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ABSTRACT

A principal goal in human genetics is to provide the tools necessary to enable 

genome-wide association studies. Extensive information on the distribution of gene-

based single-nucleotide polymorphisms (SNPs) and linkage disequilibrium (LD) 

patterns across the genome is required in order to choose markers for efficient 

implementation of this approach. To obtain such information, we have genotyped a 

large Japanese cohort for SNPs identified by systematic resequencing of more than 

14,000 autosomal genes. Analysis of these data led to the conclusion that the 

Japanese population contains approximately 130,000 common autosomal gene 

haplotypes (frequency > 0.05), of which more than 35% are identified in the present 

study. We also examined allele frequencies and LD patterns according to the position 

of variants within genes, and their distribution across the genome. We found lower 

allele variability at exonic SNP sites (both non-synonymous and synonymous) 

compared to non-exonic SNP sites, and greater average LD between SNPs within 

exons of the same gene compared to other SNP combinations, both of which could be 

signals of selection.  LD was correlated with the recombination rate per physical 

distance as estimated from the meiotic map, but the strength of the relationship varied 

considerably in different regions of the genome.  Unique LD patterns, characterised 

by frequent instances of high LD between non-adjacent SNPs punctuated by blocks of 

low LD, were found in a 7 Mb region on chromosome 6p that includes the MHC 

(Major Histocompatibility Complex) locus and many non-MHC genes. These results 

demonstrate the complexity that must be taken into account when considering SNP 

variability and LD patterns, while also providing tools necessary for implementation 

of efficient genome-wide association studies.
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INTRODUCTION

Historically, disease association studies have been limited by a number of 

factors, including lack of knowledge about the appropriate candidate genes to 

investigate and insufficient information on sequence variation to assure full 

assessment of genes (1-4). In some recent studies, the increasing knowledge of 

human genome and the availability of high-throughput genotyping at relatively low 

cost have been exploited to allow disease association investigations of single-

nucleotide polymorphisms (SNPs) in many thousand genes simultaneously (5-8). In 

the near future, it will be possible to extend such studies to the whole genome. In 

principle, this strategy circumvents one of the limits of candidate gene investigations 

because it does not rely on a priori biological hypothesis about disease-gene 

relationships. Efficient implement of this approach will require detailed information 

on SNP variants and linkage disequilibrium (LD) patterns across the whole genome. 

As a prelude to obtaining whole genome data, SNPs have been studied at relatively 

high density in specific regions, and for a limited number of complete chromosomes 

(9-15). 

 A number of important observations and hypotheses are emerging from these 

studies.  Genetic variation is non-randomly distributed within the human genome, 

with a higher frequency of polymorphisms observed in non-coding vs. coding regions; 

non-synonymous SNPs within coding regions are also reported to be less variable 

than other SNPs (16-19).  It has been proposed that the human genome exhibits a 

haplotype block structure characterized by segments of high LD punctuated by 

regions of low LD. With knowledge of the block structure, markers that identified the 

major haplotypes can be selected for genotyping to obtain the essential information 
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for association studies. It has been hypothesized that the boundaries of haplotype 

blocks may be defined by recombination hotspots (3, 11, 14, 20), which could render 

haplotype blocks independent of the population under study and simplify studies in 

different ethnic groups.  Since LD is negatively correlated with the frequency of 

recombination per physical distance (13, 15), the extent of block structure may be 

variable across the genome.  Such issues have important implications for the use of 

LD as a genetic mapping tool (1, 3, 21), and they underscore the need for further 

investigations of LD patterns across the genome, such as that recently initiated in the 

international haplotype map program (22).

We have recently embarked on a national program of SNP discovery in Japan to 

systematically identify common gene variants as a tool to implement genome-wide 

gene-based association studies (18). To date, the database covers more than 15,000

genes and predicted exons (http://snp.ims.u-tokyo.ac.jp). In order to provide a 

comprehensive view of allele frequencies and LD patterns for gene-based variants 

across the human genome, we report here the analysis of more than 74,000 SNPs 

selected from this database and genotyped in a large cohort of Japanese volunteers. 

This provides an important contribution to enabling association studies by identifying 

more than 35% of the principal gene-based haplotypes in the Japanese population. 

The analysis also reveals complex patterns of allele variation and LD related to the 

position of SNPs within genes and within the genome.
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RESULTS

Allele frequency distributions for gene-based SNPs

Sequencing of known genes and predicted exons in 24 Japanese control 

individuals led to the identification of more than 195,000 gene-based SNPs (18)

(http://snp.ims.u-tokyo.ac.jp). The sequencing covers 17 Mb in coding regions, 91.4 

Mb in intronic regions, 13.2 Mb in promoters, 14.8 Mb in 5’ UTR, 3’ UTR and 3’ 

flanking regions. We genotyped a random selection of 80,788 autosomal SNPs from 

these in up to 564 additional, unrelated Japanese volunteers using the Invader assay 

and multiplex amplification as described (23). After the application of validation 

criteria, genotypes from 74,842 SNPs were retained for inclusion in the present study

(see Methods). The markers are distributed across 14,271 genes, providing an 

average of 5 SNPs per gene. The SNP map spans a total of 680 Mb, with a median 

distance of <4 kb between neighbouring markers, and covers all regions of the 

autosomal genome that contain identified genes (Figure 1).  There are 13,119 exonic 

SNPs and 61,723 non-exonic SNPs (e.g. within introns, 5’ flanking region or 3’ 

flanking region of the gene) included in the dataset. Previous analysis of a subset of 

the markers and DNA samples studied here showed no evidence of population 

heterogeneity based on the geographic origin within Japan (24).

We previously found variations to be less frequent in exonic regions compared 

to the other intragenic regions that were screened for SNPs (1 SNP / 1,298 bp in 

coding sequence; 1 SNP / 847 bp in introns; 1 SNP / 861 bp in promoter regions; 1 

SNP / 969 bp in 3’ flanking regions) (18).  From the present data, we can conclude 

that different classes of variants also have different allele frequency spectra (Figure

2A). At variant sites within exons, the minor alleles were less frequent on average 
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than those at other sites, particularly for SNPs that introduced amino acid changes: 

19.6% of non-synonymous exonic SNPs had a minor allele frequency <0.05 

compared to 14.4% of synonymous exonic SNPs and 12.0% of non-exonic SNPs. 

These differences were significant (see Methods for statistical tests), not only for the 

comparison between non-synonymous and synonymous exonic variants (P<10-9) or 

non-exonic variants (P=10-31) but also between synonymous exonic and non-exonic 

variants (P=0.0002). Average heterozygosity was also significantly different for the 

three classes: 0.282 ± 0.007 for non-synonymous variants, 0.311 ± 0.006 for 

synonymous variants, and 0.321 ± 0.002 for non-exonic variants. Lower minor allele 

frequencies for non-synonymous exonic SNPs and other SNPs are generally attributed 

to differential effects of purifying selection (16, 19, 25). Our results are of particular 

interest in this light because they provide evidence of a similar but less prevalent 

pattern when synonymous exonic SNPs are compared to SNPs outside of exons. 

Gene-based haplotypes

Often only SNPs with minor allele frequency exceeding a predetermined 

minimum value (e.g. 0.05) will be examined for disease association because of 

limited statistic power to detect relationships with less frequent variants. In most 

genes, LD is sufficiently widespread to restrict considerably the observed 

combinations, or haplotypes, corresponding to different allelic phases of these SNPs.

Assuming that the haplotypes reflect an underlying block structure, the information 

required to assess disease association can be obtained by examining a subset of SNPs 

that are chosen to distinguish between these (haplotype tag SNPs or htSNPs), rather 

than exhaustively examining all variation within a gene. Implementation of this 

strategy requires knowledge of the gene haplotypes.
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To obtain the principal haplotypes for the genes in our study, we applied the 

SNPHAP program (see Methods) to the 65,080 SNPs with minor allele frequencies 

>0.05.  These SNPs were distributed across 13,419 genes, 9,416 of which contained 

two or more SNPs. We identified 46,558 frequent haplotypes (frequency > 0.05), and 

21,338 haplotypes with frequencies in the range 0.01-0.05. The average number of 

frequent haplotypes per gene reached a limit of 4.3 for genes containing at least 6 

SNPs (Figure 3A). This was largely independent of the size of genomic region 

covered when the markers in the gene spanned 5 kb or more (Figure 3B). Although 

slightly more frequent haplotypes were observed for intermediate span lengths (10 kb 

–100 kb), overall the correlation is negligible (0.01; n.s.). Ninety percent of genes 

had 6 or fewer frequent haplotypes irrespective of the number of SNPs that they 

contained (Figure 3A), and only a small number (74 / 13,419) that contained at least 

one SNP with minor allele frequency > 0.05 exhibited no frequent haplotypes. We 

found an average of 10 haplotypes per gene in the frequency range 0.01-0.05, for 

genes in which the number of SNPs investigated was 13 or more, and 90% of genes 

had 17 or fewer such haplotypes (Figure 3A). Haplotypes of the “yin yang” pattern 

(i.e. contrasting alleles at several consecutive sites) were found with frequency similar 

to that reported by Zhang et al. (26) (results not shown).  As indicated by these 

authors, these patterns are expected to occur frequently under a neutral evolution

model.

Once haplotypes had been estimated, we determined htSNPs needed to 

distinguish between them. The total number of htSNPs was 30,420 to distinguish the 

common haplotypes and 39,017 to distinguish haplotypes with frequency >0.01 in the 

13,419 genes. The upper limit on average number of these htSNPs per gene was 3 

and 5 respectively for frequencies of >0.05 and >0.01 (Figure 3C). Inclusion of the 
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9,762 SNPs with minor allele frequency <0.05 did not substantially alter the limiting 

behaviour as the number of SNPs in a gene increased (results not shown). 

 

Pairwise linkage disequilibrium

We also undertook LD analyses between pairs of SNP markers separated by 

<200 kb. Unless otherwise indicated, the results discussed in this section are 

restricted to analyses involving SNPs with minor allele frequency > 0.2 (where the 

allele frequency distributions for exonic SNPs and non-exonic SNPs are similar), and 

separation distances of 5 kb - 200 kb (where the differences are most apparent 

because the overall frequency of high LD pairs is low). The frequency of complete or 

nearly complete LD was much higher for exonic SNP pairs compared to other pairs: 

886 / 1,608 (55%) for exonic pairs and 82,234 / 366,790 (22%) for other pairs (Figure

2B). The overall frequency of |D’| < 0.1 was also lower for exonic pairs compared to 

other pairs in the 5 kb - 200 kb separation range (8.4% vs. 23%). Ninety-eight 

percent of these intragenic exonic pairs are formed by SNPs from different exons, so 

the patterns observed apply across the gene and not just within exons. Intragenic 

exonic SNP pairs separated <5 kb also show an excess of high LD compared to other 

pairs within this distance range (93% vs. 89%), although the differences appear less 

marked because LD is generally higher at this distance.

Table 1 shows a more detailed examination of LD within the 601 genes from 

which the exonic pairs at distance 5 kb - 200 kb were drawn. This confirms that 

exonic pairs exhibited higher LD overall compared to other SNP combinations within 

the same genes. We also compared the intragenic pairs to neighbouring SNP pairs to 

control for possible regional variation in LD as described below. Again the exonic 

SNP pairs exhibit much higher LD overall than the neighbouring pairs whereas the 
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latter are indistinguishable from the other intragenic SNP pairs (Table 1). To evaluate 

differences statistically, we accounted for correlation of LD between intragenic SNPs 

by selecting only the most widely separated exonic SNP pair in the range 5 kb - 200 

kb within each gene for analysis. These were compared to a similar number of 

control SNP pairs that were matched to the exonic pairs for separation distance, 

regional recombination rates estimated from the microsatellite marker map, and allele 

frequencies. The Wilcoxon signed rank test showed that the exonic SNP pairs had 

significantly higher values of |D’| (p=0.008) and r2 (p<0.0001). 

The frequencies of complete or nearly complete LD (|D’|>0.9) were also 

compared using a logistic regression model. We found significant effects of 

separation distance (χ2
1 = 234.5; P<10-53), recombination rate (χ2

1 = 67.1; P<10-16) and 

allele frequencies (χ2
1 = 5.1; P<0.024) as parameters in the analysis. We obtained χ2

1

=12.2 (P=0.0005) for differences in the outcome |D’|>0.9 between the SNP pair 

exonic and control categories with the other variables in the equation.

Linkage disequilibrium across the genome

The wide distribution of our gene-based SNPs allowed us to examine LD 

patterns across the genome (Figure 1, Table 2). A strong inverse correlation was 

found between the strength of LD and the frequency of recombination per physical 

distance as estimated from the microsatellite marker map (27), as previously 

described for some chromosomes (13, 15). Centromeric regions were generally found 

to exhibit greater LD than telomeric regions (Figure 4A), consistent with the fact that 

recombination per physical distance is higher in the latter.  However, the strength of 

the relationship between LD and recombination varies markedly between 

chromosomes and, sometimes, between chromosome arms (Table 2), while some 
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chromosome arms (chromosomes 7p and 8q) did not conform to the tendency for 

greater LD in centromeric regions (Figure 4A). Reasons for such differences could 

include issues related to study design, such as inaccuracies in the sequence assembly 

used for constructing the physical map or a low density of gene-based SNPs in some 

regions, or simply the low variability in the recombination rate on a particular 

chromosome or arm. However, these factors seem unlikely to account for the totality 

of the differences seen in Table 2 and Figure 4A.

Unique linkage disequilibrium patterns on chromosome 6p

Chromosome 6p exhibited one of the highest correlations between 

recombination rate and LD. Of particular interest are the complex LD patterns 

observed on chromosome 6p within a large region (28 Mb - 35 Mb) that spans the

MHC locus (29.8 Mb - 33.4 Mb) (28) and has low recombination. Extensive LD is a 

known feature of the MHC (20, 29-33), but our study reveals that exotic complex LD 

patterns extend to more than 1 Mb to each side of this locus, throughout a region that 

includes 274 genes and 783 SNPs in our map. In order to compare the complex LD 

patterns here with those in other regions of the genome, we calculated a quantitative

LD complexity index (CI). This was defined as the number of SNP triplets of which

two flanking markers have high LD with each other and simultaneously have low LD 

with the internal marker (precise criteria are given in Methods) normalized by the 

total number of SNP triplets within windows of 1 Mb.

While the average CI over all the autosomal genome was 2%, it was between 

10% - 50% at many points between 28.5 Mb - 35.5 Mb. The highest complexity 

(CI=50%) was within the MHC class I region, whereas in the class III the complexity 

rose to 10%.  In the regions flanking the extended MHC, the maximum values of the 



11

CI index were 36% (28 Mb - 29.8 Mb) and 11% (33.4 Mb - 35 Mb).  We found no 

other instances in the genome with complexity approaching this over such an

extended region (Figure 4B), despite a similar density of SNPs in several regions of 

equivalent length.  Strong LD could also be observed between SNPs in the 6p region 

at distances of more than 1 Mb, with lack of LD between intermediate markers, which 

is a further unique feature of these LD patterns.
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DISCUSSION

Our study provides information on the distribution of intragenic variation, LD 

and haplotype patterns as inferred from SNPs in 14,271 genes genotyped on up to 

1,128 chromosomes.  These SNPs are representative of the variants obtained by 

systematic resequencing of exons, 3’ flanking regions, promoters and portions of the 

introns of these genes in 24 individuals (48 chromosomes). Because of the relatively 

large number of samples resequenced for SNP discovery phase, the database from 

which our study SNP are drawn contains most of common variants and larger 

representation of less frequent variants than available in most other datasets, which 

are strongly biased towards the most frequent polymorphisms, as discussed by 

Phillips et al. (15) amongst others.

We have previously shown that genetic variants occur less frequently in exons 

compared to other regions (18). Here, we have demonstrated that allele frequency 

spectra differ for both synonymous and non-synonymous variants within exons 

compared to those in other intragenic regions. Lower variability of non-synonymous 

exonic variants has been predicted because purifying selection is expected to act 

against alleles that introduce deleterious changes of amino acids (17, 19). We found 

that the average variability at synonymous exonic SNPs is intermediate between that 

of the other SNP groups (non-synonymous and non-exonic), and significantly 

different from non-exonic SNPs. This suggests that synonymous variants generally 

may also be subject to purifying selection, although this would appear to be less 

prevailing than that for non-synonymous variants. A possible explanation for this 

observation is selectively driven codon usage (34), which may affect 

translation/transcription efficiency, although association of this phenomenon with 
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other causes (e.g. three dimensional structural changes; changes in transcript factor 

binding properties; functional RNA, e.g. micro RNA, which may affect 

transcription/translation regulation or splicing efficiency) cannot be excluded.

We identified an average of 3.5 frequent haplotypes (frequency > 0.05) per 

gene, and more than 99% the genes studied exhibited at least one frequent haplotype. 

Interestingly, the average number of frequent haplotypes was largely independent 

both of the number of SNPs and the length of the genome region that they spanned, 

when the number of SNPs was sufficiently large. For genes that contained 6 or more 

SNPs, we found averages of 4.3 frequent haplotypes and 2.8 htSNPs, and 90% had 6 

or fewer frequent haplotypes. Because we genotyped a large cohort, it was also 

possible to have reliable estimates for less frequent haplotypes. To eliminate the 

effect of rare variants, which are under-represented in the SNP database, we examined 

all haplotypes in the frequency range >0.01 that were formed by SNPs with minor 

allele frequencies > 0.05. Although the limits are somewhat less evident than those 

for frequent haplotypes alone (Figure 3), the average number was approximately 14 

per gene once 14 or more SNPs were studied, and 90% of genes exhibited 23 or fewer 

haplotypes.

Our results can be compared with observations in Crawford et al. (35) who have 

studied haplotypes of 100 genes in a small sample of individuals of European and 

African origin. In 23 individuals of European descent, they found an average 4-5 

frequent haplotypes and 13 total haplotypes from SNPs with minor allele frequency 

>0.05. This suggests a similar degree of haplotype diversity in European and 

Japanese. Since Crawford et al. examined all the common SNPs from the entire 

genomic sequence of the genes they studied, this also suggests that genotyping 

additional markers or undertaking frequent genomic resequencing would be unlikely 
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to reveal substantially more frequent haplotypes for genes containing 6 or more SNPs 

in our sample. The 24 individuals of African descent that Crawford et al. studied 

revealed a similar average number of frequent haplotypes (5) but a larger average 

number of total haplotypes (23), reflecting the expected higher genetic diversity 

compared to Europeans or Japanese. These results are consistent with the hypothesis 

of European and Asian populations arising from migration out of Africa (36-38).

Extrapolation from an estimate of 30,000 genes (39, 40) in the human genome 

leads us to suggest that the Japanese population contains a total of 130,000 frequent 

gene haplotypes, and that around 85,000 htSNPs may be required to distinguish these 

on an individual gene basis. In the present study, we have identified about 35% of the 

haplotypes and the htSNPs.  We can also estimate that the Japanese population will 

contain at least 300,000 gene haplotypes with frequency 0.01-0.05 based on SNPs 

with minor allele frequencies > 0.05, and that additional 60,000 htSNPs will be 

required to distinguish these. However, the number of haplotypes in this frequency 

range would be much larger if SNPs with minor allele frequency 0.01-0.05 were 

included.  At present, it is not possible to have a systematic survey of such variants 

because they are under-represented in databases. 

A detailed analysis of LD patterns revealed that disequilibrium was stronger 

between exonic variants within the same gene compared to other combinations of 

SNPs (e.g. intronic or intergenic SNPs). This was most evident when examining pairs 

of SNPs separated by 5 kb or more, where LD is generally modest. For example, 

55% of within-gene exonic SNP pairs were in complete or nearly complete LD 

compared to 22% of other SNP pairs in this separation range. In this comparison, 

most of the intragenic exonic pairs consist of SNPs from different exons, showing that 

the observed patterns are related to the whole gene rather than to variants within the 
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same exon. The differences in LD patterns were statistically significant after taking 

into account allele frequencies, separation distances, and the relationship of LD to 

recombination rates.

A number of previous studies have reported higher than expected LD in 

specific genes that were examined because of a priori evidence that they contained a 

selected variant (41, 42).  However, to our knowledge, our results provide the first 

evidence of a widespread pattern of high LD specifically between intragenic exonic 

SNPs. High LD within a gene may arise due to hitchhiking, in which positive 

selection for a specific variant increases the frequency of neutral SNPs on the same 

haplotype (41, 42).  High intragenic LD could also be due to non-random distribution 

of recombination events if, for example, recombination hotspots reside preferentially 

outside of genes. However, neither of these explanations would appear to account for 

a pattern of high LD specifically between intragenic exonic SNP pairs compared to 

other intragenic SNP pairs, such as observed in the 601 genes with widely separated 

exonic variants from our dataset. A possible explanation would be selection acting to 

maintain particular combinations of exonic SNPs. Irrespective of the interpretation 

given, it would now be of great interest to examine the same genes in other 

populations to compare LD patterns.

Across the genome, LD was highest in regions in which the recombination 

frequency per physical distance as estimated from the meiotic map was low, and in 

centromeric regions where recombination frequency per physical distance is also 

generally reduced. This is expected because LD is partially a reflection of historical 

recombination events. However, we found that the correlation between LD and 

recombination varies considerably for different chromosomes or chromosome arms.

In the most extreme instances, recombination rate accounts for 72% of the variability 
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in LD on chromosome 20p but less than 2% on chromosome 7p. Some chromosome 

arms (chromosomes 7p and 8q) did not conform to the overall tendency for greater 

LD in centromeric regions. In addition, the chromosome 6p (28 Mb - 35 Mb) region, 

containing MHC genes but also many others, was shown to have a much more 

complex patterns of LD than other regions in our map, suggesting that unique factors 

contribute to maintaining LD here.

It is of interest to determine if similar patterns of LD variability will be found 

in other populations, as this is an important issue for understanding the origin of 

haplotype patterns and for the design of trans-ethnic disease mapping studies.

Published LD maps on Caucasians based on a similar density of SNPs are available 

for two chromosomes, 19 and 22 (13, 15).  Although formal comparison is difficult 

because of differences in the choice of markers, visual inspection shows a high degree 

of global resemblance in the gross patterns of LD in the two populations (Figure 4C).

For example, both exhibit regions of extended high LD around 19 Mb - 23 Mb on 

chromosome 19 and 39 Mb - 41 Mb on chromosome 22. Variation in recombination 

accounted for a similar proportion of variance of LD in the Japanese and Caucasian 

samples on these chromosomes. Additional comparative studies of these and other 

chromosomes, particularly those for which we found a lower correlation between LD 

and recombination, are required to determine the degree of LD conservation between 

Japanese and Caucasian populations.
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MATERIALS AND METHODS

DNA samples, marker selection and genotyping   Written informed consent was 

provided by all participants in the genotyping study following procedures approved 

by the Ethical Committee at SNP Research Center, RIKEN, Tokyo. Genomic DNAs 

were prepared from white blood cells by standard methods. Markers were selected 

from the database at http://snp.ims.u-tokyo.ac.jp. Multiplexed amplification and 

genotyping were performed as described (23).

Data review and quality check Of the 80,788 original markers, we excluded 3,612

markers that could not be aligned uniquely to finished sequences in build33 (April 

2003) of the human genomic sequence from National Center for Biotechnology 

Information, and 2 that were not polymorphic. Next, we considered a SNP to be 

validated only if the genotype data showed no significant deviation from Hardy-

Weinberg equilibrium (p>0.01).  The Hardy-Weinberg criteria led to elimination of 

2,332 markers. Although this will include a number of markers that have exceeded 

the critical limit by chance, in many instances Hardy-Weinberg deviations were found 

to be due to technical issues (e.g. neighbouring SNPs causing imbalance of the 

polymerase chain reaction (PCR) products or affecting the genotyping assay).

Allele frequency comparisons SNPs were classified as non-synonymous exonic 

variants, synonymous exonic variants and non-exonic variants and categorised by 

minor allele frequency <0.05 or otherwise.  To account for possible effects of 

sequence quality towards the extremities of sequenced fragments, which could lead to 

bias against detection of rare polymorphisms in these regions, we also classified the 
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SNPs by distance from sequencing primers (<80 bp, 80 bp - 270 bp, >270 bp). 

Although global differences of minor allele frequencies were detected between the 

distance categories, the frequencies were not correlated with distance within each 

category. Three-way contingency table analysis was performed using log-linear 

models, and the significance of the interaction term for SNP category/frequency is 

reported with the inclusion of the other second-order interaction terms included under 

the null and alternative hypotheses.

LD calculations and haplotypes   We calculated |D’| and r2 using standard methods 

(43, 44).  Moving averages of |D’| were calculated in sliding windows of length 1 Mb

using all markers within 500 kb of each SNP within the window. To estimate 

recombination rate by LD of our data for comparison, we used a decay model for 

fitting: D’= (1-r)n D0’, where n is the number of generation since D’= D0’, and r is 

recombination fraction between two loci. Generation times ranging from 550-1250 

were applied, and the conclusions were found to be unaffected by the choice. For 

estimating haplotypes we applied the program SNPHAP obtained from http://www-

gene.cimr.cam.ac.uk/clayton/software, except that for reanalysis of the Caucasian 

chromosome 19 data (15) in which haplotypes were reconstructed using the programs 

Merlin (45) and Fugue (obtained from G. R. Abecasis). 

Assessment of LD differences We assessed LD differences between intragenic 

exonic pairs of SNPs and other pairs using the non-parametric Wilcoxon signed rank 

test for |D’| and r2, and logistic regression with the outcome variable |D’|>0.9. We 

selected the most widely spaced exonic SNPs with minor allele frequencies >0.2 for 

these tests.  The exonic pairs were matched to the closest other SNP pair (excluding 
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other intragenic exonic pairs) that had similar separation distance, allele frequencies, 

and associated recombination. When a matched pair could not be found on the same 

chromosome, a pair meeting the other matching criteria was selected from a different 

chromosome.  P-values using the normal approximation for the Wilcoxon signed rank 

test statistic were found to be conservative in simulations involving 50,000 replicates 

in which SNP pairs with similar characteristics to these intragenic exonic pairs were 

selected randomly from all pairs and matched as above. Continuous variables that 

were included in the assessment outcome frequencies in the logistic regression were: 

the average minor allele frequencies for the SNPs in the pair, the physical distance 

between the pair, and the recombination rate assigned to the region using the 

microsatellite marker map.

LD complexity index   We defined LD complexity based on combinations of 3 SNPs 

where: a) LD between flanking markers is high, specifically 95% upper confidence 

limit for |D’| estimate > 0.98 and 95% lower confidence limit for |D’| estimate > 0.7; 

b) LD between the interior marker and the flanking markers is low, specifically with 

95% upper confidence limit < 0.9 in both instances.  The complexity index was

calculated as the frequency within windows of 1 Mb length of triplets meeting the 

criteria in a) and b) amongst all triplets that met the criteria in a).
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LEGENDS TO FIGURES

Figure 1. Distribution of genes, SNPs and LD.  LD was evaluated by calculating 

average pairwise |D’| within sliding windows of 2 Mb length.  To alleviate effects of 

low allele frequencies on |D’|, we made these calculations twice, first, with the 65,080 

SNPs having minor allele frequency > 0.05 and, second, with the 42,116 SNPs having 

minor allele frequency> 0.2.  The results of the two calculations were similar.  Black 

lines: sliding window plots of |D’| coefficients for SNPs with minor allele frequency > 

0.2; dashed lines indicate segments where SNP density was judged to insufficient for 

these calculation. Green lines: Meiotic recombination rates estimated from the 

microsatellite marker map (27).  Blue squares: regions of high LD with the length of 

the region represented by height at which the square is placed.  Red triangles: 

normalized frequency of low LD segments.  The values of |D’|, recombination rates, 

regions of high LD, and normalized frequency of low LD segments range from (0, 

1.0), (0, 3 cM/Mb), (0, 500 kb), and (0, 0.5), respectively.   The sections below the 

LD graph show the number of SNPs and genes per sliding window, respectively.

Figure 2.   Allele frequencies and pairwise linkage disequilibrium.  (A) The observed 

distributions of minor allele frequencies of all exonic (black bar), non-synonymous 

(purple bar), synonymous (yellow bar) and non-exonic SNPs (white bar).  (B)  LD as 

a function of separation distance in the range 5 kb - 200 kb for SNPs with minor allele 

frequencies >0.2. The plot shows a moving average of the frequency of |D’|>0.9 for 

within gene exonic SNP pairs (red line), between gene exonic SNP pairs (green line) 

and other SNP pairs (blue line).
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Figure 3.  Characteristics of haplotypes and haplotype tag SNPs in gene.  (A) 

Average number (red line) and 90% limit (green line) of haplotypes with frequencies 

> 0.05 and average number (blue line) and 90% limit (purple line) of haplotypes with 

frequencies > 0.01 per gene as a function of the number of SNPs in gene.  (B) 

Average number of haplotypes per gene frequency > 0.05 as a function of the distance 

spanned by the SNPs for all genes (red line) and genes with 6 or more SNP (green 

line). (C) Average number (red line) and 90% limit (green line) of haplotype tag 

SNPs for haplotypes with frequencies > 0.05 and average number (blue line) and 90% 

limit (purple line) of haplotype tag SNPs for haplotypes with frequencies > 0.01 per 

gene according to the number of SNPs in gene.

Figure 4.  Comparison of LD patterns.  (A) Average |D’| within telomeric and 

centromeric region on each chromosome arm.  (B) Comparison of LD complexity 

index around the MHC region with other regions of the genome.  (C) Comparison of 

LD patterns in Japanese (solid lines) and Caucasians (broken lines) for chromosomes 

19 and 22 including all SNPs with minor allele frequency > 0.05.
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Table 1.   LD patterns for SNP pairs in 601 genes compared to neighbouring 

SNP pairs

All SNPs in 601 selected genes and control pairs
Distance range Type of pair LD range (|D’|)

0-0.10 0.10-0.90 0.90-1.0
0-5000 Exonic within 3 44 561

% 0.4% 7.2% 92.2%

Others within 77 846 6650
% 1.0% 11.1% 87.8%

Neighbours 24 290 3426
% 0.6% 7.7% 91.6%

5000-10000 Exonic within 15 99 285
% 3.7% 24.8% 71.4%

Others within 116 1433 3578
% 2.2% 27.9% 69.7%

Neighbours 23 379 933
% 1.7% 28.3% 69.8%

10000-20000 Exonic within 10 135 314
% 2.1% 29.4% 68.4%

Others within 383 3148 4279
% 4.9% 40.3% 54.7%

Neighbours 65 614 922
% 4.0% 38.3% 57.5%

20000-30000 Exonic within 14 91 120
% 6.2% 40.4% 53.3%

Others within 464 2993 2178
% 8.2% 53.1% 38.6%

Neighbours 111 618 469
% 9.2% 51.5% 39.1%

30000-50000 Exonic within 18 104 117
% 7.5% 43.5% 48.9%

Others within 1033 4529 1817
% 13.9% 61.3% 24.6%

Neighbours 236 947 320
% 15.7% 63.0% 21.2%

50000-100000 Exonic within 40 117 35
% 20.8% 60.9% 18.2%

Others within 2763 6847 934
% 26.2% 64.9% 8.8%

Neighbours 393 1300 184
% 20.9% 69.2% 9.8%

100000-200000 Exonic within 38 41 15
% 40.4% 43.6% 15.9%

Others within 4098 4358 260
% 47.0% 50.0% 2.9%

Neighbours 564 717 28
% 43.0% 54.7% 2.1%



30

Table 2.   Correlation between LD and meiotic recombination rates on different 

autosomal chromosomes and chromosome arms

Chr. per chromosome p arm q arm

r2 windows sd(m) sd(e) r2 windows sd(m) sd(e) r2 windows sd(m) sd(e)

1 0.21 376 0.22 0.26 0.17 199 0.20 0.26 0.24 175 0.24 0.26

2 0.31 374 0.21 0.31 0.29 143 0.17 0.33 0.29 230 0.23 0.29

3 0.34 285 0.28 0.31 0.64 129 0.32 0.33 0.10 156 0.25 0.30

4 0.28 230 0.23 0.31 0.31 60 0.28 0.33 0.23 169 0.19 0.29

5 0.45 244 0.25 0.34 0.19 55 0.21 0.30 0.46 191 0.25 0.34

6 0.31 280 0.27 0.31 0.57 111 0.29 0.35 0.16 168 0.26 0.28

7 0.25 259 0.23 0.32 0.01 103 0.12 0.27 0.30 154 0.27 0.32

8 0.24 141 0.19 0.27 0.31 71 0.18 0.29 0.12 73 0.18 0.23

9 0.29 167 0.18 0.32 0.39 56 0.19 0.28 0.22 109 0.18 0.34

10 0.25 201 0.26 0.31 0.09 61 0.22 0.32 0.21 135 0.26 0.29

11 0.26 199 0.32 0.33 0.47 67 0.34 0.38 0.11 132 0.29 0.27

12 0.24 193 0.23 0.29 0.09 60 0.23 0.23 0.23 133 0.23 0.28

13 0.14 99 0.19 0.31 - - - - 0.14 99 0.19 0.31

14 0.21 125 0.22 0.24 - - - - 0.21 125 0.22 0.24

15 0.44 135 0.28 0.36 - - - - 0.44 135 0.28 0.36

16 0.47 125 0.24 0.32 0.42 57 0.18 0.32 0.56 69 0.28 0.33

17 0.42 141 0.28 0.31 0.45 42 0.31 0.29 0.38 96 0.25 0.31

18 0.49 96 0.27 0.33 0.45 26 0.27 0.26 0.34 69 0.23 0.31

19 0.21 101 0.28 0.22 0.17 44 0.31 0.22 0.28 57 0.25 0.23

20 0.68 105 0.26 0.33 0.73 49 0.22 0.28 0.57 55 0.24 0.28

21 0.32 46 0.14 0.24 - - - - 0.32 46 0.14 0.24

22 0.55 64 0.25 0.31 - - - - 0.55 64 0.25 0.31

r   correlation coefficient calculated for SNPs with minor allele frequency > 0.05

sd(m)   standard deviation of log10(measured meiotic recombination rate)

sd(e)   standard deviation of log10(recombination rate expected by LD)
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4.
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ABBREVIATIONS

SNP single nucleotide polymorphism

LD linkage disequilibrium

MHC major histocompatibility complex

UTR untranslated  region

htSNP haplotype tag SNP

CI complexity index

PCR polymerase chain reaction
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