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The purpose of the present paper is to study the algebraic structure of
the Lie algebra 9(M) that consists of all the differential operators on a smooth
manifold M. (M) contains the Lie algebra A(M) of the vector fields on M
as a subalgebra, which has been studied by many authors from various stand-
points. Our investigation is motivated by Gelfand-Fuks’s paper [1] concern-
ing the cohomology theory of J4(M). Indeed, their strong algebraic tendency
has led us to expect that it will be fruitful to study differential operators from
the viewpoint of Lie algebra.

Our main idea lies in regarding 9(M) as a representation space of A(M)
through the adjoint operations. This idea applies to the following two points.
The first is to establish a kind of reducibility theorem with respect to this rep-
resentation, which reveals certain characteristic features of the algebraic structure
of 9(M). The second is to consider the one-dimensional coholomogy group
of A(M) associated with the representation, which yields a sufficient knowledge
of the derivation space and the automorphism group of 9(M).

We shall describe the outline of the present paper. Section 1 deals with
basic notions and certain useful lemmas. Section 2 deals with (A(M) and refers
to Pursell-Shanks [5]. We give a characterization of the subalgebra that consists
of the vector fields vanishing at a point of M. Using this characterization we
can show that the algebraic structure of (M) uniquely determines the smooth
structure of /M.

A subspace of 9(M) is called an J-space if it is invariant under the adjoint
operations of JA(M). For example, the space D (M) consisting of all the k-th
order differential operators is an (f-space. In section 3, we give a structural
theorem for _A-spaces, which states that any (/1-space contained in 9),(M) coin-
cides with one of a finite number of canonical . /-spaces in a neighborhood of all
the points of M except those which lie in a nowhere-dense subset of M. From
this structural theorem we can immediately deduce the theorems concerning
ideals and those subalgebras which contain (M), as we show in section 4.

In section 5, we determine the derivations of (M) and certain subalgebras.

* Work supported in part by the Yukawa Foundation.
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Although these results can be also attained directly by a rather elementary way,
we adopt here a cohomological method, relying on Losik’s paper [2] and [6].
Section 6 concerns the isomorphisms of 9)(M) and the automorphism group
Aut(9D(M)) of D(M). We prove that the algebraic structure of 9)(M) determines
the smooth structure of M. We also prove that Aut((M)) is the product of
the subgroup consisting of those automorphisms which are induced by diffeomor-
phisms of M and a normal subgroup which is isomorphic to a semi-direct product
of the group A;,(M) of the closed 1-forms on M and Z,, or in short,

Aut(D(M))=Difi(M) x AL (M)x Z, .

Up to section 6, we confine ourselves to the differential operators of finite
order to avoid complications. In section 7, it is shown that all the results in
the preceding sections remain valid for the differential operators whose orders
may be unbounded around the point of infinity.

1. Preliminaries

We denote by M a smooth #n-dimensional manifold with a countable basis.
Throughout the present paper, M is assumed to be connected. For any non-
negative integer k, we write 9 (M) for the space of real differential operators
with the k-th order which are defined on M. We have a sequence of inclusions

D(MYC D(M)C - C D (M) -+ .
Let
DM) = U2 D(M) .

The elements of 9(M) are called differential operators with finite orders. We
shall provide 9(M) with the structure of a Lie algebra over R, by setting

[, ] = @or—rop,

where @o+r means the composition of @ and + as differential operators. Thus
9(M) becomes an infinite-dimensional Lie algebra over R.

Dy(M) is identified with C=(M) the space of smooth functions on M, as a
vector space. For f, g 9 (M), we have [f, g]=0, so that 9 (M) is an abelian
subalgebra of 9(M). The subspace of 9y(M) consisting of the constant func-
tions forms the center of 9(M), which we identify with BR. We have

[DM), Dp(M)]C Dypsw (M) .

From this it follows that 9),(M) is a subalgebra of 9(M). But, if k>1, it is
easy to see that 9,(M) does not form a subalgebra.
Let
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7o: DM) — D(M)

be the projection which assings @(1) to @, where o= P(M) and 1 denotes the
constant function identically equal to one. We write (M) for the kernel of z,.
Then 9)(M) is a subalgebra of D(M) and we have a direct sum decomposition

DM) = DM)DD(M) .
Put
D(M) = DM)ND(M), k=0,1,2,-.

Note that 9,(M)=0 and J),(M) coincides with the Lie algebra of vector fields
A(M) over M. The direct sum decomposition

D(M) = AM)DD(M)

gives a semi-direct product, since 9Dy(M) is an ideal of D,(M). According to
this decomposition, the bracket in 9),(M) is expressed as follows:

[X+f, Y4g] = [X, Y+-(Xg—Yf), X, YedM), fgsDM).

The support of @ (€ D(M)) as differential operator is denoted by supp .
If we put

DM), = {p|pcs D(M), supp @ is compact} ,

then 9(M), gives an ideal of P(M). We shall often use the index ¢ for indicat-
ing a subspace of (M), ; for example, D (M), =D(M)N DM)..

For a subset S of 9(M) and an open set U of M, S| U denotes the set of all
the restrictions of elements of S to U, the restrictions being considered as ele-

ments of (V).
We recall that a smooth function f is flat at a point p if all the derivatives
of f vanish at p. To any point p= M we can assign an ideal I(p) of D(M):

I(p) = {plp= D(M), o(f) is flat at p for every f& C=(M)} .

When, on some open set U, a local coordinate system (x,, -+, ,) is given,
then any element @ of D(M) is expressed as 3 f,(¥)3* (a finite sum) on U, where
«a ranges over a subset of multi-indices a=(a,, ***, ), 3*=0'*'/(0x,)*1---(0x,)*,
|a| =a,+++ay, and f,(x)eC=(U). We have then

[£.0°, g50°] =<72§¢<$> f,,(@”ga)a"”-v—K%p( f) 2a(37 £,)0%+0~ .

We note that, when pe U, then o= I(p) holds if and only if all the coefficients

fas's of @ are flat at p.
If the underlying manifold M is fixed, we shall often write 9, 9, etc. in-
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stead of D(M), Dy(M) etc.

Let f be an element of C~(R"), where supp f lies in the open unit disk of R”".
Let U be any open set satisfying U Dsupp f. Take g& C(R") such that g=1
on supp f and supp g U. Moreover, by %, we denote a smooth function on R"
which equals x, on supp f and whose support lies in U. Then we have

(1.1) i) [fo**, %] = (a,+1)f0%,

where a=(a,, **, aty) and a+()=(a,+1, az ***, ).

i) a) [g0, (g™ So fdx")o7] = foT+(lower order terms);

b) [gd, (" | fdx)oro]
= f07'9P+ @+ (lower order terms).

Here 3=(0, B,, ***, B4) and @ consists of the terms with the form hoy*'0", where
¥=(0, 7, ==, Va), |v|=|B|—1 and he C*(R").

An induction argument, combined with (2.1) ii), immediately yields

(1.2) Let p= Di(R™) (orE D(R™)) such that supp @ is contained in the open
unit disk. Let U be an open set satisfying supp ¢ C U. Then there are an integer
v(k) depending only on k and n, X, A(R") (v=1, ++-, v(k)) with supp X,C U and
Y E D(R™) (orE D(R™)) (v=1, -, v(k)) with supp \r,C U such that

(ng[X,,, ‘l’\«] .

We have another formula in case of A(M). Let f and g be as above. Take
he C=(R™) which satisfies supp #C U and k=1 on supp g. 'Then

(13) (10, (1 { g, (g { fdx)od = fo,.

From (1.1) and (1.2), we can obtain the following proposition.

(1.4) i) DM) = [DM), AM)], DM) = [DM), AM)];
ii) DM) = [DM), AM)], DM) = [D(M), A(M)]
(k=0,1,2,-).

iii)  The similar formulas hold when each space is replaced by the inter-
section with D(M)..

Proof. Note that i) is an immediate consequence of ii). The assertion ii)
in the case where M is compact and the assertion iii) are both easily checked from
(1.2) and by the use of the partition of unity. For the proof of ii) in the case
where M is open, we shall make use of the fact (cf. [3]) that M admits a finite
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open covering:

(1.5) M=0,U0,U - UO, such that, for each 7, O,= U 5.,0,; where each
family {O,;|j=1, 2, ---} is a locally finite family of mutually disjoint open sets;
each O,; is realized as the open unit disk with reference to certain local coordinate
system.

Hence any p = 94(M) is expressed as p=@,+@,+ -+, where p,= i P;j
j=1

with supp @;;CO;;. Applying (1.2) to D,0;;), we bave @;,€[Dy(0;)).
JA(0;;),] and so

P E[D(M), A(M)], i=0,1,-,mn.

The similar arguments hold for 9y(M). This completes the proof.

In the course of the above proof, we have used the following convention.
For any open set O of M, there exists the canonical injective homomorphism
9(0),~D(M), through which we identify 9(O), with a subalgebra of D(M).
Henceforth, we shall use this identification without any comment.

As a consequence of (1.4), we have

(1.6) DM), D(M), D(M) and A(M) coincide with their respective com=
mutator subalgebras.

2. Vector fields

We first recall the classical result.

(2.1) (Pursell-Shanks [5]). Let I be an ideal of A(M). Then we have
one of the following two cases:

iy ICIp)NAM)  for some point p< M.
i) IcAM),.

For the sake of completneess, we shall give a proof to (2.1).

We assume that i) does not hold. Then for any peM we can find Xl
such that X e I(p). Take a local coordinate system around p and let Y,,*--,Y,
be vector fields which satisfy Y;=0, near p. Then by the repeated applica-
tion of ad(Y;) (i=1,2, -, %) to X we can get XeI with X(p)=+0. This, in
turn, implies that I contains a vector field which is equal to 9, near p for a
suitable local coordinate system. Then (1.3), together with the partition of
unity, shows that the alternative ii) holds. This completes the proof.

As a result, we find that I(p) N A(M) is a maximal ideal of A(M); besides,
any maximal ideal of A(M), is obtained in this way. Hence for any proper ideal
Ic (M), we have codim [=co.

Now we proceed to study the subalgebras of A(M). Let N(p) be the
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subalgebra which consists of vector fields vanishing at p M. Note that codim

N(p)=n.

Theorem (2.2). N(p) is characterized as a maximal subalgebra with finite
codimension.

Proof. It suffices to show that a proper subalgebra B with finite codimen-
sion is included in some N(p). We assume the contrary; that is, for any pe M,
B4 N(p). We shall show that from the assumption we are led to a conclusion
B=/JJ(M), which is a contradiction. The proof is divided in three steps.

(i): We shall show that for any p= M there is a neighborhood U of p such
that B| U= A(M)|U. By the assumption there is X B satisfying X(p)=0.
We may assume X is equal to 9, on some neighborhood U of p in terms of a
suitable local coordinate system. Put E=A(M)|U, F=B|U and ¢p=ad(X)|U.
Then we have codim E/F < + oo, and @(F)C F because B is a subalgebra. Take
any non-zero polynomial P over R and consider the endomorphism P(p) of E.
Since P(¢) is expressed as a linear differential equation in 9,, P(@) becomes a
surjective endomorphism of E.

We are now in a position to apply the following fact, which is easily verified.

(2.3) Let E be a vector space over R and F a subspace of E with finite codi-
mension. Suppose that there is an endomorphism @ of E such that ¢(F)CF and,
for any non-zero polynomial P, P(p) is a surjective endomorphism of E. Then
we have E=F.

Hence we have proved B| U= A(M)| U.

(ii): We shall prove that, if B| U=JI(M)| U holds for an open set U, then
B> J(U),. Set B(U),=BNA(U),. First observe that B(U), is an ideal of
JA(U),. In fact, by the assumption for any ¥ & A(U), we can find Y=B such
that Y=Y on U; we then obtain

ad(Y)(B(U),) = ad(Y)(B(U),) < B(V). .

Since we have dim A(U),/B(U),<dim A/B< + o, and A(U), does not possess
any proper ideal with finite codimension, it follows A(U),=B(U),, as we wished
to prove.

(iii): Making use of the partition of unity, from i) and ii) we can get
the conclusion BO(M),. This completes the proof when M is compact.
Now, let M be open. Take a covering M= U O,;(:=0, 1, ---, n; j=1, 2, ---) with
the properties stated in (1.5). Fix 7 and choose Y, A(M) (s=0, 1, 2, --+) such
that Y,=j%0, on each O;; (j=1,2, ). If codim B=d, we have a non-trivial
linear relation
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@Y+ ---+a,Y,EB
for suitable ¢, R. Set Y=a,Y,4-+-+4,Y,. Note that Y|O,;= é(asj‘)al.
$==0

Hence, if we take j sufficiently large, say j > j’(¢), we have Y| O,,=C,,8, (0%C;;
€ R). The existence of such a Y implies, by the same argument as in (i), that

*) B|U j>j'(i>0ijzuzl(]w)| Uj>j'(i)0-’j .

Let M=UO0';; be another open covering of M satisfying the condition
(1.5) and O’;;CO;;. For each i, take Y’ ;€ A(M) (s=0, 1, 2, ) such that

y — {js¢’ja1 ) on O,;
* 0, on the complement of U ;0

ij

where @; is a smooth function which equals to 1 on O’;; and vanishes outside
O;;. Then, by a similar argument together with the fact BDJI(M),, we can
find an element Y’eB and an integer j(z) with j(z)=j'(¢) for which we have
Y'|0,;=C";;0, (0%C’;;€ R) for j> j(i) and Y'=0 outside U ;5 ;»0;;. LetZ
be any element of A(M) with supp ZC U ;5 ;;,0’;;. By (1.3) there exist X ;, X
€ A(M) (7> j(7)) such that supp X, supp X’;CO’;; and

[[Y/,’ Xj]’ X/j]loij = Zl Oij .

But, in view of (*), we can find X, X’ B with X|0,;,=X;|0
O;; (j>i({)). Then we have

Z=[[Y, X], X']€B.

X'10,=X,|

7

Thus we have proved that any element of _A(M) whose support liesin U ;5 ;,,0’;;
belongs to B.

Similar results hold for =0, 1, -, n. These together show that there
exists a compact set K C M for which we have

B|K® = JA(M)|K°".

Combining this with the fact B (M),, we have finally B=J(M). This
completes the proof of (2.2).

Referring to (2.1) and (2.2), we find that there is no proper ideal with finite
codimension. Hence we have

(2.4) A(M) has no non-trivial finite-dimensional representation.

RemARK. There is a maximal subalgebra which is not of finite codimension.
In fact, take two distinct points p, ¢ from a local coordinates neighborhood U,
and set B={X|XeJA(M), 0*fi(p)=0*fi(q) for i=1, -, n, |a|=0,1,2,--,
when X is written as 2 f/(x)0; on U}. Then B is a subalgebra which possesses
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the desired properties.
Using (2.2), we shall establish the following theorem which gives a gener-
alization of Pursell-Shanks’s Theorem [5].

Theorem (2.5). Let M and N be two smooth manifolds and let @ be a
Lie algebra isomorphism from A(M) to A(N). Then there is a unique diffeomor-
phism ¥ from M onto N such that ®=V .

Proof. @ sends any maximal subalgebra of _4(M) with finite codimension
to a subalgebra of J(N) with the same property. Thus from (2.2) we can get
a bijection ¥ from M onto N, such that @(N(p))=N(¥(p)). Note that ¥ is
similarly related to @7

(i) ¥ is a homeomorphism: Let K be a closed set of M. Assume that
¥(K) is not a closed set of V. Then there is a sequence {g;} of ¥(K) which
tends to a point ¢ outside #(K). Let p=¥%"'(¢q) and p,=¥%"'(¢g;). Take an X
€ A(M) such that X(p)+0, X|K=0. Then we have @(X)(¢;)=0 since @(X)
€ N(g;), so that @(X)(¢)=0. This implies X & N(p) and &(X)= N(¥(p)) which
is a contradiction. Hence ¥ maps a closed set to a closed set. Since ¥~* has
the same property, ¥ is a homeomorphism.

(i) ¥ is a diffeomorphism: For any given pe M, take a local coordinate
system {U; x,,+,x,} around p, where p corresponds to the origin (0, ---, 0). Set
¢=¥(p). Let X,, ---, X, be vector fields on M such that X;| U=0/0x;. Then
[X;, X;]=0 on U and so [#(X,), #(X,)]=0 on ¥(U). Hence, there is a local
coordinate system {V;y, ---,y,} around ¢ such that &(X;)=0/0y; on V. We
may assume that ¥(U)=V and ¢ has the coordinates (0, ---,0). If X=Y on U,
then we have @(X)=9(Y) on V, so that we have only to consider the behavior
of ®on U. We write 9,=0/0x; and 9,=0/0y; (i=1, 2, ---,n). Since [0,, x,0,]
=380, on U, we have [0, D(x,0;)]=5,0; on V (8, denotes the Kronecker
symbol). Hence we obtain @(x,0,)=y,8,+C, where C is a constant vector.
Since x,0; vanishes at the origin, y,3,4C has the same property, whence C=0
follows. Therefore we have

O((x;—a;)3;) = (yi—ai)gj ’

which, in turn, implies that ¥'| U sends a point p with coordinates (a,, ***, a,) to
a point p (€ V) with the same coordinates. Thus ¥ is a diffeomorphism.

(ili) ¥4=®. This follows immediately from the fact stated in (ii).
Since the uniqueness of ¥ is obvious, (2.5) has been proved by (i), (ii)
and (iii).
REMARK. By the similar arguments we can prove that a Lie algebra iso-
morphism from A(M), to JA(N), is induced from a diffeomorphism from M to



L1eE ALGEBRAS OF DIFFERENTIAL OPERATORS 147

N. This result is due to Pursell-Shanks [5]. Their proof, however, depends
upon the characterization of maximal ideals and does not seem to be directly

applicable to A(M).

3. A-spaces

A subspace E of (M) is called an A-space if it is invariant under the ad-
joint operation of (M). In other words, E is an (A-space if for any o= E and
any X € (M) we have [X, p]=E. A linear map @ from an _A-space E to an
A-space F is called an A-map if @ is equivariant with respect to the adjoint
operation of A(M), or in other words, @[X, p]=[X, ?(p)] (X A(M), p=E).

If E and F are A-spaces, then E+F is an A-space. If {E,},c, is a family
of J-spaces, then NcpFy is an A-space. It is clear that D(M), D(M) (k=
0,1, 2,-) and I(p) (p= M) give examples of _[-spaces. Hence, for any subset
ScM,

DMYN (N pesl(B))y - DM N (N pesI(p))

also are A-spaces. If @ isan (4-map from E to F, then both Ker @ and Im @
become f-spaces.

In the special case n=1, as we shall show below, there exists an interesting
A-map Y, by the use of which certain ./-spaces can be constructed. Since a
one-dimensional connected manifold M is isomorphic either to the circle or to
the real line, the differentiation @ by the usual coordinate function gives rise
to a vector field which does not vanish at any point of M. Let @* denote the
formal adjoint of @& J(M), which is defined by using the standard measure
on M. Then we have

0* = —0.

Since every element of 9(M) can be uniquely expressed as the product 0 for
@ P(M), we can define the involutive mapping p0—(@d)" of (M) to itself by
putting

(p0)" = @*3.
For any @, yr& D(M), we have
{(#0) (y0)}" = (@0y)*d = —4*0p*d = —(y-0)(p0)*
and hence
[0, ¥0]* = [(¢0)", (¥0)],

which implies that Y is an automorphism of 9(M). Since f*=f for every
FED(M), the restriction of 1| to A(M) is the identity. It follows that { is
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an JJ-map from 9(M) to itself.
Since Y is involutive, we have a direct sum decomposition

(*) DIM) = DD D,
where
9" = {ple"=9}, 9D ={ple"=—g}.

It is clear that both 9* and 9~ are I-spaces.

For later use, we shall give an explicit description of the elements belong-
ing to 9" and 9. Observe that any element of 9(M) is uniquely expressed
in the form

[aki fk6]+[ak—l’ fk—1a]++[ay f1a] (f,EC‘”(M))
Since (62k+l)h=62k+1 and (62k)"=—62k, we have

g)+ = {‘P|¢’ = [62k+1, f2k+16]+[62k—11fzk—1a]+"'; k= 0) 1; 2; '"} ’
9= {¢|¢ = [82k,f2k8]+[62k—2’ fzk—26]+"'; k= 1) 2) "'} .

Hence if we write
P = {pl@ = [0% fe0]+[0%7%, fi-20]+[0%7", fe- 0]+ -}

for k=1, 2, -+, then each &, is an J-space and we have

@+= Ut:og)zk+1a @_2 Uu;-——lg)zla-
Now we shall begin with the study on the local features of f-spaces. For
this purpose, it is useful to introduce a linear map T ,, of 9(R") to itself, defined
for each integer m and i=1, 2, ---, n by setting

T; (@) = [[@; %:9:], x:9,]—[[, x,°3,], 0,]
—[p, 0]—m(m+1)p, @=D(R").

Then, for any multi-index a=(a,, ***, a,,) we have
() Tom(£0%) = fadatt 1) —mm+ 1} f0°+ 1) 0:)0* 2

where a—(z) denotes (a,, ***, ot;—y, at;—1, jyyy =, ). Here the first term of
the right hand side vanishes if and only if m=q; and the second term vanishes
when a,;=0 or a;=1 or f is constant.

Let o9, (R"). Denote by E(p) the smallest A-space of J(R") con-
taining . That is, E(p) is the subspace of 9(R”™) spanned by the elements with
the form ad(X,)---ad(X,)p, where X,, ---, X, A(R") and s=0, 1,2, ---, We
can find an integer & such that @ can be written as
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p= > b,,(x)a“—{-léka,(x)a" R

EoZI® >k

where b,(x) are all flat at 0 and some of a,(x) (|| =k) is not flat at 0. It should
be noted that k is invariant under the change of local coordinates. The integer
k is called the essential order of  at 0. Since ad(X) (X € A(R") does not in-
crease the essential order k, we know that any element belonging to E(p) has the
essential order k'(<k) at 0. Moreover, it is clear that E(p)C 9, (R").

The following proposition is crucial.

(3.1) There is a neighborhood U of O such that
E@)|UDP|U,  ifn=1;
E@|U>D|U,  ifn>1.

Proof. First note that T () E(p) for any = E(p). We shall take a
multi-index B8=(B,, ***, B,) with |B|=Fk such that ag(x) is not flat at 0. Let
a'=(ds, ***, a'y) be any multi-index with |a'| =k, If k >k, then |a'| >|B],
so that we can find o’; with o’;#8;. 'Then the application T} ,’, to @ yields an
element of E(p) whose principal part ismgk c4ba(%)0%(c,E R) with ¢,'=0, and

0

whose essential order is & at 0. Hence, starting from @ and applying suitable
T; s successively, we can eliminate all the terms of @ occuring from the order
k, to k+1, and in this procedure the essential order at 0 is kept invariant. Thus
we arrive at the conclusion that there exists an element @, of E(@) such that both
the order and the essential order of ¢, are k.

Consider a multi-index o with || =&k, such that the coefficient of 9% in
the expression of @, is not flat at 0. After a finite number of suitable ap-
plications of ad(9,)’s to ¢, (=1, 2, ---, n), we can get @,&E(p) for which the
coefficient f of 3* does not vanish at 0. Now, for any ¢ with «;30, we can
find a smooth function g satisfying

of

a;g—aif

og —1
0x;
in a neighborhood U of 0. Let @,=ad(gd;)p,. Then the principal part of
@,| U contains a term with the form 8®. Actually U is the required neighborhood
of 0. In order to prove this, we may assume without losing generality U=R".
Let
@, = 0%+ D) dy(x)0"+(lower order terms).
i
Take any multi-index 8 with a= 8 and |B|=k. Let i be any integer such that
a;%6;. Then T, p(p,) has the form

T; p(@s) = €,0°+ D2 ¢y,(x)0"+(lower order terms),
¢ 191=¢k
v¥e,8
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where c,, ¢, are real numbers, and moreover ¢,#0. Thus T4, eliminates from
@, the term associated to 9%. Note that T'4(0%)=c,0%. Therefore, repeating
the similar procedure, we can eliminate all the terms of @, except 8. Thus we
can conclude 0”& E(p). Next, the applications of ad(x,9;)’s (7, j=1, -+, n) to 3*
shows that 38 E(p) for every B with | 3| =k.

Now we shall deal with the case n=1 and n>>1 separately. In case n=1,
we have

(R+1)k(k—1)(k—2)0** = 2(2k—1)[0%, x*0]— 3[[0*, x°0], x*0] ,
while, in case n>1
2037 = [0%0577, x30,]—2[0,057", %}0,] .

It follows from these that, in case n=1,
0 *c E(p) for k=3

and, in case n>1
o' E(p) for k=2.

Applying the same argument successively, we can conclude that

8%, 02, .. €E(p) incasen=1
0*= E(p) for every B with | 8| <k, in case n>1.

This however, completes the proof in the case n—=1. In case n>1, consider
further the relation

2d(¢0)(0%) = —a, 0%
ox

0%+ (lower order terms)

where g= C=(R"). From this we can easily deduce the desired result 9,c E(p),
which completes the proof.
We have actually also proved the following proposition.

(3.2) Incasen=1, E@* 0% ) = P(R) fork=1,2, -
In case n>1, E(0%) = DR fori=1,-,nand
E=1,2,--.

Here we write E(9*%, 0%7") for the A-space of D(R") generated by 3% and 0%, and
we set 3°=0.

Since the notion of the essential order introduced above is invariant under
the change of local coordinates, we can define for any p& 9(M) the essential order
of @ at every point p= M, by using the local expression of @ around p. We
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denote this by ess.ord.,@. In case n=1, according to the splitting D(M)=J*
@9 given in (*), we can write any element @ as p=¢"+@~. Then we define

ess.ord.,* @ = ess.ord. ", » ess.ord.,"@ = ess.ord.,p™ .
Let E be an A-space of 9, (M). Define

Oy.26-, = {p| p= M; There exists a neighborhood U of p such that
E| U(P) = (@234—@”_1)] U} incasen=1,

(@-,={0}) and

O, = {p| p€ M; There exists a neighborhood of p such that
E|\U= 9,(M)|U} in case n>1,

where [ ranges over 0, 1, ---, k,, s over 0, 1, ---, [k,/2] and ¢ over 01,--, [_(kd—l)/Z].
Then the family of {O,,,,_,} or {O,} forms a family of disjoint sets open of M.
For every point p& M, put

k(p) = Max ess.ord.,p;
[253:)
moreover, in case #=1 put
k*(p) = Max ess.ord.,"p, k7 (p)=Max ess.ord.,” .
[4=3:) [439.)
A global version of (3.1) now can be formulated as follows:

Theorem (3.3). Let E be an A-space of .@ko(M). Then
i) Both the open sets U O, ,,_, and U },0, are dense in M.
it) In case n=1,
(g)zs—i_g)zt-l) (Ozs,zt—1)cCE | OZs,Zt—l;
in case n>1,
9(0)).CE|O,.

iii) For each point p= M, there is a neighborhood U of p, on which we have
in case n=1

Pit ot Lo +(L(P)N E)DED Lo+ 5y + P v
in case n>1
Do M)+I(P)NE)DED Dy .

Proof. i) Suppose, for example, UO, is not dense. Let Q be the open
set which consists of the interior points of (UO,)°. Let
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k' = Max ess.ord.,p .
Yen
req

Referring to the definition of the essential order, we find that E|QC 9y(Q)
holds. Assume that for @, E and for a point p,& Q we have really k’=ess.ord. ,,
@,. Then, applying (3.1) to ¢, and p,, we can deduce that there exists a neigh-
borhood U(cC Q) of p, such that E| U=9y(M)| U. This implies p,& Oy, which
is a contradiction. In case n=1, using ess.ord.* instead of ess.ord. itself, we can
apply arguments similar to the above.

ii) This follows from Proposition (1.2), together with the fact that &,
and 9, are _A-spaces.

iii) 'This follows immediately from (3.1).

(3.4) i) Let E be an A-space of D(M). Then there is an open dense set O
with the properties : ' _

For any point p< O, there exists a neighborhood U of p such that E| U coincides
with one of the A-spaces O, R|U and 9, (M)| U.

ii) Let E be an JA-space of Dy (M). For any point pE M, there exists a
neighborhood U of p such that

E|U = (EN Ju(M))| UBEND(M))| U.

Proof. i) Assume that E contains an element f which is not constant.
Take an open set U where 0 f/0x; does not vanish for some 7. Then for any
g€ 9, we have

g = [g <8ﬁ£)—la,.,f]eE on U,

hence E coincides with 9 (M) on U. Let O be the open set consisting of those
points p such that the germs of E at p coincide with the germ of 9(M). Set
O=QUOQ°. Then from the above it is easily checked that O satisfies the con-
ditions stated in i). This completes the proof.

ii) Let U be a local coordinate neighborhood of p, and let us consider only
the behavior of E on U. Take any element g E| U and write

p=oto.  (ED(M)U, p,eD(M)| V),

according to the decomposition Dy (M)|U=D,(M)|UDD(M)|U. We can
find a finite sequence of {T;,} such that the successive application of T, to
@ diminishes the order of ¢, and at last makes ¢, vanish. It turns out that the
element of E|U obtained at the final step of this procedure is nothing but ¢,
multiplied by a non-zero constant. Hence we have g, E|U. This proves ii).
By virtue of (3.3) and (3.4), the structure of 1-spaces contained in 9, (M)
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has been considerably clarified. As to the J-maps, we have the following
theorem.

Theorem (3.5). Let @ be an A-map from A (M) to D(M). Then, in
case n=1, there exists real numbers c, and c, such that

D(p) = c,p for p= @k(M) ng+
Wp)=cp  for pe D(M)N D~ ;

in case n>1, there exists a real number c such that

D(p)=cp  for every o Dy(M) .

Proof. We first note that for any @& 9,(M) we have

supp @(¢)Csupp @ .

In fact, this is checked from a simple fact that, for any X A(M) with
supp X Nsupp p=¢, we have [X, D(p)]|=P[X, p]=0. Take alocal coordinate
system (x,,---,%,) ona neighborhood U. Then the differential operators
8,%(1=1, 2, ---, n), defined on U, are completely characterized up to a multiplica-
tive constant by the following formulas:

[aj7 a‘ik] = O’ ]: 1$ 27 P (2
[x,0,, 0,4] = —kS,0,% .

7? ij7'%

Since @ is an A-map, this implies that the restriction of @ to U sends 9%
to ¢0;¥ where ¢ is a suitable real number. Hence, in view of (3.2), together
with the assumption on @, we find that, at least locally, @ must have the form
stated in the theorem. Since M is assumed to be connected, the assertion now
immediately follows.

For later use, we state a consequence of Theorem (3.5).

(3.6) Let @ be an A-map from D(M) to D(M) such that | A(M)=0.
Then we have

2| D (MYN D=0, in case n = 1;
0=0, i casen > 1.

Furthermore, in case n=1, if we put the supplementary condition that k=3 and
for every @, yr& Dy(M)

Q[(p’ "”] = [@¢: ‘1’]+[¢’ Q"l"]
holds, then we have @=0.

It is only necessary to check the final part. Confine our consideration to a
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local coordinate neighborhood. The application of @ to the identity [0?, [0?, x*3]]
=80" yields #(3*)=0, from which @| D (M)N D~ =0 follows. Hence we have
0=0.

4. Subalgebras

Theorem (4.1). i) For every ideal I of (M), we have 1 I(p) N (M) for
some point pc M or I D P(M),.

ii) For every ideal I of D(M), we have 1 C I(p)+ R for some point p= M or
I>9(M)..

Proof. i) Take pe M and assume that I contains an element @ such that
ess.ord.,p+0. Note that this assumption is equivalent to the requirement
Id¢I(p). Since I is an ideal, we may assume ess.ord. e is odd. (This assump-
tion is only necessary in case #=1.) Consider the smallest 1-space E(¢p)
containing . Then E(p)C I since I is an ideal, and, moreover, by (3.1) we can
find a neighborhood U of p such that E(p)| UDA(M)|U. Then, by virtue of
(1.2), we can conclude that E(p)D9(U),. From these facts, i) immediately
follows.

ii) Using (3.4) and (1.1) i), we can apply similar reasonings to show the
validity of ii).

As a result, we find that I(p)=1(p) N P(M) is 2 maximal ideal of H(M) and
I(p)+R is a maximal ideal of @(M) for each point pc M. Moreover, I(p)N
D(M), and (I(p)+R) N D(M), y1e1d all the maximal ideals of (M), and D(M).,
respectively.

Corresponding to (2.4), we have the following proposition.

(4.2) D(M) and D(M) have no non-trivial finite-dimensional representa-

tions. '

Proof. In view of (1.4) i), we find that, if @ is non-trivial representation of
D(M) or D(M), then the restriction of @ to (M) gives rise to a non-trivial
representation of (A(M). Thus it turns out that (4.2) is an immediate con-
sequence of (2.4).

The following proposition often provides us with a reduction principle
for the investigation of 9(M).

(4.3) Assume that a subalgebra B of O(R") satisfies the conditions
i) A(R™)CB,
ii) 0B Jor some 1.
Then B necessarily coincides with Q(R").

Proof. The simple formulas
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[0 x,0,] = 20,0,, [0,

i

x0,] =10,

yield that 8,°(j=1, 2, -*-, n) belong to B. On the other hand, we have for any
multi-index ¢ with|a| =k (=1)

B/, 7041=22L 0%+ (mod DyR™).
Ox;
From these facts we can easily deduce B=49)(R"), which completes the proof.
The following family of subalgebras of 9(M) gives rise to a “locally generic”
family for the subalgebras containing A(M):

(S) (In case n=1): (M), R+ AM), D(M), D*(M), R+ID*(M),
D(M), R+D(M), D(M) .
(S) (In case n>1):  A(M), R+I(M), D(M), D(M), R+D(M), D(M) .

More precisely, we have

Theorem (4.4). For any subalgebra B of 9(M) containing B(M), we can
find a dense open set O of M which has the following property: For any point
pEO, there exists a neighborhood U of p such that B|U coincides with one of sub-
algebras listed in (S), or (S), according to the case n=1 or n>>1.

Proof. Since B is an (4-space, (3.4) applies to B which shows that we have
only to consider BN P(M). Set B,=BN D,(M). Consider first the case n>1.
Notations being the same as in (3.3), the dense open sets associated to the A-
space B, of D,(M) are either O,U O, or O,, because B,DA(M). If the first
case occurs, then we have

9(0).cBnIM)|0,

H(0,).cBNI(M)|0,c AO,),
by virtue of (3.3) and (4.3). On the other hand, in the second case, we have
BN P(M)=A(M). Similar reasoning applies to the case n=1, where we have
only to note that 9+ forms a subalgebra, but .@++g’2k(k=l, 2, +++) do not.

From these the theorem directly follows.
In contrast with Theorem (2.2), we obtain

Theorem (4.5). In D(M) there is no proper subalgebra with finite codimen-
ston.

We first prove a local version of (4.5).

(4.6) Let B be a subalgebra of D(R™) with finite codimension. Then there
is a neighborhood U of the origin such that

BlU=9|U.
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Proof of (4.6). Set
Bt = {p=Blad(p)9B} .

It is easily verified that B* is an ideal of B and the codimension of B* in 9 is
finite. Hence the codimension of B¥=(B*} in 9 is finite and so there is a
linear combination

Y= 2"FNx" e AR (m21),

such that y= B¥. If we take a small neighborhood U of the origin, then we may
assume that

x"<=B¥|U

after a suitable change of local coordinates on U. Now we restrict our con-
siderations only to the behaviour of B on U, and write x for x, and 9 for 9/0x,.
Put u=x0. Then we have the formulas:

xu = (u—1)x, Ou = (u+-1)0

x"0" = (u—n+1)(u—n+2)--u

0"x" = (u+n)(u+n—1)---(u+1).
Since x™< B¥, we obtain ad(x™)DC B, whence

[wix®, x™] = (0 —(u—m)")xk* " < B
for all intergers [, k=0. It follows that

u'x*c B¥ for [=0and s=m .
Hence we have ad(u’x)9CB. In particular,
[u%%°, uP0°'] = {u®(u—s)o(u—s+1)--u

— (s ) (st 1) (w4 2)}

belongs to B, where 4,6=0 and s=m. Put

P=(u—m+1)--u, 0 = (u+m+1)--(u+2).

™

Then we can deduce from (*):
Incasea=56=0,s=m, (P—0Q)oeB;
Incasea=56=0,s=m+1, {(u—m)P—(u+m-+2)Q}oc B;
Incase a=1,b=0, s =m, {uP—(u+m+1)Q}ocB.
From these it turns out that

Pd, 00, u(P—Q)0<B .
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We wish to prove that the following assertions (i), (i), hold true for all
k=1,2,-:

(i) uk(P—Q)ocB,
(i1), w'Po, w’'Qd=B for!=0,1,2,--,k—1.

We note that for k=1 the assertions have already been verified. Assume that
for some &, (i), and (ii), be true. We shall again use (*). In case s=m, a=
k41, b=0, we have

(*%) @k P—(u-+m+ 1) Q}OE B;
in case s=m, a=0, b=k--1, we have
{u—m)*"'P—y*'Q}locB.
Hence, taking the difference and using (ii),, we have
{(k+1)u*mP—(k+1)u¥(m+1)Q} 0B .
In view of (i),, we can deduce
u*Po, u*Qo= B,
which, together with (**), yields
ukF(P—Q)eB .

Thus, we have obtained (i)g,, (ii)g+,, SO that, by the induction, the (i), (ii)
(k=1, 2, ---) are all valid.

In conclusion, for any k=0, 1, 2, ---, we have
u*Po, u*QocB.

Since P and Q are mutually prime polynomials in #, we can find two poly-
nomials P(x) and Q(u) such that

Pw)P@)+Qw)Qw)=1.
It follows that
0= (P-P+0-0)<B.

Now we are in a position to apply Lemma (2.3) to E=9|U, F=B|U and
@=ad(0), which yields B|U=9|U. This completes the proof of (4.6).

Proof of Theorem (4.5). Assume that there be given a subalgebra B of
9(M) whose codimension is finite. We shall adopt the ideas which we have
used in the proof of Theorem (2.2). In fact, for such B, the conclusion obtained
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from the first step of that proof just corresponds to (4.6) which we have proved
above. The second and the third steps remain valid without any essential
alteration. Hence, referring to the proof of Theorem (2.2), we can immediately
arrive at the conclusion B=9). This, however, establishes (4.5).

5. Derivations

Let B be a subalgebra of 9(M). A linear map § of B to D(M) is called
a derivation if

[, ¥] = [0, ¥]+[p, 4] (@, vrEB)

holds. If 8=ad @, for some @,=D(M), then § is called inner in DM).
Suppose that, for a given derivation 8 of B to 9(M), there exists a subspace E
of 9(M) such that §(B)C E. Then we say that § is a derivation of B to E.

(5.1) i) Assume that B coincides with one of A(M), D(M), D(M) and
D(M). Then any derivation 8 of B to D(M) has the support-preserving property

(i.e., & satisfies supp 6(@)C supp @ for p= B).
ii) Assume that B is a subalgebra of D(M) which contains A(M). Then

any derivation 8 of B to 9(M) has the support-preserving property.

Proof i): We shall prove the assertion in the case B=/4(M). The other
cases will be treated in a similar way. Take any X (M). Let U be any
open set with supp XC U. By virtue of (1.6), X can be written as X=
VY., Z;], where Y;, Z; are a finite number of elements of (4(M). Referring
to the proof of (1.4), we find that Y, Z; may be so chosen that supp Y, supp Z;
are contained in U. Then we have

8(X) = 238(Y2), ZJ+20[Y 5 8(Z)],

and hence supp §(X)C U. Therefore § has the support-preserving property.
ii): By i) 8| A(M) has the support-preserving property. Take any
@< B. Choose X & A(M) such that supp X Nsupp p=¢. .Then

since supp 6 X Nsupp @=¢. From this it follows directly that supp 8 C supp @.
This completes the proof.
Related to the support-preserving property, we have

(5.2) Let & be a linear map from 9D ,(M) to D(M) which has the support-
preserving property. Then there is an integer k such that

(D (M) Du(M) .
The similar result holds zf we replace 9, b_y .@(
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Proof. Suppose that the first assertion is false. Then there are a sequence
{p} (p;€ 9D (M)) and a sequence {p,} (p,< M)such that a term of order %, arising
from the local expression of 3(p,;) does not vanish at p, and k,<k,<:--.
We may assume that each p, is distinct and is not a cluster point of a sequence
{p}. Since & is support-preserving, we may then take these @, (i=1, 2, .-:) so
as to satisfy the condition that supp @, is compact and supp @, N\supp @,=¢

fori4j. Choose a suitable sequence {a;} of positive numbers such that S s

=1
uniformly converges to a certain o9 ,(M) on each compact set. We have
8(@) & Dy,-, near p, and k;— oo, which, however, contradicts the fact that §(¢)
has a finite order. This establishes the first assertion. Since the same reasoning
applies to the case where § is a map from 9,(M) to (M), this completes the
proof of (5.2).

We shall give some examples of derivations:

(a) Let o be a closed differential 1-form. Take a locally finite open
covering {U,},e; of M, where each U; is realized as the open unit disk through
a system of local coordinates. Then Poincaré’s lemma shows that there exists
[;€C=(U,) such that o|U;=df;, We saythat {U, f;};,c; isa Poincaré distri-
bution associated to w. Note that f; is uniquely determinied up to an additive
constant. Making use of a Poincaré¢ distribution {U,, f;};c;, we shall define
the derivation [w] of 9(M), by setting

[w]q’ = [fi, ¢] ’ on U;.

Clearly, the derivation [w] is well-defined, independent of the choice of Poincaré
distribution. We note that [w]| 9,(M) gives a derivation of 9),(M) to Dy(M).

(b) We introduce a volume element v to M. Recall that div X (X € A(M))
is then defined by the formula

Lyv = (div X)v,
where Ly denotes the Lie derivative along X. Then the assignment
div: X—divX

gives rise to a derivation of A(M) to A(M). In fact, this can be easily checked
from the formula L [x y;=LxLy—LyLy.

(c) Let 7, and 7, be the canonical projections from 49),(M) onto Dy(M)
and J(M), respectively. Then =, gives rise to a derivation of 9),(M) to Dy(M)
and div oz, a derivation of 9),(M) to itself.

To proceed with the study on the derivations, we shall make use of the
results on differential complexes [2], [6]. Let 7 be the tangent bundle of M
and &' the trivial one-dimensional vector bundle over M. J%(') denotes the
k-th jet bundle of €', We have the canonical splitting of vector bundle
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JHE) = e'DJHE).
Put
D(k) = Hom( J*(&"), "), D(k) = Hom(J*(&"), &) .

Then D(k) and D(R) are smooth vector bundles over M. Note that D(1) is
canonically isomorphic to 7. In what follows, we shall identify

DM) =T(D(k),  Du(M)=T(D(k)).

Now the well-known Peetre’s theorem (cf. [4])) together with (5.1) shows
that any derivation & of A(M) (or D,(M)) to D(M) (k=0, 1, 2, »+-) really gives
rise to a differential operator from T'(7) (or T'(D(1)) to I'(D(R)). According to
the notations used in [6], it is possible to write this fact as

s C'[r, D(k)]

(or = C'[D(1), D(k)]). :

Consider the differential complex {C?[7, D(R)], d} associated to the adjoint
representation of A(M) to Dy(M) (cf. [6]). In this complex, the criterion that
a 1-cochain becomes a derivation or an inner derivation can be simply stated as
follows:

(5.3) i) LeC'[r, D(k)] is a derivation = L is a cocycle;
ii) LeC'[r, D(R)] is inner in D(k) < L is a coboundary.
The similar statement holds for the derivvations of 9,(M) when we consider the
adjoint complex {C?[D(1), D(k)], d}.

Let H*(r, D(k)) and H*(D(1), D(k)) denote the cohomology groups of the
adjoint complexes {C?[r, D(k)], d} and {C?[D(1), D(k)], d}, respectively.
Concerning these cohomology groups, we know ([2], [6]):

(5.4) i) There is a canonical isomorphism
H*(7, D(0))=H*(B(7); R),

where B(7€) denotes the principal U(n)-bundle over M, associated to TQC.
i1) For any k, the injection D(0)— D(k) induces the isomorphism

H*(r, D(0)=H*(7, D(k)) -
iii) There is a canonical isomorphism
H*(D(1), D(0))=H*(B(w°)x S*; R),

where S* denotes the circle.
iv) For any k, the injection D(0)—D(k) induces the isomorphism
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H*(D(1), D(0))=H*(D(1), D(k)) -

In view of (5.3), more exact informations on the one-dimensional cohomology
groups are necessary for our aim. Actually, we know the following facts ([2],
[6]). Let {w;}(7=1, -+, b,; b, may be infinite) be a family of closed 1-forms on
M, whose de Rham cohomology classes give rise to a basis of H'(M; R). Note
that b, is the first Betti number of M. Then, {0} (=1, -+, d,) and one more
closed differential 1-cochain Q) give representative cocycles of a basis of H'(, D
(0)). (9 can be taken so as to be dependent only upon the first jet of 7, and if
Q is so chosen, then the stalk of  at each point of M corresponds to a generator
of H'(U(n); R) in the local considerations.) On the other hand, {0} (=1, «--, b)),
Qor, and 7, give representative cocycles of a basis of H*(D(1), D(0)).

We shall make a remark that we may take div as (, if we introduce a volume
element to M. In fact, this follows from the observations that by (b) and (5.3)
div is regarded as a closed differential 1-cochain, and that there is no non-trivial
linear relation between {w;} and div, because, for any X & A(M) with X(p)=0,
dX(p)=+0, we have 0 (X)(p)=0 and div (X)(p)=0. Furthermore, we observe
that, for any o;, we have 0 (X)=[w,](X) according to the notation used in (a).
Now we are in a position to formulate the theorem:

Theorem (5.5). i) Any derivation 8 of A(M) to D(M) is uniquely ex-
pressed as
§=ad p+ bZJII pilo]+n div;
it) Any derivation 8 of 9D,(M) to D(M) is uniquely expressed as
d=ad p+ ﬁ:‘ wilw]+N diver,+xm,;
iii) Any derivation 8 of .@(M ), or D(M), to D(M) is uniquely expressed

by
b=ad gt 3 pfo].

Here @ is an element of (M), uniquely determined by 8, and p;, N, « denote real
numbers ; moreover, u; are almost all zero if by=co.

Proof. 1i),1ii): In each case, if a derivation § admits an expression as
described above, then it is easy to see that ¢ is uniquely determined by &.
With this understood, the assertions immediately follow from (5.2) and (5.4),
together with the preceding discussions. '

iti): First we shall prove the assertion in the case of 9(M). The
restriction of & to A(M) gives rise to a derivation from (M) to 9(M). Hence,
by i), 8| A(M) is uniquely written as
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8| AM) = ad o+ i o]+ div.
Set
A=d-adgp— 3 ufod].

Then A is a derivation of QM) to D(M), satisfying A| A(M)=x-div.  If we
can-show A=0, then A becomes an /-map vanishing on (M), whence by (3.6)
A isidentically zero. (Note that (3.6) remains true if we replace 9(M) by D(M)
when @ is support-preserving.) This will establish ii) in case of P(M).

~Now we:shall give a proof to A=0. Since this is of local character, we have
only to consider on a neighborhood U, diffeomorphic to the open unit disk.
Moreover, we may assume div(3] f%9,)=2310f*/0x* holds on U. Since A(3;)=0
and A(x;0;)=1 (j=1, ---, n), we have A(0,)=a,0;” for suitable a,= R (cf. the
proof of (3.4)). From

[0, £0,] = 2(3,£)0.2-+(8:1); ,
it follows that

A7) = a0 o7+ ( Z+0) @10

Using this relation, we apply A to both sides of
[%,0/7, %,%0;] = 2x,0,13x,9;" .

Then we can easily obtain x=0, as we wished to prove.
Next we shall consider the case of 9(M). From ii) and the above we know
that 8 admits the expressions:

5| D(M) = ad o+ "g pilo]4n divor, 4k, ,

31 9(M) = ad g+ 33 p/lo]

But @, @’ u;, p;/ and A are completely determined by the behavior of § on A(M)
=D (M)N P(M). It results that p=¢’, u,=u; and A=0. Hence, if we denote
by 7, the canonical projection from 9(M) to 9D,(M), 8 must take the form

3 =ad p+ 211 pilw]+rm, .

Since 7, does not give a derivation on (M), we can conclude =0, which
completes the proof.
As a corollary, we obtain

(5.6) Ewvery derivation of A(M) to itself is inner,
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Remark. This is also regarded as a consequence of a more general theorem
that the cohomology group of the adjoint complex of A(M) vanishes (cf. [6;
I, Th 4.3, Cor. 2)). ,

Finally we shall treat with the derivations defined on a subalgebra.

Theorem (5.7). Let B bé a subalgebra of 9(M) containing A(M). Then
every derivation 8 of B to (M) is uniquely written as §=ad @, where p= D(M).

Proof. Using (3.3) and (4.4), we know that there exist mutually disjoint
open sets O, and O, of M such that O, U O, is dense in M and that

JA(0,).cB|0,c A(0,), 9(0,),cB|0,c 9(0,)

hold. Since §| A(M) is a derivation of A(M) to (M), by (5.5) i) we can find

a unique o (M) such that ad p=8| A(M). Set A=8-ad @. Then A gives

rise to an 4-map from B to 9(M), which vanishes on JA(M). Apply (3.6) to

(B[ o,)N @k(Oz) for k=1, 2, -+ and to the A-map A|QO,. Then we obtain A| O,

=0, whence A=0 throughout M. Thus §=ad @, which completes the proof.
As a result, we have

(5.8) Every derivation of D(M) to itself is inner.
Also we can easily prove the following proposition when dim M=1.

(5.9) Every derivation of 9"(M) to itself is inner.

6. Isomorphisms

Let M and N be two smooth manifolds. In this section we shall deal
with Lie algebra isomorphisms from (M) to D(N).

(6.1) Let @ be an isomorphism from (M) to D(N). Then we have
1) AD(M)) = DyN)
ii) 9(D,(M)) = DiN).

This assertion will, however, become an immediate consequence of the
following proposition, which gives Lie algebraic characterizations of 9),(M)

and 9,(M).
6.2) i) D(M)={p|lpcD(M); For any yr& 9(M) there is an integer m
such that (ad @)™»=0}.
i) D(M) = iplp€D(M); ad p(D(M))c D(M)} -

Proof. For convenience’ sake, we denote the sets stated in the right-hahd
sides above by Df(M) and Df(M), respectively.
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i): Itis clear that P (M) DF(M). In order to prove the converse
implication 9y(M)>D DE(M), we take and fix an element o= DF(M). We shall
introduce the C=-topology of uniform convergence on each compact set to' 9,(M)
(=C=(M)) so that 9(M) becomes a Fréchet space. Set

E,, = {{|vreDy(M), ad(p)™ = 0} m=1,2 .

Then we have U E,,=9,M) and each E,, is a closed subspace of 9 (M), whence
we find an integer m such that

E,= DM).

Now observe that we have

*) ad(p)™p = 3} (D) (—fp" Mgt =0, e D(M).

From this relation we wish to deduce p&9(M). Since this, however, is of
local character, we may assume M=R". Set+r=¢"*. Since

0,01 = e7(0,4-7),

we have

(ke bt =0,

k=0

where @ is a differential operator defined by
P(x; 0, =+, 0,) = (25 0y +++, 0;_1, 0,47, 0spgy ==, 0)
Arrange @ according to the order of 9; and write it as follows:
? = POF+Pp- 0.+,

where @, (I=0, 1, ---, k) denote differential operators containing only the partial
derivatives with respect to 0, **+, &;_,, 0,,,, ***, 0,. Note that

P = P04 V) +Pp-s(0 V) -
Using the fact that the highest order term in  of (*) vanishes, we can get
o =0 if R>1.

But it is known (or directly proved by the use of the similar argument) that the
algebra of differential operators has no nilpotent element, whence @,=0 follows.
Successive application of the similar argument shows that we have really ¢,=
@p-,=+=¢=0. By virtue of the same reason, it turns out that ¢, contains
no partial derivatives. Hence we have the desired conclusion @& 9),, which
completes the proof of i),
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ii): It is clear that 9¥(M)is an A-space containing 9,(M). Also it
is easy to verify that, locally, 8,*(| x| 22; =1, 2, -++, n) do not belong to D¥(M).
Hence, from (3.1) it results that DF(M) coincides with 9,(M). This com-
pletes the proof of ii).

We shall describe some examples of automorphisms of D(M).

(A) Let ¥ be a diffeomorphism of M onto itself. Then ¥ naturally
induces an automorphism ¥y of 9(M).

(B) Let » be a closed differential 1-form. Using a Poincaré distribution
{U,, f;} of w, we define an automorphism (w) of (M) as follows:

On each U, put

(w)p = exp (—f)p exp (f3) -

It is easy to verify that (w) really gives a well-defined automorphism of 9D(M),
independent of the choice of Poincar¢ distribution; moreover, if ¥ w,, then (o)
=‘:(wl)' .

(C). Fix a volume element of M. For o= D(M), we denote by @* the
formal adjoint of @ with respect to this volume element. Since (gyr)*=Ar*p*,
we have an automorphism o of (M) by setting

o(p) = —@*.

Itis clear that (w) and o are support-preserving automorphisms. We have
relations
(@)o(@)) = (o+ta),
oo(0) = (—w)oo,
=1,
which are easily verified.

Let M and N be two smooth manifolds. - We shall now prove the follow-
ing theorem.

Theorem (6.3). Let ® be an isomorphism of D(M) onto D(N). Then we
have
i) There exists a diffeomorphism ¥ of M onto N,
ii) By the use of this ¥, @ is written as either

@ = W*O(CO), or ¢ = ?[/'*oao(a))
for a suitable closed 1-form o.

Proof. i): By (6.1) we have &(QD,(M))=9D,(N). Hence we can consider
the composition of maps

0. M) D00 % @) vy,
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where ¢ denotes the canonical injection. Since @(D(M))=D,(N), it follows
immediately that @, gives an isomorphism from A(M) onto A(N). Hence
Theorem (2.5) applies to get a diffeomorphism ¥ of M onto N which satisfies
¥,=9, This establishes i).

if): Using the result of i), we have

7oWyo0(X) =X for XeA(M).

Since ¥y ~o® maps Dy(M) (or D,(M)) to itself, it follows that 7o¥ '@ gives
rise to a derivation from 9),(M) to 9 (M), as is easily checked. As a'result,
oWy 10@| D (M) has the support-preserving property, whence we find that
Uy 1o®| A(M) has also the same property. By (1.4) any o= D(M) is expressed
as =2 [V, X;](Y,€ D(M), X,= A(M)), where yr;, X; can be taken such that
supp ;, supp X; are contained in an arbitrary small neighborhood of supp @.
Since Uy o@(@)=[T 4 0@(Y;), Ty 'oP(X,)], it follows that ¥y 'o® is a
support-preserving automorphism of 9(M). Our goal is to find an explicit form
of W, 'o®, which is, however, reduced to finding a local expression of W, 'o®
because of the support-preserving property. Hence we restrict our considera-
tions only to the local behaviour of ¥y "®.

Since 7y 0¥y 1o@| D, (M) gives a derivation of 9 (M) to 9(M), we have
from Theorem (5.5) ii) that

() TeOXAf) = X+ {X, g0 div Xxf}  (X+f€D)

on a certain local coordinates disk U, where \ and « are independent of the
choice of local coordinates; a smooth function g is determined up to an additive
constant, so that dg is uniquely determined. Since a volument element on U
is arbitrarily taken and fixed, we may assume without losing generality that

div X = >10,X+ -

i=1

for X=3>1X,;. We can then write
(%) (—dg)o¥s o0 X+f) = X+ L D0Xo+uf} .
We shall insert the following lemma:
(6.4) Suppose that we have an automorphism ® of D(R") which satisfies
(D XD, +f) = DX 0,4 N0, Xi+rf} .
Then

) =1, A=0 or k= —1, a=1.
i) If k=1, then ® becomes an identity.
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Proof of (6.4). Set #(35)=>X1f,0%. Apply @ to both sides of the identity
[0, x;]=26;,0; (§,; denotes Kronecker index). Then we obtain

[Zfaaa’ "xj] = 28:']'6; = fo,,aﬁ“*”

where o—(j) means the multi-index (e, **, &ty &t;—1, @41, =+, ). Therefore
we have x+0 and

$(97) = %(a,.wrh), he D, .

Note that /4 really becomes a constant function; in fact, this follows from [9,%,3,]
=0 (z,j=1, 2, -, n).
Starting from the identities
[0 %] = 2x,0,+2
[0, f9:] = 2(8.1)8:+-(3:°1)0:
[x0.° x,°0;] = x,°0,"+2x,9,,
we can proceed the similar calculations, which yields the relations
1=«x+21,
0@.F+0;) = J-[20:f 07+ (1—x+ 200710,
K
+M1—r)0°f—f -0} ,
Me+0)=0,
Here in order to obtain the third relation, we have used the relation
B(f07) = L (f074200,f 0,400 f) ,
K

which can be directly obtained from the first and the second relations. There-
fore, we have either k=1 and A=0, or xk=—1 and A=1, which proves i).

In order to prove ii), consider the case where k=1 and A=0. Then we
have @| 9,(R")=identity and @(37)=0;7. In view of (4.3), we can deduce from
these facts that @ coincides with the identity map on @(M). This completes
the proof of ii).

Now we come back to the proof of Theorem. Apply (6.4) to the formula (**).
Then it turns out that there arise only two cases: #=1, A=0 and x=—1,
r=1.

The first case: k=1, A=0. From ii) of (6.4) it results that (—dg)o¥y '@
=identity, on U. Define a closed differential 1-form w on M, by setting

o =dg onU.
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Then we obtain
(—@)o¥«'o@=identity on M
whence, in this case, we have
D = ¥yo(w).
The second case: k=—1, A=1. We have
k= —1=T,"0(1).

On the other hand, we have o(1)=—1. Hence, referring to the formula (*),
we have the corresponding formula

e W oB(X+f) = X+{[X, g1+ div X+f} ,

on U. This means that oo¥%'-® must satisfy the condition of the alternative
case stated in (6.3) i). Therefore, as we have seen above, there is a closed
differential 1-form o’ such that

@ = Vyooo(w),

which establishes the alternatives of ii). This completes the proof.

From Theorem (6.3) we can describe the structure of the automorphism
group Aut(9D(M)) of P(M) in detail. Let @ be an automorphism of I(M).
We note that the expression of @ in the form stated in Theorem (6.3) ii) is
unique. This follows from the following observations: First, ¥ is unique,
because (w) and oo(w) have the support-preserving property, while ¥y is the
identity if it is support-preserving; secondly, (v)1=1 and o1=—1, so that oo(w)
does not coincide with any (o).

Let Diff (M) be the diffeomorphism group of M and Aj;(M) be the abelian
group consisting of all closed differential 1-forms on M. We assign to any
@< Aut(D(M))

@, o, 1), if @="¥yo(w),
@, o, —1), if @="yo00(w).

This assignment induces a bijective map ¢ of Aut(D(M)) onto Diff (M) X As,(M)
X Z,. More precisely, we have

Theorem (6.5). There is a bijective map
¢: Aut(D(M)) — Diff (M) X AL, (M)X Z, .

Under the identification via ¢, Ay,(M) X Z, becomes a normal subgroup of Aut(D(M)),
the elements of which are characterized as the support-preserving automorphisms. The
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multiplication rule in A3, (M)X Z, is given by (w, €)(o', &')=(0-+Ea’, EE’), where
0, o' E45(M) and &, & are £1.

From (**) we can easily prove

Theorem (6.5). Let @ be an isomorphsim of D,(M) onto D(N). Then
we have
1) There exists a diffeomorphism ¥ of M onto N ;
ii) By the use of this ¥, @ is written as
O = V¥yo(w)o(m,+ N diver,+xm,) ,
where x=+0.

As to the automorphism group Aut(D(M)) of P(M), we have

(6.6) Let @ be an element of Aut(D(M)) for which we have @| A(M)=
identity. Then
1) In case n=1, @ is either the identity or Y| , where Y is the automor-
phism introduced in Section 3.
ii) In case n>1, @ is the identity.

Proof. From the assumption it follows immediately that @ becomes an
A-map from P(M) to itself. Hence, Proposition (3.5) applies to @, which yields
that @ =identity if n>1, and @I.@““zidentity, 0| D =c,I (c.eR) if n=1. Let
us further consider the case n=1. If X, Y= 9, then [X, Y]E.@ﬂ hence ¢,’=1.
Thus if @ is not the identity, then we have ¢,=—1, which implies ®=} . This
completes the proof.

This proposition involves the following: If there is a Lie algebraic char-
acterization of A(M) in (M), then

Aut(P(M))=Diff(M)xZ, if n=1,
Aut(9(M))=Diff (M) if n>1.

At the present, we have only succeeded in attaining this end in the one-dimen-
sional case. So the following problems remain open.

Problem 1. Is every automorphism of 9)(M) induced by a diffeomorphism
of M in the case n>1?

Problem 2. Does the structure of Lie algebra /(M) determine the underly-

ing smooth structure of M?

7. Differential operators as support-preserving maps

Until now, we have only treated with differential operators with finite orders.
But the differential operator is often defined in an alternative way to be the linear
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map @ from C=(M) to itself with supp @(f)Csupp f(f€C>(M)) (cf. [4]). If
we start from this definition, then the differential operator has not necessarily a
finite order. Nevertheless, the space of the differential operators in this sense
also has a structure of Lie algebra, the bracket being defined by [@, Y]=@oyr—
Jrop. This Lie algebra is denoted by Y(M). (M) contains (M) as a sub-
algebra. By virtue of Peetre’s Theorem (cf. [4]), for any open set U with the
compact closure, we have Y(M)| U=D(M)| U. Hence if M is compact, we have
D(M)=9D(M) so that there will not arise any new situation here. On the con-
trary, if M is open, we have D(M)=+D(M); specifically, we may say that D(M)
consists of the differential operators which possibly take infinite order at the
point of infinity.

In this section, we shall show that the results obtained hitherto for 9(M)
can be extended to the case of (M) without any essential alteration. For this
purpose, we may and do assume that M is open. Corresponding to P(M), we
denote by 9)(M) the subalgebra of 9(M), consisting of those elements of (M)
which have no “constant terms”.

It is clear that all the arguments in the preceding sections which are con-
cerned with local situation of 9(M) remain valid in P(M). Therefore we have
to pick up propositions and theorems which are of global nature, and to verify
that these results also hold in case of 9)(M) without any essential modification.
According to this plan, after a careful examination, we find that what we must
do is reduced to giving the proofs to the following propositions.

(7.1) [DM), AM)]=DM),  [DM), AM)] = D(M)
(cf. Proposition (1.4) 1)).
(7.2) Every derivation of (M), or D(M), to D(M) has the support-preserving
property (cf. Proposition (5.1) i)).

(7.3) Let & be a linear map from D (M) to D(M) which has the support-
preserving property. Then, for any open set U with the compact closure, we can
find an integer k such that

(DM UcD(M)| U .
The similar result holds if we replace 9, by 9, (cf. Proposition (5.2)).

(7.4) There are Lie algebraic characterizations of Dy(M) and D,(M) in
9D(M) (cf. Proposition (6.2)).

(7.5) Every automorphism of 9D(M) which leaves any element of A(M)
fixed has the support-preserving property (cf. Proof of Theorem (6.3)).

Proof of (7.1). Since M is open, we can take an open covering {0, }
(=0, 1, ---, n; j=1, 2, ---) of M which has the properties stated in (1.5). For
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each 7, we can find an imbedding v, of R""*X R to M such that U ,Z,0;; is con-
tained in v,([0, 1] -+ X [0, 1]X [0, 0)). We adopt ;' as a local coordinates
map so that any point pev,(R""* X R) has a coordinate p=(x,, ***, ¥,_,, ). We
assume that v, is so chosen that, if z—oco, then p=(x,, -+, x,-,, £) tends to the
infinity.

Let o= 9(M) be given. Using the partition of unity, we may write

P=@tpt e +on

where supp @;C U ,Z,0;;. Since supp o; is contained in v,(R""'X R), @,, is
expressed in terms of the coordinates (x,, -+, %,_,, £). Setting

Wil) = (Pl s 0 550005, = (50 3 1),
=0, if pEv(R"'XR),
we have Jr,€ P(M). Itis clear that
supp ¥;Cv([0, 1]1x--- X [0, 1]X R) .

Take X, A(M) such that X;—=d/dt on v([0, 1]x - X [0, 11X R) and 0 outside
v{(R"'XR). Then

¢=g[Xi’ \"‘i],

whence we have proved the first assertion of (7.1). The second assertion can
be proved in a similar way.

Proof of (7.2). Let 8 be a derivation of 9(M) to itself. Letting p PD(M)
be given, we write @=>1[X}, y»;] in view of (7.1). Take any point p from the
outside of supp @. Then, referring to the proof of (7.1), we find that, in case
n>1, we can choose X;, y; such that pe& U(supp X;Usupp ;). From this
follows (8¢)(p)=0, whence & has the support-preserving property. In case
n=1, we take a small positive number & such that (p—&, p-+€) lies in the outside

of supp @. Let
S; o(s)ds, for t<=p—¢

e

Y(t) =10, for p—Est=<p-+é¢
S; @(s)ds, for t=p+¢€

Also, let p(f) be a smooth function, identically equal to 1 on (—oco, p—E&)U (p+¢,
o), and 0 on a neighborhood of p. Then we have p=[pd/dt, yr] and p(p)=(p)
=0, whence (8p)(p)=0 by the same reasoning as above. This completes the

proof.
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Proof of (7.3). 'This can be proved in the same way as in (5.2).

Proof of (7.4). Applying the similar arguments to those used in the proof

of (6.2), we find

and

Dy(M) .= {p|lpe D(M); For any Yy D(M) there is an
integer m such that (adg)™r=0} ,
D(M) = {p|pe DM); adp(D(M),)C D(M),},

D(M) = {p|p= D(M); For any yr& 9,(M) there is an
integer m such that (adp)™Jr=0}.

Hence we have obtained characterizations of 9 (M) and 9,(M).

Proof of (7.5). Referring to the proofs of (6.3) and (7.2), we can easily verify

the assertion.
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