψ in C(˜) such that

(ψ) = − 2

Put

ϕ1 = ψτψστ ϕ2 = ψτ2

ψστ2

ϕ3 = ψψσ

Thenϕ ( = 1, 2, 3) satisfy
(i) ϕσ

1 = ϕ2, ϕσ
3 = ϕ3.

(ii) ϕτ
1 = ϕ2, ϕτ

2 = ϕ3.
Let 1, 2 and 3 be the reduced part of τ + στ , τ2

+ στ2
and + σ,

respectively. Then we have the following:

CLAIM . 1, 2 and 3 are distinct and satisfy (i) σ
1 = 2, σ

3 = 3 and
(ii) τ

1 = 2, τ
2 = 3.

Proof of Claim. By the definition ofϕ ( = 1, 2, 3),

(ϕ1) = τ + στ − 2( τ + στ )

(ϕ2) = τ2

+ στ2 − 2( τ2

+ στ2

)

(ϕ3) = + σ − 2( + σ)

We first show 6= ∅ for every . It is enough to show that 1 6= ∅ as 2 = τ
1 ,

3 = τ
2 . Suppose that 1 = ∅. Then τ + στ = 2 ′′, ′′ ∈ . As we assume
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NS(˜) is torsion-free, it implies that τ + στ ≈ ′′, i.e., α2 + α3 = 0 in . But this
contradicts toα2 +α3 = α1 6= 0. We next see 1, 2 and 3 are distinct. It is enough
to show that 1 6= 2. Suppose that 1 = 2(= τ

1 ). Then by considering the divisor
of the rational function (ϕ1/ϕ2), we have

−2( τ + στ ) + 2( τ2

+ στ2

) ∈ 2 ;

and it implies

−( τ + στ ) + ( τ2

+ στ2

) ∈

This implies−(α2 + α3) + (α3 + α1) = 0. But this is again contradiction, asα1 + α2 =
α3 6= 0.

We go back to prove Theorem 5.4. By the definition of1, there exists a line
bundleL such that 2L ∼ 1, and Supp( 1 + 2 + 3) ⊂ Supp

(∑
σ∈ 1

( σ
1
+ · · ·+ σ)

)
.

Hence by Proposition 5.1 and Claim, we have Theorem 5.4.

6. Examples

In this section, we consider several examples forS4- and A4-covers.

EXAMPLE 6.1. Let 4(P1) be the symmetric product ofP1 of degree 4. 4(P1) is
canonically identified withP4 and the canonical projectionπ : P1×P1×P1×P1→ P4 is
an S4 cover of P4. The branch locus ofπ is known as the discriminant hypersurface.
In this particular case, it is a hypersurface of degree 6. Let(= P2) to be a generic
2-plane inP4. The restriction ofπ to gives rise to anS4 cover, , ofP2 branched
at a sextic curve, , with 4 nodes and 6 cusps. The ramification index along is 2.

( / 4) is a 3 surface with 121 singularities, while (/ A4) is a 3 sur-
face with 6 2 and 4 1 singularities. We will look into this example from more gen-
eral view point in Part II.

EXAMPLE 6.2. Let be a hyperelliptic curve of genus ; and let3( ) be the
symmetric product of degree 3. The canonical projection :× × → 3( ) gives
an S3-cover. We show that there exist 22 − 1 distinct S4-cover, π : → 3( ) so
that ( / 3( ) 4) = × × , β1(π 4) = .

Let denote the projection from × × to the -th factor. Let 1 . . .

and o be points such that
∑ − o 6∼ 0 but 2(

∑ − o) ∼ 0, i.e.,
∑ − o is

a 2-torsion on Pic0( ). Let be a rational function on such that ( ) =
∑ − o.

Put ϕ = ∗ ∗ , { } = {1 2 3}. Then these three rational functions,ϕ1, ϕ2

andϕ3 satisfy the following conditions with respect to theS3 action on × × :
(i) ϕ 6∈

(
C( × × )×

)2
for every .

(ii) ϕ(12)
1 = ϕ2, ϕ(12)

3 = ϕ3; andϕ(123)
1 = ϕ2, ϕ(123)

2 = ϕ3, ϕ(123)
3 = ϕ1.

(iii) ϕ1ϕ2ϕ3 = ( ∗
1

∗
2

∗
2 )2 ∈

(
C( × × )×

)2
.
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Let = C( × × )(
√
ϕ1
√
ϕ2 ) and let be the -normalization of× × .

Then by Proposition 3.2, is anS4-cover of 3( ). Since there are 22 − 1 distinct
non-trivial 2-torsions on Pic0( ), there exist 22 − 1 distinct S4 covers of 3( ).

EXAMPLE 6.3. Let ( o) be an elliptic curve given by the affine equation2 =
3 + + , o = [0 : 1 : 0]. Let denote a line. The divisord cut out by is lin-

early equivalent to 3o. d consists of three distinct points if meets transversely,
while d has non reduced point if is tangent to . Let∨ be the dual curve of .
The above fact implies that any point inP2 \ ∨ corresponds to a reduced divisor lin-
early equivalent to 3o, while any point in ∨ corresponds to a non-reduced divisor
linearly equivalent to 3o. In other word, if we let 3( ) be the symmetric product of

of degree 3 and letφ : 3( ) → be the Abel-Jacobi map, thenφ−1(o) = P2 and
φ−1(o)∩ = ∨, where is the branch locus of theS3-cover : × × → 3( ).
Let be theS4-cover in Example 6.2 for : × × → 3( ). Then the restric-
tion of to φ−1(o) gives anS4-cover of P2. Example 6.2 assures that there exist
three distinctS4-covers ofP2 branched at 2∨.

REMARK 6.4. A branched coverπ : → P2 of degree is called ageneric
-plane if it satisfies

(i) is smooth and the branch locusπ is an irreducible curve with only nodes and
cusp as its singularities.
(ii) π∗

π = 2 + ; andπ| : → π gives the normalization of π.
Example 6.3 implies that there exist three distinct 4 generic plane with branch lo-

cus ∨. This fact is classically known (see [2] for detail).

The topology of the complements to plane sextic curves

7. Automorphisms of order 2 or 3 and the rational quotients by them

Let be a surface, and letσ be an automorphism of order 2 or 3 of with
only isolated fixed points, 1 . . . . Let be the group of generated byσ. Let

= / and letπ : → be the quotient map. has quotient singularities at the
points =π( ). Let µ : → be the minimal resolution of . We call the induced
rational map · · · → the rational quotient map and call the rational quotient of
by . Let ˜ be theC( )-normalization of . It is a cyclic covering of degree♯( )
branched along at most the exceptional set of→ . In what follows, we look into
the relation among ,̃ and .

CASE 1. ♯( ) = 2. One obtains˜ from by blowing-up at 1 . . . . For
details, see [13,§3].
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CASE 2. ♯( ) = 3. In this case, the action of around each fixed point is di-
vided into two types. Namely, if we choose a small neighborhood, : ( ) ⊂ C2,

= (0 0) appropriately, then we may assume that the action ofσ is given either
(i) ( ) 7→ (ε ε ), or (ii) ( ) 7→ (ε ε2 ), where ε = exp(2π /3). Hence is
a cyclic quotient singularity of type (1 3) for (i), while it is one of type (2 3) for
(ii), i.e., a rational double point of type 2. We relabel the ’s so that 1 . . .

are type (1 3) and +1 . . . are type (2 3). To obtaiñ from , we first consider
a successive blowing-ups of in the following way:
(i) Blow up at one time for = 1. . . , and
(ii) Blow up at three times for = + 1. . . so that the induced automor-
phism fromσ has no isolated fixed point. One can easily see that the exceptional set
is tree of threeP1 and that the self intersection number of the middle component is
−3, while those of the remaining two is−1.

We then contract the − (−3) curves arising from (ii). Then we obtaiñ.
We next consider how we obtaiñ from . Let 1 . . . be the exceptional

curves for 1 . . . and let 1 and 2 ( + 1 ≥ ≥ ) be the exceptional curves
for +1 . . . . Since ˜ → is a cyclic triple covering of , the branch locus is
a line bundle on such that

3 ∼
∑

=1

+
∑

= +1

( 1 + 2 2)

REMARK 7.1. A divisor in the form of 1 + 2 ( ≥ + 1) does not appear in
the right hand side, since 1( 1 + 2) = −1 is not divisible by 3.

From the linear equivalence as above, one can obtain a cyclictriple covering, ,
of branched along Supp

(∑
=1 +

∑
= +1( 1 + 2 2)

)
. If we choose in an ap-

propriate way, =̃ . In particular, if Pic( ) has no 3-torsion, then =̃.

8. 2- and 3-divisible divisors onK3 surfaces

A 3 surface is a simply connected compact complex manifold ofdimension 2
with trivial canonical bundle. Throughout this article, weonly consideralgebraic 3
surfaces.

Before we consider the rational cyclic quotient of 3 surfaces, we summarize
some facts from lattice theory, which we need later.

DEFINITION 8.1. A lattice is a freeZ module of finite rank equipped withZ val-
ued symmetric bilinear form.

Let 1 and 2 be lattices. We denote the orthogonal direct sum of them by1⊕
2; and denotes ⊕ · · · ⊕ ( copies). The discriminant, disc , of a lattice



636 H. TOKUNAGA

is the determinant of the intersection matrix of . A lattice is called unimodular if
disc =±1. We denote the dual lattice of by∨. is embedded to ∨ by using
the bilinear form as a sub lattice with same rank. The quotient group ∨/ is a finite
abelian group, which we denote by .

A sublattice, , of is called primitive if / is torsion-free.

EXAMPLE 8.2. Let be an algebraic surface and let2( Z) be the second co-
homology group. If 2( Z) is torsion-free, then 2( Z) is unimodular lattice with
respect to the intersection product by Poincaré duality. The Ńeron-Severi group of
is a primitive sublattice of 2( Z).

Lemma 8.3. Let be a unimodular lattice. Let1 and 2 be sublattices of
such that ⊥

1 = 2 and ⊥
2 = 1. Then 1

∼= 2.

For a proof, see [7, p. 4].
By Example 8.2, for a 3 surface , 2( Z) is a unimodular lattice; and by

the Noether formula, rank 2( Z) = 22. Let NS( ) be the Ńeron-Severi group of .
As is simply connected, NS( ) = Pic( ).

DEFINITION 8.4. We call
∑

=1 -divisible if 1/ (
∑

=1 ) ∈ NS( ), i.e., there
exists in NS( ) such that ≈∑ =1 .

Lemma 8.5 ([14, Lemma 3], [13, Lemma 3.3]).Let 1 . . . be disjoint (−2)
curves on a 3 surface , and suppose1/2

∑
=1 ∈ NS( ). Then = 0, 8 or 16.

For a proof, see [13].

Corollary 8.6. Let 1 . . . be disjoint (−2) curves on a 3 surface , and
let be the sublattice generated by1 . . . . Then:
(i) If

(
NS( )/

)
⊃ Z/2Z, then ≥ 8, and

(ii) If
(
NS( )/

)
⊃ (Z/2Z)⊕2, then ≥ 12.

Proof. (i) Let =
∑

=1 be an element of such that (1/2) 6∈ but
(1/2) ∈ NS( ). By replacing by 1 =

∑
=1( − 2[ /2]) , [ ] being the max-

imal integer not exceeding , we may assume that is a non-zero reduced effective
divisor. Hence by Lemma 8.5, the number of irreducible component of is either 8
or 16.
(ii) Suppose that ≤ 11 and

(
NS( )/

)
⊃ (Z/2Z)⊕2. Let 1 and 2 be elements

of such that (1/2) 1 and (1/2) 2 give rise to distinct elements in
(
NS( )/

)
.

Then, by Lemma 8.5 and the assumption, both1 and 2 have 8 irreducible compo-
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nents. Hence by relabeling if necessary, one may assume

1 = 1 + · · · + + +1 + · · · + 8

2 = 1 + · · · + + 9 + · · · +

where 1≤ ≤ 7, 9 ≤ ≤ 11. Since ≤ 11, ≥ 5. Let 1 · · · → be the rational
quotient map with respect to 1 as in §7. Then the divisor̃ 2 on 1 coming from 2

is in the form of ( ′
9 + ′′

9 ) + · · · + ( ′ + ′′); and 1/2˜2 ∈ NS( 1). Hence the number
of irreducible components̃ 2 is either 8 or 16 by Lemma 8.5. But this is impossible
as 9≤ ≤ 11.

For the existence of 2-torsions, we have the following lemma.

Lemma 8.7. With the same notations as inCorollary 8.6, if ≥ 12, then(
NS( )/

)
has a2-torsion.

Proof. Let ♯ be the primitive hull of . Note that ♯/ =
(
NS( )/

)
and

both ♯ and are embedded in∨ as sublattices. Let
(

♯
)⊥

be the orthogonal com-
plement of ♯ in 2( Z). Then by Lemma 8.3 ♯

∼= ( ♯)⊥ . Suppose that ♯/

has no 2-torsion. As ♯/ ⊂ ∼= (Z/2Z)⊕ , we have ♯ = . Hence, = ♯ .
Thus the 2-length of ♯ = ≥ 12. On the other hand, rank(♯)⊥ = 22− ; and the
2-length of ( ♯)⊥ ≤ 22− ≤ 10. This is impossible.

Lemma 8.8. Let ( 1 2) ( = 1 . . . ) be pairs of(−2) curves on a 3 sur-
face such that
(i) 1 2 = 1 and the divisors 1 1 + 1 2 . . . 1 + 2 are disjoint.
(ii) 1/3

∑
=1( 1 + 2 2) ∈ NS( ),

then = 0, 6 or 9.

Proof. Suppose that > 0 and let · · · → be the rational quotient map of
degree 3 as in§7 and let ( = 1 . . . ) be the points lying over 1 + 2 2, ( =
1 . . . ), respectively. Then

χ ( ) = χ
(
\ { 1 . . . }

)
+

= 3χ
(
\ ∪ =1( 1 ∪ 2)

)
+

= 72− 8

As ∼ 0, is either a 3 surface or an abelian surface. Hence = 6 for thefirst
case and = 9 for the second.
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Table 9.1.
Type of ( ) Local equation π1 ( ) ♯

(
π1 ( )

)
2 + 2 + +1 = 0 cyclic group + 1

( ≥ 4) 2 + ( 2 + −2) = 0 binary dihedral group 4( − 2)

6
2 + 3 + 4 = 0 binary tetrahedral group 24

7
2 + ( 2 + 3) = 0 binary octahedral group 48

8
2 + 3 + 5 = 0 binary icosahedral group 120

(Note that 0 is nothing but a smooth point.)

Table 9.2.
( ) ( )

2 ( ≡ 1 mod 2) ( −1)/2

2 ( : even) 2 −5 or /2+1

2 ( : odd) 2 −5

2 7 6

3 ( ≡ 2 mod 3) ( −2)/3

3 6 4

≥ 5 ( + 1≡ 0 mod ) ( +1)/ −1

9. Cyclic covers of rational double points

Let ( ) be a 2-dimensional normal singularity, i.e., is a normal irreducible
complex space having a unique singularity at . Let ( ) be another 2-dimensional
normal singularity and let : ( )→ ( ) be a finite morphism such that (i) \
→ \ is unramified, and (ii) −1( ) = .

Such is determined by a subgroup of finite index of the local fundamental
group,π1 ( ), of ( ). For rational double points, the results in Table 9.1 is well-
known.

We now consider the case when is a -cyclic ( : odd prime) cover.

Lemma 9.1. Let ( ) be a rational double point. If is a -cyclic cover, then
the pair ( ) and ( ) is one of those inTable 9.2.

Proof. If : ( )→ ( ) is a -cyclic covering, then it corresponds to a nor-
mal subgroup ofπ1 ( ) of index . Our statement easily follows from the case-by-
case checking.
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10. Local structure of an S4-cover of a surface

We go on to study the local structure of anS4-cover. Letπ : → be anS4

cover of a smooth algebraic surface . As we introduced in§1, we have the commu-
tative diagrams:

β2(π 4)

%%
JJJJJJJJJJ

π

��

β2(π A4)

%%
KKKKKKKKKK

π

��

( / 4)

β1(π 4)
yytttttttttt

( / A4)

β1(π A4)
yyssssssssss

( / 4) is a Z/3Z-cover of ( / A4). We denote its covering morphism by
γ : ( / 4)→ ( / A4).

In the following, we always assume:
(i) the branch locus := (/ ) has at most simple singularities,
(ii) π is branched at 2 , and
(iii) β1(π A4) is branched along .

Under these three conditions, one can conclude thatβ2(π 4), γ andβ2(π A4) are
branched at most singular points of the base surfaces; and all of these singularities are
rational double points by Lemma 9.1. We next consider what kinds of singularities we
have on and (/ 4).

Lemma 10.1. Choose ∈ Sing( ( / A4)). Then the13 cases inTable 10.1
occur for singularities appearing inβ2(π A4)−1( ) and γ−1( ).

Here the coefficients of the types of singularities mean the number of singularities,
e.g., 3 means three singularities. Also:
(i) if No. 1 occurs, ≡ 2 mod 3,
(ii) if No. 2 occurs, ≡ 1 mod 2,and
(iii) if No. 4 occurs, ≡ 0 mod 2.

Lemma 10.1 easily follows from Lemma 9.1.

11. Proof of Theorem 0.6

We keep the notations as before. Theorem 0.6 is straightforward from the follow-
ing proposition:

Proposition 11.1. Let be as inTheorem 0.6,and let ′ be the double cover
of P2 with ( ′/P2) = . Suppose that there exists anS4-cover π : → P2 such that

(i) π is branched at2 , and (ii) ( / A4) = ′.
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Table 10.1.
No. Type of γ−1( ) β2( / A4)−1( )
1 ( −2)/3 4 ( −2)/3

2 3 6 ( −1)/2

3 3 12
4 3 6 /2+1

5 3 6 2 −5

6 3 12
7 6 4 1

8 6 4 2 3

9 6 4 4 4

10 6 3 6 12 6

11 7 3 7 6 6

12 7 3 7 12 7

13 8 3 8 12 8

Then the minimal resolution, ˜, of is either an abelian surface or a 3 sur-
face. Moreover, if ˜ is an abelian surface(resp. 3 surface), then ( ) containsA⊕9

2

(resp. A⊕6
2 ⊕ A⊕4

1 ).

We need several lemmas to prove Proposition 11.1. Let us start with the following
lemma:

Lemma 11.2. Let ˜ be as above. Theñ is either an abelian surface or a 3
surface. Moreover, if Sing( ) 6= ∅, then ˜ is a 3 surface.

Proof. Let ′ be the canonical bundle of ′ (Note that one can define ′

as we assume that ′ has only rational double singularities). By the assumption,
β2(π A4) : → ( / A4) is branched at at most Sing( (/ A4)). Also, by
Lemma 9.1, has again at most rational double points as its singularities. Hence we
have ˜ = µ∗

1 = µ∗
1β2(π A4)∗ ′ = 0, whereµ1 : ˜ → denotes the minimal reso-

lution. Hence, by the classification for algebraic surfaces, ˜ is either an abelian surface
or a 3 surface. If Sing( )6= ∅, ˜ contains at least one smooth rational curve. This
implies the last assertion.

Lemma 11.3. If is an abelian surface, then:
(i) ( / 4) is an abelian surface,
(ii) ( ) = A⊕9

2 , and
(iii) is a nine cuspidal sextic curve.
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Proof. Suppose that (/ 4) is not abelian surface. Then, by [28],
( / 4) is a 3 surface with 161 singularities. Hence, by Lemma 9.1, sin-

gularities of ( / A4) are of types either 1, 2 or 5. Let 1, 2 and 5 be the
number of singularities of types 1, 2, and 5, respectively. Then we have

3 1 + 5 = 16

1 + 2 2 + 5 5 ≤ 19

Sinceγ : ( / 4)→ ( / A4) is branched at some singularities of (/ A4),
by Lemmas 8.5 and 10.1, the corresponding graphA⊕ 1

1 ⊕A⊕ 2
2 ⊕A⊕ 5

5 contains a sub-
graphA⊕6

2 . Hence the only possible triplet (1 2 5) is (5 4 1).
Hence one can conclude the singularities of (/ A4) are 5 1+4 2+ 5. There-

fore the singularities of the branch locus are 51 + 4 2 + 5.

CLAIM . There exists no reduced sextic curve, , with singularities5 1 + 4 2 + 5.

Proof of Claim. Taking contribution of the genus drop from each singularity into
account, we infer that is reducible. As has 42 singularities, it must have an ir-
reducible component of degree 5. Put =1 + , where deg 1 = 5 and is a line.
Then:

Either 1 has 4 2 + 5 and 1 meets 1 transversely at five distinct points,
or

1 has 4 2 + 3 1 and 1 meets 1 at 3 distinct points; 1 is the tangent line at
an inflection point of 1.

In both cases, however, we see that there is no such quintic curve by considering
the contribution of the genus drop from singularities.

By Claim, we have the first assertion for Lemma 11.3. We now go on to the sec-
ond. As ( / 4) is an abelian surface,χ ( ( / 4)) = 0. Hence from the ar-
gument in the proof of Lemma 8.8, we infer that (/ A4) has just 9 2 singulari-
ties. This implies that has nine cusps.

Lemma 11.4. If is a 3 surface with rational double points, then ( ) con-
tains a subgraphA⊕6

2 ⊕ A⊕4
1 .

Proof. Let µ1 : ˜ → and µ2 : → ( / A4) = ′ be the minimal resolu-
tion of and ( / A4), respectively. By the uniqueness of the minimal resolution,
Gal( /P2) ∼= S4 is also considered as a finite automorphism group of˜, i.e., µ1 is
S4-equivalent. Let˜/A4 be the quotient surface byA4. ˜/A4 is again a 3 surface
with rational double points, and there exists a morphismµ1 : ˜/A4 → ( / A4)
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such that the following diagram commutes.

µ1←−−−− ˜
y

y

( / A4)
µ1←−−−− ˜/A4

Since the canonical bundle of̃/A4 is trivial and singularities of̃ /A4 are only 2

and 1, the minimal resolution of̃ /A4 is a minimal surface. Hence it is nothing
but , and one may assume thatµ2 factors ˜/A4; and the exceptional set for →

( / A4) contains that of → ˜/A4. By [28] ˜/A4 has singularities 62 + 4 1;
and we have the assertion.

By Lemmas 11.2, 11.3 and 11.4, we have Proposition 11.1.
An easy but interesting corollary to Proposition 11.1 is as follows:

Corollary 11.5. Under the same notation as before, let be a plane sextic
curve with singularities

∑
α +

∑
β +

∑
γ , (α β γ ∈ Z≥0). Then we

have

( ) =
⊕

A⊕α ⊕
⊕

D⊕β ⊕
⊕

E⊕γ

If ( ) contains a subgraph neitherA⊕9
2 nor A⊕6

2 ⊕A⊕4
1 , there is noS4-cover ofP2

branched at2 .

12. Proof of Theorem 0.7

The goal of this section is to prove Theorem 0.7. Let us start with some setting-
ups.

Let be a reduced plane sextic curve with at most simple singularities. Let
′ : ′ → P2 be a double cover with ′ = , and letµ : → ′ be the canonical

resolution of ′. We denote the the subgroup of NS( ) generated by the pull-back of
a line of P2 and the irreducible components of the exceptional divisor of µ by . As
one can easily see, it has an orthogonal decomposition with respect to the intersection
pairing:

= Z ⊕
⊕

∈Sing( ′)

where denotes the pull-back of a line, and denotes the subgroup generated by
all the irreducible components of the exceptional divisor for ∈ Sing( ′).

Put = L(A⊕6
2 ⊕ A⊕4

1 ) and = Z ⊕ . Let ♯ and
♯

be the primitive hull
of and in NS( ), respectively. Now let us start with the following lemma.
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Lemma 12.1.
♯
/ has a3-torsion. In particular, ♯/ has a3-torsion.

Proof. By Nikulin’s theory used in [28]§1 or [23],
♯
/ has a 3-torsion. As

♯ ⊂ ♯ ⊂ NS( ), we can find in ♯ which gives a 3-torsion in
♯
/ . We now

show that this gives a 3-torsion in♯/ , too. To see this, it is enough to show
6∈ . Suppose that ∈ and write

∼ +
∑

∈Sing( ′)

∑

where ’s denote the exceptional (−2) curves which form a basis of . On the
other hand, as 3 ∈ and 6∈ , we have

3 ∼ ′ +
∑

∈Sing( ′)

∑
′

where all ∈ , and at least one of ′ and ′ ’s is not divisible by 3. Combining
these two relations, we obtain a non-trivial linear relation among and the ’s, but
this is impossible as they form a basis in .

By [26, Theorem 0.3], we have anS3 covering, ′, of P2 such that ( ′/P2) =
′. Let be the minimal resolution. Gal(′/P2) ∼= S3 also acts on and letτ be

an element of order 3. Then we have a commutative diagram

′ ←−−−−
y

y
′ ←−−−− /〈τ〉

Since ′ is a 3 surface with rational double points,τ has only isolated fixed points.
Hence, by Lemma 8.8, /〈τ〉 has singularities 62, and its minimal resolution is .
Let 1 2 ( = 1 . . . 6) be the exceptional curves. By our construction of′,
these 12 curves giveA⊕6

2 in the assumption in Theorem 0.7. Hence asA⊕4
1 in the

assumption is disjoint fromA⊕6
2 , NS( ) contains 12 disjoint (−2) curves ( =

1 . . . 12). Note thatS3 acts ’s in such a way that, for any element,τ , of or-
der 3, τ fixes no . By Lemmas 8.5 and 8.7, if we choose 8 of the 12 ’s, say

1 . . . 8, appropriately, then
∑8

=1 is 2-divisible in NS( ). Conversely, any
2-divisible member in

⊕
Z is represented in this form.

Lemma 12.2. Let 1 =
∑8

=1 and 2 =
∑8

=1 be reduced divisor repre-
senting2-divisible member of

⊕
Z . Then either 1 = 2 or 1 and 2 have 4

exact common components.
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Proof. Suppose that 1 6= 2 and let be the number of common compo-
nents. As 1 6= 2, 1 + 2 − 2(common components) is also 2-divisible. Hence, by
Lemma 8.5, the number of irreducible components, 16− 2 , is equal to 8, i.e., = 4.

Corollary 12.3. Let τ be as above and let be a2-divisible reduced divisor
in
⊕

Z . Then , τ∗ and (τ2)∗ are distinct divisors. Moreover, any two of
these three divisors have4 common components.

Proof. Suppose that =τ∗ . Then (τ2)∗ = , and is aτ -invariant divisor.
On the other hand, asτ fixes no , the number of irreducible components of any
τ -invariant divisor is 3-divisible. This is impossible as the number of irreducible com-
ponents of is 8. Hence ,τ∗ and (τ2)∗ are different to each other. The last
assertion easily follows from Lemma 12.2.

We now construct three effective reduced divisors1, 2 and 3 on such that
(i) Supp( 1 + 2 + 3) ⊂ Supp( 1 + · · · + 12), and
(ii) 1, 2 and 3 satisfy the conditions in Proposition 5.1.

Let τ be as before and letσ be an element of order 2 inS3. Let be any
2-divisible reduced divisor in

⊕
Z . There are two possibilities: 1. =σ∗ and 2.

6= σ∗ .

CASE 1. = σ∗ .
Put 1 = τ∗ , 2 = (τ2)∗ , and 3 = . Then these three divisors are distinct

by Corollary 12.3, and satisfy
(i) σ

1 = 2, τ
1 = 2, and τ

2 = 3, and
(ii) 1 is 2-divisible.

CASE 2. 6= σ∗ .
Consider the divisor +σ∗ . It is another 2-divisible divisor and is written in

the form of ′ + 2 ′′, where both ′ and ′′ are reduced andσ-invariant. Hence ′

is 2-divisible as well asσ-invariant. Thus we can reduce our problem to Case 1. This
finishes our proof of Theorem 0.7.
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