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Introduction

We study conformal blocks (the space of correlation fumstjoover compact
Riemann surfaces associated to vertex operator algebrah ate the sum of highest
weight modules for the underlying Virasoro algebra. Unddaidy general condition,
for instance,C,-finiteness, we prove that conformal blocks are finite-disi@mal. This,
in particular, shows the finiteness of conformal blocks famym well-known conformal
field theories including WZNW model and the minimal model.

In [1] we showed that conformal blocks over tipeojective line associated to a
vertex operator algebra (VOAY are finite-dimensional if mied for V satisfy some
finiteness condition. In this paper we generalize theseltsetm conformal blocks over
any compact Riemann surfaceMore precisely we will prove that iV -modules of
our concern as well a¥  ai@,-finite then corresponding conformal blocks are finite-
dimensional. The main reason why we neg€glfiniteness ofV in this case is caused
by Weierstrass gaps, i.e., we are not able to find meromomtifferentials with poles
of some exceptional orders.

Though in this paper the notion of conformal blocks are defimea purely math-
ematical way, the definition goes back to the notion of catreh functions in confor-
mal field theory (CFT) initiated by [4]. CFT’'s are supposedhi@ve at least two prop-
erties, one of which is the finiteness of conformal blocks] #me other is the factor-
ization property; the latter enables us to determine theedsion of conformal blocks
by fusion rules (the space of 3-point correlation functionsgts dimension). Like other
objects in physics every CFT has its own symmetry group (lgelma): affine Lie
algebras for WZNW model and the Virasoro algebra for the méti model, for in-
stance. We will study “general” CFT's, where “general” meahat the symmetry is
described by a VOA. Such CFT’s were first proposed and stubje@hu [21], how-
ever two main issues, i.e., finiteness of conformal blocks #ie factorization theorem
of these CFT's were left open.

We should point out two main differences between our gen€fl’'s and the

1Supported by JSPS Research Fellowships for Young Scntist
2Supported in part by Grant-in-Aid for Scientific Researchpah Society for the Promotion of
Science.



376 T. ABE AND K. NAGATOMO

known CFT's mentioned above. Conformal blocks are the spdceorrelation func-
tions of primary fields and the Virasoro fields. On the one hafod instance, in
WZNW model, the space of states is generated by currents tend/itasoro field of
the theory; the currents are primary fields with conformaighe 1, and the Virasoro
field is a quasi-primary field with conformal weight 2. The a8oro field is obtained
in terms of the currents, and so we only need information onomerphic functions
on a Riemann surface to study conformal blocks. However, énegal, we have pri-
mary fields of higher conformal weighkt , and we have to know geemetry of the
line bundle x'~* where x is the canonical line bundle. The minimal model is gen-
erated by a conformal weight 2 field (the Virasoro field) and #nalysis of the line
bundle x~! is necessary, though it is still not so complicated.

Part of ideas in [19] were generalized to VOA's in [21]: Zhusfigeneralized the
notion of currents and the energy-momentum field to the nodibglobal vertex oper-
ators associated to any primary states and then gave a very getediaition of con-
formal blocks; more precisely, conformal blocks are defiiredimost the same way
as in [19]. However this definition based on primary fields dhe Virasoro field is
not convenient because Fourier modes of primary fields aadvttasoro field do not
form a Lie algebra. Zhu then introduced so-calghsi-global vertex operatorahich
are defined by using quasi-primary states. The quasi-glodraéx operators now form
a Lie algebra under a fairly general assumption Yor . The tpigirthat we can char-
acterize conformal blocks in terms of quasi-global vert@erators. This is one of the
main results in [21].

In many examples of CFT’s a key fact for the finiteness of comfd blocks is
the finite dimensionality of the space of coinvariants; savexamples are known such
as WZNW model and the minimal model. The notion in VOA theoorresponding
to the finiteness of “coinvariants” is th€,-finiteness condition introduced in [20]. Us-
ing the notion of Frenkel-Zhu bimodules [12] the finitenedsfusion rules is proved
in [17] for Co-finite modules; more precisely, the weaker condition chlBg-finiteness
is enough for the finiteness of fusion rules.

In this paper we prove the finiteness of conformal blocks gueinted compact
Riemann surfaces associated dg-finite vertex operator algebras which are sum of
highest weight modules of the Virasoro algebra ahgdfinite V-modules; we should
mention that our notion oB;-finiteness is different from Li's. The method used here
basically follows [19], while we work in a fairly general sagp. The proof of finite-
ness of conformal blocks over compact Riemann surfacesdiscesl to finding a non-
trivial meromorphic section with poles of specified posisoand orders. A main dif-
ference between the case of the projective line [1] and tise ctudied in the paper
is that on a general Riemann surface we are not always ablendoafimeromorphic
form which has poles at prescribed points and orders; thist puill be elaborated in
the paper.

The conformal blocks over pointed projective lines are afiedied in [13]. The
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definition of conformal blocks looks different from the oné[81] and [1], but their
method has a great influence on our work.

In Section 1 we review some basic fact about vertex operdgmbeas. In Sec-
tion 2 we recall the notion ofC, -finiteness condition & 2) and B;-finiteness con-
dition for modules, and state several known results coregrthese finiteness condi-
tions. The notion of conformal blocks introduced in [21] isplined in Section 3;
conformal blocks are built on a triple of a compact Riemanrfase ¥ , a finite setd
of distinct points on and/ -module®’ i € A). We introduce a filtration on the
Lie algebraQ(x) of all quasi-global vertex operators on a compact Riemamfase
¥. The Lie algebraQ(=) acts on the tensor product vector spate Rea Wi, We
define a filtration onW, which make¥®, a filterad(X)-module. These filtrations
have their origins in [19], but of course they are approphaigeneralized to fit our
purposes. Section 4 is the core of this paper, where we pittateconformal blocks
associated to &,-finite quasi-primary generated vertex operator algebid Byifinite
V-modules are finite-dimensional; we prove the main theorgnshowing the exis-
tence of a surjective ma),., W'/By(W') — gr, Wa/Q(Z)Wa. In particular if all
modules Wi { € A) are Cp-finite then the corresponding conformal block is finite-
dimensional. Finally in Section 5 we discuss several examplf Co-finite vertex op-
erator algebras whose irreducible modules Bidfinite.

After we completed the work we learned Buhl's result [3] that finitely gener-
ated weak module for &-finite (which is calledC» co-finite in [3]) vertex operator
algebra isC, -finite for allz > 2. Therefore ourB;-finiteness assumption for modules
iS not necessary.

1. \Vertex operator algebras and their modules

Let V be a vertex operator algebra with the vacuum elenteraind the Vira-
soro elementv (see [11], [10], [18]), i.e., the vector spade is equippethveount-
ably many bilinear operationa(b % a(n)b(a, b € V) for any integern . For any
a € V, we denote the vertex operator associated: to Yhy, x ( }Enzeza(n)x‘"—l
wherea @) € End(V) is defined byb — a(n)b for all b € V. The operators
L, = wn+1)(n € Z) form a representation of the Virasoro algebra ¥n , and the
vector spaceV iN-graded with the grading operatdr, i.e., V. =2, V(n), Lo |
V(n) =n id. The operator _; is assumed to satisfyd(dx)Y (a, x) = Y (L _1a, x), i.e.,
—na(n — 1) = (L_1a)(n) for all @ € V andn € Z.

An elementa € V satisfyingLia = Loa = 0 is called aprimary vector while an
element satisfying only.,a = 0 is called aquasi-primary vectarLet P(V) and Q(V)
be the set of all primary and quasi-primary vectors, re$pegt We see that those
two vector subspaces df  are graded, iB(V) = @,2,P(V) N V(n) and Q(V) =
D2 V)N V(n).
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Derinimion 1.1, A vertex operator algebr®  satisfyilg X5, L% ;Q(V) is
called quasi-primary generated

It is known thatV is quasi-primary generated if and onlWwif C Q(V) ([6]). For
V quasi-primary generated we see that @ro, L* ,Q(V) if and only if L_,V(0) =
0.

Dernimion 1.2. A weak V -moduleis a vector spacé’V  equipped with a linear
map

Yw:V — (EndW)[[x, x 1]
a v Yy(a.x)=> amx""", (a(n) € EndW)
nez

which satisfies the following conditions for al b € V andw € W; Yy(a, x)w €
W((x)), Yw(1, x) = idy, and for all integery ¢ r € Z,

o0

wy > (i_’)(a(rﬂ)b)(pw_i)w

i=0

=3 0 (7) (0l = 6la + ) = (2l +7 = alp ).

The identity (1.1) is equivalent to the set of the followingot formulas fora ,
beV andw € W (cf. [18, §4.3]); one is called thessociativity formula

(1.2) (a(—n)b) (—q)w
= (‘) (1) (@(—n — Db(—q + w — (~1)'b(~n — g — Da(i)w),
i=0
and the other is called theommutator formula

o0

[a(p). Hw= > (’j ) (@Yo)p+q — iy,

i=0

By the commutator formula we see tha} n € Z) form a representation oW  of the
Virasoro algebra. Sincé _ja = (L _1a)(—1)1=a(—2)1 for any a € V the associativity
formula for @ (—2)1)(¢)w shows that L_1a)(¢)w = —ga(q — L)w for all @« € V and
weW.

DeriNnimioN 1.3. A V-module W is a weakV -module on whiclig acts semisim-
ply, i.e., W =@, cc WA, Lo | W(N) = Xid, and for fixedA € C, W(A+n) =0
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for all sufficiently large integera . Fok € C, a nonzero vectow irfWW X) is called
homogeneous vector of weight and its weight is denoted byw|.

Whenever we writgw| the elementw is supposed to be homogeneous of weight

2. Finiteness conditions of vertex operator algebras

We recall the notion ofC, -finiteness (see [20] fer = 2, and [1@} §eneral
n(> 2)). We review the notion ofB;-finiteness in [1], and state several results; the
most important is that for aC»-finite vertex operator algebr&  an®;-finite weak
V-module isC, -finite for allz > 2, which was proved in [1].

Derinimion 2.1 ([20], [17]). For any positive integer >(2) we denote byC, W )
the subspace oW , which is linearly spanneddy-n)w for all « € V andw € W.
A weak V-moduleW is calledC,-finite (» > 2) if the vector spaceW /C,(W) is
finite-dimensional.

Since C_1a)(q)w = —qga(q —1)w for all a € V andw € W we see thatC,(W) D
C3(W) D --- D Cy(W) D ---, and that anyC, -finite module for some > 2 is
Co-finite. We now letV be aC»-finite vertex operator algebra:

Proposition 2.2 ([13, Proposition 8]). Let V = .2, V(n) be a vertex operator
algebra withvV(0) =C1, and U be a graded subspace such that U @ C,(V). Then
V is linearly spanned by the vectors

(21) ozl(—nl)ozz(—nz) s ak(—nk)l for all o €U and ny>np>--->n > 0.

Let U be a graded subspace such that U & C,(V). By Proposition 2.2 we see
that the vectors (2.1) fok > n belong toC, ¥ ). Suppose that  &,-finite. ThenU
is finite-dimensional, and we have:

Proposition 2.3 ([13, Theorem 11]). Let V = @ 2, V(n), V(0) = C1 be a
C,-finite vertex operator algebra. TheWi &, -finite for all> 2.

Let W be a weakV -module. We denote By(W) the subspace oV  spanned by
a(—1)w for all homogeneous € V with positive weight, i.e.|a| > 0 and allw € W;
we note thatB1(W) D Ca(W).

DeriniTion 2.4. A weak V -moduleW is calledB;-finite if the vector space
W /B1(W) is finite-dimensional.
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Note 2.5. (1) A Bsi-finite weak module is calleduasirationalin [13].
(2) The notion ofB;-finiteness is slightly different from Li's one [17].

Note thatC, -finite module forn > 2 is B;-finite. Conversely we get:

Theorem 2.6 ([1]). LetV =& 2, V(n), V(0) =C1 be aC»-finite vertex opera-
tor algebra. Then anyB;-finite weakV -module i€, -finite for alt > 2.

3. Conformal blocks

We recall the definition of conformal blocks and review someperties of them.
Most of material in this section except a filtration on quglsibal vertex operators are
taken from [21].

Let © be a compact Riemann surface ande the canonical line bundle oB
and let us fix N distinct point®i, Q», ..., Oy On X. For any integer we denote
by I'(X; 01, Q2 ..., On; k") the vector space of global meromorphic sections<bf
with possible poles a1, Q2, ..., On.

DeriniTion 3.1. Let ¥ be a compact Riemann surface afg Q»,..., Oy be
distinct points onX . Letz; be local coordinates around e sthett z; (Q;) =
0. A collection of datumX = (;Q1, Qo ..., Oniz1, 22, ..., 2y) is called an
N-pointed Riemann surfaceAn N-pointed Riemann surfac& with a set of V -
modulesW’ being attached to each po@i

(3.1) s =(2;01, Q2,..., 0On; 22, Zz,...,ZN;Wl, W2,...,WN)

is called anN-labeled Riemann surface

A covering of coordinate chart§(U,, z,)} of T is called aprojective structure
on X if transition functions oz, are Mobius transformations for adi, 3 such that
U, NUz # 0; any Riemann surface has a projective structure. {(&t,,z,)} be a
projective structure or® an@i, Qo», ..., Oy be distinct points ofY . For eacly;
we choose a local coordinat&(, z,,) such thatQ; € U,, and define a new coordinate
near Q; byz =za —z(Q:). Then we obtain anV -pointed Riemann surfaesuch
a ¥ is called projective. The notion of projectiveN -labeled Riemann surfaEeis
defined in the same way.

Let © = (Z;0Q1, Q2 ..., OniZ1, 22, ..., zy) be anN -pointed Riemann surface.
We will define a Lie algebra(V)%" associated ta. Let V be a vertex operator alge-
bra. We setV = V @ C((¢)) whereC((z)) is the ring of formal Laurent power series. It
is well known that the commutative associative algeB(&)) with the derivationd /dt
naturally becomes a vertex algebra by

Y (f(1), x) g(r) = ("% £(1)) g ().
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The tensor produci7 = V ® C((¢)) has a structure of vertex algebra, which is given
by

Y (a® f(t), x)b® g(t) = Y(a, x)b® ("7 £(1)) (1)

for all a ® f(r)(a € V, f(t) € C((r))). The translation operator i® £ ;1 ®
id +id ®(d/dt). We setg(V) = \7/D\7. Then it is well known that the O-th product
on V induces a Lie algebra structure @(V). The important point is that any weak
V-module becomes g(V)-module by

(@a® f(t))u = Il?:%sY(a, 1 f@)u.

Let A ={1, 2 ...,N}, and setg(V)a = @, 9(V)i) whereg(V)s =g(V) is a
copy of g(V). We now define a linear map

5 PVE)@T(Z:01. Q2 ..., Oni YY) — g(V)a
d=0
by sendinga® f to >, _, a® fi(t) for eacha € V(d) and f € T'(X; Q1, Q2, ..., On;
&), wherew,, f(z;) = Y,z caz? is the Laurent series expansion of the meromorphic

function f ;) nearQ; given byf 5 o Y VI and £ €) =Yiez cit' € C()-
We denote the image of; by g(V)’é—“’;

a(V)g' = js (@ Vd)®T(Z; 01, Q2,..., On; /-el“’)) .

d=0

Proposition 3.2 ([21]). If V =@,2,V(n), V(0) =C1 is a quasi-primary gener-
ated vertex operator algebra ang is projective then g(V)%" is a Lie subalgebra of
the Lie algebrag(V)a.

Let = = (2;01, 02 ..., On;21, 22, -, 2v, WL, W2 ... W"V) be anN -labeled
Riemann surface. We sév, ®,., W'. We denote byp,, the action ofg(V); on
the i -th component oW, , and set = P,., po.; the Lie algebrag(V)s acts on
W4, and so the Lie subalgebrg(V)2”. In other words we have a homomorphism
px: a(V)2 — End(W, ).

We now set

QT) = pz (jz_ (EB QV)(d) @ T(T; Q1. Q2. ..., On; nl—f’))) C End(W, ).

d=0

An element in~Q()5) is called aquasi-global vertex operatorlf V is quasi-primary
generated and is projective, thenQ(X) = px (g(V)’g") is a Lie algebra by Propo-
sition 3.2. For anya ® f we often denoteps (js(a @ f)) by a(f. i) for simplicity.
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The vector spacéV, is a module for the Lie algemeﬁ). We denote the space of
coinvariantsW, /Q(Z)W, by QV(X).

If a is a primary vector, the quasi-global vertex operatorf, X) is called
a global vertex operatorbecause it satisfies the transformation law as if it were
(1 — |a|)-differentials under coordinate changes. IHE) be the vector subspace of
End(W,) spanned by all global vertex operators and quasiaglalertex operators
w(f, =) for all meromorphic vector fields’ € I'(Z; Q1, Q2 ..., Qy; 1. Then the
space of covacuis defined to bey(X) = WA/Q(i)WA. A main ingredient of this pa-
per, thespace of vacuar the conformal blockassociated to the&v -labeled Riemann
surfacey, is defined to b&)T(E) = Home(W4/G(Z)Wy, C).

This definition of the space of covacua or the conformal bleckot convenient
because in gener@(X) is not a Lie subalgebra. However, due to the following theo-
rem of Zhu, it suffices for us to consider the Lie algel@6x).

Theorem 3.3 ([21, Theo~rem 5.2]). Let V = 2, V(n) be a vertex operator al-
gebra with V(0) = C1, and ¥ a projective N -labeled Riemann surface. Suppose that
Vis a sum~0f highest weight mcidules for the Virasoro algebtzenly € (W4)* be-
longs to V(Z) if and only if n(Q(X)W,4) = 0, i.e., there is a natural isomorphism as
vector spaces

VI(E) = QU(E)",
where Vi(%) is identified with the subsdt) € (W)* | n(G(Z)Wa4) = 0} of (W4)*.

In Section 4 the filtration oy(V)%" being introduced here plays a very important

role. Let us start with arN  -pointed Riemann surfate (X ; 01, Q2, ..., On; 21, 22,
..., zn). For a given meromorphic differentigf oA  whose poles acatied atQ;,
02, ..., Oy with orderay, ay, ..., ay, we define the order of by

ord f = maXaa, az, ...,an}.

The filtration 7,g(V)2" (p € N) on g(V)2" is defined by

(3.2) Fpa(V)g" = span{js(a ® f) [ la| = 1+ordf < p}.

Then the Lie algebra(V)%" becomes a filtered Lie algebra.

We next define a filtration org(V)%'-module W, . We first recall that any
V-module W is a direct sum o¥/ -modules of the for@® 2, W(\: +d) (i € 1)
with lowest weight); such thath; — \; ¢ Z for some index setl . We sdV, =
@D;c; WA +d) so thatW =2, W,. The filtration F,W, (p € N) on W, is defined
by

FpWa= @ Waa, Waa= Z Wi W).
0<d<p ey =d
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The g(V)%"-module W, becomes a filtereg{V)2-module by this filtration.
Let 7,QV(Z) (p € N) be the induced filtration o@V(%), i.e.,

FrQV(Z) = s(FpWa) = (F,Wa + Q(Z)W,)/Q(Z)Wa,

wheres is the natural projection W, — QV(Z). We have the canonical surjection

mWa=@P Wa, — g, QV(E) = Par, QV(Z),

p=0 p=0

defined byr(w) = s(w) + F,_1V() € gr, V() for w € W4, where g QV(Z) =
FpQV(E)/Fp_1QV(E).

4. Finiteness of conformal blocks

We will prove the finiteness of conformal blocks over prajext N-labeled
Riemann surface€: £ = (£;04, ..., On;z1. ..., 2y WL, ..., W¥). For a proof
we basically follow the argument in [1]; however, we need eémedy difficulties aris-
ing from the lack of global meromorphic sections with loweder poles ofx~" for
positive integem , i.e., Weierstrass gaps, which do not apjre the case of the pro-
jective line.

In [1] we explicitly constructed global meromorphic sectsoof x*~" (n > 1) for
the canonical bundle: of the projective line with poles of desired orders at a pre-
scribed point, and are holomorphic elsewhere. By RiemanchRheorem for a com-
pact Riemann surfac& , there exists a global meromorphitoseahich has a pole
at Q € ¥, and is holomorphic or® \ {Q}; however in general the order is large so
that we are not able to find such a meromorphic section wittefoarder poles apQ .

Lemma 4.1. Let ¥ be a compact Riemann surface of gegus . We fix a point
Q € ¥ and a positive integen € Z~o.
(1) There exists a nontrivial global meromorphic sectign #3f”" which has a pole
at Q and is holomorphic orE \ {Q}.
(2) Let v be the order of the pole ap of the global meromorphic sectfom (1.
SetM = v + 2g. Then for anym > M, there exists a global meromorphic section of
k1~ which has a pole of ordem ap and is holomorphic an\ {Q}.

Proof. The assertion (1) is found in [7, Theorem 29.16, pagé&] 2r it is
directly proved by using Riemann-Roch theorem. By Weiasstrgap theorem ([2,
page 202]), for anyi € N there exists a meromorphic functian ah  such that
has a pole of ordei +2 aP and is holomorphicof\ {Q}. Thenhf has a pole
at QO of order 2 + +i. O



384 T. ABE AND K. NAGATOMO

Let U be a subspace of , which is linearly spanned by finitely yneomoge-
neous quasi-primary vectors. Ley  be the maximum of the weighi homogeneous
vectors ofU . Using Lemma 4.1 we can find a positive intefgy ghelh for any
n <ry,m > My andi € A, there exists a global meromorphic section owér”
which has a pole of orderr  aP; and is holomorphic Bn\ {Q;}.

We denote byC,, , W ) > 2) the subspace oV  which is linearly spanned by
a(-n)w for all a € U, w € W andn > m.

Lemma 4.2. Let V = @2,V(n), V(0) = C1 be a quasi-primary generated
vertex operator algebra. LeV be a subspacelof  spanned bylfinihany quasi-
primary vectors. Then for anyc A the setW'®--- ® Cy, (U, W) ®---@ WV is in
the kernel of the surjective linear map: W, — gr, QV()E). In particular, the mapr
induces a surjective linear map

T W Chy, (U, WH® - @ WV /Cy, (U, W) — gr, QV(Z).
Proof. It suffices to show that for a homogeneaus U
(w1 ® - Qal(-m)w; ®--- @ wy) =0 for all w; € W[’)i andm > My.

For anym > My, there existsf € I'(X; Q;;x*1?l) whose Laurent series expansion
is ¢, f=z;"+>,._,az at Q; . Then we see that

a(f. B)(w1® - @ wy)
=w1 @ @a(-mw @ @uy+ > aqwi® - ®@a(l)w @ @ wy

I>—m
+Y w1 @ @ (Res, Y (.2 ), w; © - @ wy
JjEA
J#i

w1 ®- - a(-m)w; ®--- ® wy + lower weight (degree) terms Q(i)WA,
where we have used the fact thAt is holomorphi@at j 7 ¢). This implies that
w1 ® - @al=mw; @ - @WN € F5 gitfaltm—2Wa + QE)W,.

Sincew; ® --- @ a(-m)w; @ --- @ wy € Wy s4,+/a+m—1, this element belongs to the
kernel of the mapr. U

Let U be a graded subspace &f  such tivat U=b C»(V). Recall thatV is
linearly spanned by vectorsi(—ni) - - - o, (—n,)1(c; € U) with ny > --- > n, > 0.
For any positive integers: angl , we set

CngW) ={(oa(=n1)- - v (= ))(=p)w [m =2 ny > - >n, >0, ;. €U, p > q}.
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Lemma 4.3. Letm, ¢ be positive integers. The@i,(W) C C,, (W) +Cn (U, W).

Proof. By Proposition 2.2 it suffices to show that for amye U andny > --- >
n, >0

(4.2) @1(=n1) - ar(—n))(—p)w € Cp, (W) +Cin(U, W)

for all p > ¢; we can assume that; > m by definition of C,, , W ).
We now see that

((—n))(—p)w = (—1)P 1 (p—_n1> a(-n —p+Lw e C,(U, W) for all a € U.

This proves the case = 1. Suppose that (4.1) holds forraryr, for somerg > 2.
We setf = ax(—n2) - - - an(—ny,)1, and use the associativity formula (1.2) to get

(a1(=n1)B)(=p)w
_Z( )( 1) (ea(=n1 = )B(=p +i)w — (=1)"*B(=n1 — p — D)ea(i)w) .

Then the first and the second terms of the right hand side gedorC,, (U, V) and
Cn,g(W)+Cu(U, W), respectively, where we have used inductive hypashtesthe sec-
ond term. ]

Lemma 4.4. Let m be a positive integer. For any € V(la| > 1) andw € W
we havea(—q)w € C,(U, W) for all ¢ such thatg > mla.

Proof. If [a] = 1 thena € U becauseV (1)) C2(V) = {0}. Hencea ¢q)w €
Cn(U, W) for any g > m(= |a|m). Suppose thata| > 1. If a € U thena (q)w €
Cn(U, W) for any ¢ > |alm(> m). We can now assume that € C,(V). Suppose
that (0 #)a = b'(—2)c for someb’ andc¢. Thena = L[_10')(—1)c = b(—1)c and
1< || < al, le] < lal.

By the associativity formula we have

o0

a(=q)w = (b(~1)e)(~q)w = (b(=1—i)e(—g +i)w + (-1 — g — D)b(i)w)

i=0

for any ¢ € Z. Sinceq > |a|m > |c|m, using inductive hypothesis to the element
we see that {1—q —i)b(i)w € C,,(U, W) for i > 0. We will show thatb ¢1—1i) x
c(—q +i)w € C, (U, W) for any g > |ajm andi > 0. If i > |bjm thenb (1—1i) x
c(—qg +i)w € C,(U, W) for any g € Z by inductive hypothesis. Otherwise, i.¢.<
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|b|m, recall the commutator formula

b(—1—i)e(—q +i)w = c(—q +i)b(—1 — i)w + i (_1,-_ i) bG)e)(=1—q — jw.

j=0

Now sinceq —i > |a|m — |b|m + 1 = (ja| — |b|)m +1 =|c|lm + 1 > |c|m, using inductive
hypothesis we see that the first teem-¢(+i)b(—1—i)w belongs toC,, U, W ). Finally
sincela| > |b(j)c| for any j > 0, inductive hypothesis shows thdt { ¢ »—q¢—j) X
w € Cn(U, W). O

Proposition 4.5. Let V = @2, V(n), V(0) = C1 be a C,-finite vertex operator
algebrg and U be a finite dimensional graded subspaceVof  such that U @
C,(V). Let m be a positive integer. Then there exists a positivegérté such that
C (W) c Cn(U, W).

Proof. By Lemma 4.3 we know that, W § Cnx(W)+C, (U, W) for any pos-
itive integerk . Then it suffices to show that there exists atpesintegerk such that
Cn (W) C Cn(U, W). Let sy be the maximum of the weights of homogeneous ele-
ments inU . For anyy; e U(1<i<r)andm >n; > --->n, >0 we see that

D (il =1+
i=1 i=1

- _ 1 1
r(sU—l)+;(m—l+l):—§r2+r (sU +m—5>,

lag(—n1) - -, (—=n,)]

IN

which is bounded from above by some positive integgr > (sy +m — 1/2)2/2.
We note that the constarky depends only oo and/ . Setting km we get
Cm (W) C Cn(U, W) by Lemma 4.4 because any elementdp W ( ) is a linear com-
bination ofa p)w for |a| < ko, w € W and p > k (> mlal). O

Proposition 4.6. Let V = .2, V(n), V(0) = C1 be a C.-finite vertex operator
algebra andW a weal -module. If the module  Hgfinite thenW /C,(U, W) is
finite-dimensional for anyn > 0.

Proof. By Proposition 4.5 there exists a positive integer chsthat C, V) C
Cn(U, W). SinceV isCy-finite and W is By-finite, W is Cy -finite by Theorem 2.6.
Thus W/Ci(W) is finite-dimensional, and so i%/C,,(U, W). ]

Theorem 4.7. Let V = @,2,V(n), V(0) = C1 be a quasi-primary generated
Co-finite vertex operator algebra such that is a sum of highesigit modules for
the Virasoro algebraand let X = (Z;0Q1, ..., On;21, ..., 2v; WL ..., WN) be a
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projective N -labeled Riemann surface. If &l -modulés (i € A) are B;-finite, then
the conformal block/T(X) is finite-dimensional.

Proof. LetU be a finite-dimensional graded subspacé/of suahVth=U &
C,(V). SinceV is quasi-primary generated any vectors fidm  aeali combinations
of L' ;a for somei € N and quasi-primary vectors . Then we can further assume that
any elements ot/ are quasi-primary becaidisga = a(—2)1 € Co(V) for anya € V.

By Theorem 3.3 it suffices to prove th@V(X) is finite-dimensional. We seW =
My > 0. The constantMy is defined in the paragraph just before Lem@ardcall
that in order to defineMy we assume tht is linearly spanned lasieprimary
vectors. By Proposition 4.8V /Cy(U, W) is finite-dimensional for any € A. Thus
Lemma 4.2 shows that grQV(X) is finite-dimensional and so i©@V(X). O

5. Examples

We present several examples 6p-finite vertex operator algebras; affine vertex
operator algebras (with positive integral leviel ), Virasorertex operator algebras
(with minimal central charge,, ) and lattice vertex operatigebras. We will prove
that all irreducible modules for these vertex operator laige areB;-finite. Then we
see that those modules are @l}-finite by Theorem 2.6. In facC,-finiteness for irre-
ducible modules for affine and Virasoro vertex operator ladges well known (cf. [5]
for affine case, and [9] for Virasoro case). Thg-finiteness for irreducible modules
for lattice vertex operator algebras seems to be known,gihave are not able to find
any published material so far.

In order to prove theB;-finiteness in the Virasoro case we follow the same ar-
gument being used in the proof @f,-finiteness, however, we will see that verifying
B;-finiteness is much easier tharp-finiteness.

ExavpLE 5.1 (Affine vertex operator algebras). Lgt= C[t,t Y ® g@® Cc @ Cd
be an affine Lie algebra wheggis a finite-dimensional simple Lie algebra. We denote
by {Ao, ..., A,} the set of fundamental weights f@; and by P¥ the set of all level
k dominant integral weights. We denote the irreducible hsgheeight module ofg
with highest weightA byL 4 ). It is known that & # —kY, 0 whereh" is the dual
Coxeter number of), then L, =L kAo) is a vertex operator algebra. Moreover,kif
is a positive integer any irreducible, -module is realizedaasirreducibleg-module
L(A) for someA € P (see [12]). TheC,-finiteness ofL; is known ([20], [5]).

We now prove theB;-finiteness of irreducibld., -modules. SinéeA ( ) is linearly
spanned by vectorgy(—ni) - --a,(—n,)v with n; > 0, a; € L (1)(¥ g) andv € V,,
where V, is the irreducible highest weight module fpwith the highest WeightK
and highest weight vectory, where A is the classical part oA . We now see that
L(A) =V, + Bi(L(A)), and thatL { ) isB;-finite becauseV, s finite-dimensional.



388 T. ABE AND K. NAGATOMO

ExavpLE 5.2 (Lattice vertex operator algebras). Lt be an evercéatf finite
rank with a positive definite symmetrig-bilinear form (- | -). We seth =C®y L and
h =C[t,t 1] @c h® CK; the latter is the affinization of the abelian Lie algelbralet
L° be the dual lattice of. , an@[L°] = EBﬂeLO Ceg be the twisted group algebra
of L° with some cocycle which represents a central extensiod ofFor any subset
M of L° we write C[M] = EBﬂeM(Ceq, and setVy =U {{7) ® C[M] Awhere h™ =
t1C[t~Y ®c b is a Lie subalgebra off. We note that the Lie algebri canonically
acts onVy . Then it is known thalt, is a vertex operator algebrd, that V., for
A € L° give all irreducibleV, -modules (see [11]). The vertex oparaissociated to
ea(@€L)is

Y(ea’ x) = exp (i @xn) exp (_ i @x—") eaxa(o)’ a(n) ="® a

n=1 n=1

where e, acts onC[L°] by the left multiplication, and the action of*©® on V,. is
defined byx*@(u @ ¢,) = x{*" (u @ ¢,) for all p e L° andu € U(H").

We now prove that for any\ € L° the irreducibleV, -moduleé/y,, is B;-finite.
We setT'y ={feL|{(f—a|a+)) <0 forany«a € L such thata # 3, =\ }. The
following lemma is due to H. Shimakura.

Lemma 5.3. Let A € L°. ThenT, is a finite set.

Proof. Letg be the translation map oh° defined bys(y) = v+ A. We see that
y={pBeL|{|B+X—=0)<0foranyd e L such thaty # 0, \ + 3}, and that

o) ={y€AX+L|{0|v—9) <0 foranyd e L such that§ #0, v}.

Let a1, ...,y be a basis ofL , and lehs, ..., A; be the basis of.° such that

(Ai | aj) =6;j. Let vy € ¢(T'y) andy # £ao; (1 < i <[). By the definition of¢(T»)
we have(y — (ta;) | £au) < 0 (G = 1...,]), and we see that € {Zﬁqm,A, |
m; € Z and |m;| < («; | o) for any i }. Therefore,(T',) is a finite set, and so iF .
O

We see thatVa.p = ) ; Cexnta + B1(Vasz), and for anya, 8 € L we have
ep—a(—(6—a| A+a) — Dexsa = £exrg. Hence we find thaVas, =3 o, Ceara +
B1(Vx+2). Then Lemma 5.3 shows thadt., is Bj-finite.

ExavpLe 5.4 (The Virasoro vertex operator algebras). Vet =&, ., CL,&CC
be the Virasoro algebra. Le¥ c¢,(h ) be the Verma module for theasdiro algebra
with a highest weight: € C and central charge € C. We denote by, . the highest
weight vector, i.e.,v,,. satisfied,vy.  B,0hvn.(n > 0) and Cvn, =cuvy. . The
Verma moduleM § h ) is a rank one fre€ Vi¢~)-module with the generatov, .
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whereVir— = @nez>o CL_,. Let L(c, h) be the irreducible quotient d¥ c¢(2 ). Then
it is known thatL ¢, 0O) is a vertex operator algebra.

Let p, ¢ be coprime positive integers. We sef, =—16(p — ¢)?/pq. For
any integersr and such that ¥ r < ¢, 1 < s < p we denoteh, g, =
((rp —5q)?> — (p — q)?/4pq. Then any irreducibld. cf, ,, 0)-module is isomorphic to
L(cp.q> hp.qgyr.s).- We prove:

Proposition 5.5. L(cp4,0) is Ca-finite and any irreducibleL(c, ,, 0)-module
L(cp.gs hp.grs) 1S Ba-finite.

In order to prove the proposition we recall several propserdf singular vectors
in M(cp.qg. Mp.grs)s 1€, Lyy =v forn > 0. It is known that for any positive integers
r ands satisfying 1< r < ¢ and 1< s < p there exists a unique singular vector
Urs € M(cp,g, hpgrs) sUch thatLou,s = (hp 4:s +rs)u,s Up to scalar multiples. The
explicit form of the singular vector is not known, but we haweartial formula which
expresses this singular vector as explained below.

Let us fix central charge &,, and highest weight h5,..,. We setVirs—3 =
@®,>3CL_,. The setVir<—3 is a Lie subalgebra oVir. We define a linear isomor-
phism ¢: C[x, y] — M(c, h)/Vir=—3M(c, h) by

Xyl — L7, LT vy, o+ Virs—3M(c, h).

Let f: M(c, h) — M(c, h)/Vir=—3M(c, h) be the canonical projection. We define=
¢~ 1o f. The following proposition is proved in [8]:

Proposition 5.6. Letc=c,, andh =hp 4. Letu,, € M(c, h) be the singular
vector such thatLou, ; = (h +rs)u,,. Thenn(u,,) = aF,(x, y; p/q) for some nonzero
constanta, where F, ((x, y;t) is a polynomial ofC[x, y, t,t~%] given by

r—1s—1

Frs(e, yit)? = [T TG = {¢ = 2 = )2 — (s — 20 — 1)~ 1/2)2y).

k=0 1=0
We now can prove Proposition 5.5.

Proof of Proposition 2.2. The canonical projectign M(c, h) — L(c, h) maps
the subspac®ir<—3M(c, h) into Ca(L(c, k)). Any singular vectors inM o h ) are in
the kernel of this map. We note tha}, ;.. = 1, 4g—r p—s, iN particular, there exists a
singular vectoru,_, ,—s such thatLoug_ p—s = (h + (p — s)(q — r))ug—r,p—s. We see
that the composition o and+ induces a surjective linear map

(5.1)  ¥:Clx, ¥ /(Frs(x, y; /@) Fy—r.p—s(x. y; p/q)) — L(c, h)/CoA(L(c, h)).

First we find that Fy1(x, y; p/q) = x and F,_1,-1(x,y; p/q) = o yr~Da-D/2
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mod (x) for some nonzera’ € C. ThusClx, y]/(Fv1(x, y; p/q), Fo—1p-1(x. ¥; p/q))
is finite-dimensional. Sd. ¢( 0) i€,-finite.

Finally we prove that any irreducible modulec, & ) B-finite. We find that the
surjective map (5.1) induces a surjective map

Clx, y1/(v, Frs(x, :0/q)s Fg—r.p—s(x, yi p/q)) — L(c, h)/Bu(L(c, h)).
Since
Clx, Y1/, Frs(x. y3 p/q), Fyerp—s(x. y; p/q)) = Clx] /(x"*, x@ =Py

is finite-dimensional we see thatc,(@ ) By-finite for any 1<r < g and 1< s < p.
]
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