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Abstract
Let Q be an affine monoid, k[Q] the associated monoid k-algebra, and k[Q] its
normalization, where we let k be a field. We discuss a difference of the Hilbert series
of k[Q] and k[Q] in the case where k[Q] is homogeneous (i.e., standard graded).
More precisely, we prove that if k[Q] satisfies Serre’s condition (S2), then the degree
of the h-polynomial of k[Q] is always greater than or equal to that of k[Q]. Moreover,
we also show counterexamples of this statement if we drop the assumption (S2).

Keywords Hilbert series · Affine monoid algebras · Serre’s condition (S2) · Edge
rings

1 Introduction

1.1 Backgrounds

Let k be a field throughout this paper. For the fundamental materials on commutative
algebra, see [3].

Let R = ⊕
i∈Z

Ri be a graded k-algebra with dimk Ri < ∞ for each i . Hilbert
series of R is one of the most fundamental invariants in the theory of commutative
algebra. For the introduction to the theory of Hilbert series, see, e.g., [3, Section
4]. Although the Hilbert series just provides the numerical information of R as a
k-vector space, it reflects several commutative-algebraic properties. For example, a
classical observation claims that if R is Cohen–Macaulay, then the Laurent polynomial
appearing in the numerator of the Hilbert series of R has nonnegative coefficients ([3,
Corollary 4.1.10]). Moreover, the Gorensteinness of R is completely characterized
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A. Higashitani

in terms of a kind of symmetry of the Hilbert series if R is a domain ([3, Corollary
4.4.6]). Furthermore, by several recent studies, some connections with certain gen-
eralized notions of Gorensteinness (e.g. almost Gorenstein, nearly Gorenstein, level)
and the Hilbert series have been discovered. (See, e.g., [6, 7, 10].) Since the Hilbert
series of R can be computed from the graded minimal free resolution of R, it also cap-
tures other invariants which have been well-discussed in commutative algebra, such
as Krull dimension (or codimension), Koszulness, Castelnuovo–Mumford regularity,
multiplicity, a-invariant, and so on.

On the other hand, affine monoids and their associated k-algebras have been well
studied by many researchers in several contexts. For the introduction to the theory of
affine monoids and affine monoid k-algebras, see, e.g., [2] and [3, Section 6.1]. Since
geometric information of affine monoids is applicable for the analysis of algebraic
properties of the associated k-algebras, affine monoid k-algebras have been regarded
as useful objects in commutative algebra. For example, the celebrated theorem by
Hochster claims that if an affine monoid Q is normal, i.e., Q = Q, then k[Q] is
Cohen–Macaulay ([3, Theorem 6.3.5 (a)]). Moreover, Cohen–Macaulayness of the
affine monoid k-algebra k[Q] is characterized in terms of geometric information on
Q together with the information about reduced homology groups over k of certain
simplicial complexes ([15]). Furthermore, Katthän reveals a strong connection with
the structure of holes of affine monoids Q (i.e., Q\Q) and ring-theoretic properties
(e.g., Serre’s condition (S2), (R1) and depth). See [9].

By taking these backgrounds into account, in this paper, we study the Hilbert series
of k[Q] and k[Q]. In particular, we focus on the difference of them.

1.2 Main results

To explain the main results of this paper, we introduce the notation used throughout
this paper. Given a Z-graded k-algebra R = ⊕

i∈Z
Ri , let M = ⊕

i∈Z
Mi be a finitely

generated Z-graded R-module with dimk Mi < ∞ for each i . Let Hilb(M, t) denote
the Hilbert series of M , i.e.,

Hilb(M, t) =
∑

i∈Z

dimk Mi t
i .

We say that R is homogeneous if it is generated by R1 and R0 = k. If R is homoge-
neous, then we see that Hilb(M, t) is of the following form:

Hilb(M, t) = hM (t)

(1 − t)dim M
,

where hM (t) is a Laurent polynomial in t with integer coefficients. We call this poly-
nomial hM (t) the h-polynomial of M .

When R = k[Q] for some affine monoid Q, we call Q homogeneous if k[Q] is
homogeneous. We use the notation Hilb(Q, t) and hQ(t) instead of Hilb(k[Q], t) and
hk[Q](t), respectively.

The following is the first main theorem of this paper:
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Difference of Hilbert series of homogeneous monoid...

Theorem 1.1 Let Q be a homogeneous affine monoid and assume that k[Q] satisfies
Serre’s condition (S2). Then deg(hQ(t)) ≥ deg(hQ(t)).

Here, deg( f (t)) denotes the degree of the polynomial f (t). For the definition of Serre’s
condition, see Sect. 2.2.

The following second main theorem shows the existence of counterexamples of
Theorem 1.1 if we drop the assumption (S2).

Theorem 1.2 For any positive integer m, there exists a homogeneous affine monoid Q
such that deg(hQ(t)) − deg(hQ(t)) = m.

1.3 Organization of this paper

In Sect. 2, we prepare the materials for the proofs of the main results. In Sect. 3, we
give a proof of Theorem 1.1. In Sect. 4, we give a proof of Theorem 1.2.

2 Preliminaries

In this section, we recall several materials used in this paper.

2.1 Affinemonoids and hole modules

An affine monoid is a finitely generated submonoid of Zd for some d. Given an affine
monoid Q ⊂ Z

d≥0, we can associate the k-algebra k[Q] ⊂ k[x1, . . . , xd ] defined by

k[Q] = k[xα : α ∈ Q],

where for α = (α1, . . . , αd) ∈ Z
d≥0, we let x

α = xα1
1 · · · xαd

d . We call this k-algebra
k[Q] themonoid algebra of Q. Affine monoids and monoid algebras have been called
as affine semigroups and affine semigroup rings (e.g., in [3]), but it is becoming
common to call them as affine monoids and monoid algebras, respectively. Those are
the same notions, but we employ the terminology “monoid” in this paper.

We recall some fundamental notions on affinemonoids and theirmonoidk-algebras.
Let Q ⊂ Z

d≥0 be an affinemonoid. Theminimal generating system of Q is theminimal

finite subset {α1, . . . , αs} of Q such that Q =
{

s∑

i=1

niαi : ni ∈ Z≥0

}

. In this case,

we use the notation Q = 〈α1, . . . , αs〉.
Let Q = 〈α1, . . . , αs〉 for some αi ∈ Z

d≥0.

– Let ZQ denote the free abelian group generated by Q, i.e., ZQ ={
s∑

i=1

ziαi : zi ∈ Z

}

.

– Let R≥0Q denote the polyhedral cone generated by Q, i.e., R≥0Q

=
{

s∑

i=1

riαi : ri ∈ R≥0

}

.
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– Let Q be the normalization of Q, i.e.,

Q = ZQ ∩ R≥0Q.

Clearly, we have Q ⊂ Q. We say that Q is normal if Q = Q holds. Note that
k[Q] coincides with the normalization of k[Q]. It is known that k[Q] is Cohen–
Macaulay if Q is normal. (See [3, Theorem 6.3.5].)

– A face F of Q is a subset of Q satisfying the following: α, β ∈ Q, α + β ∈ F ⇔
α ∈ F and β ∈ F . The dimension of a face F is defined to be the rank of the free
abelian group ZF .

– We say that Q is positive if the minimal face of Q is {0}.
– Regarding k[Q], we have dim k[Q] = dim Q.
– We say that an affine monoid Q is homogeneous if the minimal generating set of

Q lies on the same hyperplane not containing the origin.

Throughout this paper, affine monoids are always assumed to be positive. We recall
the following statement, which will play a crucial role in the proof of Theorem 1.1.

Theorem 2.1 ([9, Theorem 3.1 and Proposition 5.5]) Let Q be an affine monoid. Then
there exists a (not-necessarily disjoint) decomposition:

Q \ Q =
�⋃

i=1

(qi + ZFi ) ∩ R≥0Q (1)

with qi ∈ Q and faces Fi of Q.
Moreover, in the case � = 1, i.e., if Q\Q = (q + ZF) ∩ R≥0Q for some q ∈ Q

and a face F of Q, then depth k[Q] = dim F + 1.

Wecallqi+ZFi appearing in (1) a j-dimensional family of holes of Q if dim Fi = j .
Note that Theorem 3.1 and Proposition 5.5 in [9] claim the similar statement for

non-necessarily positive affine monoids, but we convert the statement into the case of
positive affine monoids.

2.2 Serre’s condition

Let R be a Noetherian ring and let M be a finitely generated R-module. For a non-
negative integer m, we say that M satisfies Serre’s condition (Sm) if

depth Mp ≥ min{m, dim Mp} for all p ∈ Spec R,

where Spec R denotes the set of all prime ideals of R. Namely, M satisfies (Sm) if and
only if Mp is Cohen–Macaulay for any p ∈ Spec R with depth Mp < m.

Proposition 2.2 (cf. [4])Let A = k[x1, . . . , xn], let I be an ideal of A and let R = A/I .
Then R satisfies (Sm) if and only if dim(ExtiA(R, A)) ≤ n − m − i holds for any
i > n − dim R.
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Regarding (S2) for monoid algebras k[Q], we know the following:

Theorem 2.3 ([9, Theorem 5.2]) Let Q be a positive affine monoid of dimension d.
Then k[Q] satisfies (S2) if and only if every family of holes of Q is of dimension d−1.

2.3 Ehrhart rings of lattice polytopes

A convex polytope P ⊂ R
N is called a lattice polytope if all of its vertices belong

to Z
N . If P �⊂ R

N≥0, then we may translate P by a certain lattice point γ ∈ Z
N≥0 to

make P + γ ⊂ R
N≥0. Since most properties of lattice polytopes are preserved by the

translation by a lattice point, we may assume that P ⊂ R
N≥0 without loss of generality.

Given a lattice polytope P ⊂ R
N≥0, we can associate a homogeneous affine monoid

QP as follows:

QP = 〈(α, 1) : α ∈ P ∩ Z
N 〉 ⊂ R

N+1.

Hence, we can associate the k-algebra k[QP ], known as the toric ring of P .
On the other hand, we can also define the k-algebra associated to P as follows:

Ehrk(P) := k[xαxnN+1 : α ∈ nP ∩ Z
N ] ⊂ k[x1, . . . , xN+1],

where nP = {nα : α ∈ P}. This k-algebra Ehrk(P) is called the Ehrhart ring of P .
We see by definition that Hilb(Ehrk(P), t) coincides with the Ehrhart series of P ,
which is the generating function

∑
n≥0 |nP ∩ Z

N |tn . For the introduction to Ehrhart
theory, see [1].

Given a homogeneous affine monoid Q ⊂ Z
d≥0, a cross section polytope of Q,

denoted by PQ ⊂ R
d≥0, is the lattice polytope obtained by the intersection of Q and a

hyperplane including all the generators of Q.

Example 2.4 The Ehrhart ring of P does not necessarily coincide with the normaliza-
tionofk[QP ]. In fact, let P be the convexhull of {(0, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 1)}.
Then we see that

k[QP ] = k[x4, x1x2x4, x2x3x4, x1x3x4] ∼= k[X1, . . . , X4].

In particular, the normalization k[QP ] is equal to k[QP ]. On the other hand, the
following holds:

Ehrk(P) = k[x4, x1x2x4, x2x3x4, x1x3x4, x1x2x3x24
�������

]
∼= k[X1, . . . , X4, Y ]/(X1X2X3X4 − Y 2),

where we regard deg Xi = 1 and deg Y = 2.

123



A. Higashitani

We say that a lattice polytope P ⊂ R
d≥0 is spanning ifZQP = Z

d+1. If P is spanning,

then we see that k[QP ] = Ehrk(P). The notion of spanning polytopes was introduced
in [8] and the Ehrhart theory for spanning polytopes was developed there.

We recall a well-known notion for lattice polytopes P ⊂ R
d . The codegree of P ,

denoted by codeg(P), is defined as follows:

codeg(P) := min{� ∈ Z>0 : �P◦ ∩ Z
d �= ∅}, (2)

where P◦ denotes the relative interior of P .
Assume that P ⊂ R

d≥0 and P is spanning. Then it is known that

deg(hQP
(t)) = dim k[QP ] − codeg(P)

and

hs = |�P◦ ∩ Z
d |,

where s = deg(hQP
(t)), hs is the leading coefficient of hQP

(t) and � = codeg(P).
Those are implicitly explained in [1, Section 4] in terms of lattice polytopes or their
Ehrhart series.

2.4 Edge rings

Throughout this paper, all graphs are finite and simple. Let G be a connected graph on
the vertex set V (G) with the edge set E(G). Then we can associate a homogeneous
affine monoid QG by setting

QG = 〈eu,v : {u, v} ∈ E(G)〉 ⊂ R
V (G),

where eu denotes the unit vector of RV (G) and eu,v = eu + ev . We call the associated
k-algebra k[QG] the edge ring of G.

Let PG be the convex hull of {eu,v : {u, v} ∈ E(G)}. This polytope is known as the
edge polytope of G.

We know by [12, Proposition 1.3] that

dim k[G] = dim PG + 1 =
{

|V (G)| − 1, ifG is bipartite,

|V (G)|, otherwise.

Remark 2.5 For a non-bipartite connected graph G with d vertices, the edge polytope
PG is always assumed to be spanning in the following sense. Fix a vertex v of G. Let
P ′ be the image of PG by the projection π : RV (G) → R

V (G)\{v} ignoring the entry
corresponding to v. Then QG is isomorphic to QP ′ as affine monoids. Moreover, let
S be a (d − 1)-simplex in PG described in [12, Lemma 1.4]. Then we can check that
{(α, 1) : α ∈ π(S) ∩ Z

V (G)\{v}} forms a Z-basis for ZV (G) if we choose a vertex v

properly. Therefore, we conclude that P ′ is spanning. Since QG is isomorphic to QP ′ ,

123



Difference of Hilbert series of homogeneous monoid...

we may say “PG is spanning”. In particular, k[QG] = Ehrk(PG) holds. Even if G is
not connected, we may apply the same procedure for each connected component Gi

and obtain a Z-basis for ZV (Gi ). By combining these Z-bases for ZV (Gi ) for each i ,
we obtain a Z-basis for ZV (G). Namely, PG is spanning for any non-bipartite (non-
necessarily connected) graph G.

A similar discussion can be applied for bipartite graphs and we can also claim the
spanning property for edge polytopes of bipartite graphs, but we omit the detail since
we do not use it in this paper.

An exceptional pair in G is a pair (C,C ′) of two odd cycles C and C ′ in G such
that C and C ′ have no common vertex and there is no bridge between C and C ′ (i.e.,
no edge {v, v′} in G with v ∈ V (C) and v′ ∈ V (C ′)).

Edge rings have been intensively studied by several people since the following
theorem was established:

Theorem 2.6 ([12, 13]) Let G be a connected graph. Then QG is described as follows:

QG = QG + Z≥0{eC + eC ′ : (C,C ′) is an exceptional pair in G}, (3)

where eC = ∑
v∈V (C) ev . In particular, QG is normal if and only if there is no excep-

tional pair in G.

We prepare the following proposition for the proof later.

Proposition 2.7 For a connected graph with d vertices, we have deg(hQG
(t)) ≤ d/2.

Moreover, if the equality holds, then hd/2 = 1, where hd/2 is the leading coefficient of
hQG

(t).

Proof For the first statement, it is enough to show that codeg(PG) ≥ d/2 by (2) and
Remark 2.5.

Let � be a positive integer and assume that �P◦
G ∩ Z

d �= ∅. Let α = (αv)v∈V (G) ∈
�P◦

G ∩ Z
d . Then we can write α like α = ∑

{u,v}∈E(G) au,veu,v , where au,v > 0 for
each {u, v} ∈ E(G) and

∑
au,v = �. Thus, in particular, αu ≥ 1 holds for each

u ∈ V (G) since α ∈ Z
d . Hence,

2� = 2
∑

au,v =
∑

v∈V (G)

αv ≥ |V (G)| = d.

This means that codeg(PG) ≥ d/2.
Moreover, by this discussion, if codeg(PG) = d/2, then α must be

∑
v∈V (G) eu .

This implies that hd/2 = 1. ��

3 Proof of Theorem 1.1

This section is devoted to giving a proof of Theorem 1.1.

123



A. Higashitani

Proof of Theorem 1.1 Let Q ⊂ Z
d≥0 be a homogeneous affine monoid of dimension d.

Then we know the following short exact sequence of graded k[Q]-modules:

0 −→ k[Q] −→ k[Q] −→ k[Q]/k[Q] −→ 0

Thus, we have

Hilb(Q, t) = Hilb(Q, t) − Hilb(k[Q]/k[Q], t). (4)

By the way, Theorem 2.1 describes the structure of k[Q]/k[Q]. Since we assume
(S2) for k[Q], we know that each family of holes is of dimension d − 1 (see Theo-
rem 2.3). Let us consider the decomposition of Q\Q in (1), where qi ∈ Q and Fi is a
face of Q of dimension d−1 for each i . Note that this decomposition is not necessarily
disjoint. Hence, we have to apply an “inclusion–exclusion type” formula to get the
Hilbert series of k[Q]/k[Q].

Here, we recall some materials on hyperplanes arrangements. (See, e.g., [14] for
the introduction to the theory of hyperplane arrangements.) Let Hi = qi + RFi be
an affine hyperplane, and let A = {H1, . . . , H�} be a hyperplane arrangement. Let
L (A ) denote the intersection lattice of A , i.e.,

L (A ) =
{

⋂

i∈I
Hi �= ∅ : I ⊂ {1, . . . , �}

}

equipped with a partial order defined by reverse inclusion. We regard
⋂

i∈∅ Hi as Rd ,
i.e., Rd ∈ L (A ) is the minimal element. We define a map μ : L (A ) → Z (known
as the Möbius function) as follows:

μ(X) =
{
1, if X = R

d ,

−∑
X�Y μ(Y ), otherwise.

Then we see from (1) that

Hilb(k[Q]/k[Q], t) = −
∑

X∈L (A )\Rd

μ(X)
tai hX (t)

(1 − t)dim X

= −
∑

X∈L (A )\Rd

μ(X)
tai hX (t)(1 − t)d−dim X

(1 − t)d
,

where ai = deg xqi and we let X = X ∩ Q. Note that X is a normal homogeneous
submonoid of Q. Hence, it follows from (4) that

hQ(t) = hQ(t) +
∑

X∈L (A )\Rd

(−1)d−dim Xμ(X)tai (t − 1)d−dim XhX (t).
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Since X is normal, we know that k[X ] is Cohen–Macaulay, so hX (t) has positive
coefficients. Thus, we can conclude the desired conclusion deg(hQ(t)) ≥ deg(hQ(t))

once we check that (−1)d−dim Xμ(X) ≥ 0. Actually, this is known to be true. See,
e.g., [14, Corollary 3.4].

Regarding another relationship between hQ(t) and hQ(t), we know the following:

Proposition 3.1 For any homogeneous affine monoid Q of dimension d, hQ(1) =
hQ(1) holds.

Proof Since the structure of k[Q]/k[Q] can be captured by the decomposition (1) and
each face Fi is of dimension at most d − 1, we see that

Hilb(k[Q]/k[Q], t) = g(t)

(1 − t)d−1 ,

where g(t) is some polynomial in t . Then it follows from (4) that

Hilb(k[Q], t) − Hilb(k[Q], t) = hQ(t) − hQ(t)

(1 − t)d
= (1 − t)g(t)

(1 − t)d
.

In particular, hQ(t) − hQ(t) is divisible by (1 − t). This means that hQ(1) = hQ(1).
��

4 Proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2. For the proof of Theorem 1.2, we use
the following example.

Example 4.1 Let G be the graph on {1, . . . , 10} with the edge set

E(G) = {12, 13, 23, 34, 35, 36, 37, 45, 67, 58, 78, 89, 8 10, 9 10}.

See Fig. 1.
Let Q = QG . By using Macaulay2 (for k[Q]) together with Normaliz (for

k[Q]), we see the following:

Hilb(Q, t) = 1 + 4t + 9t2 + 12t3 + 8t4

(1 − t)10
and

Hilb(Q, t) = 1 + 4t + 9t2 + 13t3 + 6t4 + t5

(1 − t)10
.

On the other hand, we see that

dim Ext5A(k[Q], A) = 8 > 14 − 2 − 5, 5 > 14 − dim k[Q],
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Fig. 1 A graph G with deg(hQG (t)) < deg(hQG
(t))

Fig. 2 Graph Gk

where we let A = k[x1, . . . , x14] and regard k[Q] as A/I by taking the defining ideal
I ⊂ A of k[Q] (i.e., the toric ideal of Q). This implies that k[Q] does not satisfy
(S2) (see Proposition 2.2). Note that we can also check non-(S2)-ness by using the
structure of the hole module k[Q]/k[Q]. See Proposition 4.2.

This example shows that Theorem 1.1 does not hold if we drop the assumption
(S2).

Actually, we can generalize this example as follows:

Proposition 4.2 Given a positive integer k, let Gk be the graph as depicted in Fig.2:
Let Q = QGk . Then

deg(hQ(t)) − deg(hQ(t)) =
{

−1 if k iseven,

0 if k isodd.
(5)

We also have depth k[Q] = k + 7, while dim k[Q] = 2k + 6. In particular, k[Q] is
never Cohen–Macaulay if k ≥ 2.

Proof Note that dim k[Q] = dim k[Q] = |V (Gk)| = 2k + 6. Let P = PGk be the
edge polytope of Gk .
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The first step: We compute deg
(
hQ(t)

)
by computing the codegree of P . We see that

3

4
eu1,u2 + 1

4
(eu1,u3 + eu2,u3) + 7

12
eu4,u5 + 5

12
(eu4,u6 + eu5,u6)

+
k∑

i=1

1

6k

(
evi ,u3 + evi ,u6 + 2ev′

i ,u3
+ (6k − 2)evi ,v

′
i

)
=

∑

v∈V (Gk )

ev ∈ R
V (Gk ),

where eu,v = eu + ev . In the left-hand side of this equality, all edges of Gk appear
and each of the coefficients is positive. Moreover, the sum of the coefficients is equal
to k + 3. This implies that (k + 3)P◦ ∩Z

d �= ∅, i.e., codeg P ≤ k + 3, which implies
that deg(hQ(t)) = dim k[Q] − codeg P ≥ k + 3. On the other hand, Proposition 2.7
implies that deg(hQ(t)) ≤ (2k+6)/2 = k+3. Therefore, deg(hQ(t)) = k+3. At the
same time, we can also see that hk+3 = 1, where hk+3 denotes the leading coefficient
of hQ(t).
The second step: Next, we compute the family of holes of Q. Let G ′ be the (non-
connected) graph obtained from Gk by removing the vertices v1, . . . , vk together with
the incident 3k edges. Let q = ∑6

i=1 eui and let Q′ = QG ′ . We claim that

Q \ Q = q + Q′. (6)

Note that the pair of 3-cycles (u1, u2, u3) and (u4, u5, u6) is a unique exceptional pair
in Gk .
“(⊂)” By (3), we have Q\Q ⊂ Q + Z≥0q, but we know that

2q = eu1,u2 + eu1,u3 + eu2,u3 + eu4,u5 + eu4,u6 + eu5,u6 ∈ Q.

Hence, Q \ Q ⊂ q + Q holds. Moreover, for each i = 1, . . . , k, we see the following:

q + evi ,u3 = eu1,u3 + eu2,u3 + evi ,u6 + eu4,u5 ,

q + evi ,u6 = eu1,u2 + evi ,u3 + eu4,u6 + eu5,u6 , and

q + evi ,v
′
i
= eu1,u2 + ev′

i ,u3
+ evi4,u6 + eu4,u5 .

This concludes that Q \ Q ⊂ q + Q′.
“(⊃)” Since we see from (3) that q + Q′ ⊂ Q holds, it is enough to check q +α′ /∈ Q
for any α′ ∈ Q′. Let (α′′

v )v∈V (Gk ) = q + α′ and look at the entries α′′
u4 , α

′′
u5 and α′′

u6 .
Then α′′

u4 + α′′
u5 + α′′

u6 is always odd (and at least 3). On the other hand, α′′
vi

= 0 for
each i by definition of Q′. This implies that q + α′ cannot be decomposed into eu,v’s
for some edges {u, v} in Gk , i.e., q + α′ /∈ Q.

Moreover, since {eu,v : {u, v} ∈ G ′} is linearly independent and consists of k + 6
vectors, we see that k[Q′] ∼= k[x1, . . . , xk+6]. Hence,

Hilb(Q′, t) = 1

(1 − t)k+6 .
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The third step: By the second step together with (4), we see the following:

Hilb(Q, t) = hQ(t)

(1 − t)2k+6 − t3
1

(1 − t)k+6 = hQ(t) − t3(1 − t)k

(1 − t)2k+6 .

(Note thatq corresponds to amonomial of degree 3 ink[Q].) Since deg (
hQ(t)

) = k+3
and hk+3 = 1 by the first step, we obtain that

deg(hQ(t)) =
{
k + 2 if k is even,

k + 3 if k is odd.

This implies the desired conclusion (5).
The fourth step: Lastly, we discuss the depth of k[Q]. One can verify that Q′ is a face of
Q of codimension k. (In fact, Q′ = Q∩⋂k

i=1{xvi = 0}, where each xvi = 0 becomes a
supporting hyperplane of Q.) This implies that (6) gives the decomposition (1). Hence,
k[Q] does not satisfy (S2) byTheorem2.3.Moreover, we can apply the latter statement
of Theorem 2.1 and obtain that the depth of k[Q] is equal to 1 + dim Q′ = k + 7. ��

For the proof of Theorem 1.2, we recall the notion of join for lattice polytopes
and apply the same idea to homogeneous affine monoids. Given two lattice polytopes
P ⊂ R

d and P ⊂ R
d ′
, let P�P ′ be the convex hull of

{(α, 0d ′ , 0) : α ∈ P} ∪ {(0d , α, 1) : α′ ∈ P ′}) ⊂ R
d+d ′+1.

We call P�P ′ the join of P and P ′.
Similarly, given two homogeneous affine monoids Q ⊂ Z

d≥0 and Q′ ⊂ Z
d ′
≥0, let

α1, . . . , αs (resp.α′
1, . . . , α

′
s′ ) be theminimal generating set of Q (resp. Q′).We define

Q�Q′ = 〈(α1, 0d ′ , 0), . . . , (αs, 0d ′ , 0), (0d , α′
1, 1), . . . , (0d , α

′
s′ , 1)〉 ⊂ Z

d+d ′+1
≥0 .

Then it is straightforward to see that Q�Q′ is also a homogeneous affine monoid. Let
us call Q�Q′ the join of homogeneous affine monoids Q and Q′.

Proposition 4.3 (cf. [5, Lemma 1.3]) Given two homogeneous affine monoids Q ⊂
Z
d≥0 and Q′ ⊂ Z

d ′
≥0, we have

Hilb(Q�Q′, t) = Hilb(Q, t) · Hilb(Q′, t)

and

Hilb(Q�Q′, t) = Hilb(Q, t) · Hilb(Q′, t).

Proof Let P (resp. P ′) be the cross section polytope of Q (resp. Q′). Then that of
Q�Q′ is nothing but P�P ′ since the hyperplane containing the generators of Q�Q′
is defined by b′ ∑d

i=1 ai xi + b
∑d ′

i=1 a
′
i xd+i = bb′, where

∑d
i=1 ai xi = b (resp.
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∑d ′
i=1 a

′
i xi = b′) is the hyperplane containing the generators of Q (resp. Q′). Hence,

the latter equality of the statement is directly obtained from [5, Lemma 1.3].
For the former, similarly to the proof of [5, Lemma 1.3], it suffices to show that

dimk(k[Q�Q′]k) =
∑

i+ j=k

dimk(k[Q])i dimk(k[Q′]) j ,

but this directly follows from the description of Q�Q′ as follows: for each k ∈ Z>0,

(Q�Q′) ∩
⎧
⎨

⎩
b′

d∑

i=1

ai xi + b
d ′

∑

i=1

a′
i xd+i = bb′k

⎫
⎬

⎭

= {
m(α, 0d ′ , 0) + (k − m)(0d , α′, 1) : α ∈ Q, α′ ∈ Q′, 0 ≤ m ≤ k,m ∈ Z

}
.

��
Now, we are in the position to give a proof of Theorem 1.2.

Proof of Theorem 1.2 Given a positive integer m, let

Q(m) = Q� · · · �Q
︸ ︷︷ ︸

m times

,

where Q is the same homogeneous affine monoid as in Example 4.1. It then fol-
lows from Proposition 4.3 that Hilb(Q(m), t) = Hilb(Q, t)m and Hilb(Q(m), t) =
Hilb(Q, t)m . Hence, deg(h

Q(m) (t))−deg(hQ(m) (t)) = m
(
deg(hQ(t)) − deg(hQ(t))

)

= m, as required.

Remark 4.4 The difference of the degrees of hQ(t) and hQ(t) can be arbitrarily large.
For the case deg(hQ(t)) < deg(hQ(t)), this is just what Theorem 1.2 claims. For the
case deg(hQ(t)) ≥ deg(hQ(t)), we can find such examples, e.g., in [11, Theorem A].
In fact, for any nonnegative integer m, let

Rm := 〈(0, 2m + 3), (m + 1,m + 2), (m + 2,m + 1), (2m + 3, 0)〉 ⊂ Z
2≥0.

Then k[Rm] is nearly Gorenstein with Cohen–Macaulay type 2 (see [11, Lemma A
(α)]). Moreover, we also see that the projective dimension of k[Rm] is 2. Thus, by [10,
Theorem 4.10], we know that Hilb(Rm, t) = 1 + 2

∑s
i=1 t

i

(1 − t)2
for some s. In particular,

hRm (t) = 1 + 2
∑s

i=1 t
i . On the other hand, since Rm = Z

2≥0 ∩ {(x, y) : x + y ∈
(2m + 3)Z}, we also see that k[Rm] ∼= k[X ,Y ](2m+3), where k[X ,Y ](n) stands for

the n-th Veronese subring of k[X ,Y ]. In particular, Hilb(Rm, t) = 1 + (2m + 2)t

(1 − t)2
.

Since hRm (1) = hRm
(1) = 2m + 3 (see Proposition 3.1), we obtain that s = m + 1.

Therefore, deg(hRm (t)) − deg(hRm
(t)) = m holds, as desired.
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