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Photoredox Catalysis

Sequential C� F Bond Transformation of the Difluoromethylene Unit
in Perfluoroalkyl Groups: A Combination of Fine-Tuned
Phenothiazine Photoredox Catalyst and Lewis Acid

Naoki Sugihara, Yoshihiro Nishimoto,* Yasuko Osakada, Mamoru Fujitsuka, Manabu Abe,
and Makoto Yasuda*

Abstract: A sequential process via photoredox catalysis
and Lewis acid mediation for C� F bond transformation
of the CF2 unit in perfluoroalkyl groups has been
achieved to transform perfluoroalkylarenes into com-
plex fluoroalkylated compounds. A phenothiazine-based
photocatalyst promotes the defluoroaminoxylation of
perfluoroalkylarenes with (2,2,6,6-tetramethylpiperidin-
1-yl)oxyl (TEMPO) under visible light irradiation,
affording the corresponding aminoxylated products.
These products undergo a further defluorinative trans-
formation with various organosilicon reagents mediated
by AlCl3 to provide highly functionalized perfluoroalkyl
alcohols. Our novel phenothiazine catalyst works effi-
ciently in the defluoroaminoxylation. Transient absorp-
tion spectroscopy revealed that the catalyst regeneration
step is crucial for the photocatalytic aminoxylation.

The carbon–fluorine (C� F) bond transformation in per-
fluoroalkyl compounds not only is an important synthetic
method in organic chemistry,[1] but also is an urgent issue to
solve PFAS (polyfluoroalkyl substances) environmental
problems.[2] Numerous C� F bond activation protocols have
been reported for single C� F bond transformations of
perfluoroalkyl group.[3,4] However, a sequential C� F bond
transformation of a difluoromethylene unit (� CF2� ) into two
different functional groups remains underdeveloped (Fig-
ure 1A) despite being an important clue to the solution of
PFAS problems. This is because the harsh reaction con-

ditions needed to cleave robust C� F bonds cause the
undesired installation of the same functional group. In fact,
dialkoxylation,[5] dimethylation[6] and dichlorination[6] of a
CF2 moiety have been reported. To avoid installing the same
groups, amino alcohols were used in the aminoalkoxylation
of α-perfluoroalkyl ketones in a three-component tandem
reaction (Figure 1B, a).[7] Recently, two distinguished reac-
tions were reported: a sequential defluorinative alkylation of
trifluoroacetyl compounds by a radical mechanism (Fig-
ure 1B, b)[8] and a coupling reaction of 1,1-difluoroalkyl
compounds (RCF2R’) with Grignard reagents and chlorosi-
lanes or alkyl tosylates by CrCl2 catalysis via chromium
carbenoid species (Figure 1B, c).[9] Neither method is
applicable to the transformation of longer perfluoroalkyl
compounds (RCF2(CF2)nR’). Herein we propose a reaction
design based on a sequential process via radical and ionic
paths (Figure 1C). The primary substitution of F with RO
groups involves C� F bond activation by photocatalysis[4g]

and capture of the perfluoroalkyl radical by an oxyl
radical.[10] Then the second transformation employs a Lewis
acid and nucleophiles. Because the reaction mechanism
includes an oxonium intermediate, diverse nucleophiles can
be introduced. Based on our proposed design using a dual
activation system, in this study we achieved a sequential
C� F bond transformation of perfluoroalkylarenes via ami-
noxylation with a fine-tuned phenothiazine photocatalyst
and aminoxyl radical reagent followed by AlCl3-mediated
nucleophilic substitution with organosilicon reagents (Fig-
ure 1D).
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Firstly, we investigated reaction conditions for the
photo-catalyzed aminoxylation using 4-
phenyl(perfluorobutyl)benzene 1a (Ered= � 2.06 V vs SCE)
and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) (2)
under visible light irradiation (370 nm) (Table 1). The use of
Ir(ppy)3 resulted in no reaction due to the low reducing
ability of excited Ir(ppy)3 (Entry 1).[4g] We focused on
phenothiazines exhibiting higher reducing abilities than
Ir(ppy)3. Their photocatalytic activities can be tuned by a
substituent effect.[11] N-Phenylphenothiazine PC1 exhibited
a catalytic activity to mediate the aminoxylation, giving
product 3a (Entry 2). To access more negative redox
potentials, phenothiazine PC2 was used, leading to an
improved yield (Entry 3). It should be noted that newly
developed phenothiazine PC3 bearing diisopropylamino and
two methyl groups showed the best catalytic activity
(Entry 4), suggesting the effect of the two Me groups is
crucial to the aminoxylation. N-Dimeth-
ylphenylphenothiazine PC4 was less effective, which indi-
cates the increase of reducing ability by an amino group is
significant (Entry 5). Next, to utilize much lower reduction

potential of photocatalysts, we applied thiolate catalysis[12]

and consecutive photo-induced electron transfer (conPET)
system[13] to this reaction. Thiolate catalysis resulted in no
reaction, and 1a was hardly converted (Entry 6). In the
conPET system, 1a was completely consumed, but only a
trace amount of 3a was obtained according to complicated
products (Entry 7). In this case, the high reducing ability of
the active catalytic species generated by conPET would
cause the undesired overreduction or side-reactions. Both
photocatalyst and photo-irradiation were essential for the
reaction progress (Entries 8 and 9). Finally, under the
optimized conditions using the 5 mol% amount of PC3, 3a
was obtained in 82% yield (Entry 10). Further optimization
for addition amount of TEMPO 2 and solvent screening is
described in the Supporting Information.[14]

Scheme 1 depicts a plausible mechanism for the amino-
xylation of 1 with TEMPO 2 catalyzed by phenothiazine PC.
The photoexcited PC* reduces 1 via single electron transfer
(SET), affording radical anion A and radical cation PC*+.
Mesolysis of a C� F bond affords benzyl radical B.[4g] Then,
B associates with 2 to give product 3. PC (E(PC3*+/PC3)=

Figure 1. Sequential C� F bond transformation of perfluoroalkyl com-
pounds.

Table 1: Optimization of photo-catalyzed aminoxylation of perfluoroal-
kylarene 1a with TEMPO 2:[a]

Entry Catalyst Eox*
(V vs SCE)

Yield

1 Ir(ppy)3 � 1.73 0%
2 PC1 � 2.45 35%
3 PC2 � 2.68 42%
4 PC3 � 2.57 60%
5 PC4 � 2.47 38%
6[b] 4-MeOC6H4SH � 3.31 0%
7[c] Mes-Acr-BF4 � 3.36 trace
8[d] PC3 � 2.57 0%
9 none – 0%
10[e] PC3 � 2.57 82% (71%)[f ]

[a] 1a (0.4 mmol), 2 (0.8 mmol), catalyst (0.004 mmol), MeCN
(2 mL), irradiation with 370 nm LEDs at 35 °C for 4 h. Yields were
determined by 1H NMR spectroscopy using an internal standard. [b] 4-
MeOC6H4SH (0.08 mmol), HCO2Cs (0.8 mmol), DMSO (2 mL) irradi-
ation with 427 nm LEDs at 35 °C for 24 h. [c] Mes-Acr-BF4

(0.04 mmol), NiPr2Et (1.2 mmol), MeCN (1.3 mL), irradiation with
390 nm LEDs at 35 °C for 24 h. [d] No irradiation. [e] PC3 (0.02 mmol),
24 h. [f ] Isolated yield.
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0.61 V vs SCE) is regenerated by single electron reduction
with 2 (E(2+/2)=0.62 V vs SCE).[15] A by-product, N-
oxoammonium cation C captures F� , suppressing the retro-
reaction from B to A.[16] HRMS and 19F NMR confirmed N-
oxoammonium fluoride D was generated.[17] The appropriate
reduction potential of PC3* achieves selective reduction of
starting material 1 and not product 3, realizing a single C� F
bond transformation without overreduction and side-
reactions.[18]

We focused on the fact that our developed PC3
exhibited a more efficient catalytic activity than PC2 despite
the lower reducing ability of PC3* than PC2* (Table 1).[19]

We conducted mechanistic studies to understand the origin
of the high activity of PC3. First, the fluorescence quenching
experiments of PC* with 4-trifluorometh-
yl(perfluorohexyl)benzene 1e were performed. Stern–Volm-
er plots determined that the rate constants of the dynamic
quenching of excited singlet species PC2* and PC3* were
5.3×1010 M� 1 s� 1 and 3.1×1010 M� 1 s� 1, respectively (Figures S2
and S4).[20,21] The 1st SET between 1e and PC* is a
diffusion-controlled process,[22] which indicates that the
catalytic turnover is independent of the reducing ability of
PC*.[23] We then considered the 2nd SET between PC*+ and
TEMPO for the catalyst regeneration. The sub-microsecond
transient absorption spectroscopy using laser flash photol-
ysis method at 355 nm (4 mJ/pulse, 4 ns pulse-width) was
conducted for a mixture of PC, 4-
phenyl(perfluoroethyl)benzene 1n, and TEMPO to monitor
the generation and quenching of PC*+.[24] The quenching
rate constant of PC3*+ (3.2×104 M� 1 s� 1) was found to be
much larger than that of PC2*+ (0.93×102 M� 1 s� 1) (Figur-
es S19 and S20).[25] Thus, the fast regeneration of PC3
dominates the catalytic turnover (Figure 2A). Next, Gibbs
free energy changes (ΔGr) and reorganization energies (λ) in
the 2nd SET were obtained by DFT calculation to estimate
activation energies (ΔG�) according to Marcus-Hush theory
(Figure 2B).[26,27] While two ΔGr values are almost identical
(3.8 and 3.7 kcal/mol), λ value for PC3 (38.8 kcal/mol) is
lower than that for PC2 (42.3 kcal/mol). Finally, ΔG� for

PC3 (11.6 kcal/mol) is lower than that for PC2 (12.6 kcal/
mol). This trend in ΔG� is consistent with that in the catalyst
regeneration rate. Thus, we focused on the geometry change
of PC because a smaller λ value leads to the decrease of ΔG�

for SET. The planar structure of phenothiazine backbone in
PC*+ changes to the bent one upon reduction (Figure 2B).
This bending is the dominant geometry change and would
be deeply related to λ values. We adopted the bent angle (θ)
in Figure 2B right to represent the extent of a bent structure
of PC. The smaller value of θ in PC3 (θ=14.5°) shows the
smaller geometry change in the reduction of PC3*+

compared to PC2 (θ=18.0°). The steric repulsion of Me
groups of PC3 suppresses bending of a phenothiazine
backbone, eventually decreasing ΔG�. A catalyst design
including both fast catalyst regeneration and effective
photo-excited reduction potential is achieved by the rigidity
of molecular structure and the introduction of an electron-
donating group.

Using the determined optimal reaction conditions, we
explored the substrate scope of this aminoxylation
(Scheme 2). Electron withdrawing groups such as CN,
CO2Me, and CONMe2 were available for the transformation
(3b, 3c, 3d). The CF3-substituted perfluoroalkylarene
selectively underwent the aminoxylation in the perfluoroalk-
yl group (3e).[28] Silyl and boryl substituents were also
tolerated (3 f and 3g). It is noted that perfluoroalkylarenes
with electron-donating groups smoothly underwent amino-
xylation (3h, 3 i, and 3j). The development of PC3 with high
reducing ability overcame the limitation of the substrate
scope in our previous report for defluoroallylation.[4g]

Substrates including pyridine, benzofuran, or naphthalene

Scheme 1. Proposed mechanism for photo-catalyzed aminoxylation of
perfluoroalkylarenes.

Figure 2. (A) Quenching rate constants of PC* and PC*+. (B) Activation
energies (ΔG�), Gibbs free energy changes (ΔGr), reorganization
energies (λ), and bent angles (θ) in the 2nd SET by DFT calculation
studies ((U)ωB97XD/6-31+G(d,p)/SMD(acetonitrile)).
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moieties efficiently gave the corresponding products (3k, 3 l,
and 3m). The reaction of perfluoroethylarene also gave 3n
in a moderate yield. Perfluoroalkyl-substituted pyridines
were feasible substrates, and various functional groups such
as OMe, OH, NH2, and acetal groups were compatible with
the present reaction (3o, 3p, 3q, and 3r). A quinoline-based
substrate afforded desired product 3s in 68% yield. The
substrate with two C4F9 groups underwent single amino-
xylation to give product 3t. Reactions of perfluoroalkylphe-
nanthrene and -pyrene gave no products (3u and 3v).[29]

Next, Lewis acid mediators and nucleophilic coupling
partners were surveyed for the selective C� F bond trans-
formation of aminoxylated compounds 3 via an ionic path[30]

(Tables S3 and S4). The combination of AlCl3 and organo-
silicon reagents was found to be appropriate in the trans-
formation (Scheme 3). After isolation of 3a, which was
provided by aminoxylation between 1a and 2 (Table 1,
Entry 10), 3a was treated with allyltrimethylsilane (4a) in
the presence of AlCl3. The reaction gave allylated alcohol

5a in 74% yield, in which the amino group was removed on
the O atom (see below). The CN and CO2Me groups were
tolerated in this allylation (5b and 5c). Various organo-
silicon nucleophiles were applicable to this C� F bond
transformation. Methallylsilane 4b, silyl enol ethers 4c and
4d, silyl ketene acetal 4e, and alkynylsilane 4f provided
functionalized perfluoroalkyl alcohols 5d, 5e, 5f, 5g, and
5h, respectively. An organotin reagent, methallyltributyltin
(4g) also acted well as a nucleophile. Toluene (4h) was a
suitable nucleophile for the Friedel–Crafts reaction to give
product 5 i. The reduction with HSiEt3 smoothly proceeded
to yield defluorinated product 5j. On the other hand,
vinylsilane 4 j and silyl ketene imine 4k were not applicable.

Using the radical and ionic methods to realize two types
of C� F bond activation, we demonstrated a one-pot trans-
formation of a CF2 unit via aminoxylation and allylation
reactions (Scheme 4A). After aminoxylation of perfluoroal-
kylarene 1a with 2 using PC3 and 370 nm LED light, the
crude product was treated with 4a and AlCl3 to give product
5a in high yield. The one-pot aminoxylation/alkylation was
also successful using silyl ketene acetal 4e (Scheme 4B).

Scheme 5 illustrates a proposed mechanism for AlCl3-
mediated C� F bond allylation of 3 with allylsilane 4a. AlCl3

Scheme 2. Substrate scope of perfluoroalkylarenes in the aminoxylation
with TEMPO.[a] [a] 1a (0.4 mmol), 2 (0.8 mmol), PC3 (0.02 mmol),
MeCN (2 mL), irradiation with 370 nm LEDs at 35 °C for 24 h. Isolated
yields are shown. [b] 2a (1.2 mmol) and PC3 (0.04 mmol).

Scheme 3. Second defluorinative transformation mediated by a Lewis
acid.[a] [a] 3 (0.2 mmol), 4 (1.0 mmol), and AlCl3 (0.4 mmol) in CHCl3
(2 mL) at room temperature for 6 h. Isolated yields are shown. [b] 4h
(1 mL).
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abstracts F� to give oxonium intermediate E. Then N-
chloroamine and AlFCl2 are eliminated to give ketone F.
AlCl3 activates F, and 4a adds to a carbonyl group, affording
G.[31] Finally, hydrolysis of G yields product 5. The
generation of F was confirmed when 3 was treated with
AlCl3 in the absence of nucleophiles (Scheme S4). Other
typical Lewis acids[30] were not effective (Table S3). AlCl3
can mediate abstraction of fluoride ion of 3 and activation of
a less basic carbonyl group of F due to high Lewis acidity. In
terms of the intermediacy of ketone F, our procedure has an
impact on the synthesis of perfluoroalkyl ketones from
PFAS via defluorination. Traditional methods such as
defluorination of fully-perfluorinated alkylbenzenes,[32] per-
fluoroalkyl-substituted anilines[33] and -enamines,[34] and α-
hydroperfluoroalkanoic acid esters[5,35] have problems such
as narrow substrate scopes. Especially for the synthesis of
aryl ketones F, available substrates were extremely limited.
In this report, compounds 3 can be synthesized and used as
synthetic equivalents for F with the wide substrate scope
and the high compatibility of functional groups. Our process
is an efficient synthetic method of functionalized perfluor-
oalkyl alcohols like 5 from PFAS.

In summary, a combination of photoredox catalysis and
Lewis acid activation realizes sequential C� F bond trans-
formation of a CF2 unit in perfluoroalkylarenes. Functional-
ized perfluoroalkyl alcohols were synthesized by phenothia-
zine-catalyzed photo-induced defluoroaminoxylation with
TEMPO and subsequent AlCl3 mediated substitution of a F
atom with various carbon nucleophiles. Mechanistic studies
revealed that the rigidity of molecular structure and the
introduction of an electron-donating group is important in
catalyst design to achieve fast catalyst regeneration and
effective photo-excited reduction potential.
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Sequential C� F Bond Transformation of the
Difluoromethylene Unit in Perfluoroalkyl
Groups: A Combination of Fine-Tuned
Phenothiazine Photoredox Catalyst and
Lewis Acid

The sequential defluorinative transfor-
mation of a difluoromethylene (CF2) unit
in perfluoroalkyl compounds has been
achieved by a combination of photo-
redox catalysis and Lewis acid activation.
A newly developed phenothiazine-based

catalyst served as an efficient catalyst for
defluoroaminoxylation. Spectroscopic
measurements revealed the reaction
mechanism. AlCl3 facilitated further de-
fluorinative transformation of the amino-
xylated compounds.
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