<table>
<thead>
<tr>
<th>Title</th>
<th>Actions of symplectic groups on a product of quaternion projective spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Uchida, Fuichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 21(4) P.773–P.787</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1984</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9501</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9501</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
ACTIONS OF SYMPLECTIC GROUPS ON A PRODUCT OF QUATERNION PROJECTIVE SPACES

Dedicated to Professor Minoru Nakaoka on his 60th birthday

FUCHI UCHIDA

(Received November 7, 1983)

0. Introduction

We shall study smooth actions of symplectic group $Sp(n)$ on a closed orientable manifold X such that $X \sim P_a(H) \times P_b(H)$, under the conditions: $a + b \leq 2n - 2$ and $n \geq 7$. Our result is stated in §2 and proved in §5. Typical examples are given in §1. Similar result on smooth actions of special unitary group $SU(n)$ on a closed orientable manifold X such that $X \sim P_a(C) \times P_b(C)$ is stated in the final section.

Throughout this paper, let $H^*(\)$ denote the singular cohomology theory with rational coefficients, and let $P_a(H)$, $P_a(C)$ and $P_a(R)$ denote the quaternion, complex and real projective n-space, respectively. By $X \sim X'$, we mean that $H^*(X) \approx H^*(X')$ as graded algebras.

1. Typical examples

1.1. We regard S^{4k-1} as the unit sphere of the quaternion k-space H^k with the right scalar multiplication. Let Y be a compact $Sp(1)$ manifold. By the diagonal action, $Sp(1)$ acts freely on the product manifold $S^{4k-1} \times Y$. Here we consider the cohomology ring of the orbit manifold $(S^{4k-1} \times Y)/Sp(1)$ for the case $Y \sim P_4(H)$.

Consider the fibration: $Y \to (S^{4k-1} \times Y)/Sp(1) \to P_{k-1}(H)$. By the Leray-Hirsch theorem, $H^*(S^{4k-1} \times Y)/Sp(1))$ is freely generated by $1, u, u^2, \ldots, u^b$ as an $H^*(P_{k-1}(H))$ module for an element $u \in H^*(S^{4k-1} \times Y)/Sp(1))$. If u can be so chosen as $u^{b+1} = 0$, then we see that $(S^{4k-1} \times Y)/Sp(1) \sim P_{k-1}(H) \times P_4(H)$.

Lemma 1.1. Denote by F, the fixed point set of the restricted $U(1)$ action on Y. If $F \sim P_4(C)$, then $(S^{4k-1} \times Y)/Sp(1) \sim P_{k-1}(H) \times P_4(H)$.

Proof. Consider the fibration: $Y \to (S^{4k-1} \times Y)/U(1) \to P_{2k-1}(C)$. We see that $H^*((S^{4k-1} \times Y)/U(1))$ is freely generated by $1, v, v^2, \ldots, v^b$ as an $H^*(P_{2k-1}(C))$ module for an element $v \in H^*((S^{4k-1} \times Y)/U(1))$. We shall show first that
\(v \) can be so chosen as \(v^{b+1} = 0 \). We regard \(S^m \) as the inductive limit of \(S^{qW-1} \) on which \(U(1) \) acts naturally. Consider the following commutative diagram:

\[
\begin{array}{ccc}
H^*((S^m \times Y)/U(1)) & \xrightarrow{j^*} & H^*((S^{qW-1} \times Y)/U(1)) \\
\downarrow i_m^* & & \downarrow i^* \\
H^*(P_m(C) \times F) & \xrightarrow{j_F^*} & H^*(P_{2a-1}(C) \times F)
\end{array}
\]

where \(i, i_m, j, j_F \) are natural inclusions. Since \(H^*(Y) = 0 \), we see that \(i_m^* \) is injective \([4]\) and \(j^* \) is surjective. Let \(v_m \) be an element of \(H^*((S^m \times Y)/U(1)) \) such that \(j^*(v_m) = v \). Let \(x \) be the canonical generator of \(H^2(P_m(C)) \cong H^2(P_{2a-1}(C)) \). Then we can express

\[
i_m^*(v_m) = x^2 + x \times f_1 + 1 \times f_2
\]

where \(f_r \in H^2(F) \) for \(r = 0, 1, 2 \). Since \(F \sim P_b(C) \), we see that there are rational numbers \(a_0, a_1, a_2 \) and a non-zero element \(y \in H^2(F) \), such that \(f_r = a_r y \) for \(r = 0, 1, 2 \). Then we obtain

\[
i_m^*(v_m - a_0 x^2)^{b+1} = (x \times f_1 + 1 \times f_2)^{b+1} = 0.
\]

Since \(i_m^* \) is injective, we obtain \((v_m - a_0 x^2)^{b+1} = 0 \). Put \(v_1 = j^*(v_m - a_0 x^2) \). Then \(v_1^{b+1} = 0 \), and hence

\[
H^*((S^{qW-1} \times Y)/U(1)) \cong \mathbb{Q}[x, v_1]/(x^2, v_1^{b+1}); \deg x = 2, \deg v_1 = 4.
\]

Consider next the following commutative diagram:

\[
\begin{array}{ccc}
Sp(1)/U(1) & \rightarrow & (S^{qW-1} \times Y)/U(1) \\
\downarrow & & \downarrow \\
Sp(1)/U(1) & \rightarrow & P_{2a-1}(C) \xrightarrow{q} P_{2a-1}(H).
\end{array}
\]

Let \(t \in H^*(P_{2a-1}(H)) \) be the canonical generator such that \(q^*(t) = x^2 \). There exist rational numbers \(\lambda, \mu \) such that \(p^*(u) = \lambda v_1 + \mu x^2 \). Put \(u_t = u - \mu t \). Then \(p^*(u_t) = \lambda v_1 \), and hence \(p^*(u_t)^{b+1} = 0 \). Since the homomorphism \(p^*: H^*((S^{qW-1} \times Y)/Sp(1)) \rightarrow H^*((S^{qW-1} \times Y)/U(1)) \) is injective, we obtain \(u_t^{b+1} = 0 \), and hence

\[
H^*((S^{qW-1} \times Y)/Sp(1)) \cong \mathbb{Q}[t, u_t]/(t^2, u_t^{b+1}); \deg t = \deg u_t = 4.
\]

Thus we obtain \((S^{qW-1} \times Y)/Sp(1) \sim P_{2a-1}(H) \times P_b(H) \). q.e.d.

1.2. We give here examples of a closed orientable \(Sp(1) \) manifold \(Y \) such that \(Y \sim P_b(H) \) and \(F \sim P_b(C) \), where \(F \) denotes the fixed point set of the restricted \(U(1) \) action on \(Y \).

Consider the \(Sp(1) \) action on \(P_b(H) = S^{qW+3}/Sp(1) \) by the left scalar multiplication. Then the fixed point set of the restricted \(U(1) \) action is naturally
diffeomorphic to $P_b(C)$, the fixed point set of the $Sp(1)$ action is naturally diffeomorphic to $P_b(R)$, and the isotropy representation at each fixed point of the $Sp(1)$ action is equivalent to $b\eta \oplus \theta^b$, where η denotes the canonical 3-dimensional real representation of $Sp(1)$, $b\eta$ denotes the b-fold direct sum of η, and θ^b is the trivial representation of degree b.

Let D^{3b} denote the unit disk of the representation space $b\eta$. Let W be a $(b+1)$-dimensional compact orientable smooth manifold which is rationally acyclic. Then the boundary $\partial(D^{3b} \times W)$ is a $4b$-dimensional compact orientable smooth $Sp(1)$ manifold which is a rational homology sphere, and the isotropy representation at each fixed point of the $Sp(1)$ action is equivalent to $b\eta \oplus \theta^b$. Hence we can construct an equivariant connected sum

$$Y(W) = P_b(H) \# \partial(D^{3b} \times W).$$

Denote by $F(W)$ the fixed point set of the restricted $U(1)$ action on $Y(W)$. Then $F(W)$ is naturally diffeomorphic to $P_b(C) \# \partial(D^{3b} \times W)$. It is easy to see that

$$Y(W) \sim P_b(H), F(W) \sim P_b(C).$$

1.3. Let ξ be a quaternion k-plane bundle and ξ_c its complexification under the restriction of the filed. Its i-th symplectic Pontrjagin class $e_i(\xi)$ is by definition [2, §9.6]

$$e_i(\xi) = (-1)^i c_{2i}(\xi_c),$$

where $c_{2i}(\xi_c)$ is the $2i$-th Chern class. Denote by $P(\xi)$ the total space of the associated quaternion projective space bundle. Let ξ be the canonical quaternion line bundle over $P(\xi)$ and put $t = e_1(\xi)$. It is known that there is an isomorphism:

$$(1.3) \quad H^*(P(\xi)) \approx H^*(B)[t]/(\sum_{-d-k-i}(\xi)t^i),$$

where B is the base space of the bundle ξ (cf. [3, §3]).

Let ξ be the canonical quaternion line bundle over $P_b(H)$ and ξ^* its dual line bundle. Let W be a $4b$-dimensional closed orientable smooth manifold and let $f: W \to P_b(H)$ be a smooth mapping such that $f^*: H^*(P_b(H)) \approx H^*(W)$. Let c be a non-negative integer such that $b \leq c + 1$. Then, there is a quaternion $(c+1)$-plane bundle ξ over W such that

$$(n+c+1)f^*\xi^* \approx \xi \oplus \theta^n_H,$$

where θ^n_H is a trivial quaternion n-plane bundle. Put $X = P((n+c+1)f^*\xi^*)$. Since X is diffeomorphic to $\partial(D(\xi) \times D^m)/Sp(1)$, we can act $Sp(n)$ on X in order that the fixed point set is diffeomorphic to $P(\xi)$. We see that by (1.3)
\[H^*(X) \simeq Q[u, v]/(u^{a+c+1}, v^{b+1}), \]
\[H^*(P(\xi)) \simeq Q[t, v]/(v^{b+1}, \sum_{i=0}^{c+1} (-1)^i (n+c+1) t^{c+1-i} v^i), \]
where \(v^* = f^* e_1(\xi), t^* = e_1(\xi) \) and \(u+v \) is the first symplectic Pontryagin class of the canonical line bundle over \(P((n+c+1)f*\xi*). \)

2. Classification theorems

We shall prove the following results in this paper.

Theorem 2.1. Let \(X \) be a closed orientable manifold on which \(Sp(n) \) acts smoothly and non-trivially. Suppose \(X \simeq P_a(H) \times P_b(H); a \geq b \geq 1, a+b \leq 2n-2 \) and \(n \geq 7 \). Then there are four cases:

0. \(a=n-1 \) and \(X \simeq P_{n-1}(H) \times Y_0 \), where \(Y_0 \) is a closed orientable manifold such that \(Y_0 \simeq P_b(H), \) and \(Sp(n) \) acts naturally on \(P_{n-1}(H) \) and trivially on \(Y_0 \).

1. \(a=n-1 \) and \(X \simeq (S^{4n-1} \times Y_1)/Sp(1), \) where \(Y_1 \) is a closed orientable \(Sp(1) \) manifold such that \(Y_1 \simeq P_b(H), \) \(Sp(1) \) acts as right scalar multiplication on \(S^{4n-1}, \) the unit sphere of \(H^n, \) and \(Sp(n) \) acts naturally on \(S^{4n-1} \) and trivially on \(Y_1. \)

In addition, the fixed point set of the restricted \(U(1) \) action on \(Y_1 \) is \(~P_b(C). \)

2. \(a=b=n-1 \) and \(X \simeq P_{n-1}(H) \times P_{n-1}(H) \) with the diagonal \(Sp(n) \) action,

3. \(a=n \) and \(X \simeq \partial(D^a \times Y_2)/Sp(1), \) where \(Y_2 \) is a compact orientable \(Sp(1) \) manifold such that \(\dim Y_2 = 4(a+b+1-n) \) and \(Y_2 \simeq P_b(H), \) \(Sp(1) \) acts as right scalar multiplication on \(D^a, \) the unit disk of \(H^n, \) and \(Sp(n) \) acts naturally on \(D^a \) and trivially on \(Y_2. \)

In addition, the \(Sp(1) \) action on the boundary \(\partial Y_2 \) is free and the fixed point set of the restricted \(U(1) \) action on \(Y_2 \) is \(~P_b(C) \) or \(~P_b(H). \)

Remark. By \(X \simeq X' \) we mean that \(X \) is equivariantly diffeomorphic to \(X' \) as \(Sp(n) \) manifolds. In the case (iii), the fixed point set of the \(Sp(n) \) action on \(X \) is naturally diffeomorphic to the orbit manifold \(\partial Y_2/Sp(1). \)

Theorem 2.2. In the case (iii) of Theorem 2.1, the cohomology ring \(H^*(\partial Y_2/Sp(1)) \) is isomorphic to one of the following:

1. \(Q[x, y]/(x^{a+1}, y^{b+1}), \)
2. \(Q[x, y]/(y^{b+1}, \sum_{i=0}^{a+1} (-1)^i (a+1) x^{a+1-i} y^i); b \leq a+1-n, \)

where \(\deg x = \deg y = 4, \) and \(x \) is the Euler class of the principal \(Sp(1) \) bundle \(\partial Y_2 \rightarrow \partial Y_2/Sp(1). \)

Remark. The \(Sp(n) \) action given in §1.3 is an example of the case (iii)–(2). Lemma 1.1 assures that a converse of Theorem 2.1 (i) is true.
3. Cohomology of certain homogeneous spaces

Here we consider the cohomology of $V_{n,2}/G = \mathbb{Sp}(2\mathbb{H})/\mathbb{Sp}(n-2) \times G$ for certain closed subgroups G of $\mathbb{Sp}(2)$. Let ξ be the canonical quaternion line bundle over $\mathbb{P}^{n-1}(\mathbb{H})$ and ζ its orthogonal complement, that is, ξ is a quaternion $(n-1)$-plane bundle over $\mathbb{P}^{n-1}(\mathbb{H})$ such that its total space is

$$E(\xi) = \{(u, [v]) \in H^* \times \mathbb{P}^{n-1}(\mathbb{H}) : u \perp v\}.$$

It is easy to see that the total space $\mathbb{P}(\zeta)$ of the associated quaternion projective space bundle is naturally diffeomorphic to $V_{n,2}/\mathbb{Sp}(1) \times \mathbb{Sp}(1)$. Since $\xi \oplus \zeta$ is a trivial bundle, we obtain $e_k(\xi) = (-1)^k e_k(\xi)^4$. By definition, $\mathbb{P}(\xi)$ is naturally identified with a subspace of $\mathbb{P}^{n-1}(\mathbb{H}) \times \mathbb{P}^{n-1}(\mathbb{H})$. Let $i : \mathbb{P}(\xi) \to \mathbb{P}^{n-1}(\mathbb{H}) \times \mathbb{P}^{n-1}(\mathbb{H})$ be the inclusion. Put $\xi = i^*(\xi^* \times 1)$. Then by (1.3) there is an isomorphism:

$$H^*(V_{n,2}/\mathbb{Sp}(1) \times \mathbb{Sp}(1)) \cong Q[x, y]/(x^n, \sum_i x^i y^{n-1-i}) ,$$

deg $x = \deg y = 4$, by the identification $x = i^*(1 \times e_i(\xi))$ and $y = i^*(e_i(\xi) \times 1)$.

Let $p : V_{n,2}/\mathbb{Sp}(1) \times \mathbb{Sp}(1) \to V_{n,2}/\mathbb{Sp}(2)$ be the natural projection and ξ_2 the standard quaternion 2-plane bundle over $V_{n,2}/\mathbb{Sp}(2)$.

Lemma 3.2. The graded algebra $H^*(V_{n,2}/\mathbb{Sp}(2))$ is generated by $e_i(\xi_2)$, $e_2(\xi_2)$. The algebra is isomorphic to the subalgebra of $Q[x, y]/(x^n, \sum_i x^i y^{n-1-i})$, consisting of symmetric polynomials.

Proof. Since the fibration p is a 4-sphere bundle and $H^{odd}(V_{n,2}/\mathbb{Sp}(2)) = 0$ (cf. [1, §26]), the homomorphism $p^* : H^*(V_{n,2}/\mathbb{Sp}(2)) \to H^*(V_{n,2}/\mathbb{Sp}(1) \times \mathbb{Sp}(1))$ is injective. Since $p^*(\xi_2) = i^*(\xi^* \times \xi)$, we obtain

$$p^*e_i(\xi_2) = i^*e_i(\xi^* \times \zeta) = x + y ,$$

$$p^*e_2(\xi_2) = i^*e_2(\xi^* \times \zeta) = xy .$$

Then the desired result is obtained by the Leray-Hirsch theorem. q.e.d.

Corollary 3.3. $e_1(\xi_2)^{2n-4} = 0$ and $e_2(\xi_2)^{2n-3} = 0$.

Proof. Put $I = (x^n, \sum_i x^i y^{n-1-i})$. It is easy to see that $y^n \in I$. In the quotient ring $Q[x, y]/I$, we obtain

$$(x+y)^{2n-4} = \binom{2n-4}{n-1} x^{n-1} y^{n-3} + (2n-4) x^{n-2} y^{n-2} + (2n-4) x^{n-3} y^{n-1}$$
$$= \left\{ \begin{array}{c}
\left(\frac{2n-4}{n-2} \right) x^{n-2} y^{n-2},
\left(\frac{2n-4}{n-1} \right) x^{n-3} y^{n-1},
\end{array} \right.$$

and hence $e_1(\xi_2)^{2n-4} = 0$. We obtain $e_2(\xi_2)^{2n-3} = 0$ similarly. q.e.d.

4. Preliminary results

First we state the following two lemmas which are proved by a standard
Lemma 4.1. Suppose $n \geq 7$. Let G be a closed connected proper subgroup of $\text{Sp}(n)$ such that $\dim \text{Sp}(n)/G < 8n$. Then G coincides with $\text{Sp}(n-i) \times K$ $(i=1, 2, 3)$ up to an inner automorphism of $\text{Sp}(n)$, where K is a closed connected subgroup of $\text{Sp}(i)$.

Lemma 4.2. Suppose $r \geq 5$ and $k < 8r$. Then an orthogonal non-trivial representation of $\text{Sp}(r)$ of degree k is equivalent to $(\nu_r)_R \oplus \theta^{k-t}$. Here $(\nu_r)_R : \text{Sp}(r) \to O(4r)$ is the canonical inclusion, and θ^t is the trivial representation of degree t.

In the following, let X be a closed connected orientable manifold with a non-trivial smooth $\text{Sp}(n)$ action, and suppose $n \geq 7$ and $\dim X < 8n$. Put

$$F(i) = \{x \in X : \text{Sp}(n-i) \subset \text{Sp}(n)x \subset \text{Sp}(n-i) \times \text{Sp}(i)\}$$

$$X(i) = \text{Sp}(n)F(i) = \{gx : g \in \text{Sp}(n), x \in F(i)\}.$$

Here $\text{Sp}(n)x$ denotes the isotropy group at x. Then, by Lemma 4.1, we obtain $X = X(0) \cup X(1) \cup X(2) \cup X(3)$.

Proposition 4.3. If $X(0)$ is non-empty, then $X(i)$ is empty for each $i \geq k+2$.

Proof. Let us denote by $F(\text{Sp}(n-j), X(i))$ the fixed point set of the restricted $\text{Sp}(n-j)$ action on $X(i)$. It is easy to see that the set is empty for each $j < i \leq n-i$. Suppose that $X(0)$ is non-empty and fix $x \in F(0)$. Let σ be the slice representation at x. Then the restriction $\sigma| \text{Sp}(n-k)$ is trivial or equivalent to $(\nu_{n-k})_R \oplus \theta^k$ by Lemma 4.2. Anyhow, a principal isotropy group of the given action contains $\text{Sp}(n-k)$, and hence $F(\text{Sp}(n-k), X(i))$ is non-empty if so is $X(i)$. q.e.d.

Proposition 4.4. Suppose $X = X(0) \cup X(1+1)$. If $X(0)$ and $X(1+1)$ are non-empty, then the codimension of each connected component of $F(0)$ in X is equal to $4(k+1)(n-k)$.

Proof. Fix $x \in F(0)$. Let σ and ρ denote the slice representation at x and the isotropy representation of the orbit $\text{Sp}(n)x$, respectively. The restriction $\sigma| \text{Sp}(n-k)$ is equivalent to $(\nu_{n-k})_R \oplus \theta^k$ by Lemma 4.2 and the assumption that $X(1+1)$ is non-empty. On the other hand, $\rho| \text{Sp}(n-k)$ is equivalent to $k(\nu_{n-k})_R \oplus \theta^{k+t}$ by considering adjoint representations. Hence $(\sigma \oplus \rho)| \text{Sp}(n-k)$ is equivalent to $(k+1)(\nu_{n-k})_R \oplus \theta^{k+t}$.

This shows that the codimension of $F(0)$ at x is equal to $4(k+1)(n-k)$. q.e.d.

Corollary 4.5. Suppose $X = X(0) \cup X(0)$. Then either $X(0)$ or $X(0)$ is empty.

Remark. $\dim \text{Sp}(n)/\text{Sp}(n-k) \times \text{Sp}(k) = 4k(n-k)$ and $\chi(\text{Sp}(n))/\text{Sp}(n-k)$
\(\times Sp(k) = \left(\begin{array}{c} n \\ k \end{array} \right) \), where \(\chi(\) \) denotes the Euler characteristic, and \(\left(\begin{array}{c} n \\ k \end{array} \right) \) denotes the binomial coefficient.

5. **Proof of the classification theorems**

Throughout this section, suppose that \(X \) is a closed orientable manifold with a non-trivial smooth \(Sp(n) \) action such that

\[
(*) \quad H^*(X) = \mathbb{Q}[u, v]/(u^{a+1}, v^{b+1}); \quad \deg u = \deg v = 4.
\]

Moreover, suppose that \(n \geq 7, 1 \leq b \leq a \) and \(a + b \leq 2n - 2 \). By arguments and notations in the preceding section, we see that \(X \neq X_{(k)} \cup X_{(k+1)} \) for \(k = 0, 1, 2 \).

5.1. **We shall show first that** \(X \not\supset X_{(2)} \cup X_{(3)} \). Suppose \(X = X_{(2)} \cup X_{(3)} \). Then \(X = X_{(2)} \) or \(X = X_{(3)} \) by Corollary 4.5. Looking at the Euler characteristic of \(X \), we see that \(X \neq X_{(3)} \).

Suppose \(X = X_{(2)} \). Then \(X = (V_{n,2} \times F_{(2)})/Sp(2) \). Here we consider the following commutative diagram of natural projections:

\[
X = (V_{n,2} \times F_{(2)})/Sp(2) \rightarrow V_{n,2}/Sp(2),
\]

where \(T \) is a maximal torus of \(Sp(2) \). Since \(\chi(F_{(2)}) \neq 0 \), we see that the restricted \(T \) action on \(F_{(2)} \) has a fixed point, and hence the projection \(p_1 \) has a cross-section. Therefore \(p^*_1: H^*(V_{n,2}/T) \rightarrow H^*((V_{n,2} \times F_{(2)})/T) \) is injective. On the other hand, \(q^*: H^*(V_{n,2}/Sp(2)) \rightarrow H^*(V_{n,2}/T) \) is injective, because \(H^\text{odd}(V_{n,2}/Sp(2)) = H^\text{odd}(Sp(2)/T) = 0 \) (cf. [1, §26]). Consequently, we see that \(p^*: H^*(V_{n,2}/Sp(2)) \rightarrow H^*(X) \) is injective. In particular, we obtain \(a + b \geq 2n - 4 \). If \(a + b = 2n - 4 \), then \(X = V_{n,2}/Sp(2) \). Because rank \(H^t(X) = 2 \) and rank \(H^t(V_{n,2}/Sp(2)) = 1 \), we get a contradiction.

Suppose \(a + b \geq 2n - 3 \), and put \(p^*e_1(\xi_2) = \alpha u + \beta v; \alpha, \beta \in \mathbb{Q} \). Since \(e_1(\xi_2)^{2n-3} = 0 \) by Corollary 3.3, we obtain

\[
0 = p^*e_1(\xi_2)^{a+b} = \left(\frac{a+b}{a} \right) (\alpha u)^{a} (\beta v)^{b},
\]

and hence \(\alpha \beta = 0 \). On the other hand, \(e_1(\xi_2)^{2n-4} \neq 0 \) by Corollary 3.3, and hence \(p^*e_1(\xi_2)^{2n-4} \neq 0 \). Thus we obtain \(a = 2n - 4 \). Looking at the Euler characteristic of \(F_{(2)} \), we get a contradiction.

5.2. **We consider now the case** \(X = X_{(2)} \cup X_{(3)} \). Suppose that both \(X_{(1)} \) and \(X_{(2)} \) are non-empty. We see that \(\text{codim} \ F_{(1)} = 8n - 8 \) by Proposition 4.4. Since \(\text{dim} \ X \leq 8n - 8 \), we obtain \(\text{dim} \ F_{(1)} = 0 \) and \(a + b = 2n - 2 \).
Fix \(x \in F(0) \). Since \(X(0) \) is non-empty, we see that the slice representation \(\sigma \) at \(x \) is equivalent to \(v_{n-1} \otimes \nu^* \pi \) or \((v_{n-1})^* \pi \) by Lemma 4.2, where \(\pi \) is a natural projection of \(Sp(n-1) \times Sp(1) \) onto \(Sp(n-1) \). Then the principal isotropy group is of the form \(Sp(n-2) \times K \), where \(K = \Delta Sp(1) \) (resp. \(1 \times Sp(1) \)) for \(\sigma = v_{n-1} \otimes \nu^* \pi \) (resp. \(\sigma = (v_{n-1})^* \pi \)). Here \(\Delta Sp(1) \) (resp. \(1 \times Sp(1) \)) is a closed subgroup of \(Sp(2) \) consisting of the matrices of the form \(\begin{pmatrix} q & 0 \\ 0 & q \end{pmatrix} \) (resp. \(\begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix} \)).

Anyhow, we see that the \(Sp(n) \) action on \(X \) has a codimension one orbit, and hence \(X \) is a union of closed invariant tubular neighborhoods of just two non-principal orbits (cf. [6]). We already see that one of the non-principal orbits is \(P_{n-1}(H) \). Looking at the Euler characteristic of \(X \), we see that \(a = b = n-1 \) and another non-principal orbit is \(V_{n-1}/Sp(1) \times Sp(1) \).

Suppose \(K = 1 \times Sp(1) \). Then the normalizer of the principal isotropy group is connected, and hence such an \(Sp(n) \) manifold is unique up to equivariant diffeomorphism (cf. [6, §5.3]). On the other hand, the product manifold \(P_{n-1}(H) \times P_{n-1}(H) \) with the diagonal \(Sp(n) \) action is such one. Therefore \(X \) is equivariantly diffeomorphic to \(P_{n-1}(H) \times P_{n-1}(H) \) with the diagonal \(Sp(n) \) action.

Suppose next \(K = \Delta Sp(1) \). Then the normalizer of the principal isotropy group has just two connected components, and its generator corresponds to the antipodal involution of the slice representation at a point of \(V_{n-1}/Sp(1) \times Sp(1) \). Hence such an \(Sp(n) \) manifold is unique up to equivariant diffeomorphism (cf. [6, §5.3]). Here we construct such one. Let \(\xi \) be the canonical quaternion line bundle over \(P_{n-1}(H) \) and \(\xi \) its orthogonal complement (see §3). Then \(Sp(n) \) acts naturally on the total space \(E(\xi) \) as the bundle mappings.

Denote by \(\theta^1_H \) a trivial quaternion line bundle. We see that the \(Sp(n) \) action on the total space \(P(\xi \oplus \theta^1_H) \) of the associated quaternion projective space bundle is the desired one. On the other hand, we see that by (1.3)

\[
H^k(P(\xi \oplus \theta^1_H)) \cong Q[x, y]/(x^*, \sum_i x^i y^{a-i}); \deg x = \deg y = 4.
\]

Hence the cohomology ring of \(P(\xi \oplus \theta^1_H) \) is not isomorphic to that of \(P_{n-1}(H) \times P_{n-1}(H) \).

5.3. We consider next the case \(X = X_{(0)} \cup X_{(1)} \) for \(c < n \). We shall show first that \(X_{(0)} \) is empty.

Suppose that \(X_{(0)} \) is non-empty. Let \(U \) be an invariant closed tubular neighborhood of \(X_{(0)} \) in \(X \), and put \(E = X - \text{int} U \). Put \(W = E \cap F(0) \). Then \(W \) is a compact connected orientable manifold with non-empty boundary \(\partial W \), and \(Sp(1) \) acts naturally on \(W \). Since there is a natural diffeomorphism \(E = (S^{a-1} \times W)/Sp(1) \), we obtain

\[
\dim W = 4(a + b + 1 - n) = 4k, \quad k \leq b \leq a < n.
\]

Let \(i : E \to X \) be the inclusion. Then \(i^* : H^*(X) \to H^*(E) \) is an isomorphism.
for each \(t \leq 4n - 2 \), because the codimension of each connected component of \(X_\omega \) is \(4n \) by Lemma 4.2. By the Gysin sequence of the principal \(Sp(1) \) bundle \(S^{4n-1} \times W \to E \) and the cohomology ring of \(X \), we obtain rank \(H^{4k}(W) - \text{rank } H^{4k-1}(W) = 1 \). On the other hand, we see that \(H^{4k}(W) \cong H_{4k}(W) = 0 \) and rank \(H^{4k-1}(W) \geq 0 \); this is a contradiction. Thus we see that \(X_\omega \) is empty.

Consequently, we obtain \(X = X_\omega = (S^{4n-1} \times F(\omega))/Sp(1) \). Put \(Y = F(\omega) \). We see that

\[
\dim Y = 4(a + b + 1 - n) = 4k, \quad k \leq b \leq a < n < a + b.
\]

We shall show next that \(a = n - 1 \) and \(Y \sim P_B(H) \).

By the Gysin sequence of the principal \(Sp(1) \) bundle \(p: S^{4n-1} \times Y \to X \), we obtain \(H^{4i+1}(S^{4n-1} \times Y) = 0 \) and an exact sequence:

\[
0 \to H^{4i-1}(S^{4n-1} \times Y) \to H^{4i}(X) \to H^{4i}(S^{4n-1} \times Y) \to 0
\]

for any \(i \), where \(\mu \) is the multiplication by \(e_1(p) \), the first symplectic Pontrjagin class of the quaternion line bundle associated with the \(Sp(1) \) bundle \(p \). We can represent \(p^* u = 1 \times u_1, \ p^* v = 1 \times v_1 \) for \(u_1, v_1 \in H^4(Y) \). Then we see that \(H^{4i-1}(Y) = 0 \) and \(H^4(Y) \) is generated by at most two elements \(u_1, v_1 \). We can represent \(e_1(p) = \alpha u + \beta v; \ \alpha, \ \beta \in \mathbb{Q} \). By definition, the \(Sp(1) \) bundle \(p \) is a pull-back of a bundle over \(P_{n-1}(H) \), and hence \(e_1(p)^* = 0 \). Since \(n \leq a + b \), we see that \(\alpha \beta = 0 \). Suppose \(e_1(p) = 0 \). Then \(p^* \) is injective, and hence \(1 \times u_1, v_1 \) is an \(H^4(P_{2n-1}(C)) \) module. Thus we get a contradiction. Therefore we see that \(e_1(p) = \alpha u \) or \(e_1(p) = \beta v \), and hence \(u_1, v_1 = 0 \) when \(\alpha = 0 \) or \(\beta = 0 \), respectively. Looking at the Euler characteristic of \(X \) we see that \(a = n - 1 \) and \(Y \sim P_B(H) \).

When \(b < n - 1 \), we see that \(e_1(p) = \alpha u (\alpha = 0) \) and \(H^*(Y) \cong \mathbb{Q}[v_1](v_1^{b+1}) \). When \(b = n - 1 \), interchanging \(u \) and \(v \) if necessary we can assume that \(e_1(p) = \alpha u (\alpha = 0) \) and \(H^*(Y) \cong \mathbb{Q}[v_1](v_1^b) \). It remains to consider the \(Sp(1) \) action on \(Y \). We shall show that either \(F \sim P_B(C) \) or \(Sp(1) \) action on \(Y \) is trivial, where \(F \) denotes the fixed point set of the restricted \(U(1) \) action on \(Y \).

Put \(w = \pi^*(v) \), where \(\pi \) is a natural projection of \((S^{4n-1} \times Y)/U(1) \) onto \(X = (S^{4n-1} \times Y)/Sp(1) \). Consider the fibration: \(Y \to (S^{4n-1} \times Y)/U(1) \to P_{2n-1}(C) \). We see that \(w^{b+1} = 0 \) and \(H^*(S^{4n-1} \times Y)/U(1)) \) is freely generated by \(1, w, w^2, \ldots, w^b \) as an \(H^*(P_{2n-1}(C)) \) module. Consider next the following commutative diagram:

\[
\begin{array}{ccc}
H'(S^\infty \times Y)/U(1)) & j^*_Y & \to H'(S^{4n-1} \times Y)/U(1)) \\
\downarrow i^*_Y & & \downarrow i^*_Y \\
H'(P_{2n}(C) \times F) & j^*_F & \to H'(P_{2n-1}(C) \times F)
\end{array}
\]

where \(i, i_\infty, j, j_F \) are natural inclusions. Since \(H^{	ext{odd}}(Y) = 0 \), we see that \([4] i^*_Y \) is injective for each \(r \) and surjective for each \(r > 4b \) and \(j^*_Y \) is surjective. Let
\(w_0 \) be an element of \(H^4((S^n \times Y)/U(1)) \) such that \(j^*(w_0) = w \). Let \(x \) be the canonical generator of \(H^4(P_\infty(C)) \approx H^4(P_{2n-1}(C)) \). Then we can express

\[
i_x^*(w_0) = x^2 \times f_0 + x \times f_1 + 1 \times f_2
\]

where \(f_i \in H^{2i}(F) \) for \(t=0, 1, 2 \). It is known that \([4] F_0 \approx P_d(C) \) or \(F_0 \approx P_d(H) \) \((0 \leq d \leq b)\) for each connected component \(F_0 \) of \(F \). We shall show that \(F \) is connected.

Consider first the case \(b < n - 1 \). We see that \(i_x^*(w_0^*) = x \times f_1 + 1 \times f_2 \), that is, \(f_0 = 0 \) by the relation \((x^2 \times f_0 + x \times f_1 + 1 \times f_2)^{k+1} = 0 \) in \(H^{4k+4}(P_{2n-1}(C) \times F) \). Consequently, we can show that if \(F \) is not connected then \(i_x^*(w_0) = 0 \) and hence \(w_0 = 0 \); this is a contradiction.

Consider next the case \(b = n - 1 \). Since \(j^*(w_0^*) = w^* = 0 \), we see that \(w_0^* = \gamma x^{2n} \) for some \(\gamma \in Q \), and hence \(i_x^*(w_0^*) = x^{2n} \times \gamma \). Suppose \(\gamma = 0 \). Then \(f_0 = 0 \), and hence we can show that \(F \) is connected by the same argument as above. Suppose next \(\gamma \neq 0 \). We shall show that \(i_x^*(w_0) = x^2 \times f_0 \), that is \(f_1 = 0 \) and \(f_2 = 0 \). For any connected component \(F_0 \) of \(F \), we have an equation

\[
(x^2 \times f_0 \mid F_0 + x \times f_1 \mid F_0 + 1 \times f_2 \mid F_0)^n = x^{2n} \times \gamma
\]

in \(H^{4n}(P_\infty(C) \times F_0) \). Then we see that \((f_0 \mid F_0)^n = \gamma \neq 0 \) and \(f_1 \mid F_0 = 0 \) for \(t=1, 2 \). Thus we obtain \(i_x^*(w_0) = x^2 \times f_0 \) and \(f_0 = \gamma \). Let \(F_1 \) (resp. \(F_2 \)) be the union of connected components \(F_\sigma \) of \(F \) on which \(f_0 \mid F_\sigma \) is positive (resp. negative). Since \(f_0 = \gamma \), we can regard \(f_0 \mid F_1 \) and \(f_0 \mid F_2 \) as constant rational numbers. Then each element of \(H^r(P_\infty(C) \times F_1) \) for \(r \geq 4n \) is expressed as a polynomial of \(x \times 1 \) with rational coefficients for \(s=1, 2 \) because \(H^*(((S^n \times Y)/U(1)) \) is generated by an element \(w_0 \) as a graded \(H^*(P_\infty(C)) \) algebra and \(i_x^* \) is surjective for \(r \geq 4n \). Then we see that \(F_1 \) (or \(F_2 \), \(s=1, 2 \)) consists of just one point, and hence \(F \) consists of at most two points. This is a contradiction to the fact: \(\chi(F) = \chi(Y) = n \leq 7 \).

Anyhow we see that \(F \) is connected, and hence \(F \approx P_d(C) \) or \(F \approx P_d(H) \). The \(Sp(1) \) action on \(Y \) is trivial for the latter case.

5.4. Finally, we consider the case \(X = X_{(a)} \cup X_{(b)} \) for \(a \geq n \). We shall show first that \(X_{(a)} \) is non-empty.

Suppose that \(X_{(a)} \) is empty. Then \(X = X_{(b)} = (S^{a-1} \times X_{(b)}) / Sp(1) \). By the Gysin sequence of the principal \(Sp(1) \) bundle \(S^{a-1} \times F_{(b)} \to X \), we see that \(F_{(b)} \approx P_b(H) \). Looking at the Euler characteristic of the fibration: \(F_{(b)} \to X \to P_{n-1}(H) \) we obtain \(a = n - 1 \); this is a contradiction.

Consequently, we see that (cf. [8]) there is an equivariant decomposition \(X = \partial(D^{a} \times Y)/Sp(1) \), where \(Y \) is a compact connected orientable manifold with a smooth \(Sp(1) \) action, and \(Y \) has a non-empty boundary \(\partial Y \) on which the \(Sp(1) \) action is free. We see that

\[
dim Y = 4(a + b + 1 - n)
\]
and the fixed point set of the $Sp(n)$ action on X is naturally diffeomorphic to the orbit manifold $\partial Y/Sp(1)$. Moreover, we see that there is a natural decomposition $X=X_1 \cup X_2$, where

$$X_1 = (S^{4n-1} \times Y)/Sp(1) \text{ and } X_2 = (D^{4n} \times \partial Y)/Sp(1).$$

Put $X_0 = X_1 \cap X_2 = (S^{4n-1} \times \partial Y)/Sp(1)$.

Let $\pi: \partial(D^{4n} \times Y) \to X$ be the projection of the principal $Sp(1)$ bundle. Denote by π_i, the projection of the restricted principal $Sp(1)$ bundle over X_i. Let $j_i: X_i \to X$ and $i_0: X_0 \to X$ be inclusions. Put $u_i = j_i^\ast(u)$ and $v_i = j_i^\ast(v)$.

We can express

$$e(\pi) = \alpha u + \beta v; \quad \alpha, \beta \in \mathbb{Q},$$

where $e(\pi)$ is the Euler class of the principal $Sp(1)$ bundle π. Then we obtain

$$e(\pi_0) = j_0^\ast e(\pi) = \alpha u + \beta v_i.$$

Since $H^r(X, X_0) \simeq H^r(X_0, X_0) \simeq H^{r-4n}(\partial Y/Sp(1))$ for each r, we obtain an isomorphism $j_i^\ast: H^r(X, X_0) \simeq H^r(X_i)$ for each $r \leq 4n-2$. Because Y is a compact connected manifold with non-empty boundary and $\dim Y \leq 4n-4$, we see that $\pi_i^\ast(u_i^{4n-1}) = 0$ and hence $u_i^{4n-1} = x' e(\pi_i)$ for some $x' \in H^{4n-8}(X_i)$. Then $u_i^{4n-1} = x e(\pi)$ for some $x \in H^{4n-8}(X)$ by the isomorphism j_i^\ast. In particular we see that $\alpha \neq 0$ in the expression: $e(\pi) = \alpha u + \beta v$. Looking at the isomorphism j_i^\ast and the Gysin sequence of the principal $Sp(1)$ bundle π_i, we see that $\pi_i^\ast(v_i^{4n-1}) = 0$ and the algebra $H^r(S^{4n-1} \times Y)$ is generated by $\pi_i^\ast v_i$. Hence we obtain $Y \sim P_n(H)$. In addition, we see that $X_i \sim P_{n-1}(H) \times P_n(H)$ by the fibration: $Y \to X_0 \to P_{n-1}(H)$.

Since $b \leq n-2$, by the same argument as in the second half of §5.3, we see that $F \sim P_n(C)$ or $F \sim P_n(H)$, where F denotes the fixed point set of the restricted $U(1)$ action on Y.

Here we complete the proof of Theorem 2.1.

Remark. The case $\alpha \beta \neq 0$ in the expression $e(\pi) = \alpha u + \beta v$ occurs only when $b \leq a+1-n$, because

$$(e(\pi_1) - \beta v_i)^{s+1} = (\alpha u_i^{s+1}) = 0$$

in $H^s(X_1) = \mathbb{Q}[e(\pi_1), v_i]/(e(\pi_1)^s, v_i^{s+1})$.

5.5. In the following, we consider the cohomology of $\partial Y/Sp(1)$. Regarding αu and βv as new u and v if necessary, we can assume that $e(\pi) = u$ if $\beta = 0$ and $e(\pi) = u + v$ if $\beta \neq 0$.

Since the algebra $H^s(X_1)$ is generated by $e(\pi_1)$ and v_i, we obtain an short exact sequence:
Moreover, we see that the kernel of $j^\#_\ast$ is an ideal generated by $e(\pi)^\ast$, that is, $\ker j^\#_\ast = H^\ast(X)e(\pi)^\ast$. Let $\tau \in H^\ast(X, X_1)$ be an element such that $k^\#_\ast(\tau) = e(\pi)^\ast$. Then $H^\ast(X, X_1)$ is generated by τ as an $H^\ast(X)$ module, that is, $H^\ast(X, X_1) = H^\ast(X)\tau$. Let $j^\#_\ast : H^\ast(X, X_1) \to H^\ast(X_2, X_0)$ be an excision isomorphism. Denote by $t \in H^\ast(X_2, X_0)$ the Thom class of the quaternion n-plane bundle over $\partial Y/Sp(1)$. Then $j^\#_\ast(t) = \lambda t$ for non-zero $\lambda \in Q$. Since $j^\#_\ast(w\tau) = j^\#_\ast(w)j^\#_\ast(\tau) = \lambda j^\#_\ast(w)t$ for each $w \in H^\ast(X)$, we see that $j^\#_\ast : H^\ast(X) \to H^\ast(X_2)$ is surjective. In addition, $j^\#_\ast(w) = 0$ if and only if $e(\pi)^\ast w = 0$ for $w \in H^\ast(X)$. Then we can show that \{ $j^\#_\ast(u^p\nu^q) ; 0 \leq p \leq a-n, 0 \leq q \leq b$ \} are linearly independent in the graded module $H^\ast(X_2) \approx H^\ast(X)/\ker j^\#_\ast$. On the other hand, we obtain

$$\text{rank } H^\ast(X_2) = \text{rank } H^\ast(X) - \text{rank } H^\ast(X_1) = (a+1-n)(b+1).$$

Therefore the set \(\{u^p\nu^q ; 0 \leq p \leq a-n, 0 \leq q \leq b\} \) is an additive base of the graded module $H^\ast(X_2)$.

Suppose first $e(\pi) = u$, i.e. $\beta = 0$. Then $j^\#_\ast(u^{a-n+1}) = 0$, and hence $H^\ast(X_2) \approx Q[u_2, \nu_2]/(u_2^{a-n+1}, \nu_2^{b+1})$. Therefore $\partial Y/Sp(1) \sim P_{a-n}(H) \times P_b(H)$.

Suppose next that $b \leq a+1-n$ and $e(\pi) = u+v$, i.e. $\beta \neq 0$. We see that

$$e(\pi)^\ast \sum_{i=0}^{b} (-1)^i \binom{a+1}{i} (u+v)^{a+1-n-i} \nu^i = ((u+v)-v)^{a+1} = 0,$$

hence we obtain

$$H^\ast(\partial Y/Sp(1)) \approx H^\ast(X_2) \approx Q[x, y]/(x^{a+1}, \sum_{i=0}^{b} (-1)^i \binom{a+1}{i} x^{a+1-n-i} y^i),$$

where $x = u_2 + \nu_2$ and $y = \nu_2$.

Here we complete the proof of Theorem 2.2.

6. Construction

We regard D^a as the unit disk of the quaternion n-space H^n with the right scalar multiplication and the left $Sp(n)$ action. Let Y be a compact orientable smooth $Sp(1)$ manifold such that the $Sp(1)$ action is free on the non-empty boundary ∂Y. By the diagonal action, $Sp(1)$ acts freely on the boundary $\partial(D^a \times Y)$. Here we consider the cohomology ring of the orbit manifold $X = \partial(D^a \times Y)/Sp(1)$ on which $Sp(n)$ acts naturally.

Suppose that $\dim Y = 4d + 4$, $Y \sim P_d(H)$, $1 \leq b \leq d \leq n-2$, and $F \sim P_d(C)$ or $F \sim P_d(B)$, where F denotes the fixed point set of the restricted $U(1)$ action on Y. Moreover suppose that $i^\ast : H^\ast(Y) \approx H^\ast(\partial Y)$, where ι is an inclusion. Put $c = d-b$. In addition, we suppose that the graded algebra $H^\ast(\partial Y/Sp(1))$
is isomorphic to one of the following:

1. \(Q[x, y]/(x^{c+1}, y^{b+1}) \),
2. \(Q[x, y]/(y^{b+1}, \Sigma_{i=0}^{b} (-1)^i (x^{c+1-i}) x^{c+1-i} y^i); b \leq c+1, \)

where \(\deg x = \deg y = 4 \), and \(x \) is the Euler class of the principal \(Sp(1) \) bundle \(\partial Y \to \partial Y/Sp(1) \).

Put \(X_1 = (S^{4n-1} \times Y)/Sp(1) \), \(X_2 = (D^{4n} \times \partial Y)/Sp(1) \) and \(X_0 = X_1 \cap X_2 = (S^{4n-1} \times \partial Y)/Sp(1) \). Then \(X = X_1 \cup X_2 \). Let \(\pi : \partial(D^{4n} \times Y) \to X \) be the projection of the principal \(Sp(1) \) bundle. Let us denote by \(\pi_1 \) the projection of the restricted principal \(Sp(1) \) bundle over \(X \). Let \(j_1 : X_1 \to X \) and \(i_2 : X_0 \to X \) be the inclusions. Let \(p : X_2 \to \partial Y/Sp(1) \) be the natural projection of \(4n \)-disk bundle, and put \(p_0 = p|_{X_0} : X_0 \to \partial Y/Sp(1) \).

Since \(d \leq n - 2 \), we see that \(H^*(X_0) \) is freely generated by 1, \(\sigma \) as an \(H^*(\partial Y/Sp(1)) \) module for an element \(\sigma \in H^{4n-1}(X_0) \) and \(\iota^* : H^*(X_0) \to H^*(X_0) \) is injective. Put \(x_0 = p_0^*(x) \), \(y_0 = p_0^*(y) \), \(x_2 = p^*(x) \) and \(y_2 = p^*(y) \). Then \(x_0 = e(\pi_0) \) and \(x_2 = e(\pi_2) \), the Euler classes of the principal \(Sp(1) \) bundles.

By the fibration: \(Y \to X \to P_{d-1}(H) \) and the assumption that \(F \sim P_{d}(C) \) or \(F \sim P_{d}(H) \) and \(Y \sim P_{d}(H) \), we see that by Lemma 1.1,

\[
H^*(X_1) = Q[x_1, y_1]/(x_1^{c+1}, y_1^{b+1}); \quad \deg x_1 = \deg y_1 = 4,
\]

where \(x_1 = e(\pi_1) \), the Euler class of the principal \(Sp(1) \) bundle.

Consider the Mayer–Vietoris sequence of a triad \((X; X_1, X_2) \):

\[
i^* \to H^{4r-1}(X_0) \xrightarrow{\Delta^*} H^r(X) \to H^r(X_1) \oplus H^r(X_2) \xrightarrow{j^*} H^r(X) \to i^* \Delta^*
\]

where \(j^*(a) = (j^*(a), j^*(a)) \) and \(i^*(b_1, b_2) = i^*(b_1) - i^*(b_2) \). We see that \(H^r(X) = 0 \) for each \(r \neq 0 \) (mod 4) and there is the following short exact sequence for each \(k \):

\[
(*) \quad 0 \to H^{4k-1}(X_0) \xrightarrow{\Delta^*} H^{4k}(X) \xrightarrow{j^*_k} H^{4k}(X_1) \to 0.
\]

Notice that \(\dim X = 4(n + d) \) and

\[
(**) \quad j^*_k : H^{4k}(X) \cong H^{4k}(X_1) \quad \text{for } k < n.
\]

Let \(u, v \) be elements of \(H^r(X) \) such that \(j^*_k(u) = x_1, j^*_k(v) = y_1 \). We see that \(u = e(\pi) \), the Euler class of the principal \(Sp(1) \) bundle. Moreover, we see that \(v^{b+1} = 0 \) by \((***) \) and the assumption \(b \leq n - 2 \). Since \(j^*_k(u^{c+1}v^k) \neq 0 \), there is an element \(z \in H^{4k+1}(X) \) such that \(u^{c+1}v^kz = 0 \), by the Poincaré duality. Then we see that \(u^{c+1}v^k \neq 0 \), by \((***) \) and the fact \(v^{b+1} = 0 \). In particular, we obtain \(u^* \neq 0 \). Looking at the exact sequence \((*) \), we can assume that \(u^* = \Delta^*(\sigma) \).

We can express \(i^*_k(y_1) = \lambda x_0 + \mu y_0 \); \(\lambda, \mu \in Q \). Since \(\pi^*_k(y_1) \neq 0 \), we see that
by the assumption $i^*: H^*(Y) \cong H^*(\partial Y)$. Then

$$\Delta^*(\sigma x^i y^j) = \mu^{-1} u^{n+c}(v-\lambda u)^t$$

because $\Delta^*(\sigma j^*(w)) = \Delta^*(\sigma)w$ for each $w \in H^*(X)$. Looking at the exact sequence (\ref{eq:exact}), we see that the graded algebra $H^*(X)$ is generated by two elements u, v and rank $H^*(X) = (n+c+1)(b+1)$.

In the expression $i^*(y) = \lambda x_0 + \mu y_0$, if $\lambda = 0$ then we see that $u = 0$ in the case (1) and $(u-\mu^{-1}v)^{n+c+1} = 0$ in the case (2), and hence $X \cong P_{n+c}(H) \times P_b(H)$.

Since $i^* : H^*(X_2) \rightarrow H^*(X_3)$ is injective, we see that $j^*(v) = \lambda x_2 + \mu y_2$, and hence $(\lambda x_2 + \mu y_2)^{n+c+1} = 0$. Then we obtain $\lambda = 0$ in the case (1), because $H^*(X_2) = Q[x_2, y_2]/(x_2^{n+c+1}, y_2^{n+c+1})$.

Next we consider the case (2). We obtain a relation

$$(\gamma x_2 + y_2)^{n+c+1} \in \mathbb{I} = (y_2^{n+c+1}, \sum_{i=0}^k (-1)^i \binom{n+c+1}{i} x_2^{n+c+1-i} y_2^i),$$

where $\gamma = \lambda \mu^{-1}$. We see that $\gamma = 0$ for the case $b < c$ or $b = c \geq 2$. Suppose $b = c + 1$. Looking at the relation $(\gamma x_2 + y_2)^{n+c+1} \in \mathbb{I}$, we obtain $\gamma = 0$ or

$$(A_k) \quad \left(\frac{c+2}{k} \right) - (-\gamma) \binom{n+c+1}{k} + (n+c+1) (-\gamma) \binom{n+c+1}{k-1}$$

$$- (c+2) (-\gamma) \binom{n+c+1}{k-1} = 0$$

for each $k = 2, 3, \ldots, c+1$. Suppose $\gamma \neq 0$ and $c \geq 2$. Then we get a contradiction from (A_2) and (A_3). Hence we obtain $\gamma = 0$ for $c \geq 2$. Suppose $\gamma \neq 0$ and $c = 1$. We see that the quadratic equation (A_2) has a rational solution γ if and only if $3n(n+2)$ is a square number.

Summing up the above arguments, we obtain a partial converse of Theorem 2.1 (iii).

Remark. For a positive integer n, $3n(n+2)$ is a square number if and only if $n+1$ is one of the following:

$$\sum_{i \geq 0} \binom{k}{2i} 2^{k-2i}3^i; \quad k = 1, 2, 3, \ldots$$

7. Concluding remark

By parallel arguments, we obtain the following result which is a generalization of a theorem [7].

Theorem 7.1. Let X be a closed orientable manifold on which $SU(n)$ acts smoothly and non-trivially. Suppose $X \cong P_\alpha(C) \times P_\beta(C); \quad a \geq b \geq 1, a+b \leq 2n-2$ and $n \geq 7$. Then there are three cases:
(0) \(a = n - 1\) and \(X \simeq P_{n-1}(C) \times Y_0\), where \(Y_0\) is a closed orientable manifold such that \(Y_0 \sim P_a(C)\), and \(SU(n)\) acts naturally on \(P_{n-1}(C)\) and trivially on \(Y_0\).

(i) \(a = b = n - 1\) and \(X \simeq P_{n-1}(C) \times P_{a-1}(C)\) with the diagonal \(SU(n)\) action,

(ii) \(a \geq n\) and \(X \simeq \partial(D^{2a} \times Y_1)/U(1)\), where \(Y_1\) is a compact orientable \(U(1)\) manifold such that \(\dim Y_1 = 2(a+b+1-n)\) and \(Y_1 \sim P_a(C)\), \(U(1)\) acts as right scalar multiplication on \(D^{2a}\), the unit disk of \(C^n\), and \(SU(n)\) acts naturally on \(D^{2a}\) and trivially on \(Y_1\). In addition, the \(U(1)\) action on the boundary \(\partial Y_1\) is free and the fixed point set of the \(U(1)\) action on \(Y_1\) is \(\sim P_b(C)\).

Theorem 7.2. In the case (ii) of Theorem 7.1, the cohomology ring \(H^*(\partial Y_1/U(1))\) is isomorphic to one of the following:

1. \(Q[x, y]/(x^{a+1-n}, y^{b+1})\),
2. \(Q[x, y]/(y^{b+1}, \sum_{i=0}^{b}(-1)^i(a+1)\binom{a+1}{i}x^{a+1-n-i}y^i); b \leq a+1-n\),

where \(\deg x = \deg y = 2\), and \(x\) is the Euler class of the principal \(U(1)\) bundle \(\partial Y_1 \to \partial Y_1/U(1)\).

References

Department of Mathematics
Faculty of Science
Yamagata University
Yamagata 990,
Japan