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Introduction

The main purpose of this article is to explain new methodstudysng Galois
covers of algebraic varieties fad,4, the symmetric group of degree 4 afd, the al-
ternating group of degree 4, and to apply them to studyingttipelogy of the com-
plements to plane curves.

Branched Galois covers has been playing important roleshénstudy of alge-
braic varieties. Double covers have been intensively usedonhstruct algebraic sur-
faces having a prescribed Chern invariants (for exampl@]),[land cyclic covers have
been used to investigate the topology of the complementdatoepcurves (for exam-
ple, [11], [29]). In most cases, however, they are abeliavers i.e., Galois covers
with abelian Galois groups. This is because the systematitheods to study abelian
covers have been established and it is, in fact, quite wigerdly. On the other hand,
there seem to be few systematic methods for non-abelianrsaviich are as useful
as those for abelian covers; and there do not seem to be maulsréy using non-
abelian Galois covers. Therefore it seems worthwhile to enakstudy of non-abelian
Galois covers even for elementary non-abelian groups.

The author has studied Galois covers having dihedral gragpgheir Galois
groups in [21], and applied such covers to the study of theptements to plane al-
gebraic curves ([22], [23], [24]). As it is well-known, ditieal groups are a class of
so-calledregular polyhedral groupsThus, as a next step, it is natural to consider Ga-
lois covers having such groups as their Galois groups. I J&uchihashi has made
a study of singularities which appear in Galois covers withld& groups,Dy,, 24
and &,4. In this article, being inspired Tsuchihashi's work, we sider Galois covers
of algebraic varieties wit®(, and &, as their Galois groups.

One could say that the difference between Tsuchihashisltseand ours is the
one betweerlocal and global. In [27], Tsuchihashi’s condition for constructing Galois
covering singularities are given by the germs of holomarghinctions and the group
action over them. In this paper, in order to describe our itmmd for constructingS,
covers, we use rather global language: divisors and the#ali equivalences.

Both Tsuchihashi’'s approach and ours are based on Galaisytlier 2, and Sg4.

Research partly supported by the research grant 11640084 J6PS.



622 H. TOKUNAGA

More explicitly, it is based on Lagrange’s method in solvingagic equations ([10]).
We try to understand Lagrange’s method by geometric langu@bis is our goal for
the first half of this article (Part I).

In Part Il, we apply the results fo&, covers in Part | to studying the topology
of the complements to plane sextic curves. In order to makepmblem clear and to
see the role of5, covers, let us review our fundamental question and previmasvn
results about it.

The fundamental question throughout Part Il is as follows:

Question 0.1. Let B be a reduced plane curve R?. What can one say about
P2\ B just from the data of local topological type of singulasteeFor example, can
one determine whether the fundamental grayfP?\ B) is abelian or non-abelian just
from such data?

In what follows, we simply say the configuration of singulis instead of the
data of local topological types of singularities.

From the viewpoint of Question 0.1, there do not seem to beymesults on the
non-commutativity onr;(P? \ B), while there are several results on the commutativity
(see [3], [8], [12], [19]).

In [25], the author gave a statement on the non-commutatie need some no-
tations to explain it.

Let B be as before and assume tiat  has at most simple singdaiie use
the lower casesqg, d, and, to describe the types of them.og Sing(B),
we denote its Milnor number by:,. We define the total Milnor numbeyz, to be
> resing@)tx- We next define a non-negative integéy, , for an odd prme  bs fo
lows:

if p=3, I3 = the number of singularities of types;_; (k > 1) andeg, and

if p>5,1, =the number of singularities of typg,,_1.

Using these notations, we have

Theorem 0.2 ([25]). Suppose thategB is even. If there exists an odd prime
such that

l,+up>d?—3d+3
then there exists a surjective homomorphism
m1(P?\ B) — Dy, = (0,7 | 0? =77 = (o7)? = 1).
In particular, 71(P? \ B) is non-abelian.

Corollary 0.3. The notations are the same as Tiheorem 0.2 Suppose thaB
has only nodes and cusps and let amnd be the number of nodesuapd espec-
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tively. If @ + 3b > d? — 3d + 3, then 71(P? \ B) is non-abelian.

The proof of Theorem 0.2 is based on an existence theorenDgn covers
branched alongd . Hence the inequality in Theorem 0.2 seentgveoa very rough
estimate. For sextic curves and = 3, however, the inequaityharp from the fol-
lowing result:

Theorem 0.4 ([5], [16], [23], [24]). There exists a pair of irreducible sextic
curves(B1, By) as follows
() Both B; and B, have the same configuration of singularitiesd it is one of the
following:

3as+3a1, 6Gap+3a1, 3es, estdaz+ta;.

(i) There exists a surjective homomorphisa(P? \ B;) — &3 for By, while there is
no such homomorphism fas,.

Also the inequality in Theorem 0.2 is sharp for =5 ([1]). Ore tbther hand, it
is known that there exist sextic curveBz, having the configurations of singularities:
3as + 4a;, 6as + 4ay, eg + das + 3a;, 3es + a1. For Bz, the inequality in Theorem 0.2
is satisfied forp = 3. Hence there exists a surjective morphis(®? \ Bs) — Gs.
In particular,m1(P? \ Bs) is non-abelian.

These examples seem to be rather interesting, since theratiiffe of the config-
urations of singularities betweeB; in Theorem 0.2 andBs is just the number of
nodes. From observation from the commutativity statemestsn [3], [8], [12], [19],
the number of nodes does not seem to give much effect on theasramutativity on
the fundamental group of the residual space. In fact, Oka&gdise following conjec-
ture in [15]:

Conjecture 0.5 ([15], p. 402). The fundamental group of the complement to
a curve does not change by a degeneration which puts onlysnode

Moreover, by [5], the Alexander polynomials fd; in Theorem 0.4 and those for
Bz aret? — ¢ + 1. This shows that one can not measure the difference ofoihadgy
betweenP?\ B; and P?\ B by the Alexander polynomials, while they are likely to be
different.

Now G4-covers come in to our picture. We need them to see that thaagy of
P2\ B, is different fromP?\ Bs; and it is the goal of Part Il.

Let B be a reduced sextic curve with at most simple singuésitiand let
f: Z' — P? be the double cover branched aloBy and/etZ — Z’ be the canoni-
cal resolution (see [9] for the canonical resolution). Bg #ssumption. is a minimal
resolution, andZ is & 3 surface. Let NiS( ) be thérdh-Severi group oZ and
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let R be the subgroup of N&( ) generated by all the irreducildemponents of the
exceptional divisor ofu. Both NS¢ ) andR are lattices with respect to the intersec-
tion product. Note thaR has a natural orthogonal decomipask = P, cgingzy R
where R, is the subgroup of N3( ) generated by the exception@adiarising from
x. As we assume thaB has only simple singularitiRs, is isofmiorfo one of the
so-calledA D £ lattices. The graph &, means the dual graph efttteptional set
for x. We denote it byG R, ) and the grapli; R( ), & Exesmg(z,) G(R,). Note
that the involution induced by the double covgro i canonically actsG R ). By our
assumptionG R, ) is one of the Dynkin graphs, which we denotehleybold charac-
tersA,, D, andE,. (Note that these types correspond to those of latticed.)dsebe
a subgraph ofG B ). We denote the subgroup (or lattice) of NS(erjegated by the
vertices ofG; by L£(G1).

Now we are in position to state our main result (for the tewtagy of Galois
covers, segl and§3):

Theorem 0.6. Let B be a reduced sextic curve with at most simple singulari-
ties and let f: Z’ — P? be the double cover branched alor®y . If there exists an
Sa4-cover m: S — P? of P? such that(i) = is branched at2B and (ii) = factors
f:Z' — P2 ThenG(R) contains a subgraph eitheh5® or AS® @ AP,

Theorem 0.7. Suppose thaG(R) containsAy® @ AP* such thatAP* is a in-
variant block under the involution induced by the coverimrgnsformation. Then there
exists an &y4-cover of P? such that (i) 7 is branched at2B and (i) = factors
fiZ — P2

By Theorem 0.6, we can infer that there is @&Q-cover for B; in Theorem 0.4,
while there exists ar®4-cover for B3 as above.

Remark 0.8. By Theorems 0.6 and 0.7, we know that Conjecture 0.5 Ige fa
in general. In fact, there is a family of sextic curvgs, },ca, A ={r € C| |t] < 1}
such thatCy is a sextic curve havinged + a; as its singularities, whileC, (# 0)
is a sextic curve havingeg as its singularities. By Theorems 0.6 and 0.7, we know
that there exists a®4-cover branched at@,, while there exist no such covers f6y
(t #0). This impliesT1(P? \ Co) ¥ m1(P?\ C;) (t # 0).

Recently, Oka and Pho have figured ay(P?\ C,) explicitly ([17]):

m(PP\ C) = 2/22+2/3Z (¢t #0),
while
m1(P?\ Co) = Ba(PY),

where B4(PY) is the braid group of 4 strings fde?.
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General theory foiS,;- and 2(4-covers

1. Galois covers of algebraic varieties

In this section, we introduce some notations and termineiggwhich we use
throughout this article to describe Galois covers. et  beoamal projective va-
riety. Let X be a normal variety with a finite surjective moghi7: X — Y.
The field of rational functionsC(X), of X is a finite extension of that of C(Y),
with [C(X): C(Y)] = degwr. We call X a Galois cover off ifC(X) is a Ga-
lois extension ofC(Y). Let G be a finite group. IfC(X) is a Galois extension with
Gal(C(x)/C(Y)) = G, we simply callX aG -cover. LeHH be a subgroup Gf , and
let C(X)¥ be the H -invariant subfield o€(X). We denote theC(X)¥-normalization
of Y by D(X/Y, H). Note that there are canonical morphisms:

Oi(m, H): D(X/Y,H) — Y, [a(m,H): X — D(X/Y, H)

such that (i) Bo(w, H) is a H-cover, and (i)mr = p[i(m, H) o Ba2(m, H). We call
D(X /Y, H) the intermediate cover with respect t. Note that if # is a normal sub-
group of G, thengy(w, H): D(X/Y, H) — Y is a G/H-cover.

We define the branch locus af to be the subset given by

{y € Y | w is not locally isomorphic ovep}

We denote it byA X/Y) or A,. In what follows, we assume that is smooth. By
the purity of the branch locus ([29])\, is an algebraic subset of codimension 1. Let
A = By +---+ B, be the decomposition into its irreducible components. Tdrai-
fication index ofr along B; is the one along the smooth part Bf . If we say that
a G-coverr: X — Y is branched at1B1+---+e, B, (resp. at mose1By+---+e,B,),
it means that ()A; = By+---+B, (resp.A, C B1+---+B,), and (ii) the ramification
index alongB; ise; (resp< e;).

Now we formulate our basic problem on Galois covers.

Problem 1.1. Let G be a finite group and lef be a normal subgroupGof
PutG,=G/H.
(i) Function field versionLet f: Z — Y be aGi cover of Y. Find a condition
for the existence of arf  extensioR;, , 6{Z) such that (a)K is a Galois exten-
sion of C(Y) with Galois groupG , and (bK” €(Z). Note that thek -normalization
of Y gives aG cover oft .
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(i) Geometric versiorLet f: Z — Y be a smoothG;-cover of Y, and letD be
an effective divisor onZ . Find a condition op  for the exiseeraf an H -cover,
g: X — Z, satisfying (a)fog gives aG -cover oft such tha X('Y, H) = Z and (b)
A(X/Z) C SuppD).

(i) Let f: Z — Y be a smoothG-cover of Y, and letD be an effective divisor
on Z. We denote its irreducible decomposition By eH;1+---+e,.D,. Find a con-
dition on D for the existence of afl -covey, X: — Z, satisfying (a)f o g gives a
G-cover of Y such thatD X/Y, H)=Z and (b)g is branched at at most

In Problem 1.1, we divide a construction problem f6r -covem® two parts:
G/H-covers andH -covers. By this approach, we could reduce officudiy of
G-covers to that of rather elementary ones. This method, herveoes not work at all
for simple groups. Thus we need a new strategy to atfg¢licovers. Now we go on
to two specific casesS, and 2(4. To this purpose, we first review Lagrange’s method
in solving quartic equations.

2. Lagrange’s method

Let us recall Lagrange’s idea to solve a quartic equatio®]([120]). Let k£ be
a field of ch ) = O containing the fourth and third primitive roof unity. Consider
an algebraic equation of degree 4 over

x*+ax® +axx +az = 0.

We denote its four roots by; i =1, 2, 3, 4. Suppose that Gal{(, az, as, as)/k) =
S4. We fix an action ofS, on the set{a, az, as, as} in a canonical way. Namely,
o o — ag() Let V4 be the subgroup o8B, given by

Va={id, (12)(34) (13)(24) (14)(23)
i.e., the Klein group. Put

71 = (o1 + ) — (a3 + ay)
Y2 = (o + ag) — (a2 + ay)

Y3 = (a1 +as) — (a2 + as3)
Then one can easily check

Lemma 2.1. ~2, 73, 42 are Vy-invariant.

Put p; =~2, and letA =1 + @, + 3, B = 0102 + 02003 + o301 and C =y17273.
Then one can also check:
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Lemma 2.2. A, B and C are G4-invariant. In particular, A, B, C € k.

Consider the cubic equation given by
x> — Ax2+Bx —C?=0.

The left hand side is it ], angb1, o and p3 are the solutions of the above cubic
equation. Then we have

Lemma 2.3. k(¢1, @2, p3)/k is a Galois extension with Galois grou@s, and
k(1. 02, ©3) = k(aa, az, oz, ag)*™.

Proof. By Lemma 2.1,k &1, 2, p3) C k(ar, az, az, ag)”. Consider a bi-
guadratic extensionL =K ¢, p2, v3)(71,72)- Since vz = C/mv2, 73 € L.
Hence, with) ., oy = —a1 € K, one can check alb; € L. This implies that
K(Ck]_, a2, O3, Ck4) = L and y(@l, a2, O3, 014) . k((p]_, ©v2, g03)] = 4. Thus we have
k(p1, 2, 03) = k(a1, az, as, as)"*. Since V4 is a normal subgroup o0&, such that
S4/V4 = S3, we have the assertion on the Galois group by the fundamémtarem
of the Galois theory. ]

Thus one can obtain a&3; extension from the givei®, extension canonically.
We next consider the converse of this. Namely we show how waimlkan G,
extension from a giver®; extension.

Lemma 2.4. Let F be anG3 extension ok . HereSz = (o, 7| 02 =713 = (07)? =
1). Suppose that there exist three elemepis p, and p3 of F such that
() i & (F)
(i) o7 =2, ¥3 =3 and o] = @2, 7 =3, p3 = 1, and
(iii) p1p2003 = a? for somea € k.
Then the bi-quadratic extensiofi(,/o1,1/p2) is an &, extension ofk .

Proof. By ./¢3 = a/\/p1\/P2, We know thatF (/p1,,/p;) is a Galois exten-
sion of k. To see G&lF (/1. /¥2)/k), defineas, az, as, as as follows:

ar\ , /1 11 Nn
o) =7 |1 -1-1)|ve |,
a3 -1 1 -1 RVA"%]

and
a4 = —(a1 +az + ag).

Then F (/p1, \/92) = K(a1, ..., as); and by checking the action of the induced au-
tomorphisms explicitly, we have Gaf'(,/¢1, /¢2)/K) = &a. O
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Remark 2.5. As for the®ls-case, we replac&s by Z/3Z, and repeat the same
argument. We omit its detalil.

3. &4-covers of algebraic varieties

We keep the same notation as before, and att&gkcovers under the settings
in §1. We chooseV, as H in§l. Then from what we have seen in the previous sec-
tion, we have the following proposition immediately:

Proposition 3.1. Let f: Z — Y be an&s-cover of Y . Suppose that there exist
three distinct rational functionsps, @2 and g3 with the following properties

() @i & (C(2)*)? for eachi .

(i) If we denoteGal(C(Z)/C(Y)) = (o, 7 | 02 =73 = (07)? = 1), then

(ii-a) »7 = w2, ¢ = w3, and

(ii-b) 1 = @2, 3 =3, 3 = p1.

(i) p1paps € (FC()*)°.

Then the bi-quadratic extensiok = C(Z)(,/¢1,+/¥2) is an &4 extension
of C(Y) such thatk'* = C(Z). In particular, the K -normalization X, of Y is an
G4-cover ofY withD(X/Y, V4) = Z.

Conversely if there exists anS4-covern: X — Y with D(X/Y, V4) = Z, there
exist three rational functionss, 2, and p3 in C(Z) satisfying the three properties
(), (i) and (iii) as above.

Proposition 3.1 gives an answer to Problem 1.1 (i) in the cds8 = &4, H = Vj.
We now go on to the second question.

Proposition 3.2. Let f: Z — Y be a smoothSs-cover ofY . Suppose that there
exist three different reduced divisor®,, D> and D3 on Z as follows
(i) With the same notation oGal(Z/Y) as those inProposition 3.1,
(i-a) D] = D, and D = Ds, and
(i-b) DI = D,, D = D3, D} = Ds.
(i-c) there is no common component amaRg, D, and Ds.
(i) There exists a line bundléd., such thatD; ~ 2L.
Then there exists a®4-covern: X — Y satisfying(i) D(X/Y, Va) = Z and (i)
A(X/Z) = SuppDy + Dy + D3).

Proof. Choose effective divisor®y and D, so thatL ~ D, — Dgy. Then we
have D, + 2Dg ~ 2D,. Hence there exists a rational functian, on Z such that

(¥) = (D1 + 2Dg) — 2D.
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Define three rational functionss;, ¢, and 3 as follows:
o Tz 0‘7’2 o T oT T T2 oT O‘TZ
P1 =YY" YT =YPTYTYTT, g =TT TP

Then one can easily check the following:

() @7 =2, V5 =3, 1 = 2, 3 = p3, P3 = p1.

(i) prpaps = (WYowT oYY T € (£1C1)¥)%

(iii)
(p1) = Do+ D3 +2(Dy+ Do + DS + Df + D7) — 2(Do + D%, + D7, + DZ)
(p2) = D1+ D3+ 2(Do+ Do+ D§ + D§ + DJ7) — 2(Dog + D2, + DT + DJT)
(93) = Dy + Do+ 2(D3 + DS + DY + D™+ Dg™) — 2(DL, + D7, + D7 + D7)

In particular,¢; & (C(2))? (i = 1, 2, 3).
Now the existence for a, cover with property (i) follows from Proposition 3.1.
The assertion om\ X/Z) follows from (iii). [l

Conversely we have

Proposition 3.3. Let7: X — Y be an&,4-cover. Suppose thgt) D(X/Y, Vy) is
smooth and(ii) Ag,.v,) # 0. Then there exist three effective divisof¥, D, and D3
on D(X/Y, V,4) satisfying the conditiong) and (ii) in Proposition 3.2

Proof. Choosep;, ¢2 and 3 as in the second half in Proposition 3.1. We may
assume that

(pi)=D;i +2Dip—2Dj»c (i=1 2 3)

where D; is reduced and; o and D; ., are effective for eacti . Then thed®, D,
and Dz are the desired ones. O

4. 2A4-covers of algebraic varieties

In this section, we consider the construction problem2@fcovers.2l, is the
unique index-2-subgroup ab,4; and V4 C 24 such that?,/V, =~ Z/3Z. Hence, af-
ter we knew how to attaclkS,-covers, it is rather easy for us to consider the same
problem for2l4. To describe?4-covers, we simplyforget the condition concerning
in Proposition 3.1. Namely it is as follows:

Proposition 4.1. Let f: Z — Y be aZ/3Z-cover ofY . Suppose that there exist
three rational functionsps, 2 and p3 as follows
(i) o ¢ (C(Z)X)2 for everyi .
(i) PutGal(C(Z)/C(Y)) = (T |73 =id). Theny] = vz, ¢} = 3.
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(i) prpaps € (F1C(N)*)°.

Then the bi-quadratic extensioki = C(Z)(/¢1, \/p2) is an 24 extension ofC(Y)
such thatk"* = C(Z). In particular, the K -normalization X, of Y is an 2(4-cover
of Y with D(X/Y, V) = Z.

Conversely if there exists arRls-cover m: X — Y with D(X/Y, V4) = Z, there
exist three rational functions;, 2, and p3 in C(Z) satisfying the three properties
(), (i) and (iii) as above.

We also have the geometric version as follows:

Proposition 4.2. Let f: Z — Y be a smoothZ /3Z-cover of Y . Suppose that
there exist three different reduced divisof3;, D, and D3 on W as follows
(i) With the same notation oal(Z/Y) as those inProposition 4.1,D] = Dy,
D] = D3, D = D4, and there is no common component amdig D, and Ds.
(i) There exists a line bundléd., such thatD; ~ 2L.

Then there exists afls-coverm: X — Y satisfying(i) D(X/Y, V4) = Z and (ii)
A(X/Z) = SuppDy + D, + D3).

The converse of the above proposition is as follows:

Proposition 4.3. Letw: X — Y be an®4-cover. Suppose thdt) D(X/Y, V) is
smooth andii) Ag,r v, 7 0. Then there exist three effective divisoi,, D, and D
on D(X/Y, V,) satisfying the conditiorfi) and (ii) in Proposition 4.2

We omit our proofs for Propositions 4.1, 4.2 and 4.3, sinocgythre almost the
same as those for Propositions 3.1, 3.2 and 3.3.

5. &4- and 2A4-covers of algebraic surfaces

Throughout this sectionG  always mea&g or 4. V4, denotes the Klein group
and we putG; = G/V4. In Propositions 3.2 and 4.2, we assume that the intermediat
cover is smooth. This assumption, however, seems to be toongstvhen we consider
their application. In this section, we show that we are ablaetop such assumption
whenY is a surface.

Let f: Z — Y be aG;-cover of Y, and letu: Z — Z be the minimal resolution.
Then, by the uniqueness of the minimal resolutipnjs a Gi-equivalent resolution.
Namely we can considef; as a finite automorphism group of over Y . Taking this
into account, we can easily modify our previous results mimre useful form.

Proposition 5.1. The caseG = &,4. Let D;, D, and D3 be reduced divisors
on Z such that
(i) (a) Df = Dy, and D = D3; (b) D] = D, D7 = D1 and D = D,, and
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(i) there exists a line bundld., on Z such thatD; ~ 2L.

Then there exists 6Z/2Z)®2-cover g: X — Z with the following properties
() Ay =SuppO1+ D2+ Dy).
(i) the Stein factorizationX, of f o o g gives rise to an&4-cover, X, of Y with
A(X/Y)= Ay U fou(SuppD1 + D2 + Dg3)).

The caseG = 2,. Just by dropping the conditiofi) (a) in the &, case the same
statement holds fo®l4-covers.

Corollary 5.2. Under the same assumption and notations a$ioposition 5.1,
if Supp®D1 + D, + D3) is a subset of the exceptional divisor pf then there exists
a G-cover(G = 64 or ,) of Y with branch locusA .

The converse of Proposition 5.1 also holds:

Proposition 5.3. Let 7: X — Y be a G-cover(G = 64,24 of a smooth
algebraic surfaceY, and let p: Z — D(X/Y, Vs4) be the minimal resolution of
D(X/Y, Va). If Ap,x vy 7 0, then there exist three reduced divisdp;, D, and Ds
on Z such that
() D, D2, and D3 satisfy the conditiongi) and (ii) in Proposition 5.1and
(i) A(X/Y)= Apyir,va) U Ba(, Va) o (Supp@y + D2 + D3)).

Propositions 5.1 and 5.3 still involve a condition concegniinear equivalences.
We next rewrite them into the ones concerning only algebegjaivalences. In what
follows, we always assume
(x) The Neron-Severi group ofZ, NS(Z), is torsion free.

Note that NSZ) is a lattice with respect to the intersection pairing untter as-
sumption §).

Let Cy, ..., C, be irreducible divisors orZ satisfying the following properties:
(i) Let T be the subgroup oNS Z) generated byCs, ..., C,. ThenT is a sublattice
of rank . We callT atrivial subgroup (or trivial sublattic§ generated byCy, ..., C,.
(i) T is Gi-invariant.

Since T isGi-invariant, G, acts (NS(Z)/T)W. Suppose tha(NS(Z)/T)mr con-
tains a Gi-invariant subgroupM isomorphic td/2Z @ Z/2Z. This implies that we
have a homomorphism: G1 — GL(2,Z/2Z). Let G be the semi-direct product de-
termined byp. If p is injective, thenG is &4 (resp.y) for G, = &3 (resp.Z/3Z).

Under these circumstances, we have the following:

Theorem 5.4. If p is injective then there exists &Z/2Z)®?-cover g: X - Z
such that
(a) the Stein factorizationX, of f o uo g gives rise to anS4-cover, X, of Y with
D(X/Y,Vsq)=Z, and
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(b) Ay C 3 peg, SUPPCT +--- +C7)

Proof. We only prove for the case @f; = &3, as our proof for theZz /3Z case
goes almost the same way as that for &g case.

Let a1, ap, ag be three non-trivial elements af . We p@; = (0,7 | 0 =
(12), 7 = (123) and may assume th&i; acts onai, ap, ag by the permutation of the
subindices. Choose a divisat, , ¢hso thatl givesys. Since . € T andL ¢ T,
2L is represented by a divisor in the form of

D=Cy+---+C;, +2D', D' €eT.

By replacingL byL — D’, we may assume thatl2 is represented by the reduced di-
visor D =C;, +---+C;,. SinceM isGs-invariant, L?, L7, LTZ, L°T and L°T give

rise to non-trivial elements il  and corresponddg, oz, as, az and «;, respec-
tively. By replacingL by a suitable algebraically equivdleme, if necessary, we may
assume that

D ~ 2L.
Hence there exists a rational functignin C(Z) such that
(¥)=D —2L.
Put
PL=UTYT, =TT, g3 =g

Theny; (i =1, 2, 3) satisfy
() @7 = v2, ¥§ = 3.
(i) ¢ =2, ¥3 = 3. , ,
Let D1, D, and D3 be the reduced part ab™ + D°", D™ + D°" and D +D?,
respectively. Then we have the following:

Ciam. Di, D> and D3 are distinct and satisfy (D = Dp, D§ = D3 and
(II) DI = Dy, Dg = Ds.

Proof of Claim. By the definition ofy; (i =1, 2, 3),

(p) = D7+ D77 —2(L7 +L7)
(p2) = D™ + D7 —2L™ + L)
(p3) = D+D° —2(L +L°)

We first showD; # 0 for everyi. It is enough to show thad; # () as D, = D7,
D3 = DI. Suppose thaD; = (). Then D™ + D°" = 2D”, D" € T. As we assume
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NS(Z) is torsion-free, it implies thal.™ + L7 ~ D", i.e., az + a3 = 0 in M. But this
contradicts toa, + a3 = a; # 0. We next seeD;, D, and D3 are distinct. It is enough
to show thatD; # D,. Suppose thaD; = Dy(= D7). Then by considering the divisor
of the rational function §1/¢>), we have

LT+ LY+ 2(LT + L) € 2T;
and it implies
(LTHLOY+ (LT LT e T.

This implies —(az + ag) + (a3 + 1) = 0. But this is again contradiction, ag + ap =
a3 35 0.

We go back to prove Theorem 5.4. By the definition Bf, there exists a line
bundleL such that 2 ~ D;, and SuppD; + D, + D3) C Supp(ZUeGl(Cg+- . -+C,.‘:)).
Hence by Proposition 5.1 and Claim, we have Theorem 5.4. ]

6. Examples

In this section, we consider several examples&ar and 2(4-covers.

ExavpLe 6.1. Let S*(PY) be the symmetric product d®* of degree 4.54(P?) is
canonically identified withP* and the canonical projection: P! x P! xP1x P! — P* is
an &4 cover of P4 The branch locus ofr is known as the discriminant hypersurface.
In this particular case, it is a hypersurface of degree 6. Let P?) to be a generic
2-plane inP%. The restriction ofr to T gives rise to ar&, cover, S, of P> branched
at a sextic curveB , with 4 nodes and 6 cusps. The ramificatidexi alongB is 2.
D(S/Z, V4) is a K 3 surface with 12, singularities, whileD §/%, %) is a K 3 sur-
face with 8, and 44; singularities. We will look into this example from more gen-
eral view point in Part Il.

ExampLE 6.2. LetC be a hyperelliptic curve of genys ; and E4C) be the
symmetric product of degree 3. The canonical projectfonC x C x C — S3(C) gives
an Gs-cover. We show that there exists2— 1 distinct &;-cover, 7: X — S3(C) so
that D (X/S3(C), Va) =C x C x C, Bi(m, Va) = f.

Let p; denote the projection fron@ x C x C to thei-th factor. Letey, ..., e,
and o be points such tha} ;e; — go # 0 but 20 . ¢; —g0) ~ 0, i.e,,> . e; —go is
a 2-torsion on PR(C). Let & be a rational function o such that ( »=; ei — g0.
Put o; = pihpih, {i, j,k} = {1, 2 3}. Then these three rational functiong;, >
and 3 satisfy the following conditions with respect to ti@&; action onC x C x C:
(i) ¢ & (C(C x C xC)*)" for everyi .

(i) o2 =g, o572 = pa; and %% = ,, K29 =

(i) rp20s = (pihp3hpsh)? € (C(C x € x €))7,

(123) _
§ =

Y3, @ ©1.
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Let K =C(CxCxC)(y/1,+/p2) and letX be theK -normalization @ xC xC.
Then by Proposition 3.2X is a6,-cover of S3(C). Since there are? — 1 distinct
non-trivial 2-torsions on PR(C), there exist 2 — 1 distinct &, covers of S3(C).

ExavpLE 6.3. Let (E,0) be an elliptic curve given by the affine equatigh =
x3+ax+b,0=1[0:1:0] Let! denote a line. The divisar cut out by/ is lin-
early equivalent to & o consists of three distinct points if meefs  transversely,
while » has non reduced point if is tangent © . LEY be the dual curve of .
The above fact implies that any point Rf\ EV corresponds to a reduced divisor lin-
early equivalent to 8 while any point in EY corresponds to a non-reduced divisor
linearly equivalent to 8. In other word, if we letS3(E) be the symmetric product of
E of degree 3 and let: S3(E) — E be the Abel-Jacobi map, thepr (o) = P> and
#~(0)NA = EV, whereA is the branch locus of ti@&s-cover f :ExExE — S3(E).

Let X be the&,-cover in Example 6.2 forf E x E x E — S3(E). Then the restric-
tion of X to ¢~(0) gives an&,-cover of P2, Example 6.2 assures that there exist
three distinct&,-covers of P? branched at 2V.

RemARk 6.4. A branched coverr: S — P? of degreen is called ayeneric
n-planeif it satisfies
(i) S is smooth and the branch locus; is an irreducible curve with only nodes and
cusp as its singularities.
(i) 7*A, =2R +T; and~|g: R — A, gives the normalization of .

Example 6.3 implies that there exist three distinct 4 genplane with branch lo-
cus EV. This fact is classically known (see [2] for detail).

The topology of the complements to plane sextic curves

7. Automorphisms of order 2 or 3 and the rational quotients bythem

Let X be a surface, and let be an automorphism of order 2 or 3 &f  with
only isolated fixed pointsQ;, ..., Qx. Let G be the group of generated ly Let
Y = X/G and let7: X — Y be the quotient mapY has quotient singularities at the
points P, =m(Q;). Let u: Y — Y be the minimal resolution of. We call the induced
rational mapX --- — Y the rational quotient map and call the rational quotien&of
by G. Let X be the C(X)-normalization ofY . It is a cyclic covering of degreéG)
branched along at most the exceptional serof> Y. In what follows, we look into
the relation among{ X andY.

Case 1. #(G) = 2. One obtainsX from X by blowing-up atQs, ..., Q). For
details, see [13§3].
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Case 2. #(G) = 3. In this case, the action af around each fixed point is di-
vided into two types. Namely, if we choose a small neighbothd/ : (x,y) C C?
Q; = (0, 0) appropriately, then we may assume that the actiom @ given either
(i) (x,y) — (ex,ey), or (i) (x,y) — (ex,%y), wheree = exp(2ri/3). HenceP; is
a cyclic quotient singularity of type (1 3) for (i), while isione of type (2 3) for
(i), i.e., a rational double point of typel,. We relabel theQ; 's so thaP,..., P,
are type (1 3) andPq, ..., P, are type (2 3). To obtairX from X, we first consider
a successive blowing-ups &f  in the following way:

(i) Blow up at Q; one time fori =1...,¢, and

(i) Blow up at Q; three times foi =t +1..,k so that the induced automor-
phism fromo has no isolated fixed point. One can easily see that the eémpaptset
is tree of threeP! and that the self intersection number of the middle compbien
—3, while those of the remaining two is1.

We then contract thé — ¢ (—3) curves arising from (ii). Then we obtaiki.

We next consider how we obtaiX from Y. Let Ci,...,C, be the exceptional
curves forPy, ..., P, and letC;; andC;» (t +1 > i > k) be the exceptional curves
for P4, ..., Py. SinceX — Y is a cyclic triple covering ofY , the branch locus is
a line bundleL onY such that

t k
3L ~ Z C; + Z(Ci,l +2C; 7).

i=1 i=t+1

Remark 7.1. A divisor in the form ofC; 1+ C;» (i > t +1) does not appear in
the right hand side, sinc€; 1(C; 1+ C;2) = —1 is not divisible by 3.

From the linear equivalence as above, one can obtain a dyigle covering,Z ,
of Y branched along Sugp_;_, C; + Zf.‘:Hl(Ci,l +2C; ). If we chooseL in an ap-
propriate way,Z =X. In particular, if Pict’ ) has no 3-torsion, theh X

8. 2- and 3-divisible divisors onK3 surfaces

A K3 surface is a simply connected compact complex manifoldiiofension 2
with trivial canonical bundle. Throughout this article, waly consideralgebraic K3
surfaces.

Before we consider the rational cyclic quotient & 3 surfacere summarize
some facts from lattice theory, which we need later.

DeriniTion 8.1. A lattice is a freez module of finite rank equipped wité val-
ued symmetric bilinear form.

Let L; and L, be lattices. We denote the orthogonal direct sum of thenL by
Ly; and L" denoted. @ --- @ L (n copies). The discriminant, didc , of a lattide
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is the determinant of the intersection matrix bf . A lattice dalled unimodular if
discL =+1. We denote the dual lattice af hyY. L is embedded td.V by using
the bilinear form as a sub lattice with same rank. The qubtigaup LY /L is a finite
abelian group, which we denote hiy;

A sublattice,M , ofL is called primitive ifL /M is torsion-free.

ExampLE 8.2. LetX be an algebraic surface and K£(X, Z) be the second co-
homology group. IfH2(X, Z) is torsion-free, thenH?(X, Z) is unimodular lattice with
respect to the intersection product by Poigcduality. The Nron-Severi group ol
is a primitive sublattice ofH2(X, Z).

Lemma 8.3. Let L be a unimodular lattice. Lef; and J> be sublattices of_
such thatJi* = J; and J;- = J1. ThenG, ¥ Gy,.

For a proof, see [7, p. 4].

By Example 8.2, for ak 3 surfac& H?(X,Z) is a unimodular lattice; and by
the Noether formula, rank?(X, Z) = 22. Let NSK ) be the Bron-Severi group ok .
As X is simply connected, NX( ) = Pix( ).

DeriniTioN 8.4, We caIIZf.‘=1 C; p-divisible if 1/;7(25.‘:1 C;) € NS(Y), i.e., there
exists L in NS¥ ) such thapL =~ Zf:l C;.

Lemma 8.5 ([14, Lemma 3], [13, Lemma 3.3]).Let Cy, ..., C; be disjoint(—2)
curves on akK 3 surfaceY, and supposd/2 Zle C; € NS(Y). Thenk =0, 8 or 16.

For a proof, see [13].

Corollary 8.6. Let Cy,...,C, be disjoint(—2) curves on aKk3 surfaceY, and
let L be the sublattice generated I8y, ..., C;. Then
(i) If (NS(r)/L), DZ/2Z, thenl > 8, and
(i) If (NS()/L), > (Z/2Z)*? thenl > 12

Proof. (i) LetD :Zlea,-c,- be an element of. such that /@D ¢ L but
(1/2)D € NS(Y). By replacingD byD; = Zﬁzl(a,- — 2[a;/2])C;, [x] being the max-
imal integer not exceeding , we may assume that is a non-zsshaced effective
divisor. Hence by Lemma 8.5, the number of irreducible congmbd of D is either 8
or 16.

(i) Suppose that < 11 and (NS(Y)/L), =D (Z/2Z)*2. Let D; and D be elements
of L such that (}2)D; and (¥/2)D; give rise to distinct elements iNS(Y)/L), .
Then, by Lemma 8.5 and the assumption, b&thand D, have 8 irreducible compo-
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nents. Hence by relabeling; if necessary, one may assume

Dy =Ci+-+C +Cpuq+---+Cg
Dy =Ci+---+C +Cot+---+(y,

where 1< <7,9<[ <11. Sincel < 11,¢t > 5. Let X;--- — Y be the rational
guotient map with respect t®; as in§7. Then the divisoD, on X; coming from D,

is in the form of C{+Cg)+---+(C/+C/); and 1/2D; € NS(X1). Hence the number
of irreducible component®, is either 8 or 16 by Lemma 8.5. But this is impossible
as 9</ < 11. ]

For the existence of 2-torsions, we have the following lemma

Lemma 8.7. With the same notations as i€orollary 8.6, if I > 12, then
(NS(r)/L),  has a2-torsion.

to

Proof. LetL? be the primitive hull ofL . Note that.*/L = (NS(¥)/L) and

tor
both L* and L. are embedded ihV as sublattices. Le(Lﬁ)L be the orthogonal com-
plement of L* in H2(Y,Z). Then by Lemma 8.35,; = G(.:).. Suppose thal.?/L
has no 2-torsion. Ad.*/L C G, = (Z/2Z)%, we havelL! = L. Hence,G;, =G ;.
Thus the 2-length ofG,: =1 > 12. On the other hand, rank{)* = 22— [; and the
2-length of G(;+syr < 22— < 10. This is impossible. O

Lemma 8.8. Let(C;1,C;2) (i =1,...,k) be pairs of(—2) curves on akK3 sur-
faceY such that
(I) C,'.]_C,',z =1 and the diViSOI’xLl +C12,...,Cr1+Cy2 are disjoint.
(i) 1/33°F(Cia+2C;5) € NS(Y),
thenk =0, 6 or 9.

Proof. Suppose that > 0 and letX--- — Y be the rational quotient map of
degree 3 as ig7 and letQ;, ( =1...,k) be the points lying oveC; 1+ 2C; 2, (i =
1,...,k), respectively. Then

Xrop(X) = Xrop(X \ {le B Qk}) +k
3X1op (¥ \ Uiz1(Ci1 U Ci2)) +k
72— 8k.

As Ky ~ 0, X is either aK 3 surface or an abelian surface. Hence = 6 fofirste
case andk =9 for the second. O
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Table 9.1.
Type of (X, x) Local equation mee(X, x) # (me(X, x))
A, Z+y2+x"1=0 cyclic group n+1
D, (n>4) | z2+x(y>+x""?) =0 binary dihedral group 4(n — 2)
Eg ?+y3+x*=0 binary tetrahedral group 24
E; Z2+y(y?+x% =0 | binary octahedral group 48
Eg 2?+y3+x°=0 binary icosahedral group 120

(Note thatAo is nothing but a smooth point.)

Table 9.2.

p (X, x) (Y, y)

2 A, (n =1 mod 2) A(n—l)/Z

2 D, (n: even) Az, 5 OF D, /211

2 D, (n: odd) Agu_s

2 E; Es

3 A, (n = 2 mod 3) A(",z)/g

3 Esg Dy
p>5|A4,(n+1=0modp) A1)/ p—1

9. Cyclic covers of rational double points

Let (X, x) be a 2-dimensional normal singularity, i.&(, is a nakrimreducible
complex space having a unique singularityxat . LEfy( ) be arothdimensional
normal singularity and letf :X,y ) (X, x) be a finite morphism such that (i \
y — X \ x is unramified, and (ii)f ~1(x) = y.

Such f is determined by a subgroup of finite index of the localdamental
group, m¢(X, x), of (X, x). For rational double points, the results in Tablé & well-
known.

We now consider the case whegh ispa -cyclic ( : odd prime) cover.

Lemma 9.1. Let (X, x) be a rational double point. Iff is @ -cyclic covethen
the pair (X, x) and (Y, y) is one of those inrable 9.2.

Proof. If f: (¥,y)— (X, x) is a p-cyclic covering, then it corresponds to a nor-
mal subgroup ofrl*¢(X, x) of index p. Our statement easily follows from the case-by-
case checking. L]
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10. Local structure of an &4-cover of a surface

We go on to study the local structure of &py-cover. Letn: § — X be an©,
cover of a smooth algebraic surfagz . As we introduce@linwe have the commu-
tative diagrams:

S S
™ D(S/Z, Va) m D(S/Z, Ay).
%VA) %‘4)
by Y

D(S/X, Vy) is a Z/3Z-cover of D (§/%,2s). We denote its covering morphism by
v: D(S/E, V4) — D(S/Z, Aa).

In the following, we always assume:
(i) the branch locusB 2 §/X) has at most simple singularities,
(i) = is branched at B , and
(iii) B1(m, Ay) is branched alond3

Under these three conditions, one can conclude fh@t, Vs), v and Bz(m, 24) are
branched at most singular points of the base surfaces; amd tdese singularities are
rational double points by Lemma 9.1. We next consider whatikiof singularities we
have onS andD §/%, Vy).

Lemma 10.1. Choosex € Sing(D (S/Z, 24)). Then thel3 cases inTable 10.1
occur for singularities appearing im.(r, A4)~1(x) and y~1(x).

Here the coefficients of the types of singularities mean thaber of singularities
e.g, 34, means threed,, singularities. Also
(i) if No. 1 occurs n =2 mod 3,
(ii) if No. 2 occurs n = 1 mod 2,and
(i) if No. 4 occurs n = 0 mod 2

Lemma 10.1 easily follows from Lemma 9.1.

11. Proof of Theorem 0.6

We keep the notations as before. Theorem 0.6 is straighdfoinfrom the follow-
ing proposition:

Proposition 11.1. Let B be as inTheorem 0.6,and let Z’ be the double cover
of P2 with A(Z’/P?) = B. Suppose that there exists @y-cover: S — P? such that
(i) = is branched a2B, and (i) D(S/Z,24) = Z’.
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Table 10.1.

No. | Type ofx | 7 1(x) | Ba(S/Z, As)~'(x)
1 An Aw-2)/3 4Aw-2)/3
2 A, 34, 6A(_1)/2
3 A, 34, 124,

4 D, 3D, 6D,1/2+1
5 D, 3D, 6A2,_s5
6 D, 3D, 12D,
7 Eg Dy Aq

8 Esg Dy 2A3

9 Eg Ds 4D,

10 Eg 3Es 12E5
11 E; 3E; 6E¢
12 E; 3E; 12E;
13 Es 3Eg 12Eg

Then the minimal resolutignS, of S is either an abelian surface or &3 sur-
face. Moreoverif S is an abelian surfacdresp. K3 surfacd, then G(R) containsA$°
(resp. AS® @ APY).

We need several lemmas to prove Proposition 11.1. Let us\sithr the following
lemma:

Lemma 11.2. Let S be as above. Thef is either an abelian surface or &3
surface. Moreoverif Sing(S)# @, then S is a K3 surface.

Proof. Let K7, be the canonical bundle af’ (Note that one can defin&,,
as we assume thaZ’ has only rational double singularities). By the assumption
Ba(m, As): § — D(S/X,24) is branched at at most Sing(SAX, 2s)). Also, by
Lemma 9.1,§ has again at most rational double points as itpukirities. Hence we
have K3 = p3Kg = piBo(m, A4)* Kz = 0, wherep: S — S denotes the minimal reso-
lution. Hence, by the classification for algebraic surfacess either an abelian surface
or a K 3 surface. If Sing{ ¥ 0, S contains at least one smooth rational curve. This
implies the last assertion. ]

Lemma 11.3. If S is an abelian surface, then
(i) D(S/Z, V4) is an abelian surface
(i) G(R)= A;‘Bg, and
(i) B is a nine cuspidal sextic curve.
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Proof. Suppose thatD S(XZ,Vs) is not abelian surface. Then, by [28],
D(S/Z, Vs) is a K3 surface with 18; singularities. Hence, by Lemma 9.1, sin-
gularities of D §/X, 24) are of types either;, A, or As. Let ny, ny andns be the
number of singularities of typed;, A,, and As, respectively. Then we have

3ny+ns = 16
ni+2ny,+5ns < 19

Sincevy: D(S/X, V4) — D(S/%, 4) is branched at some singularities Bf S/, 2y),
by Lemmas 8.5 and 10.1, the corresponding grA@‘il@A?’lz@A?“ contains a sub-
graphAgaG. Hence the only possible triplet:{, n, ns) is (5, 4 1).

Hence one can conclude the singularitiesinfS /X, 24) are 54;+4A,+As. There-
fore the singularities of the branch locus are % 4a; + as.

CiLaim. There exists no reduced sextic curni, , with singularifies+ 4a; + as.

Proof of Claim. Taking contribution of the genus drop frontleaingularity into
account, we infer thaB is reducible. AB  has,&ingularities, it must have an ir-
reducible component of degree 5. PRt B+ L, where ded; =5 andL is a line.
Then:

Either B; has 4, + as and By meetsL; transversely at five distinct points,

or

By has 4, + 3a; and B; meetsL, at 3 distinct points;L, is the tangent line at
an inflection point ofB;.

In both cases, however, we see that there is no such quintie dy considering
the contribution of the genus drop from singularities.

By Claim, we have the first assertion for Lemma 11.3. We now gdoothe sec-
ond. As D (§/X, Va) is an abelian surfacey;,,(D(S/%, Va4)) = 0. Hence from the ar-
gument in the proof of Lemma 8.8, we infer that S/E, 24) has just 9, singulari-
ties. This implies thatB has nine cusps. Ul

Lemma 11.4. If S is a K3 surface with rational double pointshen G(R) con-
tains a subgraphA$® @ AP,

Proof. Let u;: S — S and u2: Z — D(S/Z, %) = Z' be the minimal resolu-
tion of S and D /X, 24), respectively. By the uniqueness of the minimal resotytio
Gal(S/P?) = &, is also considered as a finite automorphism groupSoi.e., yiz is
&4-equivalent. Let§/m4 be the quotient surface b§i,. 5/%4 is again aK 3 surface
with rational double points, and there exists a morphigm E/Ql4 — D(S/%,2y)
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such that the following diagram commutes.

S L E

l l

D(S/Z,Ay) L g/QM

Since the canonical bundle cff/%, is trivial and singularities of§/2l4 are only A,
and A;, the minimal resolution of§/9l4 is a minimal surface. Hence it is nothing
but Z, and one may assume that factors E/Qu; and the exceptional set faf —
D(S/%,,) contains that ofW — §/Ql4. By [28] §/Ql4 has singularities 8, + 4Aq;
and we have the assertion. ]

By Lemmas 11.2, 11.3 and 11.4, we have Proposition 11.1.
An easy but interesting corollary to Proposition 11.1 is @ltows:

Corollary 11.5. Under the same notation as beforeet B be a plane sextic
curve with singularities) >, cya; + >, Bundm + >, Ynens (u, B, n € Z>0). Then we
have

G(R) =P AT & P DL & PHE.
1 m n

If G(R) contains a subgraph neithek3® nor AJ® @ AP*, there is noG,-cover of P?
branched at2B.

12. Proof of Theorem 0.7

The goal of this section is to prove Theorem 0.7. Let us statht some setting-
ups.

Let B be a reduced plane sextic curve with at most simple sangigls. Let
f': Z' — P? be a double cover with\; = B, and letu: Z — Z’ be the canonical
resolution of Z’. We denote the the subgroup of N'S( ) generated by the puk-béc
a line of P? and the irreducible components of the exceptional divifop dy 7. As
one can easily see, it has an orthogonal decomposition wéhperct to the intersection
pairing:

T=ZL® @ R.,
x€SingZ’)

where L denotes the pull-back of a line, ard denotes the supggenerated by
all the irreducible components of the exceptional divisar £ € Sing(Z’).

PutR = L(A® @ AP% andT = ZL @ R. Let T* and T* be the primitive hull
of T andT in NS(Z), respectively. Now let us start with the followingrena.
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Lemma 12.1. Tﬁ/T has a3-torsion. In particulag T%/7T has a3-torsion.

Proof. By Nikulin's theory used in [28F1 or [23], Tﬁ/T has a 3-torsion. As
T' c T* Cc NS(Z), we can findD inT* which gives a 3-torsion irTﬁ/T. We now
show that thisD gives a 3-torsion ifi*/T, too. To see this, it is enough to show
D ¢ T. Suppose thaD € T and write

D ~alL + Z be,x®i,x,

x€eSingz’) i

ﬁ

where ©; , 's denote the exceptionatZ) curves which form a basis ak, . On the
other hand, asB €T and D ¢ T, we have

3D~dL+ > Y b6,

x€eSsingz’) i

where all®;, € T, and at least one aof’ and b/ ,’s is not divisible by 3. Combining
these two relations, we obtain a non-trivial linear relateimongL and the; , s, but
this is impossible as they form a basisTh . U

By [26, Theorem 0.3], we have a®s covering, W’, of P? such thatD W’/P?) =
Z'. Let W be the minimal resolution. Gal{’/P?) =~ &3 also acts onW and let be
an element of order 3. Then we have a commutative diagram

W — W

| |

Z e W/,

Since W' is a K 3 surface with rational double points,has only isolated fixed points.
Hence, by Lemma 8.8\ /() has singularities &,, and its minimal resolution i

Let ©;1,0;2 ({ = 1,...,6) be the exceptional curves. By our construction V&f,
these 12 curves giveié\?6 in the assumption in Theorem 0.7. Hence /&%4 in the
assumption is disjoint fromﬁ\?s, NSW) contains 12 disjoint{2) curvesC; § =
1,...,12). Note that&s acts C; s in such a way that, for any element, of or-

der 3, 7 fixes noC; . By Lemmas 8.5 and 8.7, if we choose 8 of the(2 s, say
Cj,...,Cj, appropriately, theanzlcjk is 2-divisible in NS ). Conversely, any
2-divisible member ingp; ZC; is represented in this form.

Lemma 12.2. Let D, = Zle Cj and D, = Zle Cy, be reduced divisor repre-
senting 2-divisible member oEBjZCj. Then eitherD; = D, or D; and D, have 4
exact common components.
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Proof. Suppose thaD; # D, and leth be the number of common compo-
nents. AsD; # D,, D1+ D, — 2(common componentss also 2-divisible. Hence, by
Lemma 8.5, the number of irreducible components—18:, is equal to 8, i.e.h =4.

O

Corollary 12.3. Let 7 be as above and leD be 2-divisible reduced divisor
in @;ZC;. ThenD, 7*D and (r%)*D are distinct divisors. Moreoverany two of
these three divisors havg common components.

Proof. Suppose thab #D. Then ¢?)*D = D, and D is ar-invariant divisor.
On the other hand, as fixes no C; , the number of irreducible components of any
T-invariant divisor is 3-divisible. This is impossible assthumber of irreducible com-
ponents of D is 8. Henc 7*D and ¢?)*D are different to each other. The last
assertion easily follows from Lemma 12.2. O

We now construct three effective reduced divisdrs D, and D3 on W such that
(1) Supp(D1+ D2+ D3) C Supp(y+---+Cyp), and
(i) D, D, and D3 satisfy the conditions in Proposition 5.1.

Let 7 be as before and let be an element of order 2 i®3. Let D be any
2-divisible reduced divisor ifp; ZC;. There are two possibilities: 1D & D and 2.
D #o*D.

Casel. D =o0*D.

Put D, = 7*D, D, = (r?)*D, and D3 = D. Then these three divisors are distinct
by Corollary 12.3, and satisfy
(i) D7 = Dy, D] = Dy, and D] = D3, and
(i) D, is 2-divisible.

Case 2. D #o*D.

Consider the divisorD +*D. It is another 2-divisible divisor and is written in
the form of D’ + 2D”, where bothD’ and D" are reduced and-invariant. HenceD’
is 2-divisible as well asr-invariant. Thus we can reduce our problem to Case 1. This
finishes our proof of Theorem 0.7. ]
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