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1. Introduction

Let D={z(=C; | * | < 1 } be the unit disc in C and B={eit\ 0<t<2π}
the boundary of D. For a complex-valued continuous function F on D and
0 < r < l , we define a continuous function Fr on B by Fr(u)—F(ru) for t/Gί.
We denote by | | F r | | 2 the usual ZΛnorm of Fr with respect to the normalized

rotation invariant measure —dt on B. Let Δ be the Laplace-Beltrami
2π

operator on C°° functions on D with respect to the Poincare metric on D. We
denote by H\D) the class of all C°° functions F on D such that AF=0 and
sup | | F r | | 2 is finite. The Poisson kernel P(z,u) on DxB for Δ is given by

Then it is known (Zygmund [14]) that a function F on D belongs to H2(D) if
and only if there exists a square integrable function f on B with respect to the

measure —dt on B such that
2π

for z^D. The integral is called the Poisson integral off and H2(D) the Hardy
class of harmonic functions on D. Our purpose is to extend these results to
sections of a vector bundle on a symmetric space of non-compact type.

Now let GjK be a hermitian symmetric space of non-compact type. Let
g—I-^p be a Cartan decomposition of the Lie algebra g of G with respect to the
Lie algebra ϊ of K. Let α be a maximal abelian subspace of p and let ^ be a
Cartan subalgebra of g containing α.

Now GjK can be holomorphically embedded (Harish-Chandra [2]) as a

bounded domain 3) in a complex vector space p~ and the Silov boundary of S)
\np~ is identified with the homogeneous space G\B(E). Here the subgroup
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B(E) is a parabolic subgroup M(E)AN where M(E) is the centralizer in K of

some element X° (cf. §3) in α, A is the analytic subgroup corresponding to α

and N is a nilpotent subgroup (cf. §2) of G. Let Σ be the root system of the

complexification gc of g with respect to the complexification ψ of ϊj. Fix an

order on α and choose an order (Satake [12]) of 2 compatible with respect to

the order on α. Let 2ρE be the restriction to α of the sum of all positive roots

αof Σ withα(X°)>0.

Assume that GjK is holomorphically isomorphic with a tube domain. Let

us consider a linear form \=zρE on the complexification α c of α where # is a

complex number with the positive imaginary part. Let tc=Ad(u1)~1ί)c be

the Cartan subalgebra of the complexification ϊ c of ϊ, obtained from ψ by the

Cayley transform Ad(u^) (Moore [10]). Suppose that there exists an irreducible

representation (τΛ, VA) of K with the highest weight Λ on t c satisfying the

condition

(C) Άdίuϊ^A = —(i\+pE) on a.

Let τ=τ* be the representation of K contragredient to τ Δ . Let L2

rK{GjB{E))

be the set of all measurable mapping φ of G into the dual space V% of VA

satisfying

(1) ^(gman) = *-« λ + p*κ t o*β )τ(ι»r 1)0te)

for m^M(E), a^A, n^N, g^G where log a is the unique element in a such
that exρ(logα)=#

(2) \\Φ(k)\\2dk<\
K

where || || is a τ(if)-invariant norm on Vf and dk is the Haar measure of Ky

normalized by ί dk = ί. G acts on L2

τλ(GIB(E)) by Uτ λ(g)φ(x)=φ(g-1x) for

every g, Λ:GG.

Following K. Okamoto [11], we define the generalized Poisson integral <PTfλ

as follows:

=\ r(k)φ{gk)dk(g^G) for

On the other hand, we define a norm || ||2, analogously in Knapp-Okamoto

[6], for C°° sections of the vector bundle Eτ over GjK associated with the rep-

resentation T of K. We construct a representation (C/Λ, Γ2(Λ)) of G on the

completion of the space of all C°° sections / of Eτ satisfying the condition

| |/ | | 2 <oo and certain boundary conditions (cf. §4). We define the Hardy class

H2(A) as the space of all harmonic sections (cf. §5) in Γ2(Λ). Then we obtain

the following results:
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(i) The generalized Poisson integral <PTpλ maps (UTjλ, L2

rX{GjB(E))) into
(UA, Γ2(Λ)) G-equivariantly and strongly continuously (cf. Theorem 2 in §4).

(ii) The image of a certain G-submodule of L\ λ(G/B(E)) under i ? τ λ is
contained in the Hardly class H2(A) (cf. Theorem 3 in §5).

The second result may be useful in proving the non-vanishingness of
H2(A).

At the end of this paper we investigate the above condition (C) on the
weight Λ for the unit disc D. If r is the trivial representation, our Hardy
class H2(A) is the usual Hardy class H2(D).

The author wishes to express his gratitude to Prof. K. Okamoto who sug-
gested him to investigate this problem.

2. Asymptotic behavior of Poisson integrals

In this section we investigate the asymptotic behavior of Poisson integrals
of symmetric space GjK of non-compact type. The results obtained in this
section are natural generalizations of those obtained by Korέnyi [7], [8].

Let G be a non-compact semi-simple Lie group with finite center and let
K be a maximal compact subgroup of G. Then the homogeneous space GjK
is a symmetric space of non-compact type. Let g=ϊ+ί> be the Cartan decom-
position of the Lie algebra g of G with respect to the Lie algebra ϊ of K. Let
α be a maximal abelian subalgebra of p then we can find a Cartan subalgebra
^ of g containing α. Let Σ be the set of all non-zero roots of the complexifica-
tion gc of g with respect the complexification ψ of ΐ). The conjugation σ of gc

with respect to g preserves §, and induces the permutation σ of 2 defined by

for α G 2 , H^fy. We fix a σ-order > of Σ> that is a linear order of Σ such
that σ(ά)>0 if α > 0 and if the restriction of a to α does not vanish. Let Σo
be the set of all elements of Σ which vanish on α. The restriction to α of a
root of Σ ~ Σ o is called a restricted root. The order > on 2 induces a linear
order > on the set of restricted roots. Let F be the fundamental system of
restricted roots with respect to the order > .

Following Satake [12] and Moore [10], if E is a subset of F, let

a(E) = {tfeα; j{H) = 0 for all

Σ o (£) = { α e Σ τv(a) = Σ*Vy(7eJE, nΊ integers)}

where π is the restriction map of linear forms on ξ) to α. Let Σ+(^) (resp. ( ) )
be the set of all α^Σ~ΣoCE 1 ) such that α > 0 (resp. α<0). Then the sub-
algebras Σ CFa, Σ CZ?Λ of gc are both invariant under σ where EJs are

root vectors for α^Σ±C^) Their intersections n(£"), n(2?) with g are the real
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forms of these subalgebras. The analytic subgroups of G corresponding to

n(E)9 ή(E) will be denoted by N(E), N(E). Let b(E) be the normalizer of n(E)

in g and xn(E) be the centralizer of a(E) in ϊ. Let B(E) be the normalizer of

n(E) in G, and M(E) the centralizer of a(E) in K. Let A(E) be the analytic

subgroup of G corresponding to a(E). If E=φ, we write α, A, π, fϊ, N, N, b,

m, B and M instead of a(E), A(E\ ••• respectively. We denote by 2 p £ e α *

the sum of all restrictions of roots in Σ+(£") with multiplicity counted where α*

is the dual space of α. We also write p instead of ρE if E=φ. We obtain the

Iwasawa decomposition g = f + α + π and G=KAN. So for ^ G G , it can be

uniquely decomposed as g = κ(g) exp H(g)n(g) where κ(g)^K* H(g)^a and

n(g)<=N.

DEFINITION. For a complex number # e C , we put \=zρE^άc where α*

is the complexification of the dual space α* of α. For a finite dimensional

unitary representation T of K on a complex vector space F τ, we denote by

Crλ(G/B(E)) the set of all continuous mappings φ of G into F τ satisfying the

following condition:

( 1) φ{gman) = e

for m^M(E), a^A, n^N where logα denotes the unique element of α such

that β^exp(logα). For a real number p>l, we also denote by Lξx{GjB(E))

the set of all measurable mappings φ of G into Vτ satisfying (1) and

(2) ιwι;=(
J

where 11 11 is a T(K)-invariant norm of Vτ and dk is the Haar measure of K,

normalized by \ dk=l.
JK

Following Okamoto [11], for every element φ of Cτλ(GIB(E)) or

Lτ,\(GIB(E))y we define a Poisson integral of φ by

( 3 ) &τ,χΦU) = Λk)<Kgk)dk .
J K

Then £PT>\0 is a section of the vector bundle Eτ over GjK associated to the

representation T of K. Before investigating the asymptotic behavior of £Pτ>λ0

we prepare the following Lemma.

Lemma 1. Let GjK be a symmetric space of non-compace type. Then

for every g^G, m^M(E).

Proof. For the proof, we notice (Kordnyi [8] Lemma 1.1) the fact that
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e2pt>(mb»=\det(Ad(b))\ for b^B(E) where Ad(b) is the adjoint representation of
B(E) on b(E). Then for g=κ(g) exp H(g)n(g) and m(=M(E)> using the decom-
position B(E)=M(E)AN (cf. Moore [10]), we may write

exp H(g)n(g)m = m'a'n'

where mf^M{E\ O!<ELA\ w'eiV. Then exp H(gm)=a\ Hence we obtain

since M(£") is compact and N is nilpotent. Therefore we have

= \det(Ad(exp(H(g))n(g)tn))\

= \det(Ad(πpH(g)))\

Q.E.D.

From Lemma 1, the right translation by b^B(E) of the measure e~2

on G is equal to e-
2WHwe-*WH^dg. Therefore the measure e'2p^mgΏdg on

G induces (Bourbaki [1]) the measure dμE on G/B(E) unique up to the constant
factor such that

for every continuous function f on G with compact support. Let dμE(guB(E))
be the transform of the measure dμE under the mapping
guB(E)^G/B(E)y then it follows (Korέnyi [8]) that

( 4 ) dμE(guB(E)) =

Thus dμE is a i£-invariant measure on G/B(E). Let dμE be normalized by

\ dμE=l. And let us identify K/M(E) and G/B(E) under the mapping
JG/BCE)

KIM(E)^kM(E)\->kB(E)<=G/B(E)y then the measure dμE corresponds to the
measure dkM^ε^ o n K/M(E) induced from the measure dk on K. And then
the mapping G/B(E)=)uB(E)t-*guB(E)(=GIB(E) induces the transformation
KIM(E)ΞBkM(E)^κ(gk)M(E)EΞKIM(E). Put h=κ(gk). Then we have, from
the above equality (4), that k=κ(g~1h)y H(gk)=— H^h) and

(40 dhMCE) = e2Wmgk»dkMcE,.

In the case E—φ, M(E) is the centralizer M of α in K and the equality (4r)
is obtained in Harish-Chandra [3].

Corollary G acts on L^λ(G/B(E)) by Uτ,λ(g)φ(x) = φ(g-1x) for every
gy Λ?GG. Then Uτλ(g) is a bounded operator on L?λ(G/5(£)) with respect to
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the norm \\ \\p and CTtλ{GjB{E)) is a G-invaήant subspace of L»λ(G/B(E)).

Indeed, we have

\\φ{{g
K

[ WφikψdkW
K

since the mapping k\->\\φ(κ{g~1k)\\ is right M^-invariant, i.e. it is invariant
under the right translation by elements of M{E).

Proposition 1. Let a+(E)={HεΞa(E); a(H)>0for all a^J]+(E)}. For
H e CL+(E)} we put at=exρ tH. Then we have

( 5 ) Urn e<iλ+p*xlθ8at'2>Ttλφ(gat) = ( e'iλ-^xm^τ(κ(ή))φ(g)dn
t+°o ' ONCE)

for all g^G and φ^Crλ(GIB(E)). Here the measure dή is the Haar measure on

N{E)y normalized by [[

Proof. For every integrable right M(£')-invariant function / on K> it
follows (cf. Kor&nyi [8] Lemma 1.3) that

f(k)dk = (_ f(κ(n))e-2Wm"»dn .
JiVC-E)

For φ<=CTtλ(GIB(E))y the Vr-valued function r(k)φ(gk) on K is right M(E)-
invariant for fixed g^G. Hence it follows that

t) = L
J NC

L
Since we have

atκ(n) = κ{atnajλ) exp {H{atnaJλ)—H(n)+tH)n ,

for » G S ( £ ) , it follows from (1) that

2>r λφ(gat) = (_ e-iiK+p*κma'"ϊh+HW+tH>e-2p*H™^ .
JNCEϊ

Then atnajλ converges (cf. Kordnyi [8] Lemma 2.2) to the identity of G for every
E) and ϋ^N(E) as t-*oo. Then we obtain the conclusion. Q.E.D.

If λ, μeα£, let i / λ G α c be determined by X(H) = B(Hλ, H) for ί ί e α ,
where B is the Killing form of gc. Put <λ, μ)=B{HKy Hμ). Then the integral
of the right hand side of (5) converges if Re<ϊλ, α><0 for all
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From now on we shall assume \=zρE satisfies the condition: Re<zλ,
< 0 for all « G Σ + ( £ ) , that is, y>0 (z=x+iy).

Lemma 2. For φ^Lltλ(G/B(E))} we obtain

( 6 ) &r

where dkMim is the K-invariant measure on K/M(E) induced from the Haar measure
dk on K. • Therefore 3>τ λ may be ragarded as an integral operator with the kernel

Proof. For φU

S'r.M = J e
J K/MCE)

from the condition (1). Put h=κ(gk). Substituting (4r) into the right hand
of the above equality, Lemma 2 is obtained. Q.E.D.

Corollary For every g^G, k^K, let \\KTtλ(g9 k)\\ be the operator norm
|| || of the transformation Kτ>λ(g, k) of Vr with respect to the norm || || in Vτ.
Then it follows that

(ii) WKr^g, km)\\ = \\KTtλ(g, k)\\ for allgEΞG, k(ΞKf

Indeed, (i) is clear. Since we assume \=zρE and z is a complex number, (ii)
follows from Lemma 1.

Lemma 3. For H ̂ a+(E), we put at=exρ tH. For every neighborhood V
of eM(Έ) in K\M{E), we have

l im|*<* + P,κio β V | f \\KTtλ(aty k)\\dkMCE, - 0 .
t+oo JK/MίE^-V

Proof. For every continuous function φ on K/M(E)y we have

( 7) ί I\K T t λ (a t , k)\\\ φ(kM(E))IdkMuε>
J K/MQE)

= \ I Jfr-WT1*** I I φ(κ{ή)M) I e-'VB&Vn .
JiV(β)

Put ήί=a-;1nat. Then it follows that dή=<r2p*CHcli'» dv! and ΛΓ1Λ(Λ)=

tc(nr) exp (H(n')—H(atn''ajλ)—tH)n for some n^N. Then, substituting these
into (7), we have

(7) = I £-cA+P2*)ciogv I f i ̂ -cA+p^c/fca^r^VA-p^ci/c^)^^^^^-!)^^)) I dn .
JNCEϊ
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Therefore we obtain

( 8 ) lim I ^ + P f l xio* VI f I \KτΛ(at, k)\ | | φ(kM(E)) \ dkmE,

= I φ(eM(E))I ί_ I e^-Wm"»\ dn= | φ{eM{E))\ CE(\)< oo
JiVCE)

where CE(\)= (_ | ί « λ ^ x f l ( 5 ) ) | <*n = (__ e-
cy+1»*m*»dϋ < oo because of

JNCEΪ JN(E)

X=zpE (z=x-\-iyy ^v>0). In particular, we have

( 9 ) lim I *»*>MX**Ό I ( \\KτΛ(at, k)\\dkMCE> = CE{\).

For every neighborhood V of eM(E), there exists a continuous function φ on
KjM{E) such that | 0 | <l, φ(eM(E))=l and sup | φ(kM(E))\ =m<\. Then

we have

(10) lim I ««n-P,xi»g.(> I ( I\Kτλ(at, k)\| | ̂ M ( ^ ) ) | ̂ M c £ ) = CE(X) .

On the other hand, we obtain

(11) ( \\Kτ,λ(at,k)\\\φ(kM{E))\dkM,Ey

^ \ \\Kτ.λ(at, k)\\dkms>+e*-l) \ \\KrΛ"t, k)\\dkmE> ,
JK/MCE) JK/MCEΪ-V

Hence from m—1<0, (9), (10), (11), the proof is complete. Q.E.D.

Proposition 2. Let 1 <p< oo. For H <= a+(E), we put at=txρ tH. Then
for every φ^L^λ(G/B(E)), we have

lim ( I LcA+PjfXioβ V5>τ λφ(kaλ- (_ e<iλ-p*xmn»τU(n))φ(k)dn I ) ^ = 0 .
' - > ~ J i f III ' JN(E) I J

Proof. From Lemma 1, for every ίδeL?Λ(G/J5(£1)),

(12) £>τ,λφ(kat)- \ KTtλ(atJ h)φ(k)dh = \ Kτ,λ(at, h)(φ(kh)-φ(k))dh .

For every function g^LHKjMiE)) where i - + — = 1 , we put g(k)=g(kM(E)).
P 4

Then we have

\
K

KrΛ*t, h)\\dh

rΛ«t, h)\\dh
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where φh(k)=φ(kh) and \\ΦH—Φ\\LPCKΪ is the usual ZΛnorm of the function
\\φh(k)—φ(k)\\ on K with respect to the Haar measure dk on K. Hence together
with (12), we obtain

(13)

\ \\Φkφ\\
J K

Here for every neighborhood V of eM{E) in KjM{E), the right hand side of

sup \\φh-φ\\LP<κΛ \\KτΛ(at, h)\\dhmE)

( \
JK/M(E)-V

Therefore by Lemma 3 and its proof, we get

(14) lim| eox+Paxio8«p| { j j j ^ κ φ { k a t ) - j ^ τ λ ( f l / ( h)φ{k)dh

On the other hand, since <>«x+'V<I°s'vf Kτ>λ(at, h)φ(k)dh is equal to

f_ /A-p,xιrcί»β-«λ+p,)αrc-<s.Γ j > τ ( ^ j l j j ^ Λ j r f j I j i t follows t h a t

(15) LcA+Paκioβ<»p f JfiΓτλ(α(j
_
N(E)

_ |
iNΓCS)

From the fact that CE(X)=\ \euk-μ*xm"»\dn<oo and ^w^Γ1 converges to

the identity as f->oo, the right hand side converges to zero as ί->cχ>. So,
together with (14), Proposition 2 is proved. Q.E.D.

REMARK From Proposition 2, it follows that for every

l i m f \\J'λ+>'™"mt&rλφ(kat)\\*dk = [ f i t **χ
dk

Ίί\<p<oo and Re<ίλ, α><0 for all « E Σ + ( ^ ) ^ O W w e denote the above
limit by (113^011,.*)*. Then we have I I ^ . ^ I U . H ^ C ^ λ ) ! ^ ! ! ^ ^ / ^ ^ ) where
\\Φ\\LP<:K/MCE» is the usual L^-norm of the function ||φ(Λ)|| on K.

3. Properties of hermitian symmetric spaces

From now on we shall assume GjK is an irreducible hermitian symmetric
space of tube type; let G be a non-compact connected simple Lie group with a
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faithful matrix representation, K a maximal compact subgroup and we shall

assume the homogeneous space G/K is an irreducible hermitian symmetric space

holomorphically diffeomorphic with a tube domain. Let g and ! be the Lie

algebras of G and K, and let g—ϊ+ί> be the Cartan decomposition of g corres-

ponding to ϊ. For any subspace tn of g, we denote by mc the complexification

of m. Since G has a faithful matrix representation, we can regard G as a sub-

group of a connected Lie group Gc with Lie algebra gc. Let Kc be the analytic

subgroup of Gc with Lie algebra fc. Let t be a Cartan subalgebra of ϊ, T the

corresponding analytic subgroup of G, and let Tc be the analytic subgroup of

Gc with Lie algebra t c . Then t is a Cartan subalgebra of I and of g. And T

is also a Cartan subgroup of K and of G.

Let R be the set of all non-zero roots of (gc, t c). For αGi?, let gΛ be the

root space for α, then g ^ c F or Qaczpc, and a is called a compact root or a

non-compact root according to the respective cases. Let Rϊ and Rn be the set

of compact and non-compact roots respectively.

We identify p and pc with the tangent space TeK(G/K) of G\K at eK and

its complefixication T^K(G/K)y respectively, under the natural projection of G

onto G/K. Let $>_ (resp. p+) be the subspace of pc corresponding to the set of

all holomorphic (anti-holomorphic) tangent vectors of T^κ{GjK) respectively.

Then p+ and p_ are ^(F)-invariant abelian subalgebras of pc such that

£ c = £++£_. Let P + , P_ be the corresponding analytic subgroups of G c .

Moreover there exists a subset P n of R such that p+= Σ 9*. We can define a
*ς=Pn

linear order g- on R such that the set P of all positive roots includes Pn. We

Let T be the conjugation of gc with respect to the compact real form

^ΛP of gc, and we choose root vectors {Ea} such that τEa=—E_Λ for

Let Δ = {Jr3 37m} be the maximal set of strongly orthogonal non-

compact positive roots of Harish-Chandra [2]. For α e i ? , let HΛ be the unique

element of \/^Λϊ satisfying B(Hm H)=a(H) for all H<=tc. For «GΔ, we

put Xi=Ea+E.M Yl={-^/^\){EΛ-E_Λ) and Hί=—^-HΛ. Moreover

< ay
we put X°= Σ XI and Z°=-^=± Σ H'Λ. Let i~=^^Λ Σ RH'« be the

subalgebra of t spanned by \ / ^ I ί ί ^ « ^ Δ over the real number field R. Let

t + be the orthocomplement of t" in t with respect to the Killing form By and let

Γ~, T+ be the analytic subgroups of T corresponding to t", t + respectively.

We have the decomposition t c =(t + ) c +(t~) c ' , and corresponding to this, we can

decompose each element μ of the complexification t£ of the dual space t* of t, as

(16) μ = μ++μ-

where μ+ (resp. μ_) is the same as the restriction of μ on (t + ) c (resp. (t")c) and
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vanishes identically on (t") c (resp. (t+)c). The vectors X^ α e Δ span a maximal
abelian subalgebra α of p and ί)=t+-\-a is a Cartan subalgebra of g. Let A, H
be the analytic subgroups of G corresponding to α, § respectively.

Now we define, analogously in Knapp-Okamoto [6]

ut= expf^Σί-N/^raeG* for
\ 4 Λ^Δ

We have the following lemma:

Lemma 4. Leί G/-K be an irreducible hermitian symmetric space, not
necessarily of tube type. Then we have the following decomposition of ut:

(17) ut = ζtktzt for

where £,=exp(tan — Σ £ . Λ W - , Λ#=expflog (cos**) Σ Hί)<= Tc and zt=
\ 4 *eΔ / V \ 4 /*eΔ /

expf-tan — Σ ^ ^ ^ + Moreover for
\ 4 ΛeΔ /

(18) f # = ashrVt

where ^ =
4 /

The proof follows from a straightforward calculation in SL(2, C), analo-
gously in Knapp-Okamoto [6],

Now it is well-known that

(19) Ad{uλ) = id on t+ and Ad{Ul)(H'a) = X*9 α G Δ .

Hence we obtain Ad(u1)(tc)=ψ. Ad(u^) is called a Cayley transform (cf. Moore
[10]). Let Σ be the set of all non-zero roots of (gc, ^ c ) . For λ G R , we put
tAd(uT1)\(X)=\(Ad(uϊι)X)y X<EΞ% . Then 'Adfe1)* belongs to Σ if λ e i ? ;
tAd(μlι) sends i? onto Σ We can define a linear order > on Σ s u c h ^ a t the
set of all positive roots in Σ coincides with tAd{μγv)P.

Let Π be a fundamental system of R with respect to the order g-. Then
under the assumption of tube typey it follows (Moore [10]) that

,}
where for a linear form λ on t c, zr(λ) means the restriction of λ to (t") c.
Therefore it follows immediately that the above linear order > on Σ is a
σ-order. Then, as in §2, we can consider Σo> Σ± a n d F. The σ-invariantness
of Σ + implies the following equality:
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(20)

where Hp is an element of α defined by ρ(H)=B(H, Hp) for all H^a and Hj

is an element of ψ defined by a'(H)=B(H9 HΛ>) for all

4. Construction of Hardly class (I)

We shall always assume that GjK is an irreducible hermitian symmetric

space of tube type. We take {a^F: a(X°)=0} as the subset E of F in §2.

Then, under the notation in §2, a(E) is spanned by X°, and M{E) is the cen-

tralizer of X° in K. Let 2δ be the sum of all roots in P. Then we obtain

(21) p = Άdiuϊ^δ on α,

Let Λ be an integral linear form on t c, dominant with respect to ϊ, that is,

Λ satisfies

(i) A(H) e 2τr χ / ^ ϊ Z for every H e t, exp (#) = e

(ii) <Λ, α > ^ 0 for every a^Pϊ.

Let τ A be the irreducible unitary representation of K with the highest weight

Λ on the complex vector space F Λ . Then τ Λ is uniquely extended to a

holomorphic representation of Kc. Since P+ is a normal subgroup in the sub-

group KCP+ of G c, we can extend τ Λ uniquely to a holomorphic representation

of KCP+ which is trivial on P+. We denote by the same notation τ Λ this

extended representation. Let τ = τ * be the representation contragredient to τA

on the dual space V% of VA. Let EA be the vector bundle over GCIKCP+

associated to the representation T of KCP+. We notice that G Π KCP+=K.

Then, as is well-known, G/i£ can be identified with the open G-orbit of the

origin in GCIKCP+. We denote by EA the restriction of EA to the open sub-

manifold G/K of GC/KCP+.

DEFINITION. Let Γ(Λ) be the set of all C°° mappings / of GKCP+ into

F * satisfying

(22)

(23) | | / | | ! = limf

where || || is the operator norm in V% with respect to τ Λ ( ^ ) invariant norm

|| | | in F Λ . From Lemma 4 ,f(kut) is well-defined. We remark that the space

Γ(Λ) can be regarded as a space of C°° sections of EA. For an element

\ λ(G/B(E)), a Poisson integral 3?Ύt\φ of φ can be considered as a C°° section
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of EA since £PTλ is an integral operator with the kernel Kτλ. Moreover from
the results in §2, we have the following theorem.

Theorem 1. Let GjK be an irreducible hermitian symmetric space of tube
type. Suppose that λ = % G α ? , z=x-\-iy^C> y>0 satisfies the following con-
dition:

(C) *Ad(uϊι)A = -(iX+pE) on α .

Then we have

Before proving the Theorem, we prepare the following Lemma.

Lemma 5. Let GjK be an irreducible hermitian symmetric space of tube
type. Under the above notation, for a=exρ X, X^Cl(a+), we have

(24) Wr^au.y'vW^e^^^'^WvW for all VEΞV%

where a+={H<=a; a\H)>Q for all ^ G Σ J and Cl(a+) is the closure of a+in a.
In particular, for at=exρ tX°, we have

(25) r(u?atu^v = etA{^Ha°v for all v(Ξ V*

where ul1atu1=exρ (t 2 H'a).

Proof. From C. Moore [10],

Let a=expφaiX°yi)y 0 < ^ < < α w . Then by means of (19), we have

uΐ 1au1=exp(Σ a{HΊ). On the other hand, all the weights of τΛ are of the form

Λ—Σ?-imiθίi when D= {«,}?„! is the set of all simple roots in Rt with respect
to the order 8~ in R and m{>Q are integers. Let VA-^m.Λi be the weight space
for Λ—Σw»tfί> a n d let V%-χm.Λ. be the dual space of VA^m.Λ. which is
identified with the subspace of all elements in V% vanishing on the orthocomple-
ment of VA-Σm.Λ. in VAf Let {vL^mfi;j=h —, dim VA-Σm.a) be an ortho-
nomal base in F Λ _ Σ m . Λ . , and let ωlv..mp be its dual base in V%-Σmi<ύ.. For

0<= V%, we put v=Σ aί1...mpωL1...mp9 aLv..mp^C. Then we have

From C. Moore [10], the non-zero vectors in π(D) are of the form
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if G/K is of tube type. Then we have

for some non-negative integers nk (k=ί, •••, m— 1) and the equality holds if
<*!=•••=«„,. It follows that

In partiqular, if α—exp tX°,

riui^au^) xv = e *-i ©. Q.E.D.

Proof of Theorem 1. For ^eL?>λ(G/J5(£)), from Lemma 4,

(26) ί ? τ , λ f e ) = τ(eχp(r Σ H^τ(kt)-^Ttλφ(gas)

- (r + log (cos

under the notations in Lemma 4. We put C=lime <oo.

We notice that e-
rCiλ+paχχ0>=(cosh.(s)yiλ+pzχsχ0>~—e

uλ+p*>χsX°> as $->oo.

Hence we obtain

lim ( \\&r.kφ(kut)\\*dk = -^ Km |^A+P^C^O, ( f \\cp φ(kas)\\dk

from Remark of Proposition 2. Q.E.D.

Moreover, by considering the subspace Γ0(Λ) of Γ(Λ) consisting of all
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elements of Γ(Λ) which satisfies the following boundary conditions (iii), (iv),
we construct a representation of G.

DEFINITION. Let Γ0(Λ) be the set of all/<=Γ(Λ) satisfying
(iii) for every g^G> there exists a limit lira f(gut), say /(guj, and the

boundary value f{gu^) satisfies

(27) f(gmanut) =

and n^N where M is the centralizer of α in K.
(iv) GB£h->| \f(gu^\1 is continuous.

Then we can apply Theorem of bounded convergence to the sequence of
functions k\-*\\f(kut)\\ (0<t<l) by means of the conditions (iii), (iv), and then
it follows that

(28) Il/Hi = limί \\f(kut)\\dk=\ \\f(kUl)\\dk for/eΓ0(Λ).

Let us define the action UA(g) of G on Γ0(Λ) by UA(g)f(x)=f(g'1x). Let us
consider the factor space of Γ0(Λ) by the subspace { / E Γ 0 ( Λ ) ; ll/||2=0}> a n d l e t

Γ2(Λ) be its completion with respect to the norm induced from the norm || ||2.
Then we have the following Proposition.

Proposition 3. Let us preserve the assumption in Theorem 1. Then Γ0(Λ)
is stable under UA(g) and UA(g) acts by a bounded operator on it with respect to the
norm || ||2. Moreover UA(g) acts on Γ2(Λ) by a bounded representation of G.

Proof. F o r ^ e G ,

W f i g ^ ^ sup I e ' ^ Γ W c s - * ) ) 12
K £QE

f W

The function k->\\f{κ{g~xk)u?)\\2 is a right M-invariant because of κ{g~xhn)M
=κ(g~1k)M in KjM and the condition (27). Put h=κ{g~1k). Then it follows
from (4') that

k = κ(gh), H(g-ιk) = -H(gh) and dkM = e-
2κmgh»dhM.

Therefore ( H / M r ^ W H 2 ^ supr2 P C H ( M ) )t 11/(^)1 Γέft. Hence Γ0(Λ) is

stable under ί7Λ(^) and UA(g) acts by a bounded operator on it with respect
to the norm || ||2.

For the proof of the last statement, let L\{GjMAN) be the set of all
measurable mappings φ of G into C satisfying ^(gman)=^c~ :y+1)p^clogβ)^(^) and

=: f I φ(k)\2dk is finite. Then G acts on Ll(G/MAN) by Uλ(g)φ(x)=φ(g-1x).
J KK

Then Uλ(g) is a bounded operator on L\{GjMAN) with respect to the above
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norm || ||2. Now we define the linear map X of Γ0(Λ) into Ll(G/MAN) by

(-Cf)(g)=f(gui) f o r /eΓ 0 (Λ). Then X is a G-equivariant isometry of Γ0(Λ)

into L\(G\MAN\ that is, XUA(g)=Uλ(g)X and \\Xf=f\\2, i.e. ( \\f(ku2)\\dk
J K

= l i m ( 11/(^)11^, for/eΓ 0 (Λ) because of (28). Therefore UA(g) can be

extended to a bounded operator on Γ2(Λ). Q.E.D.

Summing up the above results, we have the following theorem as a Corallary
of Theorem 1.

Theorem 2. Let G/K be an irreducible hermitian symmetric space of tube
type. Suppose that \=zρEy z = x-\-iyy y>0 and Λ satisfy the condition (C).
Then ί ? τ λ is a G-equivariant bounded operator from L?λ(G/β(£1)) into Γ2(Λ), that
is,

(29) UA(g)oS>Ttλ = £PT)λo UΊtλ(g) on L*.λ{GIB{E)).

Proof. The boundedness of £P τ λ has been proved in Theorem 1 and, by
the definition of Poisson integrals, we have the G-equivariantness (29) of
5>τA. Since CTtλ(G/B(E)) is dense in L2(G/B(E))y it suffices to prove that
5>τ'λCT(λ(G/β(£))cΓ0(Λ).

For φ<=Cτλ(GIB(E))y we have

(26) 2>r,λφ(gut) = e

Then, from Proposition 1, we obtain

^ l i m e

= — L eCiλ-pBχm*»τ(κ(ή))φ(g)dή ,
2 JNCE)

that is, £PT λφ(gUl)=— [ eCiλ-p*xm™τU(n))φ(g)dfi. From the condition (1),
2 Jivcis)

we have, for w e M ,

Here κ(n)m~1=m~1κ(mnm~'1) for m^M. We put n/=mnm~1

> then H(ή')=H(n)

and dnf=dn. Therefore we have SΊ^φ{gmanu^^e-ux+p^°^τ(mrλ)^r^ X

j). It follows from the assumption (C) that the condition (27) is satisfied.
Q.E.D.
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5. Construction of Hardy class (II)

We preserve the notation and the assumption in §4. Let C°°(Gy V%) be
the set of all C°° mappings of G into V%. Let v be the left regular representa-
tion of G on C~{G, V%). We define a representation v of QC on C~(G, V%) by

dtJy ΓK /d/J/=o

for ^eG,/eC°°(G, FJ). Let C/(g) be the universal enveloping algebra of gc.
Then v defines a representation z; of U(Q) on C°°(G, ¥%). Let z>(C) be the
Casimir operator of v with respect to the Killing form B on C™(G, V%).

We put C~λ(G/£(£)HCτ,λ(G/ΰ(£))nC~(G, F*). Then the representa-
tions (Γ0(Λ), UA) and (C~λ(G/B(E)), UTfλ) are subrepresentations of the left
regular representation of (C°°(G, V%), v) of G.

DEFINITION. Let H0(A) be the set of elements / in Γ0(Λ) satisfying

(30) (KC)-<Λ+2δ,Λ»/=0.

Let us consider the factor space of H0(A) by the subspace {f^H0(A); ||/||2==0}
and let H2(A) be its completion with respect to the norm || ||2. Then, for
g^G, UA(g) acts on H2(A) as a bounded operator with respect to this norm.
H2(A) is called the Hardy class of the vector bundle EA over GjK,

Now we can write Λ and δ as Λ=Λ + +Λ_, δ = δ + + δ _ according to (16).
Let Mo be the connected component of the centralizer M of α in K. Then t+ is
a Cartan subalgebra of the Lie algebra of M, Mo and Λ+ satisfies the following
conditions:

(i) A+(H) = A(H) e 2τrΛ/^T Z for all H <= t+ c t, exp H = e

(ii) <Λ+, α>>0 for all α e P f such that π(a) = 0 .

Hence there exists an irreducible unitary representation πA+ of Mo with the
highest weight Λ+ on a representation space VA+. We define the projection
operator eA+ of C~λ(G/B(E)) as follows:

θA+(m)φ(gm)dm for ^C τ°; λ(G/£(£))

0

where d Λ + =dim F A + , ^ Λ + the character of τ Λ + and θA+(m) is the complex con-
jugate of θA+(m).

Then eA+C~x(GjB(E)) is a G-invariant subspace of C^(GIB(E))' Moreover
we have the following theorem.

Theorem 3. Under the assumption of theorem 2, we have
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Proof. We will prove that z>(C)3)

τ>λeΛ+0 = <Λ + 2δ, Ay&r>κeA+φ for
φtΞ Cτ>λ(GIB(E)). Since UA(g)og>τλ=g>Ttλ UTtλ(g)y it suffices to prove that

v{C)eA+φ = <Λ+2δ, A>eA+φ for φίΞC~λ(G/J9(£)).

Now let £ be the right regular representation of G on C°°(Gy V%). We
define a representation V of QC on C°°(G, V%) by

for g^G, Z G g and f^C°°(Gy Vf). ϊ> defines a representation P of U(Q) on
C°°(G, FJ). Then it follows (Harish-Chandra [4]) that

v(C)φ = v{C)φ for every φ<=C°°(G, V%).

So we will show that v(C)eA+φ=<A+2δ, Λ > Λ + ^ for φeΞC~λ(G/B(E)).
Following Harish-Chandra [3], let {Xj} be the root vector for α Έ Σ such

that τXΛ,z=— X_Λ, and B(Xa', X_a')=ly and let i/Λ/ be an element of t c such
that B(H, HΛ)=a'(H)y for i/G^. Then [XΛ,, X_Λ^=Hj. Let {/ίt }Li be a
base of ^ c such that Hly •••, ί ί w is an orthonormal base of a with respect to the
Killing form B of gc and Hm+ly •••, i// is that of \/— l t + with respect to 2?.
Then {#„ ••-,///, -YΛ/, Z_y α ' e Σ , ^ > 0 } is a base of gc. Then we have

= ±

where A = Σ W + Σ

ι = i

and A =2 Σ

Since ^Λ +^ belongs to C™κ(GjB(E))y we have

(31) D3eA+φ = 0

because of eA+φ(gn)=eA+φ(g)y n<=N.

We note (20) Σ # Λ ' = 2 # p e α . Then since we have

exp /ί) - £-c'λ+

for every ί ί e C ^ G / ψ ) ) , ί ί e α , it follows that
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(32)

On the other hand, let τA+(CM) be the Casίmir operator of the representation
τ Λ + of Mo with respect to the form B. Then we have

T Λ + (CM) = <Λ++2S+, Λ+>/

where / is the identity operator on VA+. And we have (cf. Harish-Chandra [4])

= <Λ++2δ+, Λ+>£Λ+(m)

where {?;,•} is an orthonormal basis of VA+ with respect to the inner product
( , ) on VA+. Then we have (cf. Harish-Chandra [4])

(33) DieA+φ(g) = dA+ \ JA+{m){D^){gm)dm

= dA+ \ Djκjjn)φ(gm)dm

= <Λ++2δ+, Λ + > Δ +

Hence together with (31), (32), (33), we have

(34) P(C)eA+φ= {<i\+pE, iX+PE>-<iX+pE, 2p>+<Λ++2P + > Λ+

Since we have tAd(uΐ1)A.=-(i\+ρB) and (21) p=Άd{u^)h on α, it follows
that

(34) = {<Λ_, Λ_>+<Λ_, 2S>+<Λ++2δ+ >

= <Λ+2δ, A>eA+φ. Q.E.D.

EXAMPLE. Let G=SU(l, 1), K=T=S(U(l)xU(l))= {('"' ° .J:

and so G/K is the unit disc D. Then GC=SL(2, C), Kc=Tc=l(j °_\.

γeC-(O)}. Then β = βu(l, 1), ϊ = t = {(^ J J : ίeJίj, gc=§ϊ(2, C),

F =1^= ί (a QN) α e c) and the set i? of roots of (gc, F) is given by
>Λ0 — a' >

R={±Ύ\ where γ : iP3[ )h^—2a.
\0 —α/

A linear order g- on R is denned as «yg-O. Let Ey=(° ?)» ^-»=(? J )

We have
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-ζ I), YS=-^£ ~l),
cos 7^ s i n 7 ^

4 4

sin — cos
4 4'

= t, t+ = (0

(iθ 0 /0
\ί o

, • —iθ a n d /α .

0 -iθJ \t 0-

Let Λ=—nδ, n^Z. Then we obtain a holomorphic representation τ = τ * of

KCP+ given by

α

Now our conditions "Re<zλ, o:><0, α=2p and tAd(uϊ1)A=—(iX+ρ) on
α" coincide with (cf. Okamoto [11])

If »—0 i.e., Λ = 0, then i\=—ρ and τΛ is the trivial representation of K.
Then our Hardy class H2(A) is the usual Hardy class H\D) given in the
introduction.
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