<table>
<thead>
<tr>
<th>Title</th>
<th>On essential components of the set of fixed points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kinoshita, Shin’ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Mathematical Journal. 4(1) p.19-p.22</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1952</td>
</tr>
<tr>
<td>oai-re:version</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9530</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive: OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
On Essential Components of the Set of Fixed Points

By Shin'ichi Kinoshita

Let X be a compact metric space and let f be a continuous mapping of X into itself. A fixed point p of f was called by M. K. Fort Jr.\(^1\) an essential fixed point of f, if for every neighbourhood U of p there exists $\delta > 0$ such that every $g \in X^x$ with $|g - f| < \delta$ has at least one fixed point in U. Then for example, the identity mapping of the interval $[0, 1]$ has no essential fixed point. We shall introduce in this note a notion of essential components (see below) of the set of fixed points: thus if X is an absolute retract\(^2\), then every continuous mapping of X into itself has essential components of the set of fixed points and if X is an absolute neighbourhood retract\(^3\), then every continuous mapping of X into itself which is homotopic to a constant mapping has the same property.

I express my sincere thanks to Prof. H. Terasaka for his valuable advices.

1. Let X be a compact metric space\(^4\) and let f be a mapping\(^5\) of X into itself. Let f have fixed points and let A be the set of all fixed points, C being a component of A. Then C will be called an essential component of A, if for every open set U which contains C there exists δ such that every $g \in X^x$ with $|g - f| < \delta$ has at least one fixed point in U. We say that X has property F' if every mapping of X into itself has at least one essential component of the set of fixed points.

Theorem 1. Property F' is invariant under retraction\(^6\).

Proof. Let Y be a retract of a compact space X having property

4) In this note we assume that the space is separable metric.
5) In this note every mapping means a continuous mapping.
6) Let Y be a closed subset of X. If there exists a mapping r of X onto Y such that $r(x) = x$ for $x \in Y$, then Y is called by K. Borsuk a retract of X and the mapping r, a retraction of X onto Y. Cf. K. Borsuk, Fund. Math. 17. loc. cit.
and let \(r \) be a retraction of \(X \) onto \(Y \). Let \(f \) be a mapping of \(Y \) into itself. Then \(fr \) is a mapping of \(X \) into itself. Since \(X \) has property \(F' \), there exists an essential component \(C \) of the set of fixed points of \(fr \). Clearly \(C \) is a component of the set of all fixed points of \(f \). If \(U \) is an open subset (of \(Y \)) which contains \(C \), then there exists an open subset \(U' \) (of \(X \)) with \(U' \cdot Y = U \). It follows that for \(U' \) there exists \(\delta > 0 \) such that every \(g' \in X^X \) with \(|g' - fr| < \delta \) has at least one fixed point in \(U' \). Let \(g \) be a mapping of \(Y \) into itself with \(|g - f| < \delta \). Since \(|gr - fr| < \delta \), it follows that \(gr \) has at least one fixed point in \(U' \). Clearly this fixed point is contained in \(Y \). Therefore \(g \) has at least one fixed point in \(U' \cdot Y = U \), and the proof is complete.

Lemma 1. The Hilbert cube \(I_\omega \) has property \(F' \).

Proof. The Hilbert cube has the fixed point property\(^7\). Let \(f \in I_\omega \) and let \(A \) be the set of all fixed points of \(f \). Let \(A \) be decomposed into components \(C_\alpha \). Then it follows that:

1. \(A = \sum_c C_\alpha \),
2. \(C_\alpha \cdot C_\beta = 0 \) (\(\alpha \neq \beta \)),
3. \(A \) and all \(C_\alpha \) are compact.

If no \(C_\alpha \) is essential component, then for every \(C_\alpha \) there exists an open set \(U_\alpha \) which contains \(C_\alpha \) satisfying the following conditions: for every \(\delta > 0 \) there exists \(g_\alpha \in I_\omega \) with \(|g_\alpha - f| < \delta \) having no fixed point in \(U_\alpha \).

It can easily be seen that there exist two finite open coverings \(\{V_i\} \) and \(\{W_i\} \) (\(i = 1, 2, \ldots, n \)) (of \(A \)) which satisfy the following conditions:

1. \(W_i \subset V_i \),
2. \(V_i \cdot V_j = 0 \) for \(i \neq j \),
3. \(V_i \) contains at least one \(C_\alpha \) with \(U_\alpha \supset V_i \).

Since \(I_\omega - \sum_{i=1}^n W_i \) is compact and \(f \) has no fixed point on it, there exists an \(\alpha > 0 \) such that \(|x - f(x)| > \alpha \) for \(x \in I_\omega - \sum_{i=1}^n W_i \). Since \(V_i \) contains at least one \(C_\alpha \) with \(U_\alpha \supset V_i \), there exists a mapping \(g_\alpha \) with \(|g_\alpha - f| < \alpha \) having no fixed point in \(V_i \).

Using vectorial notation, we construct the mapping \(\varphi \) as follows:

\[
\varphi(x) = f(x) \quad \text{for} \quad x \in I_\omega - \sum_{i=1}^n V_i,
\]

\[
\varphi(x) = g_\alpha(x) \quad \text{for} \quad x \in W_i,
\]

\[
\varphi(x) = \frac{d(x, \overline{W}_i)}{d(x, \overline{W}_i) + d(x, I_\omega - \sum_{i=1}^n V_i)} \cdot f(x) + \frac{d(x, I_\omega - \sum_{i=1}^n V_i)}{d(x, \overline{W}_i) + d(x, I_\omega - \sum_{i=1}^n V_i)} \cdot g_\alpha(x)
\]

for \(x \in V_i - W_i \).

\(7\) See for instance, C. Kuratowski: *Topologie II* (1950), p. 263

\(8\) \(d(x, A) \) means the distance from \(x \) to \(A \).
It is easily seen that \(|\varphi - f| < \alpha\), and consequently \(\varphi \in I_f\) has no fixed point, which is impossible, and the proof is complete.

By Theorem 1 and Lemma 1 it follows immediately the

Theorem 2. Every absolute retract\(^9\) has property \(F'\).

2. **Lemma 2.** Let \(X\) be an absolute neighbourhood retract\(^{10}\). If \(f \in X^{I_{\omega}}\), then for every \(\varepsilon > 0\) there exists \(\delta > 0\) such that for every \(g \in X^X\) with \(|g - f'| < \delta\) within \(X^X(f' = f|X)\)\(^{11}\) there exists an extension \(\varphi\) of \(g\) on \(I_\omega\) relative to \(X\) with \(|\varphi - f| < \varepsilon\).

Proof. Let \(X\) be imbedded in \(I_\omega\) and let \(f\) be a mapping of \(I_\omega\) into \(X\). Since \(X\) is an absolute neighbourhood retract, there exist a neighbourhood \(U\) of \(X\) and a retraction \(r\) of \(U\) onto \(X\). For \(\varepsilon/2\) there exists \(\delta' > 0\) such that \(d(x, X) < \delta'\) yields \(|x - r(x)| < \varepsilon/2\).

By a lemma of K. Borsuk\(^{12}\), for \(\delta'\) there exist \(\delta > 0\) such that for every \(g \in X^X\) with \(|g - f'| < \delta\) \((f' = f|X)\) there exists an extension \(\varphi'\) of \(g\) on \(I_\omega\) relative to \(I_\omega\) with \(|\varphi' - f| < \delta\).

Using this \(\delta\), let \(g \in X^X\) with \(|g - f'| < \delta\). Then there exists an extension \(\varphi'\) which satisfies the above condition. Let \(\varphi = r\varphi'\). Then \(|\varphi - f'| < \varepsilon/2\). Since \(|\varphi' - f| < \delta' \leq \delta/2\), it follows \(|\varphi - f| < \varepsilon\) and \(\varphi\) is an extension of \(g\) on \(I_\omega\) relative to \(X\), and the proof is complete.

Theorem 3. Let \(X\) be an absolute neighbourhood retract. If \(f \in X^X\) is homotopic to a constant mapping, then \(f\) has at least one essential component of the set of fixed points.

Proof. Let \(X\) be imbedded in \(I_\omega\). If \(f \in X^X\) is homotopic to a constant mapping, then there exists an extension \(\varphi\) of \(f\) on \(I_\omega\) relative to \(X\)\(^{13}\). Since \(I_\omega\) has property \(F'\) by Lemma 1, \(\varphi\) has an essential component \(C\) of the set of fixed points, and \(C\) is at the same time a component of the set of all fixed points of \(f\). Let \(U\) be an open subset (of \(X\)) which contains \(C\). Then there exists an open subset \(U'\) of \(I_\omega\) with

9) A compact separable metric space is an absolute retract if and only if it is homeomorphic to a retract of \(I_\omega\). K. Borsuk, Fund. Math. 17, loc. cit.

10) A closed subset \(Y\) of \(X\) is a neighbourhood retract of \(X\) if there exists an open set \(U\) which contains \(Y\) and there exists a retraction of \(U\) onto \(Y\). A compact separable metric space \(X\) is an absolute neighbourhood retract if and only if \(X\) is homeomorphic to a neighbourhood retract of \(I_\omega\). K. Borsuk, Fund. Math. 19, loc. cit.

11) \(f|X\) means the partial mapping of \(f\) operating only on \(X\).

12) The lemma of K. Borsuk is as follows: let \(M\) be a separable metric space, \(A\) a closed subset of \(M\) and \(f \in I^M_A\). Then for every \(\varepsilon > 0\) there exists \(\varepsilon > 0\) such that for every \(g \in I^M_A\) with \(|g(x) - f(x)| < \varepsilon\) for \(x \in A\) there exists an extension \(\varphi\) of \(g\) on \(M\) relative to \(I_\omega\) with \(|\varphi - f| < \varepsilon\). K. Borsuk, Fund. Math. 19, loc. cit. p. 227.

$U' \cdot X = U$. It follows that for U' there exists $\delta' > 0$ such that every φ' with $|\varphi' - \varphi| < \delta'$ has at least one fixed point in U'. For δ' there exists $\delta > 0$ satisfying the condition of Lemma 2. Then for every $g \in X^x$ with $|g - f| < \delta$ there exists an extension φ' of g on I_ω relative to X with $|\varphi - \varphi'| < \delta'$. Therefore φ' has at least one fixed point in U'. Since this fixed point of φ' is contained in X, g has at least one fixed point in $U' \cdot X = U$, and the proof is complete.

Problem. Does there exist a space which has the fixed point property but which has not property F''?

(Received December 1, 1951)