<table>
<thead>
<tr>
<th>Title</th>
<th>Local cohomology and connectedness of analytic subvarietie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Siu, Yum-tong</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 5(2) P.273–P.277</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1968</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9532</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9532</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
Suppose X is an analytic subvariety in some open neighborhood G of the origin 0 in \mathbb{C}^n with $\text{codim}_{G,0}(X)=r$, where $\text{codim}_{G,0}(X)$ denotes the codimension at 0 of X as a subvariety of G. Let \mathcal{O} be the structure sheaf of \mathbb{C}^n. Let $H^p_{X,0}(\mathcal{O})$ or simply $H^p_{X,0}$ denote the direct limit of $\{H^p(U-X, \mathcal{O})| U \text{ is an open neighborhood of } 0 \text{ in } G\}$ for $p\geq 1$. ($H^p_{X,0}$ agrees with the stalk at 0 of the sheaf defined by the p-th local cohomology groups at X with coefficients in \mathcal{O}, [1], p. 79). We say that X is locally a complete intersection at 0 if X can be defined locally at 0 by r holomorphic functions. If X is locally a complete intersection, obviously we have

$$H^p_{X,0} = 0 \quad \text{for } p>r.$$

The question naturally arises: to what extent does (1) characterize a local complete intersection? Not much is known about the characterization of local complete intersections. In [3] Hartshorne introduces a concept of connectedness which in our case is equivalent to the following: X is locally connected in codimension k at 0 if the germ of X at 0 cannot be decomposed as the union of two subvariety-germs which are both different from the germ of X at 0 and whose intersection is a subvariety-germ Y with $\text{codim}_{X,0}(Y)>k$. He shows that, if X is locally a complete intersection, then X is locally connected in codimension 1 at 0 (and also locally connected in codimension 1 at 0 in some properly defined formal sense). In this note we prove that (1) is a stronger necessary condition for local complete intersections than the connectedness condition. The following is our main theorem:

Theorem 1. Suppose $q\geq 0$. If $H^p_{X,0}=0$ for $p>q+r$, then X is locally connected in codimension $q+1$ at 0.

For the proof of Theorem 1 we need the following:

Lemma 1. Suppose Y is a 1-dimensional subvariety in some open neighborhood H of 0 in \mathbb{C}^n. Suppose 0 is the only singular point of Y and Y is locally irreducible at 0. Then $H^p_{Y,0}=0$.

Proof. Suppose \(D \) is an arbitrary open neighborhood of 0 in \(H \). By changing linearly the coordinates system of \(C^n \), we can find \(\{z_1, \ldots, z_n\} \subset C^n \) \(\mid z_i \mid < \delta_i, 1 \leq i \leq n \) for some \(\delta_i > 0, 1 \leq i \leq n \), such that the projection \(\pi: C^n \rightarrow C \) defined by \(\pi(z_1, \ldots, z_n) = z_i \) makes \(Y \cap U \) an irreducible analytic cover of \(s \) sheets over \(U_i = \{z_1 \in C \mid |z_1| < \delta_i \} \) with \{0\} as the critical set in \(U_i \) (III, B. 3, [2]) and \(\pi^{-1}(0) \cap Y \cap U = \{0\} \). Let \(\bar{U}_i = \{t \in C \mid |t| < \sqrt{\delta_i} \} \). We are going to define holomorphic functions \(g_k \) on \(\bar{U}_i, 2 \leq k \leq n \), such that

\[
Y \cap U = \{(t^*, g_1(t), \ldots, g_n(t)) \mid t \in \bar{U}_i \}.
\]

Fix \(z^* = (z_1^*, \ldots, z_n^*) \in Y \cap U \) with \(z_i^* \neq 0 \) and fix \(t^* \) with \((t^*)_i = z_i^* \). Take \(t \in \bar{U}_i - \{0\} \). Let \(\gamma \) be a continuous map from \([0, 1]\) to \(\bar{U}_i - \{0\} \) such that \(\gamma(0) = t^* \) and \(\gamma(1) = t \). Let \(\hat{\gamma} \) be the continuous map from \([0, 1]\) to \(U_1 - \{0\} \) defined by \(\hat{\gamma}(c) = (\gamma(c))_i^* \) for \(c \in [0, 1] \). Then \(\hat{\gamma}(0) = z_1^* \). Since \(Y \cap U - \{0\} \) is a topological covering over \(U_1 - \{0\} \), there is a continuous map \(\hat{\gamma}: [0, 1] \rightarrow Y \cap U - \{0\} \) such that \(\pi \hat{\gamma} = \gamma \) and \(\hat{\gamma}(0) = z_1^* \). Define \(g_k(t) = z_{k, n}, 2 \leq k \leq n \). Set \(g_k(0) = 0, 2 \leq k \leq n \). It is readily verified that \(g_k \), \(2 \leq k \leq n \), are well-defined and holomorphic. (2) is satisfied, because \(Y \cap U \) is irreducible. Define \(F: C^n \rightarrow C^n \) by \(F(w_1, \ldots, w_n) = ((w_1)^s_1, w_2, \ldots, w_n) \). Let \(F = F^{-1}(Y \cap U) \) and let \(s = F^{-1}(U) \). Let \(e_i, \ldots, e_n \) be all the distinct \(s \)-th roots of unity. Let \(Y_p = \{w \in C^n \mid w_2 = g_k(t), 2 \leq k \leq n \} \). Hence \(Y_p \) is a holomorphic function, \(H^q(U - Y_p, \mathcal{O}) = 0 \) for \(q > n - 1 \) and \(1 \leq p \leq s \). The following portion of the Mayer-Vietoris sequence is exact:

\[
H^q(U - Y_p, \mathcal{O}) = H^q(U - \bigcup t^*_i Y_i, \mathcal{O}) \rightarrow H^q(U - \bigcup t^*_i Y_i, \mathcal{O}) \rightarrow H^{q+1}(U - \bigcup (t^*_i Y_i), \mathcal{O}), q \geq 0, 1 \leq p < s \].
\]

Since \(H^q(U - \bigcup (t^*_i Y_i), \mathcal{O}) = 0 \) for \(q > n - 1 \) (see Probleme 1, [4] or Th., [5]), by induction on \(p \) we conclude that \(H^q(U - \bigcup t^*_i Y_i, \mathcal{O}) = 0 \) for \(1 \leq p \leq s \) and \(q \geq n - 1 \). In particular, \(H^q(U - \bar{Y}, \mathcal{O}) = 0 \). Let \(\mathcal{F} \) be the zeroth direct image of \(\mathcal{O} \) under \(F \). Then, since \(H^{q-1}(U - \bar{Y}, \mathcal{O}) = 0 \),

\[
H^{q-1}(U - Y, \mathcal{F}) = 0.
\]

We claim that

\[
\mathcal{F} \simeq \mathcal{O}^s.
\]

Consider the subvariety \(Z = \{z_0, z_1, \ldots, z_n\} | z_1 = (z_0)^s \} \) in \(C^{n+1} \). Let \(\mathcal{O} \) be the structure sheaf of \(Z \). Let \(\theta: C^{n+1} \rightarrow C^n \) be defined by \(\theta(z_0, z_1, \ldots, z_n) = (z_1, \ldots, z_n) \). Let \(T: C^n \rightarrow Z \) be defined by \(T(w_1, \ldots, w_n) = (w_1, (w_1)^s, w_2, \ldots, w_n) \). \(T \) is biholomorphic and \(\theta T = F \). Let \(\mathcal{O} \) be the zeroth direct image of \(\mathcal{O} \) under \(\theta \). To prove (4), we need only prove that \(\mathcal{O} \simeq \mathcal{O}^s \). Suppose \(Q \) is a bounded non-empty Stein open subset in \(C^n \) and \(f \in \Gamma(\theta^{-1}(Q) \cap Z, \mathcal{O}) \). Then \(f = \tilde{f} \theta^{-1}(Q) \cap Z \) for some \(\tilde{f} \in \Gamma(\theta^{-1}(Q), \mathcal{O}) \). By methods analogous to the usual proof of the
Weierstrass division theorem, we obtain
\[f = \sum_{i=0}^{s-1} (v_i \circ \theta)(x_0)^i, \]
where \(u \) is a holomorphic function on \(\theta^{-1}(Q) \) and \(v_i, 0 \leq i \leq s-1 \), are holomorphic functions on \(Q \). It is easily seen that \(v_i, 0 \leq i \leq s-1 \), are uniquely determined by \(f \).

It is easily seen that \(v_i \) is a holomorphic function on \(\Omega \sim \Gamma \), and \(v_i \) are uniquely determined by \(f \).

Λ \(\rightarrow K \cdot \'}
diagram in (5) implies that \(H_{X;0}^n = 0 \). Since \(n-1 > q+r \), \(H_{X;0}^n = 0 \) for some \(p > q+r \).

(b) In the general case, suppose \(H_{X;0}^n = 0 \) for \(p > q+r \). We are going to derive a contradiction. In view of (a) we can assume that the germ of \(Z \) at 0 has positive dimension. Let \(h = \text{codim}_{U;0}(Z) \). Then \(r+q+2 \leq h < n \). After a linear transformation of the coordinates system of \(C^n \) and after a shrinking of \(U \), we can assume that \(Z \cap C^h = \emptyset \), where \(C^h \) is regarded as a linear subspace of \(C^n \) through the embedding sending \((z_1, \ldots, z_h) \in C^h \) to \((z_1, \ldots, z_h, 0, \ldots, 0) \in C^n \). Suppose \(W \) is an arbitrary open neighborhood of 0 in \(U \). Consider the exact sequences

\[
0 \to \mathcal{O} / \sum_{i=h+1}^{n} z_i \mathcal{O} \to \mathcal{O} / \sum_{i=h+1}^{n} z_i \mathcal{O} / \sum_{i=h+1}^{n} z_i \mathcal{O} \to \mathcal{O} / \sum_{i=h+1}^{n} z_i \mathcal{O} \to 0, \quad h+1 \leq k \leq n,
\]

where \(f_k \) is defined by multiplication by \(z_k \) and \(\sum_{i=h+1}^{n} z_i \mathcal{O} = 0 \). These give us exact sequences

\[
H^p(W-X, \mathcal{O} / \sum_{i=h+1}^{n} z_i \mathcal{O}) \to H^p(W-X, \mathcal{O} / \sum_{i=h+1}^{n} z_i \mathcal{O}) \to H^{p+1}(W-X, \mathcal{O} / \sum_{i=h+1}^{n} z_i \mathcal{O}), \quad p \geq 0, \quad h+1 \leq k \leq n.
\]

Passing to direct limits, we have the following exact sequences:

\[
dir. \lim. W H^p(W-X, \mathcal{O} / \sum_{i=h+1}^{n} z_i \mathcal{O}) \]

(6)

\[
dir. \lim. W H^p(W-X, \mathcal{O} / \sum_{i=h+1}^{n} z_i \mathcal{O}), \quad p \geq 0, \quad h+1 \leq k \leq n.
\]

Since \(dir. \lim. W H^p(W-X, \mathcal{O} / \sum_{i=h+1}^{n} z_i \mathcal{O}) = H^{k+1}_{X;0} = 0 \) for \(p \geq q+r \), by (6) and by backward induction on \(h \) we conclude that \(dir. \lim. W H^p(W-X, \mathcal{O} / \sum_{i=h+1}^{n} z_i \mathcal{O}) = 0 \) for \(p \geq q+r \) and \(h+1 \leq k \leq n+1 \). Since for \(p \geq 0 \) \(H^{k+1}_{X;0} = 0 \), we have

\[
H^{k+1}_{X;0} = 0 \quad \text{for} \quad p \geq q+r.
\]

Since no branch-germ of \(X_i \) at 0 contains a branch-germ of \(X_j \) at 0 and vice versa, \(\text{codim}_{U;0}(X_i) < \text{codim}_{U;0}(Z) = h \) for \(i = 1, 2 \). Hence the germ of \(X_i \cap C^h \) at 0 is positive dimensional for \(i = 1, 2 \). We are in the situation of Part (a).

\[H^{k+1}_{X;0} = 0 \quad \text{for} \quad p \geq q+r \]

Since no branch-germ of \(X_i \) at 0 contains a branch-germ of \(X_j \) at 0 and vice versa, \(\text{codim}_{U;0}(X_i) < \text{codim}_{U;0}(Z) = h \) for \(i = 1, 2 \). Hence the germ of \(X_i \cap C^h \) at 0 is positive dimensional for \(i = 1, 2 \). We are in the situation of Part (a).

\[H^{k+1}_{X;0} = 0 \quad \text{for} \quad p \geq q+r \]

Since no branch-germ of \(X_i \) at 0 contains a branch-germ of \(X_j \) at 0 and vice versa, \(\text{codim}_{U;0}(X_i) < \text{codim}_{U;0}(Z) = h \) for \(i = 1, 2 \). Hence the germ of \(X_i \cap C^h \) at 0 is positive dimensional for \(i = 1, 2 \). We are in the situation of Part (a).

\[H^{k+1}_{X;0} = 0 \quad \text{for} \quad p \geq q+r \]

REMARK. The converse of Theorem 1 is not true as is shown in the following example: In \(C^6 \) let \(X_1 = \{(z_1 = z_2 = 0) \cup (z_2 = z_3 = 0) \cup (z_3 = z_4 = 0) \} \cap \{z_5 = 0\} \) and \(X_2 = \{(z_1 = z_2 = 0) \cup (z_1 = z_4 = 0) \cup (z_2 = z_3 = 0) \} \cap \{z_6 = 0\} \). Let \(X = X_1 \cup X_2 \).

For \(i = 1, 2 \), \(X_i \) is of codimension 3 and can be defined by 3 global holomorphic functions, because \(X_1 = \{z_1 z_2 z_3 z_4 = 0, z_2 z_3 = 0, z_3 = 0\} \) and \(X_2 = \{z_1 z_2 z_3 z_4 = 0, z_2 z_3 = 0, z_3 = 0\} \). Hence \(H^{3}_{X;0} = 0 \) for \(p > 3 \) and \(i = 1, 2 \). \(X_1 \cap X_2 = \{(z_1 z_2 z_3 z_4 = 0) \cup (z_1 z_2 z_3 z_4 = 0) \} \cap \{z_5 = 0\} \) is of codimension 4 and is not locally connected in codimension 1 at 0, because \(X_1 \cap X_2 = Y_1 \cup Y_2 \) and \(Y_1 \cap Y_2 = \{0\} \), where \(Y_1 = \{z_1 = z_2 = z_3 = z_4 = 0\} \) and \(Y_2 = \{z_1 = z_2 = z_3 = z_4 = 0\} \). Hence \(H^{4}_{X;0} = 0 \) for some \(p > 4 \). By taking direct limits of Mayor-Vietoris sequences, we obtain exact
sequences $H^p_{X_1;0} \to H^{p+1}_{X_1;0} \otimes H^{p+1}_{X_2;0}$, $p > 0$. Hence $H^p_{X_1;0} \neq 0$ for some $p > 3$. On the other hand, the 6 branch-germs of X are given by $Z_1 = \{z_1 = z_2 = z_5 = 0\}$, $Z_2 = \{z_2 = z_3 = z_5 = 0\}$, $Z_3 = \{z_3 = z_4 = z_5 = 0\}$, $Z_4 = \{z_1 = z_2 = z_6 = 0\}$, $Z_5 = \{z_1 = z_4 = z_6 = 0\}$, and $Z_6 = \{z_3 = z_4 = z_5 = 0\}$. It can be easily verified that we cannot divide these 6 branch-germs into two groups so that the intersection of the union of one group with the union of another group is of dimension < 2. X serves also as an example of a non local complete intersection which is locally connected in codimension 1.

References

