

Title	Actions of symplectic groups on a product of quaternion projective spaces
Author(s)	Uchida, Fuichi
Citation	Osaka Journal of Mathematics. 1984, 21(4), p. 773-787
Version Type	VoR
URL	https://doi.org/10.18910/9501
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Uchida, F.
Osaka J. Math.
21 (1984), 773-787

ACTIONS OF SYMPLECTIC GROUPS ON A PRODUCT OF QUATERNION PROJECTIVE SPACES

Dedicated to Professor Minoru Nakaoka on his 60th birthday

FUICHI UCHIDA

(Received November 7, 1983)

0. Introduction

We shall study smooth actions of symplectic group $Sp(n)$ on a closed orientable manifold X such that $X \sim \mathbf{P}_a(\mathbf{H}) \times \mathbf{P}_b(\mathbf{H})$, under the conditions: $a+b \leq 2n-2$ and $n \geq 7$. Our result is stated in §2 and proved in §5. Typical examples are given in §1. Similar result on smooth actions of special unitary group $SU(n)$ on a closed orientable manifold X such that $X \sim \mathbf{P}_a(\mathbf{C}) \times \mathbf{P}_b(\mathbf{C})$ is stated in the final section.

Throughout this paper, let $H^*(\)$ denote the singular cohomology theory with rational coefficients, and let $\mathbf{P}_n(\mathbf{H})$, $\mathbf{P}_n(\mathbf{C})$ and $\mathbf{P}_n(\mathbf{R})$ denote the quaternion, complex and real projective n -space, respectively. By $X \sim X'$, we mean that $H^*(X) \cong H^*(X')$ as graded algebras.

1. Typical examples

1.1. We regard S^{4k-1} as the unit sphere of the quaternion k -space H^k with the right scalar multiplication. Let Y be a compact $Sp(1)$ manifold. By the diagonal action, $Sp(1)$ acts freely on the product manifold $S^{4k-1} \times Y$. Here we consider the cohomology ring of the orbit manifold $(S^{4k-1} \times Y)/Sp(1)$ for the case $Y \sim \mathbf{P}_b(\mathbf{H})$.

Consider the fibration: $Y \rightarrow (S^{4k-1} \times Y)/Sp(1) \rightarrow \mathbf{P}_{k-1}(\mathbf{H})$. By the Leray-Hirsch theorem, $H^*((S^{4k-1} \times Y)/Sp(1))$ is freely generated by 1, u , u^2 , ..., u^b as an $H^*(\mathbf{P}_{k-1}(\mathbf{H}))$ module for an element $u \in H^4((S^{4k-1} \times Y)/Sp(1))$. If u can be so chosen as $u^{b+1} = 0$, then we see that $(S^{4k-1} \times Y)/Sp(1) \sim \mathbf{P}_{k-1}(\mathbf{H}) \times \mathbf{P}_b(\mathbf{H})$.

Lemma 1.1. *Denote by F , the fixed point set of the restricted $U(1)$ action on Y . If $F \sim \mathbf{P}_b(\mathbf{C})$, then $(S^{4k-1} \times Y)/Sp(1) \sim \mathbf{P}_{k-1}(\mathbf{H}) \times \mathbf{P}_b(\mathbf{H})$.*

Proof. Consider the fibration: $Y \rightarrow (S^{4k-1} \times Y)/U(1) \rightarrow \mathbf{P}_{2k-1}(\mathbf{C})$. We see that $H^*((S^{4k-1} \times Y)/U(1))$ is freely generated by 1, v , v^2 , ..., v^b as an $H^*(\mathbf{P}_{2k-1}(\mathbf{C}))$ module for an element $v \in H^4((S^{4k-1} \times Y)/U(1))$. We shall show first that

v can be so chosen as $v^{b+1}=0$. We regard S^∞ as the inductive limit of S^{4N-1} on which $U(1)$ acts naturally. Consider the following commutative diagram:

$$\begin{array}{ccc} H^*((S^\infty \times Y)/U(1)) & \xrightarrow{j^*} & H^*((S^{4k-1} \times Y)/U(1)) \\ \downarrow i_\infty^* & & \downarrow i^* \\ H^*(P_\infty(C) \times F) & \xrightarrow{j_F^*} & H^*(P_{2k-1}(C) \times F) \end{array}$$

where i, i_∞, j, j_F are natural inclusions. Since $H^{\text{odd}}(Y)=0$, we see that i_∞^* is injective [4] and j^* is surjective. Let v_∞ be an element of $H^4((S^\infty \times Y)/U(1))$ such that $j^*(v_\infty)=v$. Let x be the canonical generator of $H^2(P_\infty(C)) \cong H^2(P_{2k-1}(C))$. Then we can express

$$i_\infty^*(v_\infty) = x^2 \times f_0 + x \times f_1 + 1 \times f_2$$

where $f_r \in H^{2r}(F)$ for $r=0, 1, 2$. Since $F \sim P_b(C)$, we see that there are rational numbers a_0, a_1, a_2 and a non-zero element $y \in H^2(F)$, such that $f_r = a_r y^r$ for $r=0, 1, 2$. Then we obtain

$$i_\infty^*(v_\infty - a_0 x^2)^{b+1} = (x \times f_1 + 1 \times f_2)^{b+1} = 0.$$

Since i_∞^* is injective, we obtain $(v_\infty - a_0 x^2)^{b+1}=0$. Put $v_1 = j^*(v_\infty - a_0 x^2)$. Then $v_1^{b+1}=0$, and hence

$$H^*((S^{4k-1} \times Y)/U(1)) \cong \mathbf{Q}[x, v_1]/(x^{2k}, v_1^{b+1}); \deg x=2, \deg v_1=4.$$

Consider next the following commutative diagram:

$$\begin{array}{ccccc} Sp(1)/U(1) & \rightarrow & (S^{4k-1} \times Y)/U(1) & \xrightarrow{p} & (S^{4k-1} \times Y)/Sp(1) \\ \downarrow & & \downarrow & & \downarrow \\ Sp(1)/U(1) & \longrightarrow & P_{2k-1}(C) & \xrightarrow{q} & P_{2k-1}(H). \end{array}$$

Let $t \in H^4(P_{k-1}(H))$ be the canonical generator such that $q^*(t)=x^2$. There exist rational numbers λ, μ such that $p^*(u)=\lambda v_1 + \mu x^2$. Put $u_1=u-\mu t$. Then $p^*(u_1)=\lambda v_1$, and hence $p^*(u_1)^{b+1}=0$. Since the homomorphism $p^*: H^*((S^{4k-1} \times Y)/Sp(1)) \rightarrow H^*((S^{4k-1} \times Y)/U(1))$ is injective, we obtain $u_1^{b+1}=0$, and hence

$$H^*((S^{4k-1} \times Y)/Sp(1)) \cong \mathbf{Q}[t, u_1]/(t^k, u_1^{b+1}); \deg t=\deg u_1=4.$$

Thus we obtain $(S^{4k-1} \times Y)/Sp(1) \sim P_{k-1}(H) \times P_b(H)$. q.e.d.

1.2. We give here examples of a closed orientable $Sp(1)$ manifold Y such that $Y \sim P_b(H)$ and $F \sim P_b(C)$, where F denotes the fixed point set of the restricted $U(1)$ action on Y .

Consider the $Sp(1)$ action on $P_b(H)=S^{4b+3}/Sp(1)$ by the left scalar multiplication. Then the fixed point set of the restricted $U(1)$ action is naturally

diffeomorphic to $\mathbf{P}_b(\mathbf{C})$, the fixed point set of the $\mathbf{Sp}(1)$ action is naturally diffeomorphic to $\mathbf{P}_b(\mathbf{R})$, and the isotropy representation at each fixed point of the $\mathbf{Sp}(1)$ action is equivalent to $b\eta \oplus \theta^b$, where η denotes the canonical 3-dimensional real representation of $\mathbf{Sp}(1)$, $b\eta$ denotes the b -fold direct sum of η , and θ^b is the trivial representation of degree b .

Let D^{3b} denote the unit disk of the representation space $b\eta$. Let W be a $(b+1)$ -dimensional compact orientable smooth manifold which is rationally acyclic. Then the boundary $\partial(D^{3b} \times W)$ is a $4b$ -dimensional compact orientable smooth $\mathbf{Sp}(1)$ manifold which is a rational homology sphere, and the isotropy representation at each fixed point of the $\mathbf{Sp}(1)$ action is equivalent to $b\eta \oplus \theta^b$. Hence we can construct an equivariant connected sum

$$Y(W) = \mathbf{P}_b(\mathbf{H}) \# \partial(D^{3b} \times W).$$

Denote by $F(W)$ the fixed point set of the restricted $\mathbf{U}(1)$ action on $Y(W)$. Then $F(W)$ is naturally diffeomorphic to $\mathbf{P}_b(\mathbf{C}) \# \partial(D^b \times W)$. It is easy to see that

$$Y(W) \sim \mathbf{P}_b(\mathbf{H}), \quad F(W) \sim \mathbf{P}_b(\mathbf{C}).$$

1.3. Let ζ be a quaternion k -plane bundle and ζ_C its complexification under the restriction of the field. Its i -th symplectic Pontrjagin class $e_i(\zeta)$ is by definition [2, §9.6]

$$e_i(\zeta) = (-1)^i c_{2i}(\zeta_C),$$

where $c_{2i}(\zeta_C)$ is the $2i$ -th Chern class. Denote by $\mathbf{P}(\zeta)$ the total space of the associated quaternion projective space bundle. Let $\hat{\zeta}$ be the canonical quaternion line bundle over $\mathbf{P}(\zeta)$ and put $t = e_1(\hat{\zeta})$. It is known that there is an isomorphism:

$$(1.3) \quad H^*(\mathbf{P}(\zeta)) \cong H^*(B)[t]/(\sum_{i=0}^k e_{k-i}(\zeta)t^i),$$

where B is the base space of the bundle ζ (cf. [3, §3]).

Let ξ be the canonical quaternion line bundle over $\mathbf{P}_b(\mathbf{H})$ and ξ^* its dual line bundle. Let W be a $4b$ -dimensional closed orientable smooth manifold and let $f: W \rightarrow \mathbf{P}_b(\mathbf{H})$ be a smooth mapping such that $f^*: H^*(\mathbf{P}_b(\mathbf{H})) \cong H^*(W)$. Let c be a non-negative integer such that $b \leq c+1$. Then, there is a quaternion $(c+1)$ -plane bundle ζ over W such that

$$(n+c+1)f^*\xi^* \cong \zeta \oplus \theta_H^n,$$

where θ_H^n is a trivial quaternion n -plane bundle. Put $X = \mathbf{P}((n+c+1)f^*\xi^*)$. Since X is diffeomorphic to $\partial(D(\zeta) \times D^{4n})/\mathbf{Sp}(1)$, we can act $\mathbf{Sp}(n)$ on X in order that the fixed point set is diffeomorphic to $\mathbf{P}(\zeta)$. We see that by (1.3)

$$H^*(X) \cong \mathbf{Q}[u, v]/(u^{n+c+1}, v^{b+1}),$$

$$H^*(\mathbf{P}(\zeta)) \cong \mathbf{Q}[t, v]/(v^{b+1}, \sum_{i=0}^{c+1} (-1)^i \binom{n+c+1}{i} t^{c+1-i} v^i),$$

where $v=f^*e_1(\xi)$, $t=e_1(\zeta)$ and $u+v$ is the first symplectic Pontrjagin class of the canonical line bundle over $\mathbf{P}((n+c+1)f^*\xi^*)$.

2. Classification theorems

We shall prove the following results in this paper.

Theorem 2.1. *Let X be a closed orientable manifold on which $\mathbf{Sp}(n)$ acts smoothly and non-trivially. Suppose $X \sim \mathbf{P}_a(\mathbf{H}) \times \mathbf{P}_b(\mathbf{H})$; $a \geq b \geq 1$, $a+b \leq 2n-2$ and $n \geq 7$. Then there are four cases:*

(0) *$a=n-1$ and $X \cong \mathbf{P}_{n-1}(\mathbf{H}) \times Y_0$, where Y_0 is a closed orientable manifold such that $Y_0 \sim \mathbf{P}_b(\mathbf{H})$, and $\mathbf{Sp}(n)$ acts naturally on $\mathbf{P}_{n-1}(\mathbf{H})$ and trivially on Y_0 ,*

(i) *$a=n-1$ and $X \cong (S^{4n-1} \times Y_1)/\mathbf{Sp}(1)$, where Y_1 is a closed orientable $\mathbf{Sp}(1)$ manifold such that $Y_1 \sim \mathbf{P}_b(\mathbf{H})$, $\mathbf{Sp}(1)$ acts as right scalar multiplication on S^{4n-1} , the unit sphere of \mathbf{H}^n , and $\mathbf{Sp}(n)$ acts naturally on S^{4n-1} and trivially on Y_1 . In addition, the fixed point set of the restricted $U(1)$ action on Y_1 is $\sim \mathbf{P}_b(\mathbf{C})$,*

(ii) *$a=b=n-1$ and $X \cong \mathbf{P}_{n-1}(\mathbf{H}) \times \mathbf{P}_{n-1}(\mathbf{H})$ with the diagonal $\mathbf{Sp}(n)$ action,*

(iii) *$a \geq n$ and $X \cong \partial(D^{4n} \times Y_2)/\mathbf{Sp}(1)$, where Y_2 is a compact orientable $\mathbf{Sp}(1)$ manifold such that $\dim Y_2 = 4(a+b+1-n)$ and $Y_2 \sim \mathbf{P}_b(\mathbf{H})$, $\mathbf{Sp}(1)$ acts as right scalar multiplication on D^{4n} , the unit disk of \mathbf{H}^n , and $\mathbf{Sp}(n)$ acts naturally on D^{4n} and trivially on Y_2 . In addition, the $\mathbf{Sp}(1)$ action on the boundary ∂Y_2 is free and the fixed point set of the restricted $U(1)$ action on Y_2 is $\sim \mathbf{P}_b(\mathbf{C})$ or $\sim \mathbf{P}_b(\mathbf{H})$.*

REMARK. By $X \cong X'$ we mean that X is equivariantly diffeomorphic to X' as $\mathbf{Sp}(n)$ manifolds. In the case (iii), the fixed point set of the $\mathbf{Sp}(n)$ action on X is naturally diffeomorphic to the orbit manifold $\partial Y_2/\mathbf{Sp}(1)$.

Theorem 2.2. *In the case (iii) of Theorem 2.1, the cohomology ring $H^*(\partial Y_2/\mathbf{Sp}(1))$ is isomorphic to one of the following:*

$$(1) \quad \mathbf{Q}[x, y]/(x^{a+1-n}, y^{b+1}),$$

$$(2) \quad \mathbf{Q}[x, y]/(y^{b+1}, \sum_{i=0}^b (-1)^i \binom{a+1}{i} x^{a+1-n-i} y^i); \quad b \leq a+1-n,$$

where $\deg x = \deg y = 4$, and x is the Euler class of the principal $\mathbf{Sp}(1)$ bundle $\partial Y_2 \rightarrow \partial Y_2/\mathbf{Sp}(1)$.

REMARK. The $\mathbf{Sp}(n)$ action given in §1.3 is an example of the case (iii)-(2). Lemma 1.1 assures that a converse of Theorem 2.1 (i) is true.

3. Cohomology of certain homogeneous spaces

Here we consider the cohomology of $V_{n,2}/G = \mathbf{Sp}(n)/\mathbf{Sp}(n-2) \times G$ for certain closed subgroups G of $\mathbf{Sp}(2)$. Let ξ be the canonical quaternion line bundle over $\mathbf{P}_{n-1}(\mathbf{H})$ and ζ its orthogonal complement, that is, ζ is a quaternion $(n-1)$ -plane bundle over $\mathbf{P}_{n-1}(\mathbf{H})$ such that its total space is

$$E(\zeta) = \{(u, [v]) \in \mathbf{H}^n \times \mathbf{P}_{n-1}(\mathbf{H}) : u \perp v\}.$$

It is easy to see that the total space $\mathbf{P}(\zeta)$ of the associated quaternion projective space bundle is naturally diffeomorphic to $V_{n,2}/\mathbf{Sp}(1) \times \mathbf{Sp}(1)$. Since $\xi \oplus \zeta$ is a trivial bundle, we obtain $e_k(\zeta) = (-1)^k e_1(\xi)^k$. By definition, $\mathbf{P}(\zeta)$ is naturally identified with a subspace of $\mathbf{P}_{n-1}(\mathbf{H}) \times \mathbf{P}_{n-1}(\mathbf{H})$. Let $i: \mathbf{P}(\zeta) \rightarrow \mathbf{P}_{n-1}(\mathbf{H}) \times \mathbf{P}_{n-1}(\mathbf{H})$ be the inclusion. Put $\xi = i^*(\xi^* \times 1)$. Then by (1.3) there is an isomorphism:

$$(3.1) \quad H^*(V_{n,2}/\mathbf{Sp}(1) \times \mathbf{Sp}(1)) \cong \mathbf{Q}[x, y]/(x^n, \sum_i x^i y^{n-1-i}),$$

$\deg x = \deg y = 4$, by the identification $x = i^*(1 \times e_1(\xi))$ and $y = i^*(e_1(\xi) \times 1)$.

Let $p: V_{n,2}/\mathbf{Sp}(1) \times \mathbf{Sp}(1) \rightarrow V_{n,2}/\mathbf{Sp}(2)$ be the natural projection and ξ_2 the standard quaternion 2-plane bundle over $V_{n,2}/\mathbf{Sp}(2)$.

Lemma 3.2. *The graded algebra $H^*(V_{n,2}/\mathbf{Sp}(2))$ is generated by $e_1(\xi_2)$, $e_2(\xi_2)$. The algebra is isomorphic to the subalgebra of $\mathbf{Q}[x, y]/(x^n, \sum_i x^i y^{n-1-i})$, consisting of symmetric polynomials.*

Proof. Since the fibration p is a 4-sphere bundle and $H^{\text{odd}}(V_{n,2}/\mathbf{Sp}(2)) = 0$ (cf. [1, §26]), the homomorphism $p^*: H^*(V_{n,2}/\mathbf{Sp}(2)) \rightarrow H^*(V_{n,2}/\mathbf{Sp}(1) \times \mathbf{Sp}(1))$ is injective. Since $p^*(\xi_2) = i^*(\xi \times \xi)$, we obtain

$$\begin{aligned} p^* e_1(\xi_2) &= i^* e_1(\xi \times \xi) = x + y, \\ p^* e_2(\xi_2) &= i^* e_2(\xi \times \xi) = xy. \end{aligned}$$

Then the desired result is obtained by the Leray-Hirsch theorem. q.e.d.

Corollary 3.3. $e_1(\xi_2)^{2n-4} \neq 0$ and $e_1(\xi_2)^{2n-3} = 0$.

Proof. Put $I = (x^n, \sum_i x^i y^{n-1-i})$. It is easy to see that $y^n \in I$. In the quotient ring $\mathbf{Q}[x, y]/I$, we obtain

$$\begin{aligned} (x+y)^{2n-4} &= \binom{2n-4}{n-1} x^{n-1} y^{n-3} + \binom{2n-4}{n-2} x^{n-2} y^{n-2} + \binom{2n-4}{n-1} x^{n-3} y^{n-1} \\ &= \left\{ \binom{2n-4}{n-2} - \binom{2n-4}{n-1} \right\} x^{n-2} y^{n-2}, \end{aligned}$$

and hence $e_1(\xi_2)^{2n-4} \neq 0$. We obtain $e_1(\xi_2)^{2n-3} = 0$ similarly. q.e.d.

4. Preliminary results

First we state the following two lemmas which are proved by a standard

method (cf. [5, §5]).

Lemma 4.1. *Suppose $n \geq 7$. Let G be a closed connected proper subgroup of $\mathbf{Sp}(n)$ such that $\dim \mathbf{Sp}(n)/G < 8n$. Then G coincides with $\mathbf{Sp}(n-i) \times K$ ($i=1, 2, 3$) up to an inner automorphism of $\mathbf{Sp}(n)$, where K is a closed connected subgroup of $\mathbf{Sp}(i)$.*

Lemma 4.2. *Suppose $r \geq 5$ and $k < 8r$. Then an orthogonal non-trivial representation of $\mathbf{Sp}(r)$ of degree k is equivalent to $(\nu_r)_{\mathbf{R}} \oplus \theta^{k-4r}$. Here $(\nu_r)_{\mathbf{R}}: \mathbf{Sp}(r) \rightarrow \mathbf{O}(4r)$ is the canonical inclusion, and θ^t is the trivial representation of degree t .*

In the following, let X be a closed connected orientable manifold with a non-trivial smooth $\mathbf{Sp}(n)$ action, and suppose $n \geq 7$ and $\dim X < 8n$. Put

$$F_{(i)} = \{x \in X: \mathbf{Sp}(n-i) \subset \mathbf{Sp}(n)_x \subset \mathbf{Sp}(n-i) \times \mathbf{Sp}(i)\}$$

$$X_{(i)} = \mathbf{Sp}(n)F_{(i)} = \{gx: g \in \mathbf{Sp}(n), x \in F_{(i)}\}.$$

Here $\mathbf{Sp}(n)_x$ denotes the isotropy group at x . Then, by Lemma 4.1, we obtain $X = X_{(0)} \cup X_{(1)} \cup X_{(2)} \cup X_{(3)}$.

Proposition 4.3. *If $X_{(k)}$ is non-empty, then $X_{(i)}$ is empty for each $i \geq k+2$.*

Proof. Let us denote by $F(\mathbf{Sp}(n-j))$, $X_{(i)}$ the fixed point set of the restricted $\mathbf{Sp}(n-j)$ action on $X_{(i)}$. It is easy to see that the set is empty for each $j < i \leq n-i$. Suppose that $X_{(k)}$ is non-empty and fix $x \in F_{(k)}$. Let σ be the slice representation at x . Then the restriction $\sigma|_{\mathbf{Sp}(n-k)}$ is trivial or equivalent to $(\nu_{n-k})_{\mathbf{R}} \oplus \theta^t$ by Lemma 4.2. Anyhow, a principal isotropy group of the given action contains $\mathbf{Sp}(n-k-1)$, and hence $F(\mathbf{Sp}(n-k-1))$, $X_{(i)}$ is non-empty if so is $X_{(i)}$. q.e.d.

Proposition 4.4. *Suppose $X = X_{(k)} \cup X_{(k+1)}$. If $X_{(k)}$ and $X_{(k+1)}$ are non-empty, then the codimension of each connected component of $F_{(k)}$ in X is equal to $4(k+1)(n-k)$.*

Proof. Fix $x \in F_{(k)}$. Let σ and ρ denote the slice representation at x and the isotropy representation of the orbit $\mathbf{Sp}(n)x$, respectively. The restriction $\sigma|_{\mathbf{Sp}(n-k)}$ is equivalent to $(\nu_{n-k})_{\mathbf{R}} \oplus \theta^s$ by Lemma 4.2 and the assumption that $X_{(k+1)}$ is non-empty. On the other hand, $\rho|_{\mathbf{Sp}(n-k)}$ is equivalent to $k(\nu_{n-k})_{\mathbf{R}} \oplus \theta^t$ by considering adjoint representations. Hence $(\sigma \oplus \rho)|_{\mathbf{Sp}(n-k)}$ is equivalent to $(k+1)(\nu_{n-k})_{\mathbf{R}} \oplus \theta^{s+t}$. This shows that the codimension of $F_{(k)}$ at x is equal to $4(k+1)(n-k)$. q.e.d.

Corollary 4.5. *Suppose $X = X_{(2)} \cup X_{(3)}$. Then either $X_{(2)}$ or $X_{(3)}$ is empty.*

REMARK. $\dim \mathbf{Sp}(n)/\mathbf{Sp}(n-k) \times \mathbf{Sp}(k) = 4k(n-k)$ and $\chi(\mathbf{Sp}(n)/\mathbf{Sp}(n-k))$

$\times \mathbf{Sp}(k)) = \binom{n}{k}$, where $\chi(\)$ denotes the Euler characteristic, and $\binom{n}{k}$ denotes the binomial coefficient.

5. Proof of the classification theorems

Throughout this section, suppose that X is a closed orientable manifold with a non-trivial smooth $\mathbf{Sp}(n)$ action such that

$$(*) \quad H^*(X) = \mathbf{Q}[u, v]/(u^{a+1}, v^{b+1}); \deg u = \deg v = 4.$$

Moreover, suppose that $n \geq 7$, $1 \leq b \leq a$ and $a+b \leq 2n-2$. By arguments and notations in the preceding section, we see that $X = X_{(k)} \cup X_{(k+1)}$ for $k=0, 1, 2$.

5.1. We shall show first that $X \neq X_{(2)} \cup X_{(3)}$. Suppose $X = X_{(2)} \cup X_{(3)}$. Then $X = X_{(2)}$ or $X = X_{(3)}$ by Corollary 4.5. Looking at the Euler characteristic of X , we see that $X \neq X_{(3)}$.

Suppose $X = X_{(2)}$. Then $X = (V_{n,2} \times F_{(2)})/\mathbf{Sp}(2)$. Here we consider the following commutative diagram of natural projections:

$$\begin{array}{ccc} (V_{n,2} \times F_{(2)})/T & \xrightarrow{p_1} & V_{n,2}/T \\ \downarrow & & \downarrow q \\ X = (V_{n,2} \times F_{(2)})/\mathbf{Sp}(2) & \xrightarrow{p} & V_{n,2}/\mathbf{Sp}(2), \end{array}$$

where T is a maximal torus of $\mathbf{Sp}(2)$. Since $\chi(F_{(2)}) \neq 0$, we see that the restricted T action on $F_{(2)}$ has a fixed point, and hence the projection p_1 has a cross-section. Therefore $p_1^*: H^*(V_{n,2}/T) \rightarrow H^*((V_{n,2} \times F_{(2)})/T)$ is injective. On the other hand, $q^*: H^*(V_{n,2}/\mathbf{Sp}(2)) \rightarrow H^*(V_{n,2}/T)$ is injective, because $H^{\text{odd}}(V_{n,2}/\mathbf{Sp}(2)) = H^{\text{odd}}(\mathbf{Sp}(2)/T) = 0$ (cf. [1, §26]). Consequently, we see that $p^*: H^*(V_{n,2}/\mathbf{Sp}(2)) \rightarrow H^*(X)$ is injective. In particular, we obtain $a+b \geq 2n-4$. If $a+b = 2n-4$, then $X = V_{n,2}/\mathbf{Sp}(2)$. Because $\text{rank } H^4(X) = 2$ and $\text{rank } H^4(V_{n,2}/\mathbf{Sp}(2)) = 1$, we get a contradiction.

Suppose $a+b \geq 2n-3$, and put $p^*e_1(\xi_2) = \alpha u + \beta v$; $\alpha, \beta \in \mathbf{Q}$. Since $e_1(\xi_2)^{2n-3} = 0$ by Corollary 3.3, we obtain

$$0 = p^*e_1(\xi_2)^{a+b} = \binom{a+b}{a} (\alpha u)^a (\beta v)^b,$$

and hence $\alpha\beta = 0$. On the other hand, $e_1(\xi_2)^{2n-4} \neq 0$ by Corollary 3.3, and hence $p^*e_1(\xi_2)^{2n-4} \neq 0$. Thus we obtain $a = 2n-4$. Looking at the Euler characteristic of $F_{(2)}$, we get a contradiction.

5.2. We consider now the case $X = X_{(1)} \cup X_{(2)}$. Suppose that both $X_{(1)}$ and $X_{(2)}$ are non-empty. We see that $\text{codim } F_{(1)} = 8n-8$ by Proposition 4.4. Since $\dim X \leq 8n-8$, we obtain $\dim F_{(1)} = 0$ and $a+b = 2n-2$.

Fix $x \in F_{(1)}$. Since $X_{(2)}$ is non-empty, we see that the slice representation σ at x is equivalent to $\nu_{n-1} \otimes_H \nu_1^*$ or $(\nu_{n-1})_R \pi$ by Lemma 4.2, where π is a natural projection of $Sp(n-1) \times Sp(1)$ onto $Sp(n-1)$. Then the principal isotropy group is of the form $Sp(n-2) \times K$, where $K = \Delta Sp(1)$ (resp. $1 \times Sp(1)$) for $\sigma = \nu_{n-1} \otimes_H \nu_1^*$ (resp. $\sigma = (\nu_{n-1})_R \pi$). Here $\Delta Sp(1)$ (resp. $1 \times Sp(1)$) is a closed subgroup of $Sp(2)$ consisting of the matrices of the form $\begin{pmatrix} q & 0 \\ 0 & q \end{pmatrix}$ (resp. $\begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix}$). Anyhow, we see that the $Sp(n)$ action on X has a codimension one orbit, and hence X is a union of closed invariant tubular neighborhoods of just two non-principal orbits (cf. [6]). We already see that one of the non-principal orbits is $P_{n-1}(H)$. Looking at the Euler characteristic of X , we see that $a=b=n-1$ and another non-principal orbit is $V_{n,2}/Sp(1) \times Sp(1)$.

Suppose $K=1 \times Sp(1)$. Then the normalizer of the principal isotropy group is connected, and hence such an $Sp(n)$ manifold is unique up to equivariant diffeomorphism (cf. [6, §5.3]). On the other hand, the product manifold $P_{n-1}(H) \times P_{n-1}(H)$ with the diagonal $Sp(n)$ action is such one. Therefore X is equivariantly diffeomorphic to $P_{n-1}(H) \times P_{n-1}(H)$ with the diagonal $Sp(n)$ action.

Suppose next $K=\Delta Sp(1)$. Then the normalizer of the principal isotropy group has just two connected components, and its generator corresponds to the antipodal involution of the slice representation at a point of $V_{n,2}/Sp(1) \times Sp(1)$. Hence such an $Sp(n)$ manifold is unique up to equivariant diffeomorphism (cf. [6, §5.3]). Here we construct such one. Let ξ be the canonical quaternion line bundle over $P_{n-1}(H)$ and ζ its orthogonal complement (see §3). Then $Sp(n)$ acts naturally on the total space $E(\zeta)$ as the bundle mappings. Denote by θ_H^1 a trivial quaternion line bundle. We see that the $Sp(n)$ action on the total space $P(\zeta \oplus \theta_H^1)$ of the associated quaternion projective space bundle is the desired one. On the other hand, we see that by (1.3)

$$H^*(P(\zeta \oplus \theta_H^1)) \cong \mathbb{Q}[x, y]/(x^n, \sum_i x^i y^{n-i}); \deg x = \deg y = 4.$$

Hence the cohomology ring of $P(\zeta \oplus \theta_H^1)$ is not isomorphic to that of $P_{n-1}(H) \times P_{n-1}(H)$.

5.3. We consider next the case $X=X_{(0)} \cup X_{(1)}$ for $c < n$. We shall show first that $X_{(0)}$ is empty.

Suppose that $X_{(0)}$ is non-empty. Let U be an invariant closed tubular neighborhood of $X_{(0)}$ in X , and put $E=X-\text{int}U$. Put $W=E \cap F_{(1)}$. Then W is a compact connected orientable manifold with non-empty boundary ∂W , and $Sp(1)$ acts naturally on W . Since there is a natural diffeomorphism $E=(S^{4n-1} \times W)/Sp(1)$, we obtain

$$\dim W = 4(a+b+1-n) = 4k, \quad k \leq b \leq a < n.$$

Let $i: E \rightarrow X$ be the inclusion. Then $i^*: H^*(X) \rightarrow H^*(E)$ is an isomorphism

for each $t \leq 4n-2$, because the codimension of each connected component of $X_{(0)}$ is $4n$ by Lemma 4.2. By the Gysin sequence of the principal $\mathbf{Sp}(1)$ bundle $S^{4n-1} \times W \rightarrow E$ and the cohomology ring of X , we obtain $\text{rank } H^{4k}(W) - \text{rank } H^{4k-1}(W) = 1$. On the other hand, we see that $H^{4k}(W) \cong H_{4k}(W) = 0$ and $\text{rank } H^{4k-1}(W) \geq 0$; this is a contradiction. Thus we see that $X_{(0)}$ is empty.

Consequently, we obtain $X = X_{(1)} = (S^{4n-1} \times F_{(1)}) / \mathbf{Sp}(1)$. Put $Y = F_{(1)}$. We see that

$$\dim Y = 4(a+b+1-n) = 4k, \quad k \leq b \leq a < n \leq a+b.$$

We shall show next that $a=n-1$ and $Y \sim \mathbf{P}_b(\mathbf{H})$.

By the Gysin sequence of the principal $\mathbf{Sp}(1)$ bundle $p: S^{4n-1} \times Y \rightarrow X$, we obtain $H^{4i+1}(S^{4n-1} \times Y) = H^{4i+2}(S^{4n-1} \times Y) = 0$ and an exact sequence:

$$0 \rightarrow H^{4i-1}(S^{4n-1} \times Y) \rightarrow H^{4i-4}(X) \xrightarrow{\mu} H^{4i}(X) \xrightarrow{p^*} H^{4i}(S^{4n-1} \times Y) \rightarrow 0$$

for any i , where μ is the multiplication by $e_1(p)$, the first symplectic Pontrjagin class of the quaternion line bundle associated with the $\mathbf{Sp}(1)$ bundle p . We can represent $p^*u = 1 \times u_1$, $p^*v = 1 \times v_1$ for $u_1, v_1 \in H^4(Y)$. Then we see that $H^{\text{odd}}(Y) = 0$ and $H^*(Y)$ is generated by at most two elements u_1, v_1 . We can represent $e_1(p) = \alpha u + \beta v$; $\alpha, \beta \in \mathbf{Q}$. By definition, the $\mathbf{Sp}(1)$ bundle p is a pull-back of a bundle over $\mathbf{P}_{n-1}(\mathbf{H})$, and hence $e_1(p) = 0$. Since $n \leq a+b$, we see that $\alpha\beta = 0$. Suppose $e_1(p) = 0$. Then p^* is injective, and hence $1 \times u_1^*v_1^* \neq 0$. Thus we get a contradiction. Therefore we see that $e_1(p) = \alpha u$ ($\alpha \neq 0$) or $e_1(p) = \beta v$ ($\beta \neq 0$), and hence $u_1 = 0$ or $v_1 = 0$, respectively. Looking at the Euler characteristic of X we see that $a=n-1$ and $Y \sim \mathbf{P}_b(\mathbf{H})$.

When $b < n-1$, we see that $e_1(p) = \alpha u$ ($\alpha \neq 0$) and $H^*(Y) \cong \mathbf{Q}[v_1]/(v_1^{b+1})$. When $b = n-1$, interchanging u and v if necessary we can assume that $e_1(p) = \alpha u$ ($\alpha \neq 0$) and $H^*(Y) \cong \mathbf{Q}[v_1]/(v_1^b)$. It remains to consider the $\mathbf{Sp}(1)$ action on $Y = F_{(1)}$. We shall show that either $F \sim \mathbf{P}_b(\mathbf{C})$ or the $\mathbf{Sp}(1)$ action on Y is trivial, where F denotes the fixed point set of the restricted $\mathbf{U}(1)$ action on Y .

Put $w = \pi^*(v)$, where π is a natural projection of $(S^{4n-1} \times Y) / \mathbf{U}(1)$ onto $X = (S^{4n-1} \times Y) / \mathbf{Sp}(1)$. Consider the fibration: $Y \rightarrow (S^{4n-1} \times Y) / \mathbf{U}(1) \rightarrow \mathbf{P}_{2n-1}(\mathbf{C})$. We see that $w^{b+1} = 0$ and $H^*((S^{4n-1} \times Y) / \mathbf{U}(1))$ is freely generated by $1, w, w^2, \dots, w^b$ as an $H^*(\mathbf{P}_{2n-1}(\mathbf{C}))$ module. Consider next the following commutative diagram:

$$\begin{array}{ccc} H'((S^\infty \times Y) / \mathbf{U}(1)) & \xrightarrow{j^*} & H'((S^{4n-1} \times Y) / \mathbf{U}(1)) \\ \downarrow i_\infty^* & & \downarrow i^* \\ H'(\mathbf{P}_\infty(\mathbf{C}) \times F) & \xrightarrow{j_F^*} & H'(\mathbf{P}_{2n-1}(\mathbf{C}) \times F) \end{array}$$

where i, i_∞, j, j_F are natural inclusions. Since $H^{\text{odd}}(Y) = 0$, we see that [4] i_∞^* is injective for each r and surjective for each $r > 4b$ and j^* is surjective. Let

w_∞ be an element of $H^4((S^\infty \times Y)/U(1))$ such that $j^*(w_\infty) = w$. Let x be the canonical generator of $H^2(\mathbf{P}_\infty(\mathbf{C})) \cong H^2(\mathbf{P}_{2n-1}(\mathbf{C}))$. Then we can express

$$i_\infty^*(w_\infty) = x^2 \times f_0 + x \times f_1 + 1 \times f_2$$

where $f_t \in H^{2t}(F)$ for $t=0, 1, 2$. It is known that [4] $F_0 \sim \mathbf{P}_d(\mathbf{C})$ or $F_0 \sim \mathbf{P}_d(\mathbf{H})$ ($0 \leq d \leq b$) for each connected component F_0 of F . We shall show that F is connected.

Consider first the case $b < n-1$. We see that $i_\infty^*(w_\infty) = x \times f_1 + 1 \times f_2$, that is, $f_0 = 0$ by the relation $(x^2 \times f_0 + x \times f_1 + 1 \times f_2)^{b+1} = 0$ in $H^{4b+4}(\mathbf{P}_{2n-1}(\mathbf{C}) \times F)$. Consequently, we can show that if F is not connected then $i_\infty^*(w_\infty^b) = 0$ and hence $w^b = 0$; this is a contradiction.

Consider next the case $b = n-1$. Since $j^*(w_\infty^n) = w^n = 0$, we see that $w_\infty^n = \gamma x^{2n}$ for some $\gamma \in \mathbf{Q}$, and hence $i_\infty^*(w_\infty^n) = x^{2n} \times \gamma$. Suppose $\gamma = 0$. Then $f_0 = 0$, and hence we can show that F is connected by the same argument as above. Suppose next $\gamma \neq 0$. We shall show that $i_\infty^*(w_\infty^n) = x^2 \times f_0$, that is $f_1 = 0$ and $f_2 = 0$. For any connected component F_0 of F , we have an equation

$$(x^2 \times f_0 | F_0 + x \times f_1 | F_0 + 1 \times f_2 | F_0)^n = x^{2n} \times \gamma$$

in $H^{4n}(\mathbf{P}_\infty(\mathbf{C}) \times F_0)$. Then we see that $(f_t | F_0)^n = \gamma \neq 0$ and $f_t | F_0 = 0$ for $t=1, 2$. Thus we obtain $i_\infty^*(w_\infty^n) = x^2 \times f_0$ and $f_0^n = \gamma$. Let F_1 (resp. F_2) be the union of connected components F_σ of F on which $f_0 | F_\sigma$ is positive (resp. negative). Since $f_0^n = \gamma$, we can regard $f_0 | F_1$ and $f_0 | F_2$ as constant rational numbers. Then each element of $H^r(\mathbf{P}_\infty(\mathbf{C}) \times F_\sigma)$ for $r \geq 4n$ is expressed as a polynomial of $x \times 1$ with rational coefficients for $s=1, 2$ because $H^*(((S^\infty \times Y)/U(1))$ is generated by an element w_∞ as a graded $H^*(\mathbf{P}_\infty(\mathbf{C}))$ algebra and i_∞^* is surjective for $r \geq 4n$. Then we see that F_s ($s=1, 2$) consists of just one point, and hence F consists of at most two points. This is a contradiction to the fact: $\chi(F) = \chi(Y) = n \geq 7$.

Anyhow we see that F is connected, and hence $F \sim \mathbf{P}_b(\mathbf{C})$ or $F \sim \mathbf{P}_b(\mathbf{H})$. The $\mathbf{Sp}(1)$ action on Y is trivial for the latter case.

5.4. Finally, we consider the case $X = X_{(0)} \cup X_{(1)}$ for $a \geq n$. We shall show first that $X_{(0)}$ is non-empty.

Suppose that $X_{(0)}$ is empty. Then $X = X_{(1)} = (S^{4n-1} \times F_{(1)}) / \mathbf{Sp}(1)$. By the Gysin sequence of the principal $\mathbf{Sp}(1)$ bundle $S^{4n-1} \times F_{(1)} \rightarrow X$, we see that $F_{(1)} \sim \mathbf{P}_b(\mathbf{H})$. Looking at the Euler characteristic of the fibration: $F_{(1)} \rightarrow X \rightarrow \mathbf{P}_{n-1}(\mathbf{H})$ we obtain $a = n-1$; this is a contradiction.

Consequently, we see that (cf. [8]) there is an equivariant decomposition $X = \partial(D^{4n} \times Y) / \mathbf{Sp}(1)$, where Y is a compact connected orientable manifold with a smooth $\mathbf{Sp}(1)$ action, and Y has a non-empty boundary ∂Y on which the $\mathbf{Sp}(1)$ action is free. We see that

$$\dim Y = 4(a+b+1-n)$$

and the fixed point set of the $\mathbf{Sp}(n)$ action on X is naturally diffeomorphic to the orbit manifold $\partial Y/\mathbf{Sp}(1)$. Moreover, we see that there is a natural decomposition $X=X_1 \cup X_2$, where

$$X_1 = (S^{4n-1} \times Y)/\mathbf{Sp}(1) \text{ and } X_2 = (D^{4n} \times \partial Y)/\mathbf{Sp}(1).$$

Put $X_0 = X_1 \cap X_2 = (S^{4n-1} \times \partial Y)/\mathbf{Sp}(1)$.

Let $\pi: \partial(D^{4n} \times Y) \rightarrow X$ be the projection of the principal $\mathbf{Sp}(1)$ bundle. Denote by π_s the projection of the restricted principal $\mathbf{Sp}(1)$ bundle over X_s . Let $j_s: X_s \rightarrow X$ and $i_s: X_0 \rightarrow X_s$ be inclusions. Put $u_s = j_s^*(u)$ and $v_s = j_s^*(v)$. We can express

$$e(\pi) = \alpha u + \beta v; \alpha, \beta \in \mathbf{Q},$$

where $e(\pi)$ is the Euler class of the principal $\mathbf{Sp}(1)$ bundle π . Then we obtain

$$e(\pi_s) = j_s^* e(\pi) = \alpha u_s + \beta v_s.$$

Since $H'(X, X_1) \cong H'(X_2, X_0) \cong H^{r-4n}(\partial Y/\mathbf{Sp}(1))$ for each r , we obtain an isomorphism $j_1^*: H'(X) \cong H'(X_1)$ for each $r \leq 4n-2$. Because Y is a compact connected manifold with non-empty boundary and $\dim Y \leq 4n-4$, we see that $\pi_1^*(u_1^{n-1}) = 0$ and hence $u_1^{n-1} = x' e(\pi_1)$ for some $x' \in H^{4n-8}(X_1)$. Then $u^{n-1} = x e(\pi)$ for some $x \in H^{4n-8}(X)$ by the isomorphism j_1^* . In particular we see that $\alpha \neq 0$ in the expression: $e(\pi) = \alpha u + \beta v$. Looking at the isomorphism j_1^* and the Gysin sequence of the principal $\mathbf{Sp}(1)$ bundle π_1 , we see that $\pi_1^*(v_1^b) \neq 0$ and the algebra $H^{ev}(S^{4n-1} \times Y)$ is generated by $\pi_1^* v_1$. Hence we obtain $Y \sim \mathbf{P}_b(\mathbf{H})$. In addition, we see that $X_1 \sim \mathbf{P}_{n-1}(\mathbf{H}) \times \mathbf{P}_b(\mathbf{H})$ by the fibration: $Y \rightarrow X_1 \rightarrow \mathbf{P}_{n-1}(\mathbf{H})$.

Since $b \leq n-2$, by the same argument as in the second half of §5.3, we see that $F \sim \mathbf{P}_b(\mathbf{C})$ or $F \sim \mathbf{P}_b(\mathbf{H})$, where F denotes the fixed point set of the restricted $\mathbf{U}(1)$ action on Y .

Here we complete the proof of Theorem 2.1.

REMARK. The case $\alpha\beta \neq 0$ in the expression $e(\pi) = \alpha u + \beta v$ occurs only when $b \leq a+1-n$, because

$$(e(\pi_1) - \beta v_1)^{a+1} = (\alpha u_1)^{a+1} = 0$$

in $H^*(X_1) = \mathbf{Q}[e(\pi_1), v_1]/(e(\pi_1)^a, v_1^{b+1})$.

5.5. In the following, we consider the cohomology of $\partial Y/\mathbf{Sp}(1)$. Regarding αu and βv as new u and v if necessary, we can assume that $e(\pi) = u$ if $\beta = 0$ and $e(\pi) = u + v$ if $\beta \neq 0$.

Since the algebra $H^*(X_1)$ is generated by $e(\pi_1)$ and v_1 , we obtain an short exact sequence:

$$0 \rightarrow H^*(X, X_1) \xrightarrow{k_1^*} H^*(X) \xrightarrow{j_1^*} H^*(X_1) \rightarrow 0.$$

Moreover, we see that the kernel of j_1^* is an ideal generated by $e(\pi)''$, that is, $\ker j_1^* = H^*(X)e(\pi)''$. Let $\tau \in H^{4n}(X, X_1)$ be an element such that $k_1^*(\tau) = e(\pi)''$. Then $H^*(X, X_1)$ is generated by τ as an $H^*(X)$ module, that is, $H^*(X, X_1) = H^*(X)\tau$.

Let $j^*: H^*(X, X_1) \cong H^*(X_2, X_0)$ be an excision isomorphism. Denote by $t \in H^{4n}(X_2, X_0)$ the Thom class of the quaternion n -plane bundle over $\partial Y/\mathbf{Sp}(1)$. Then $j^*(\tau) = \lambda t$ for non-zero $\lambda \in \mathbb{Q}$. Since $j^*(w\tau) = j_2^*(w)j^*(\tau) = \lambda j_2^*(w)t$ for each $w \in H^*(X)$, we see that $j_2^*: H^*(X) \rightarrow H^*(X_2)$ is surjective. In addition, $j_2^*(w) = 0$ if and only if $e(\pi)''w = 0$ for $w \in H^*(X)$. Then we can show that $\{j_2^*(u^p v^q); 0 \leq p \leq a-n, 0 \leq q \leq b\}$ are linearly independent in the graded module $H^*(X_2) \cong H^*(X)/\ker j_2^*$. On the other hand, we obtain

$$\text{rank } H^*(X_2) = \text{rank } H^*(X) - \text{rank } H^*(X_1) = (a+1-n)(b+1).$$

Therefore the set $\{u_2^p v_2^q; 0 \leq p \leq a-n, 0 \leq q \leq b\}$ is an additive base of the graded module $H^*(X_2)$.

Suppose first $e(\pi)'' = u$, i.e. $\beta = 0$. Then $j_2^*(u^{a-n+1}) = 0$, and hence $H^*(X_2) \cong \mathbb{Q}[u_2, v_2]/(u_2^{a-n+1}, v_2^{b+1})$. Therefore $\partial Y/\mathbf{Sp}(1) \sim \mathbf{P}_{a-n}(\mathbf{H}) \times \mathbf{P}_b(\mathbf{H})$.

Suppose next that $b \leq a+1-n$ and $e(\pi)'' = u+v$, i.e. $\beta \neq 0$. We see that

$$e(\pi)'' \sum_{i=0}^b (-1)^i \binom{a+1}{i} (u+v)^{a+1-n-i} v^i = ((u+v)-v)^{a+1} = 0,$$

hence we obtain

$$H^*(\partial Y/\mathbf{Sp}(1)) \cong H^*(X_2) \cong \mathbb{Q}[x, y]/(y^{b+1}, \sum_{i=0}^b (-1)^i \binom{a+1}{i} x^{a+1-n-i} y^i),$$

where $x = u_2 + v_2$ and $y = v_2$.

Here we complete the proof of Theorem 2.2.

6. Construction

We regard D^{4n} as the unit disk of the quaternion n -space \mathbf{H}^n with the right scalar multiplication and the left $\mathbf{Sp}(n)$ action. Let Y be a compact orientable smooth $\mathbf{Sp}(1)$ manifold such that the $\mathbf{Sp}(1)$ action is free on the non-empty boundary ∂Y . By the diagonal action, $\mathbf{Sp}(1)$ acts freely on the boundary $\partial(D^{4n} \times Y)$. Here we consider the cohomology ring of the orbit manifold $X = \partial(D^{4n} \times Y)/\mathbf{Sp}(1)$ on which $\mathbf{Sp}(n)$ acts naturally.

Suppose that $\dim Y = 4d+4$, $Y \sim \mathbf{P}_b(\mathbf{H})$, $1 \leq b \leq d \leq n-2$, and $F \sim \mathbf{P}_b(\mathbf{C})$ or $F \sim \mathbf{P}_b(\mathbf{H})$, where F denotes the fixed point set of the restricted $U(1)$ action on Y . Moreover suppose that $\iota^*: H^*(Y) \cong H^*(\partial Y)$, where ι is an inclusion. Put $c = d-b$. In addition, we suppose that the graded algebra $H^*(\partial Y/\mathbf{Sp}(1))$

is isomorphic to one of the following:

- (1) $\mathbf{Q}[x, y]/(x^{c+1}, y^{b+1})$,
- (2) $\mathbf{Q}[x, y]/(y^{b+1}, \sum_{i=0}^b (-1)^i \binom{n+c+1}{i} x^{c+1-i} y^i)$; $b \leq c+1$,

where $\deg x = \deg y = 4$, and x is the Euler class of the principal $\mathbf{Sp}(1)$ bundle $\partial Y \rightarrow \partial Y/\mathbf{Sp}(1)$.

Put $X_1 = (S^{4n-1} \times Y)/\mathbf{Sp}(1)$, $X_2 = (D^{4n} \times \partial Y)/\mathbf{Sp}(1)$ and $X_0 = X_1 \cap X_2 = (S^{4n-1} \times \partial Y)/\mathbf{Sp}(1)$. Then $X = X_1 \cup X_2$. Let $\pi: \partial(D^{4n} \times Y) \rightarrow X$ be the projection of the principal $\mathbf{Sp}(1)$ bundle. Let us denote by π_s the projection of the restricted principal $\mathbf{Sp}(1)$ bundle over X_s . Let $j_s: X_s \rightarrow X$ and $i_s: X_0 \rightarrow X_s$ be the inclusions. Let $p: X_2 \rightarrow \partial Y/\mathbf{Sp}(1)$ be the natural projection of 4n-disk bundle, and put $p_0 = p|_{X_0}: X_0 \rightarrow \partial Y/\mathbf{Sp}(1)$.

Since $d \leq n-2$, we see that $H^*(X_0)$ is freely generated by 1, σ as an $H^*(\partial Y/\mathbf{Sp}(1))$ module for an element $\sigma \in H^{4n-1}(X_0)$ and $i_2^*: H^*(X_2) \rightarrow H^*(X_0)$ is injective. Put $x_0 = p_0^*(x)$, $y_0 = p_0^*(y)$, $x_2 = p^*(x)$ and $y_2 = p^*(y)$. Then $x_0 = e(\pi_0)$ and $x_2 = e(\pi_2)$, the Euler classes of the principal $\mathbf{Sp}(1)$ bundles.

By the fibration: $Y \rightarrow X_1 \rightarrow \mathbf{P}_{n-1}(\mathbf{H})$ and the assumption that $F \sim \mathbf{P}_b(\mathbf{C})$ or $F \sim \mathbf{P}_b(\mathbf{H})$ and $Y \sim \mathbf{P}_b(\mathbf{H})$, we see that by Lemma 1.1,

$$H^*(X_1) = \mathbf{Q}[x_1, y_1]/(x_1^n, y_1^{b+1}); \quad \deg x_1 = \deg y_1 = 4,$$

where $x_1 = e(\pi_1)$, the Euler class of the principal $\mathbf{Sp}(1)$ bundle.

Consider the Mayer–Vietoris sequence of a triad $(X; X_1, X_2)$:

$$\rightarrow H^{r-1}(X_0) \xrightarrow{\Delta^*} H^r(X) \xrightarrow{j^*} H^r(X_1) \oplus H^r(X_2) \xrightarrow{i^*} H^r(X_0) \xrightarrow{\Delta^*}$$

where $j^*(a) = (j_1^*(a), j_2^*(a))$ and $i^*(b_1, b_2) = i_1^*(b_1) - i_2^*(b_2)$. We see that $H^r(X) = 0$ for each $r \neq 0 \pmod{4}$ and there is the following short exact sequence for each k :

$$(*) \quad 0 \rightarrow H^{4k-1}(X_0) \xrightarrow{\Delta^*} H^{4k}(X) \xrightarrow{j_1^*} H^{4k}(X_1) \rightarrow 0.$$

Notice that $\dim X = 4(n+d)$ and

$$(**) \quad j_1^*: H^{4k}(X) \cong H^{4k}(X_1) \quad \text{for } k < n.$$

Let u, v be elements of $H^4(X)$ such that $j_1^*(u) = x_1$, $j_1^*(v) = y_1$. We see that $u = e(\pi)$, the Euler class of the principal $\mathbf{Sp}(1)$ bundle. Moreover, we see that $v^{b+1} = 0$ by $(**)$ and the assumption $b \leq n-2$. Since $j_1^*(u^{n-1}v^b) \neq 0$, there is an element $z \in H^{4c+4}(X)$ such that $u^{n-1}v^b z \neq 0$, by the Poincaré duality. Then we see that $u^{n+c}v^b \neq 0$, by $(**)$ and the fact $v^{b+1} = 0$. In particular, we obtain $u^n \neq 0$. Looking at the exact sequence $(*)$, we can assume that $u^n = \Delta^*(\sigma)$.

We can express $i_1^*(y_1) = \lambda x_0 + \mu y_0$; $\lambda, \mu \in \mathbf{Q}$. Since $\pi_1^*(y_1) \neq 0$, we see that

$\mu \neq 0$ by the assumption $\iota^*: H^*(Y) \cong H^*(\partial Y)$. Then

$$\Delta^*(\sigma x_0^b y_0^c) = \mu^{-a} u^{n+b} (v - \lambda u)^c$$

because $\Delta^*(\sigma j_0^*(w)) = \Delta^*(\sigma)w$ for each $w \in H^*(X)$. Looking at the exact sequence (*), we see that the graded algebra $H^*(X)$ is generated by two elements u, v and $\text{rank } H^*(X) = (n+c+1)(b+1)$.

In the expression $i_1^*(y_1) = \lambda x_0 + \mu y_0$, if $\lambda = 0$ then we see that $u^{n+c+1} = 0$ in the case (1) and $(u - \mu^{-1}v)^{n+c+1} = 0$ in the case (2), and hence $X \sim \mathbf{P}_{n+c}(\mathbf{H}) \times \mathbf{P}_b(\mathbf{H})$.

Since $i_2^*: H^*(X_2) \rightarrow H^*(X_0)$ is injective, we see that $j_2^*(v) = \lambda x_2 + \mu y_2$, and hence $(\lambda x_2 + \mu y_2)^{b+1} = 0$. Then we obtain $\lambda = 0$ in the case (1), because $H^*(X_2) \cong \mathbf{Q}[x_2, y_2]/(x_2^{c+1}, y_2^{b+1})$.

Next we consider the case (2). We obtain a relation

$$(\gamma x_2 + y_2)^{b+1} \in I = (y_2^{b+1}, \sum_{i=0}^b (-1)^i \binom{n+c+1}{i} x_2^{c+1-i} y_2^i),$$

where $\gamma = \lambda \mu^{-1}$. We see that $\gamma = 0$ for the case $b < c$ or $b = c \geq 2$. Suppose $b = c + 1$. Looking at the relation $(\gamma x_2 + y_2)^{c+2} \in I$, we obtain $\gamma = 0$ or

$$(A_k) \quad \begin{aligned} & \binom{c+2}{k} - (-\gamma)^k \binom{n+c+1}{k} + (n+c+1)(-\gamma)^k \binom{n+c+1}{k-1} \\ & - (c+2)(-\gamma)^{k-1} \binom{n+c+1}{k-1} = 0 \end{aligned}$$

for each $k = 2, 3, \dots, c+1$. Suppose $\gamma \neq 0$ and $c \geq 2$. Then we get a contradiction from (A_2) and (A_3) . Hence we obtain $\gamma = 0$ for $c \geq 2$. Suppose $\gamma \neq 0$ and $c = 1$. We see that the quadratic equation (A_2) has a rational solution γ if and only if $3n(n+2)$ is a square number.

Summing up the above arguments, we obtain a partial converse of Theorem 2.1 (iii).

REMARK. For a positive integer n , $3n(n+2)$ is a square number if and only if $n+1$ is one of the following:

$$\sum_{i \geq 0} \binom{k}{2i} 2^{k-2i} 3^i; k = 1, 2, 3, \dots$$

7. Concluding remark

By parallel arguments, we obtain the following result which is a generalization of a theorem [7].

Theorem 7.1. *Let X be a closed orientable manifold on which $SU(n)$ acts smoothly and non-trivially. Suppose $X \sim \mathbf{P}_a(\mathbf{C}) \times \mathbf{P}_b(\mathbf{C})$; $a \geq b \geq 1$, $a+b \leq 2n-2$ and $n \geq 7$. Then there are three cases:*

(0) $a=n-1$ and $X \cong \mathbf{P}_{n-1}(\mathbf{C}) \times Y_0$, where Y_0 is a closed orientable manifold such that $Y_0 \sim \mathbf{P}_b(\mathbf{C})$, and $SU(n)$ acts naturally on $\mathbf{P}_{n-1}(\mathbf{C})$ and trivially on Y_0 ,

(i) $a=b=n-1$ and $X \cong \mathbf{P}_{n-1}(\mathbf{C}) \times \mathbf{P}_{n-1}(\mathbf{C})$ with the diagonal $SU(n)$ action,

(ii) $a \geq n$ and $X \cong \partial(D^{2n} \times Y_1)/U(1)$, where Y_1 is a compact orientable $U(1)$ manifold such that $\dim Y_1 = 2(a+b+1-n)$ and $Y_1 \sim \mathbf{P}_b(\mathbf{C})$, $U(1)$ acts as right scalar multiplication on D^{2n} , the unit disk of \mathbf{C}^n , and $SU(n)$ acts naturally on D^{2n} and trivially on Y_1 . In addition, the $U(1)$ action on the boundary ∂Y_1 is free and the fixed point set of the $U(1)$ action on Y_1 is $\sim \mathbf{P}_b(\mathbf{C})$.

Theorem 7.2. *In the case (ii) of Theorem 7.1, the cohomology ring $H^*(\partial Y_1/U(1))$ is isomorphic to one of the following:*

(1) $\mathbf{Q}[x, y]/(x^{a+1-n}, y^{b+1})$,

(2) $\mathbf{Q}[x, y]/(y^{b+1}, \sum_{i=0}^b (-1)^i \binom{a+1}{i} x^{a+1-n-i} y^i)$; $b \leq a+1-n$,

where $\deg x = \deg y = 2$, and x is the Euler class of the principal $U(1)$ bundle $\partial Y_1 \rightarrow \partial Y_1/U(1)$.

References

- [1] A. Borel: *Sur la cohomologie des espaces fibres principaux et des espaces homogènes de groupes de Lie compacts*, Ann. of Math. **57** (1953), 115–207.
- [2] A. Borel and F. Hirzebruch: *Characteristic classes and homogeneous spaces I*, Amer. J. Math. **80** (1958), 458–538.
- [3] R. Bott: *Lectures on $K(X)$* , Math. Lecture Note Ser., Benjamin, 1969.
- [4] G.E. Bredon: *The cohomology ring structure of a fixed point set*, Ann. of Math. **80** (1964), 524–537.
- [5] A. Nakanishi and F. Uchida: *Actions of symplectic groups on certain manifolds*, Tôhoku Math. J. to appear.
- [6] F. Uchida: *Classification of compact transformation groups on cohomology complex projective spaces with codimension one orbits*, Japan. J. Math. New Ser. **3** (1977), 141–189.
- [7] F. Uchida: *Actions of special unitary groups on a product of complex projective spaces*, Osaka J. Math. **20** (1983), 513–520.
- [8] T. Wada: *Smooth $Sp(n)$ -actions on cohomology quaternion projective spaces*, Tôhoku Math. J. **29** (1977), 375–384.

Department of Mathematics
 Faculty of Science
 Yamagata University
 Yamagata 990,
 Japan

