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Abstract

A method is proposed to deterministically obtain steady lubrication pressure for the Stokes flow in a chan-

nel bounded by a flat wall and a surface with roughness represented by sinusoidal waves. A streamline

sufficiently far away from the rough surface is used to formulate a streamline-based lubrication equation

with the velocity on the streamline, and the velocities on the streamline is imposed as a boundary condi-

tion. In the solution of the lubrication equation, by virtually moving the streamline towards the flat wall,

the pressure on the flat wall is obtained, and then the wall-normal variation of the pressure is recovered

from the wall pressure by a lubrication model that considers higher order terms. The proposed method

is applied to lubrication flows in channels with roughness represented by a single sinusoidal wave and a

superposition of several sinusoidal waves. Through comparison with analytical solutions, the validity of

the proposed method is established, and the applicable range of superposition of waves is explained that

lowest-wavenumber component in surface profile is sufficiently isolated from higher-wavenumber compo-

nents. Although the problem setting intrinsically prohibits the application of the conventional Reynolds

lubrication equation, this study provides new understandings for the pressure obeying the Reynolds lubri-

cation equation and the role of the higher-order terms.

keywords: Lubrication pressure, Wall-normal pressure distribution, Sinusoidal roughness, Deterministic

treatment
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1 Introduction

When two facing surfaces move relatively to each other with a small gap, lubrication pressure develops

in the region between the surfaces. For non-circular or non-spherical geometry, the lubrication pressure is

often predicted by solving the Reynolds lubrication equation [1]. However, the equation is derived based

on a number of assumptions for working fluid and wall geometry. One of the assumptions for the Reynolds

lubrication equation is negligibly small gap width; aspect ratio α (i.e. the ratio of the gap distance to the

longitudinal characteristic length) of the channel being α ≪ 1, which enables treatment of the pressure (in

the Reynolds lubrication regime) to be independent of the distance from the wall surface. However, this

assumption may not be satisfied for a surface with roughness.

Surface roughness and aspect ratio are not independent for predicting the lubrication pressure; Elrod [2]

showed that the conditions for applying the Reynolds lubrication equation is related to the local aspect

ratio (H/L′) of the average clearance H to the roughness wavelength L′ (see Fig. 1), and Bayada and

Chambat [24] pointed out that lubrication with roughness is classified depending on the mean height of the

channel and roughness period. Therefore, if the roughness is not negligible, the condition of the aspect

ratio has to be reconsidered for deriving effective lubrication equation. Moreover, if the local aspect ratio

is regarded as not small, the independence of the pressure on the wall-normal distance may no longer be

valid, resulting in pressure variations in the normal direction to the nominal surface.
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Figure 1: Schematic of a general case of lubrication in a region between a roughness wall and moving flat

wall. In the present study, one streamline away from the wavy wall is selected to impose the boundary

condition to calculate the pressure on the flat wall, and the pressure distributions in both wall-tangential and

wall-normal directions are recovered by an original higher-order lubrication model.

There are mainly two ways for relating wall roughness to fluid lubrication in the previous studies:

stochastic and deterministic approaches. Stochastic treatment assumes roughness superposed on the smooth
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nominal surface and extracts the statistical quantities of the geometry (e.g. nominal height and standard

deviation), and these are reflected to the Reynolds lubrication equation as modified or additional term.

Christensen [3] restricted the roughness to one dimension and developed a stochastic Reynolds lubrication

equation based on an approach of average film thickness (i.e. arithmetic and harmonic averages for the lon-

gitudinal and transverse roughness), and later Mitsuya [4] improved the approach to use a mixed-average

film thickness of arithmetically and harmonically averaged thickness to derive a mixed-average Reynolds

lubrication equation. On the other hand, Patir and Cheng [5, 6] employed an average-flow approach that

includes flow roughness modification factors to the Reynolds lubrication equation. In their study, the mod-

ification factors are obtained numerically, whereas Tripp [7] obtained the modification factor analytically

for random surface profiles using the perturbation method. Later, Sahlin et al. [8] used the homogenisation

technique to separate the effect of the local roughness scale from the global scale, and they obtained the

factor for given roughness geometries. Almqvist et al. [25] proved that the flow factor method by Patir and

Cheng coincides with the result of the homogenisation only when a certain symmetry exists in roughness

profile. However, a common problem in the above methods is that, as the effect of roughness is only in-

cluded as modification factors to the Reynolds lubrication equation, the pressure variation in the vertical

direction of the nominal wall is not considered. Friction-reducing devices are not the only cases in which

this problem manifests itself. In particle-laden flows, for example, careful numerical treatments are neces-

sary to capture the complex pressure distributions in the interparticle region of relatively-moving particles

even for a case of smooth surfaces [9, 10], and the complexity in the pressure distribution may increase with

roughness. The effect of roughness also appears on the propulsion of microorganism swimming with a un-

dulating surface motion above a rough surface [11]. Therefore, considering that local aspect ratio influences

the lubrication, it is necessary to explore an advanced idea to calculate the distribution of the lubrication

pressure in both longitudinal and transverse directions above the rough surface.

On the other hand, in deterministic approaches for roughness, direct or approximate treatment of the

geometry gives a precise view of the problem [12]. However, mathematical representation of the rough-

ness may become complex as randomness enhances, and therefore, it is not always easy to predict the flow

field by this approach. Some types of machined surfaces can still be described deterministically. Rough-

ness properties are characterised by machine processing as follows [13]: when the surface is repeatedly

machined (e.g. peening) the surface tends to have a random roughness and the probability distribution be-

comes close to Gaussian, whereas, for one-time machining operations such as turning, the surface height

follows non-Gaussian distribution. Besides machined surfaces, there may be artificially-formed roughness;
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experimental study [14] showed that surface texturing may be effective in maintaining the load-bearing

performance. Jeong and Son [15] placed semi-circular protuberances on microchannel walls, and they an-

alytically studied that the viscous flow through the microchannel departs from the solution of the Reynolds

lubrication equation under non-negligible gap width.

In both stochastic and deterministic ways, under situations where the Reynolds lubrication equation

does not hold (i.e., non-negligible aspect ratio associated with roughness), the velocity and pressure profiles

depart from those in a simple channel flow, and reconsideration from a fundamental viewpoint is needed.

In this paper, to study fundamental effect of roughness on lubrication pressure, roughness is expressed

by superposition of sinusoidal waves and its effect on the flow field is treated deterministically. To es-

tablish a method for pressure reconstruction in the wall-normal direction in a channel with roughness,

two-dimensional incompressible steady flow in the Stokes regime [16] is treated in a wall-bounded chan-

nel. To set up a simple and fundamental situation, the channel consists of a pair of walls with flat and rough

surfaces. Although the local aspect ratio based on the characteristic scale of the roughness may violate the

condition for the Reynolds lubrication equation, streamlines away from the rough wall may exhibit less

variational profile (see Fig. 1). Therefore, in this study, a streamline (and the velocity on the streamline)

is used to impose the boundary condition for a lubrication equation; by redefining the reference gap width

as the mean height of the streamline away from the rough wall (H ′ in Fig. 1), a sufficiently small aspect

ratio H ′/L′ is readily available, and the pressure between the flat wall and streamline is obtained by solv-

ing a streamline-based lubrication equation. Then, the wall-normal variations of the pressure distribution

between the flat and rough walls is reconstructed by considering higher-order terms through an extended

lubrication model [17]. This higher-order lubrication model was originally developed for recovering the

wall-normal pressure distribution from the wall pressure at a non-negligible aspect ratio, and the model

has been validated through various problems including the permeation through a membrane induced by

lubrication pressure [18, 19, 20] and the lubrication in a channel bounded by slip walls [21].

Through the above procedure, the meaning of the pressure that obeys the conventional Reynolds lu-

brication equation and its relation with the wall-normal distribution of the pressure are revealed, and the

effectiveness of the proposed approach of the streamline-based lubrication model in a system with rough-

ness is discussed.

This paper is organised as follows. Section 2 shows the basic equations used in this study and Section 3

explains the modelling strategy for analysing lubrication pressures. After establishing a method for solving

lubrication flow with a sinusoidal roughness of a single wavenumber by including the wall-normal pressure
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distribution in Section 4, Section 5 extends the method for a more generalised case of sinusoidal roughness

comprising multiple wave components. In both sections, the results are validated through comparison with

analytical models obtained by a perturbation method in the Stokes regime. Finally, Section 6 summarises

the above results.

2 Governing equations

For an incompressible Newtonian fluid of constant density ρ and viscous coefficient µ, the governing equa-

tions are the equation of continuity and the Navier-Stokes equations:

∇ · u = 0 , (1)

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+ µ∇2
u , (2)

where t is the time, and u and p are the fluid velocity and pressure, respectively. In the following, two

dimensional flow is considered, and the x and y components of the velocity are denoted as u and v, respec-

tively. Non-dimensional variables are introduced as follows: x∗ = x/L, y∗ = y/H , t∗ = tU/L, u∗ = u/U ,

v∗ = v/αU , p∗ = p/α−2µUL−1 and α = H/L, where L,H and U are the reference longitudinal length,

the reference channel height, and the reference velocity, respectively, as illustrated in Fig. 1. For v∗, the

order of magnitude for v is determined as αU from the equation of continuity. The non-dimensional forms

of Eqs. (1) and (2) are ∇∗ · u∗ = ∂u∗/∂x∗ + ∂v∗/∂y∗ = 0 and

α2Re

(

∂u∗
∂t

∗

+ u∗ ·∇∗u∗

)

= −
∂p∗
∂x∗

+ α2
∂2u∗
∂x∗2

+
∂2u∗
∂y∗2

, (3a)

α4Re

(

∂v∗
∂t

∗

+ u∗ ·∇∗v∗

)

= −
∂p∗
∂y∗

+ α4
∂2v∗
∂x∗2

+ α2
∂2v∗
∂y∗2

, (3b)

respectively, where Re = ρUL/µ is the Reynolds number. Assuming α2Re ≪ 1, the above equations are

reduced to the steady Stokes equation:

∂p∗
∂x∗

= α2
∂2u∗
∂x∗2

+
∂2u∗
∂y∗2

, (4a)

∂p∗
∂y∗

= α2

(

α2
∂2v∗
∂x∗2

+
∂2v∗
∂y∗2

)

. (4b)

Further assuming α ≪ 1 and if only theO[α0] terms are retained, we obtain the following set of the reduced

Stokes equations in the dimensional form:

∂p

∂x
= µ

∂2u

∂y2
(5a)

∂p

∂y
= 0 . (5b)
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From the above equations along with the continuity equation, the Reynolds lubrication equation is derived

with the no-slip boundary conditions at the smooth (or no-roughness) walls.

Furthermore, a higher-order effect of lubrication in a low Reynolds number flow (Re ≪ 1) can be

relatively easily considered. For channel geometry of small curvature and small gradient (hereafter referred

to as a moderately-varying surface profile), by retaining the terms of O[α2] in Eq. (3), the following set of

equations are obtained [17, 21]:

∂p

∂x
= µ

∂2u

∂y2
(6a)

∂p

∂y
= µ

∂2v

∂y2
. (6b)

The solution of the equations are given for the cases of no-slip boundary conditions [17] and slip-wall

conditions [21] as

p(x, y) = pw(x) + padj(x, y) . (7)

The wall pressure pw(x) obeys the Reynolds lubrication equation (i.e., the same equation obtained from

Eq. (5)), and the adjusting component padj(x, y) is given as the longitudinal variation of the Couette-

Poiseuille velocity profile driven by pw and the wall velocities [17, 21]. For the case of no-slip walls

(i.e., imposing Dirichlet boundary condition for the velocity) of the surface-to-surface distance h(x), padj is

solved in the following form [17]:

padj = −µ
∂

∂x

[

−
y(h− y)

2µ

dpw
dx

+
Ur

h
y

]

, (8)

where Ur is the longitudinal component of the relative wall velocity.

3 Modelling strategy with rough wall

The above treatment was developed for a smooth and moderately-varying surface profile, and it is not

applicable for rough surface which is often characterised with high-wavenumber components in the surface

profile.

For a flow above a rough wall, imposing the boundary condition on the rough walls may not be suitable

for constructing the lubrication equation, as the roughness wave length is usually smaller than the gap width.

However, there may be a situation where a streamline away from the rough wall is smooth enough and the

curvature and gradient of the streamline are sufficiently small.
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In this study, Dirichlet boundary conditions are imposed for the velocities on a steady streamline (instead

of the velocities on the rough wall), and the Reynolds lubrication equation based on the streamline and the

corresponding higher-order pressure model are developed.

The pressure obtained from the streamline-based Reynolds lubrication equation is represented as ps. In

the limit of zero mean height H ′ of the streamline (see Fig. 1), the local aspect ratio α′ (= H ′/L′) can be

assumed to be sufficiently small, and the pressure ps reasonably satisfies the assumption for the Reynolds

lubrication equation. In this limit, ps is represented as pw, which is the wall pressure. Then, the wall-normal

distribution of the pressure in the region between the flat and rough walls is modelled with a higher-order

component added to the wall pressure pw(x), just like Eq.(7).

As a deterministic approach, the lubrication model for the present geometry is derived by the following

procedure:

1. Find an approximate stream function for the entire domain by perturbation method, assuming that the

roughness is represented as a sum of high-wavenumber components with small amplitudes added to

the nominal (i.e. flat) surface.

2. In a region sufficiently away from the rough wall, the geometry of the streamline and the velocity on

the streamline are determined as explicit form.

3. With the velocity on the streamline as the Dirichlet boundary condition, the pressure ps in the region

bounded by the streamline and the flat wall is determined.

4. Find the wall pressure pw (= lim
H′→0

ps) by virtually moving the streamline towards the flat wall.

5. Find padj by the same procedure as in [17] for obtaining Eq. (8).

In the following sections, roughness profiles represented with a single wavenumber (§ 4) and a sum

of multiple wavenumbers (§ 5) are considered. Through comparison of the pressure field obtained by the

present models with reference solution, we show that two-dimensional pressure fields can be described

with wall-tangential and wall-normal variations for both types of profiles, and that the above procedure can

further be extended to a channel bounded by non-parallel nominal surfaces in Appendix.

Throughout the paper, we consider a situation that there is no flow separation above the rough surface.
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Figure 2: Schematic of a channel bounded by a flat wall and sinusoidal wall represented with a single wave

superposed on a nominal (flat) surface in the upper side. The periodic boundary condition is applied in the

x direction.

4 Case with a sinusoidal wall of a single wavenumber

4.1 Lubrication model

We consider a channel flow bounded by a stationary wavy wall of the following geometry:

hw(x) = h0(ε cos(kx) + 1) (9)

and a flat wall moving at the velocity U0, as schematically shown in Fig. 2. Here h0 is the mean height of

the wall, ε is the (non-dimensional) amplitude parameter, k is the wavenumber defined as k = 2π/L, and

h0 is the average height of the wavy wall. Periodic boundary condition is applied in the x direction, and the

zero average pressure is assumed hereafter.

Assuming ε ≪ 1, an approximate solution of the stream function is obtained from the perturbation

method by following Refs. [22, 23]. Perturbation expansion of the stream function ψ is assumed to the

following form:

ψ(x, y) ≃ ψ0 + εψ1 , (10)

where ψ0 is a stream function between two parallel (flat) plates with the distance h0. With the boundary

condition ψ = 0 on the top wall (y = h0), ψ0 takes the following form:

ψ0

h0U0

=
1

2

(

y

h0
− 1

)2

. (11)

Substituting Eq.(10) into the Stokes equation (Eq.(4)), the bi-harmonic equation for ψ1 is obtained [16].

The solution of ψ1 takes the following form:

ψ1

h0U0

=

[(

C1 + C2

y

h0

)

sinh(ky) +

(

C3 + C4

y

h0

)

cosh(ky)

]

cos(kx) , (12)
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and the coefficients are obtained from the boundary conditions. From the no-slip boundary condition (u =

−U0, v = 0) on the lower wall (y = 0), we obtain

(C1kh0 + C4) cos(kx) = 0 , (13a)

C3kh0 sin(kx) = 0 . (13b)

The no-slip boundary conditions on the upper wall are ψ = 0 and ∂ψ/∂n = 0, where n is the coordinate

in the wall-normal direction, and the following equations are obtained:

[(C1 + C2) sinh(kh0) + (C3 + C4) cosh(kh0)] cos(kx) = 0 , (14a)

[(C1 + C2)kh0 + C4) cosh(kh0)

+ (C2 + (C3 + C4)kh0) sinh(kh0) + 1] cos(kx) = 0 . (14b)

From Eqs. (13) and (14), the coefficients in Eq. (12) are found as follows:

C1 =
sinh(kh0)

sinh2(kh0)− (kh0)2
, (15a)

C2 =
kh0 cosh(kh0)− sinh(kh0)

sinh2(kh0)− (kh0)2
, (15b)

C3 = 0 , (15c)

C4 = −
kh0 sinh(kh0)

sinh2(kh0)− (kh0)2
. (15d)

The result uniquely determines the stream function Eq. (10) with Eq. (12), which coincides with Ref. [22]

by the coordinate transformation z to 1−y/h0. The streamline that goes through the point (x, y) = (x0, y0)

is identified as ψ(x, y) = ψ(x0, y0). We select the point as (kx, y/h0) = (π/2, b) (0 < b < 1) such that the

perturbation term (ψ1; Eq. (12)) becomes identically zero. The value of the stream function is as follows:

ψ̂
def
= ψ(π/2k, bh0) =

h0U0

2
(b− 1)2 , (16)

and the equation of the streamline that goes through the above point is expressed as

ψ(x, y)− ψ̂ = 0 . (17)

To facilitate the subsequent treatments, we assume that Eq. (17) can be approximated as

y = hs(x) = h0 [ a cos(kx) + b ] (0 < b < 1) , (18)
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which also goes through the same point. We further assume that the non-dimensional amplitudes a and ε

to be sufficiently small such that the terms including a2 or aε are negligible. By substituting Eq.(18) into

Eq.(17), a is obtained (together with Eqs. (10) ∼ (12), (15) and (16)) as follows:

0 = ψ(x, y)− ψ̂

= (b− 1)ah0U0 cos(kx) + εh0U0

[

(C1 + bC2) sinh(bh0k)

+ (C3 + bC4) cosh(bh0k)
]

cos(kx) +O(a2, aε, ε2) (19)

∴ a = ε
(C1 + C2b) sinh(bkh0) + (C3 + C4b) cosh(bkh0)

1− b
, (20)

which finally identifies the streamline in the form of Eq.(18) with b as the only parameter for the given

geometry of roughness (i.e. fixed ε and k). As the streamline is eventually taken limit to the bottom wall

(b→ 0), the Taylor expansion of a around b = 0 is taken as:

a ≃ εkh0C
2

2
b2 +O[b3] ,

which guarantees the convergence of the streamline amplitude a to zero for b→ 0.

To prepare for the velocity boundary condition on the streamline, the longitudinal velocity at an arbitrary

position is obtained:

u(x, y) =
∂ψ

∂y
= U0

(

y

h0
− 1

)

+ ε
∂ψ1

∂y
. (21)

By restricting y in the above equation to that of Eq. (18), and neglecting the terms that include a2 or aε, the

velocity us on the streamline can be expressed as follows:

us = U0c cos(kx) + U0d , (22a)

c = a+ ε [(C1kh0 + C2bkh0 + C4) cosh(bkh0)

+(C2 + C3kh0 + C4bkh0) sinh(bkh0)] , (22b)

d = b− 1 . (22c)

Finally, the pressure ps in the region bounded by the streamline and the lower wall is determined using

the geometry of the streamline (Eq.(18)) and the velocity on the streamline (Eq.(22a)) as Dirichlet boundary

conditions. For a streamline far away from the rough wall, we can reasonably assume that ps is independent

of y and varies only with x. Integrating Eq. (6a) with respect to y, we obtain the following equation:

u =
y2

2µ

dps
dx

+ U0

(

C5

y

h0
+ C6

)

. (23)
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From the boundary conditions (u = −U0 at y = 0 and u = us at y = hs(x)), the integration constants are

found as follows:

C5 = −
hs

2µ

h0
U0

dps
dx

+
h0
hs

(

us

U0

+ 1

)

, (24a)

C6 = −1 . (24b)

From Eq. (23) and the continuity equation, we obtain

∂v

∂y
= −

∂u

∂x
= −

y2

2µ

d2ps
dx2

− y
U0

h0

dC5

dx
, (25)

and integrating with respect to y, we obtain the wall-normal component of the velocity as follows:

v = −
y3

6µ

d2ps
dx2

+ U0

(

−
y2

2h0

dC5

dx
+ C7

)

. (26)

The boundary condition on the lower wall (v = 0 at y = 0) finds the integral constant C7 to be zero. From

the geometric condition, the velocity in the y direction on the streamline is imposed to be vs = usdhs/dx.

Then, the pressure equation is obtained as follows:

d

dx

[

h3s
12µ

dps
dx

]

= −
U0

2

dhs

dx
+

d

dx

[

ushs

2

]

. (27)

This is the streamline-based Reynolds lubrication equation.

The pressure ps is finally obtained as follows:

ps
P0

=
6

kh0

[

a(d− 1) + 2bc

hs/h0
−
a(ac− bd+ b)

(hs/h0)2

]

sin(kx)

a2 + 2b2
, (28)

where P0

def
= µU0/h0 is the reference pressure, and the integration constants (when integrating Eq. (27) with

respect to x) are determined such that the periodic boundary condition is satisfied in the x direction and the

average pressure becomes zero.

Because a, c, and d are all determined by the mean height of the streamline bh0 (see Eqs.(20), (22b), and

(22c)), the pressure Eq.(28) is identified with the unique parameter b. Denoting the wavelength of the wavy

wall as λ (= L for the present case, Fig. 2), because the aspect ratio α′ = bh0/λ (for the region bounded

by the streamline and the flat wall) is assumed to be small for the streamline-based Reynolds lubrication

equation to be valid, the limit b → 0 is taken for ps, and the following form of the asymptotic boundary

pressure pw(x) is obtained:

pw(x)

P0

= lim
b→0

ps(x)

P0

= 2εkh0
[

C4 + 3εC2

2
cos(kx)

]

sin(kx) . (29)
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Note that this boundary pressure is constructed (in a form excluding the information of streamline geometry,

but) only with the information of roughness geometry, which enables reconstruction of the two-dimensional

pressure with a higher-order term (i.e. wall-normal component above the flat wall) as explained in the

following.

Using the above asymptotic boundary pressure, the vertical distribution of pressure is reconstructed.

From the higher-order lubrication model [17] for a relatively moderate geometry with small amplitude and

curvature, the pressure distribution p(x, y) in the entire domain is approximately given as

pM(x, y) = pw(x) + padj(x, y) , (30)

where padj is the adjustment to pw in the order of magnitude as O[padj/pw] = α′2 [17, 19], and the math-

ematical form of padj is given in the following. Integrating Eq. (6b) with respect to y yields the following

equation:

pM(x, y) = pw(x) + padj(x, y)

= µ
∂v

∂y

= −µ
∂u

∂x
.

From Eqs. (23) and (29) and considering lim
b→0

us/hs (instead of Ur/h in Eq. (8)), the adjusting term padj is

obtained as follows:

padj(x, y) = −µ
∂

∂x

[

y2

2µ

dpw
dx

+ Γy

]

, (31)

Γ =
U0

h0
[1 + 2εkh0C2 cos(kx)] ,

and finally, the two-dimensional lubrication pressure with the rough wall is given as Eq.(30).

4.2 Discussion

To assess the validity of the proposed model, an analytical solution pA is constructed with the stream

function of Eq. (10) for the single-wavenumber roughness hw (Eq.(9)). From the corresponding vorticity

ω (= −∇2ψ), pressure is obtained by solving the following equations:

∂pA
∂x

= −µ
∂ω

∂y
, (32a)

∂pA
∂y

= +µ
∂ω

∂x
, (32b)
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and given as follows:

pA
P0

= 2εkh0 [C2 sinh(ky) + C4 cosh(ky)] sin(kx) . (33)

The distribution of pM (Eq. (30)) and pA (Eq. (33)) are compared in Figs. 3(a) and 3(b) at aspect ratio

α = h0/L = 0.1 (equivalently kh0 = 2πα), wavy wall amplitude ε = 0.1, and Reynolds number Re =

ρUL/µ = 0.01. From the figures, the pressure distribution with the higher-order correction (pM) agrees

well with pA. Figure 3(c) shows the pressure contours calculated by the method of Ref. [17] using Eqs. (7)

with (8), where pw is given as follows [17]:

pw = 6µU0

2 + ε cos(kx)

(h0k)2 (2 + ε2)

εk sin(kx)

(1 + ε cos(kx))2
. (34)

As this method is suitable for a moderately-varying surface profile at aspect ratio α . 1 and α2 ≪ 1, the

pressure distribution also shows reasonable agreement with pA.

By further increasing the aspect ratio to α = 0.5 (with keeping the other parameters the same as the

above case), the pressure distributions are compared in Fig. 3(d)–(f). This value of α is prohibitively large

for the Reynolds lubrication model to be valid and a higher-order correction is necessary [17]. Although

pM (Fig. 3(d)) still reasonably reproduces the vertical distribution of pA (Fig. 3(e)), the method of Ref. [17]

underestimates the magnitude of the pressure as Fig. 3(f) shows. The difference between Fig. 3(d) and

3(f) suggests that the wall pressure, Eq. (29), obtained by solving the streamline-based lubrication equation

provides better quality than Eq.(34) (obtained by the conventional Reynolds pressure equation applied to

the region between wavy and flat walls) even at this value of aspect ratio α.

The average error in the modelled pressure p (two cases as explained later) from pA is calculated at a

fixed level y = yf as follows,

E(p)
def
=

1

λ

∫ λ

0

∣

∣

∣

∣

p− pA
pA

∣

∣

∣

∣

y=yf

dx , (35)

where λ = L in this section.

The following two cases are considered for p: (i) ps|ψ=0 (i.e., solving the wall-based Reynolds lubrica-

tion equation with the wavy wall ψ = 0 as the boundary condition) and (ii) the present lubrication model pM

(i.e., using the streamline-based lubrication equation and reconstructing the vertical pressure distribution).

The average errors are shown in Fig. 4 as a function of aspect ratio α for two different yf values,

yf/h0 = 0.1 and 0.8. Figure 4(a) plots E (ps|ψ=0), and the results indicates that the Reynolds lubrication

equation is applicable only for a small α region, which coincides with the statement by Elrod [2]. When

α becomes large, the assumptions for the Reynolds lubrication equation is violated and the errors in ps|ψ=0

13
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(a) pM, Eq. (30) with Eqs. (29) (31)
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(c) Method by [17], Eq. (7) with Eqs. (8) (34)
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(d) pM, Eq. (30) with Eqs. (29) (31)
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(f) Method by [17], Eq. (7) with Eq.(8) (34)

Figure 3: Pressure contours in the channel bounded by flat and wavy walls with a single wavenumber of

the wavenumber kh0 = 2π/10 under the conditions of Reynolds number Re = 0.01, the non-dimensional

amplitude of the wavy wall ε = 0.1, and the aspect ratio (a)–(c) α = 0.1 and (d)–(f) α = 0.5. The

pressures are obtained by (a)(d) the present lubrication model, (b)(e) solving Eq. (32), and (c)(f) the method

in Ref. [17]. The pressure is shown normalised by µU0/h0.
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are prohibitively large at both yf levels. On the other hand, E (pM) in Fig. 4(b) shows that the mean errors

are relatively small for both yf levels. Although E (pM) shows local minima around α = 0.8 or 0.9, this

value of α is out of the applicable range of the higher-order lubrication model [17].

Figure 5 plots the error at α = 0.1 as a function of the amplitude parameter of the wavy wall ε. The

graph shows that the error develops almost linearly and a small value of ε guarantees a sufficiently small

error level.
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Figure 4: Average errors Eq.(35) in (a) ps|ψ=0 and (b) pM plotted as a function of the aspect ratio α under

the Reynolds number Re = ρU0L/µ = 0.01 and the non-dimensional amplitude of the wavy wall ε = 0.1.
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Figure 5: Average error in E (pM) against amplitude parameter of the wavy wall ε.
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Figure 6: Schematic of a channel with a sinusoidal wall with a sum of multiple wave components (upper

side) and a flat wall (lower side). The periodic boundary condition is applied in the x direction.

5 Case with multiple wavenumbers

The procedure in the previous section is extended to allow superposition of multiple waves as roughness,

as schematically shown in Fig. 6. In this section, let the wavy wall shape be expressed by the following

Fourier series:

hw = εh0

n
∑

i=1

βi cos(kix+ φi) + h0 , (36)

where h0 is the mean height of the wall, and ki and φi are the wavenumber and phase difference of the i-th

wave component. To carry out a perturbation expansion, the amplitude parameter βi is less than or equal to

1. The basic procedure is the same as in Section 4.

5.1 Lubrication model

Using the perturbation method to obtain the stream function, we obtain the following equations:

ψ ≃ ψ0 + εψ1 , (37a)

ψ0

h0U0

=
1

2

(

y

h0
− 1

)2

, (37b)

ψ1

h0U0

=
n
∑

i=1

[(

C1i + C2i

y

h0

)

sinh(kiy)

+

(

C3i + C4i

y

h0

)

cosh(kiy)

]

cos(kix+ φi) , (37c)
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where

C1i = βi
sinh(kih0)

sinh2(kih0)− (kih0)2
, (38a)

C2i = βi
kih0 cosh(kih0)− sinh(kih0)

sinh2(kih0)− (kih0)2
, (38b)

C3i = 0 , (38c)

C4i = −βi
kih0 sinh(kih0)

sinh2(kih0)− (kih0)2
. (38d)

The geometry of the streamline hs and the velocity us on the streamline are obtained in the following

form:

hs = h0
∑

i

ai cos(kix+ φi) + bh0 (0 < b < 1) , (39a)

us = U0

∑

i

ci cos(kix+ φi) + U0d , (39b)

Here, substituting Eq.(39) into the streamline equation (ψ) and assuming that the terms including aiaj or

aiε (1 ≤ i, j ≤ n) are negligible, the coefficients ai, ci and d are obtained in the following functions of b:

ai = ε
(C1i + C2ib) sinh(bkih0) + (C3i + C4ib) cosh(bkih0)

1− b
, (40a)

ci = ai + ε [(C1ikih0 + C2ibkih0 + C4i) cosh(bkih0)

+(C2i + C3ikih0 + C4ibkih0) sinh(bkih0)] , (40b)

d = b− 1 . (40c)

When solving the streamline-based pressure equation, the following approximations are applied for h−2
s

and h−3
s for small ai/b (b→ 0):

1

h2s
≃

1

b2h2
0

(

1− 2
n
∑

i=1

ai cos(kix+ φi)

b

)

, (41a)

1

h3s
≃

1

b3h30

(

1− 3
n
∑

i=1

ai cos(kix+ φi)

b

)

, (41b)

which are the differences from the procedure in Section 4 for integrating Eq. (27). Finally, by determining

the integral constant to satisfy the periodic boundary conditions, the pressure ps in the region between the

flat wall and the streamline (Eq. (39a)) is obtained as follows:

ps
P0

=
n
∑

i=1

D5i sin(kix+ φi) +
n
∑

i=1

D6i sin(2(kix+ φi))

+
n
∑

i=1

n
∑

j=1
(j 6=i)

D7ij cos(kix+ φi) sin(kjx+ φj) , (42)
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where

D5i =
6

b2kih0

(

−
3ai
b2

n
∑

j=1

ajcj +
−ai + aid+ bci

b

)

, (43a)

D6i =
3aici
b3kih0

, (43b)

D7ij =
12kjh0(ajci + aicj)

b3
(

k2i − k2j
)

h2
0

. (43c)

Taking the zero limit for the mean height of the streamline as bh0 → 0, the wall pressure pw(= lim
b→0

ps) is

obtained as follows:

pw
P0

=
n
∑

i=1

E5i sin(kix+ φi) +
n
∑

i=1

E6i sin(2(kix+ φi))

+
n
∑

i=1

n
∑

j=1
(j 6=i)

E7ij cos(kix+ φi) sin(kjx+ φj) (44)

where Emi = lim
b→0

Dmi (m = 5, 6) and E7ij = lim
b→0

D7ij , and these are given as follows:

E5i =− 2ε(kih0)
2C1i , (45a)

E6i =6ε2kih0C
2

2i , (45b)

E7ij =
48ε2(kih0)(kjh0)

2

(k2i − k2j )h
2
0

C2iC2j . (45c)

The adjusting pressure term padj is obtained by the same equation as Eq. (31), and the coefficient Γ is given

as follows:

Γ =
U0

h0

[

1 + 2ε
n
∑

i=1

kih0C2i cos(kix+ φi)

]

. (46)

Finally, the pressure distribution is given as

pM(x, y) = pw(x) + padj(x, y) . (47)

Eq.(47) with Eqs. (31) and (44) is the general formula for the pressure distribution for a given geometry

with multiple wavenumbers superposed on one side of a parallel-wall channel. More general extension of

the above model to a rough wall in a non-parallel channel is presented in Appendix A.

5.2 Discussion

By solving Eq.(32), the analytical solution based on the perturbation expansion is obtained as follows:

pA
P0

= 2ε
n
∑

i=1

kih0 [C2i sinh(kiy) + C4i cosh(kiy)] sin(kix+ φi) . (48)
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In this subsection, we set up a problem of superposing two wavenumbers: a surface of k1h0 = 2π/10

(equivalent aspect ratio α1 = k1h0/2π = h0/L = 0.1) is added with the roughness of higher wavenumber

k2 = 5k1. This wavenumber is chosen such that the corresponding wavelength λ2 = 2π/k2 = L/5 is

sufficiently smaller than the longitudinal length scale L.

Figure 7 compares the pressure contour plots of (a) the lubrication model and (b) analytical solution

obtained at Reynolds number Re = ρUL/µ = 0.01 and the wavy wall amplitude parameters ε = 0.1, β1 =

β2 = 0.5. The result shows that, although the wavelength λ2 may be slightly out of the possible acceptable

range (i.e., α2 = h0/λ2 = 0.5), the pressure distributions of pM and pA agree well for this two-wavenumber

case.

The average relative error in pM is defined as

E(pM) =
1

λmax

∫ λmax

0

∣

∣

∣

∣

pM − pA
pA

∣

∣

∣

∣

dx , (49)

where λmax = max [2π/k1, 2π/k2], and the error is plotted at two different heights yf/h0 = 0.1 and 0.8 in

Fig. 8 as function of α2 with keeping the low wavenumber component k1. Unlike the single-wavenumber

case where the mean error increased with the aspect ratio (see Fig. 4(b)), the two-wavenumber cases exhibit

an insensitive trend of the error against α2. The major reason is that the reference pressure of the problem

Eq. (4), O [µU/α2
1
L], is much larger than the pressure induced by the wavenumber k2, O [µU/α2

2
L], and

therefore, the relative errors remain at the similar level for different values of α2, particularly in the higher

region of α2. This result indicates that the proposed method gives a reasonable pressure distribution for a

roughness geometry given by a combination of small and large waves of wavelength sufficiently smaller

than the channel scale L.

6 Conclusion

This study reveals a new aspect of lubrication pressure in a channel bounded by flat and rough surfaces

to be described by a combination of wall pressure (obtained by streamline-based lubrication equation) and

wall-normal pressure component obtained with the wall pressure.

By showing that the geometrical variation of the streamlines is sufficiently damped as the streamline

goes away from the rough surface, a streamline-based lubrication equation is constructed with the velocity

on the streamline as a boundary condition to establish the wall pressure on the flat wall. Then, the wall-

normal variation of the pressure is recovered from the wall pressure and the wall velocity by a lubrication
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Figure 7: Pressure contours in the channel bounded by flat and wavy walls with multiple wavenumbers ob-

tained by (a) the present lubrication model and (b) solving Eq. (32), under the conditions of the wavenum-

bers k1h0 = 2π/10 and k2h0 = π, Reynolds number Re = 0.01, and the non-dimensional amplitude of the

wavy wall ε = 0.1. The pressure is shown normalised by µU0/h0.

20



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2
α2

E
(p
M
)

yf/h0 = 0.1
yf/h0 = 0.8

Figure 8: Average error Eq. (35) for pM plotted as a function of the aspect ratio α2 (= k2h0/2π) under

the Reynolds number Re = 0.01 and the non-dimensional amplitude of the wavy wall ε = 0.1 and the

amplitude parameter β1 = β2 = 0.5.

model that considers higher order terms. The applicable conditions of the proposed method are summarised

as follows: (i) the roughness amplitudes are small and (ii) the higher wavenumbers in the roughness are

sufficiently isolated from the lowest wavenumber (or the wavenumber of the nominal gap profile). The

effectiveness of the proposed method is demonstrated through comparison with the pressure distribution

obtained by a perturbation method for sinusoidal roughness of a single-wave component and two-wave

components.

Although the second condition is not always practical for a case of superposed multiple sinusoidal

components or general (random) roughness, the present study revealed the significance of the streamline-

based lubrication equation (i.e. for the wall pressure) and the role of the higher-order term on the pressure

variation in the wall-normal direction, which may provide effective view points to deeply understand the

roughness lubrication and further develop a new approach for a case of non-parallel nominal surface as

shown in Appendix.

Appendix

A Adding roughness to an arbitrary base shape hb(x)

In Sections 4 and 5, sinusoidal roughness is superposed on a flat wall of a parallel channel. In this sec-

tion, sinusoidal roughness is superposed on a non-flat wall of weekly-undulating profile hb(x) that satisfies
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|dhb/dx| ≪ min(εβi)min(h0ki)/2π, and the rough surface profile is given as follows:

hw(x) =
n
∑

i=1

εh0βi cos(kix+ φi) + hb(x) .

The stream function of form ψ = ψ0(x, y) + εψ1 is assumed, where ψ0 is determined by the nominal

geometry of the wall hb. Following the same procedure as in Section 4, we find ψ1 of the following form:

ψ1 ≃
n
∑

i=1

[(

C1i + C2i

y

h0

)

sinh(kiy)

+

(

C3i + C4i

y

h0

)

cosh(kiy)

]

cos(kix+ φi) . (A1)

From the boundary conditions in Section 4, the coefficient are identified as follows:

C1i = βi
hb
h0

sinh(kihb)

sinh2(kihb)− k2i h
2

b

C0 , (A2a)

C2i = βi
kihb cosh(kihb)− sinh(kihb)

sinh2(kihb)− k2i h
2

b

C0 , (A2b)

C3i = 0 , (A2c)

C4i = −βi
kihb sinh(kihb)

sinh2(kihb)− k2i h
2

b

C0 , (A2d)

where

C0 = h2
0

(

∂2ψ0

∂y2

∣

∣

∣

∣

y=hb

−
dhb
dx

∂2ψ0

∂x∂y

∣

∣

∣

∣

y=hb

)

≃ h2
0

∂2ψ0

∂y2

∣

∣

∣

∣

y=hb

. (A3)

A streamline away from the roughness wall and the velocities on the streamline are used to impose boundary

conditions for the lubrication pressure. Finding the streamline in a form of hs = h0
∑

ai cos(kix+φi)+bhb

and the velocity on the streamline as us = U0

∑

ci cos(kix + φi) + U0d, the coefficients ai, b, ci, and d are

obtained as follows:

h0ai =− ε
G1,2
i sinh(bkihb) +G3,4

i cosh(bkihb)

∂ψ0/∂y|y=bhb
,

U0ci =aih0
∂2ψ0

∂y2

∣

∣

∣

∣

y=bhb

+
ε

h0

(

kih0G
1,2
i + C4i

)

cosh(bkihb)

+
ε

h0

(

kih0G
3,4
i + C2i

)

sinh(bkihb) ,

U0d =
∂ψ0

∂y

∣

∣

∣

∣

y=bhb

,

where

G1,2
i = C1i +

bhbC2i

h0
, G3,4

i = C3i +
bhbC4i

h0
.
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Assuming that the geometry of hb is smooth and the Reynolds lubrication equation can be applied, the

solution of the Reynolds lubrication equation with the boundary condition at y = hb is denoted as ps. With

the corresponding higher order pressure padj, the pressure is given as p = ps + padj. By taking the limit of

b→ 0, padj under the roughness takes the following form:

padj = −µ
∂

∂x

[

y2

2µ

dps
dx

+ Γy

]

, (A4)

where

Γ (x) = 2ε
n
∑

i=1

kih0C2i cos(kix+ φi) +
∂2ψ0

∂y2

∣

∣

∣

∣

y=0

. (A5)
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