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1. Introduction

1.1. Let G be a Kleinian group and denote by Q(G) and A(G) the region
of discontinuity and the limit set of G, respectively. Throughout this paper,
a Kleinian group means a non-elementary one. The residual limit set of G,
which is denoted by A G), is the subset of A(G) which consists of all the
points not lying on the boundary of any component of Q(G). Although the
study of Kleinian groups has long history, the residual limit sets were not treated
or were thought to be empty, until in 1971 Abikoff showed the existence of
Kleinian groups with the non-empty residual limit sets [1]. In his paper [2],
Abikoff also studied the properties of residual limit sets and showed their non-
emptyness for all finitely generated Kleinian groups except for those of two
classes which have clearly the empty residual limit set; one is a class of function
groups and the other is a class of Z,-extensions of quasi-Fuchsian groups.

In this paper we shall show the importance of the residual limit sets by
proving the following.

Theorem 1.1. Let G be a finitely generated Kleinian group and let S be
a finite set of generators of G. If G is neither a function group nor a Z,-extension
of a quasi-Fuchsian group, then S can be changed into a set of generators S, of G
with the following properties :

i) each element of S, is loxodromic and its fixed points lie on Ay(G), and

i) the number of elements of S, is not greater than that of S.

Among the sets of generators of a finitely generated group, there is a set,
the number of elements of which is minimum. We shall call it the minimal set
of generators. Choosing S in Theorem 1.1 to be the minimal set of genera-
tors, we have the following.

Corollary 1.2. Among the minimal sets of generators of a finitely generated
Kleinian group G with the non-empty residual limit set, there is a set consisting of
only loxodromic elements with the fixed points on AyG).
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1.2. This paper is arranged with respect to steps of the proof of Theorem
1.1. In §2, we list up some known results which we shall need later and then
define and discuss the rotation order of some loxodromic element. We change
S into S, in three steps; in §3 into a set which consists of the loxodromic ele-
ments only, in §4 into another set which consists of the loxodromic elements
only and contains at least one element which has the fixed points on A,(G) and
in §5 into the desired S;. In each step the changed set is a set of generators of
G and the number of the elements of the set is not greater than that of the original
set. In §6, S, is studied in detail for non-web groups. The author wishes to
express his deep gratitude to professor T. Kuroda for his advices.

2. Known results and rotation order of a loxodromic element

2.1. Let G be afinitely generated Kleinian group and let A be a component
of G. The component subgroup G, for A is the maximal subgroup of G which
leaves A invariant. For component subgroups of G, the followings are known.

Theorem 2.1 [3]. G, is a finitely generated function group with A as an in-
variant component.

Theorem 2.2 [4]. If G, has an invariant component different from A, then
G, is a quasi-Fuchsian group with the invariant Jordan curve 0A=A(G)).

From these theorems we have the following.

Corollary 2.3. Let A’ be a component of G, which is different from A. Then
the component subgroup G, for A’ of G, is a quasi-Fuchsian group with the invariant
Jordan curve 0A’=A(G,)).

The Jordan curve 0A’ in this corollary is called a separator of G and the
set of all such separators of G is called the set of separators of G.

Lemma 2.4 [2]. Separators do not cross each other.

Lemma 2.5 [2]. If oo €Q(G), then the diameters of separators of G form a
null sequence.

For common subgroups of component subgroups of G and for common
boundary points of components of G, the followings are known.

Theorem 2.6 [5,7]. Let {A,, A, -+, A,} be an arbitrary collection of com-
ponents of G. Then A(N} .1 Gy)=N7-10A,. If n=3, then N%.,0A; consists of
at most two points.

Theorem 2.7 [6]. Let A’, A" be the non-invariant components of G,.
Then dA” NOA” consists of at most one point. If it is not empty, then the point is
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the fixed point of a parabolic element of G.

2.2. Here we shall recall the auxiliary domains. Let A; A; be the
components of G. Let A}; be the component of G, containing A, The
complement of the closure of Aj; is called the auxiliary domain of A; with
respect to A; and it is denoted by D;; and, if there is no confusion, we write D
instead of D;.. By definition, the boundary 0D is a separator of G. For
auxiliary domains, we have followings.

Lemma 2.8 [6]. Let A; and A, (A;) be the components of G. Then

Lemma 2.9 [7]. Let {A,, Ay, -+, A} (n>2) be an arbitrary collection of
components of G. If Ni-10A; consists of two points, then D;; =D, for any in-
tegers i, j, k.

If A, is a component of G containing oo, then the auxiliary domain D; of
any component A; of G with respect to A; is bounded. By Lemma 2.8, the
diameter of A, is identical with that of D;. By Theorem 2.6, the set 0D ;
can be the subset of boundaries of at most two components of G. Hence by
Lemma 2.5, we have the following.

Lemma 2.10. If there is a component A of G containing oo, then the dia-
meters of components (excluding A) of G form a null sequence.

2.3. For loxodromic elements of G and for component subgroups, the
following is known.

Theorem 2.11 [5]. Let v be a loxodromic element of G with a fixed point on the
boundary of a component A of F. Then thereis a positive integer r such that v' G ,.
Hence the other fixed point of v also lies on the boundary of the same component A.

The minimum of 7 in the above theorem is called the rotation order of 7
for A.

Lemma 2.12. Let v be a loxodromic element of G. If one fixed point of
v lies on a separator of G, then the other fixed point of <y also lies on the same
separator .

Proof. Let A’ be a separator, on which one fixed point of v lies, and let
A be a component such that A’ is a component of G,. Since dA’ COA, we see
by Theorem 2.11 that both fixed points of v lie on 0A and that y" =G, for the
rotation order 7 of v for A. Hence we see by using Theorem 2.11 again that
both fixed points of 7 lie on A’

Lemma 2.13. Let v be a loxodromic element of G with a fixed point on the
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boundary of a component A of G. Assume that the rotation order r of v for A is
greater than 1. If D denotes the auxiliary domain of A with respect to y(A), then
the followings hold :
i) the fixed points of «v lie on 0D,
i) (D) is identical with the auxiliary domain of v'(A) with respect to A,
i%r (mod r), and
iii) Y(D)Nv(D)=0 for integers i, j*i (mod ).

Proof. i) Let D, be the auxiliary domain of 7(A) with respect to A.
Since 7 has a fixed point on the boundary of A, one fixed point of 7 lies on
0AN3y(A). By Lemma 2.8, we see that it also lies on 9D N9D,. Hence v has
one fixed point on the separator 9D. Therefore the assertion follows from
Lemma 2.12.

ii) Let D; be the auxiliary domain of ¥/(A) with respect to A, 1=i<r.
Since ¥{(D)Dv'(A) and 0vi(D)C0yi(A), we see that the outside of ¥i(D)
is a component of the complement of ¥(A). We assert that ¥/(D)ND=¢. In
fact, if =1, then evidently ¥(D)ND=@. If 1<, then ¥(A) is contained in a
component of G, different from A, and hence, if ¥/(D)ND=@, then ¥/(D)CD,
so ¥'(A) lies in a non-invariant component of G, which is different from the
one containing Y(A). Since 9y(A) N0y(A) contains at least two fixed points
of «, this contardicts Theorem 2.7. Hence, in any case, we have the asser-
tion that ¥/(D)ND=@. Therefore, the outside of ¥(D) is the component of
the complement of (&) which contains A. So we have ¥{(D)=D,.

iii) In the case of r=2, the assertion follows from Lemma 2.8 and ii).
If »>2, then by Lemma 2.9 and ii) we see that /(D) (or ¥/(D)) is the auxiliary
domain of ¥¥(A) (or v/(A)) with respect to v/(A) (or ¥(A)). Hence the asser-
tion follows from Lemma 2.8.

Theorem 2.14. Let v and A,, A; be a loxodromic element and two compo-
nents of G, respectively. If the fixed points of v lie on the common boundary of
A, and A,, then the rotation order of v for A, is identical with that of v for A,.

Proof. Assume that the rotation order of v for A; be r=2. If A,=9/(4))
for some integer 7, then we see at once that the rotation order of v for A, is 7.
Therefore we assume that A,==v%(A,) for any integer i. Let Dy, (or D,) be
the auxiliary domain of A, (or A,) with respect to A; (or A,)). Then by Lemma
2.8, we see D, N D, =0. Let D be the auxiliary domain of A, with respect to
v(4A;). Then by Lemma 2.9, we see D,=D. Hence by Lemma 2.13 and
Lemma 2.9, we see v(Dy,) N D, =0 for any integer i. Hence we can find two
integers ¢ and j such that the component of the complement of the closure of
v(Dy,) U v (Dy,) including D, does not include any v*(D,;), 1<k<r. Since 7
is an orientation preserving homeomorphism, ¥/(D,,) lies between ¥**/(D,,) and
vi*i(D,;) for any integcr /. This and Lemma 2.13 imply that the rotation
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order 7’ of y for A, is not less than r. Similarly, we see #<r. Hence we have
r’=r. As a consequence of this, we see that the rotation order of  for A, is
1 if and only if that of v for A, is 1. Thus we have our theorem.

For the common subgroup N7.: Gy, in Theorem 2.6 we have the following.

Corollary 2.15. Let v and {A,, A, -+, A,} be a loxodromic element and an
arbitrary collection of components of G, respectively. If the fixed points of v lie on
N%10A; and if yEG,,, then Yy N'i.1 Ga,.

Proof. If yeG,,, then the rotation order of v for A;is 1. By Theorem
2.14, we see that the rotation order of v for any A; is 1. Hence our assertion
follows.

For later use we also need a following form of Theorem 2.14.

Lemma 2.16. Let D be an arbitrary auxiliary domain of a component A
of G. If a loxodromic element v of G4 has a fixed point on 0D, then v(D)=D.

Proof. Let A’ be a component of G, whose complement is the closure
of D. Then the fixed points of ¥ lie on 0A’. Applying Theorem 2.14 to A
and A’, we have y(A’)=A’, so that y(D)=D.

3. Loxodromic generators

3.1. In the following three sections including this section, we assume that
G satisfies the condition of Theorem 1.1. In this § we shall change a finite set
S of generators of a given finitely generated Kleinian group G in Theorem 1.1
into the set of generators consisting of loxodromic elements only. Our process
is repetition of the following three kinds of operations; 7; is changed into one
or v, vy ; and v Vs where v,, v ; are elements of S or of the changed sets by
this process. This operation does not increase the number of elements of the
set of generators and the changed set is clearly a set of generators of the same
group.

Let S={vy, 72 ***, 7,}. Assume that there are elliptic elements in S with
the same fixed points. Since G is Kleinian, we can replace them by a single
elliptic element of G so that the changed set is also a set of generators of G and
the number of elements of this changed set is not greater than that of S. Hence
we may assume that S does not contain any two elliptic elements with the
same fixed points. We consider three cases.

3.2. The case (I) where S contains at least one loxodromic element:
Without loss of generality we may assume that ¢, is loxodromic and its matrix

representation has the form <S 1(/)k)’ [k|>1. Consider an elliptic or a para-

bolic element v;&.S with matrix representation (z 3), ad—bc=1. We con-
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sider the element of the form ¢, with the trace ak”-}dk™", where m is an
integer. If a=#0 (or d=0), then we can take m so large (or small) that
|ak™-dk™™| >2. Hence v7vy; is loxodromic. With such an m we replace ¥;
by ¥1v; and after carrying out the above procedure for all such «;, we denote the
new set of generators by the same S. If a=d=0, then v, is an elliptic element
of order 2 and changes 0, oo into each other. Consider another loxodromic
element v, (7,) of S whose fixed points are different from 0 and co. Since G
is non-elementary, the existence of such a 7; in S is assured. First we
change v, into ¥1'y;¥i™ with so large integer m that |£&/ |>|&]% where
£, &/ are the fixed points of ¥7'y;y7", which we also denote by the same 7,.
Let A be a linear transformation which maps £; and £/ to 0 and oo, respectively.
Then the conjugations of 7;, 7; by 4 have the forms

_L _Ei 0 b —Ej, é\
vy gogi_|P D D D
Yi = A47; = l_fj’ 1 1 1
pDp!’'e Y\ p D
—(b+EE/67)  b4ED!
D? D?
= _(b+(fj/)2b—1) b—f—gifj/b—l
D? D?

and

_ 1 0

respectively, where D=(§,—&/)"2. Since (b+EE/b7)/(E,—E/)*0, we see
that (v¥)"v¥ is loxodromic for some integer m and hence ¥7; is also loxodromic
for some integer m. We replace v; by v7v;.

3.3. The case (IT) where S contains at least one parabolic element: Without
loss of generality we may assume that v, is parabolic and its matrix represen-

tation has the form <(1) %) Since G is non-elementary, there is an element

7; of S with the matrix representation (? 5), c+0. We consider the element

of the form 77'y; with an integer m. Since the trace of v7'y; equals a+d+cm,
we see that for a sufficiently large m, 7'y, is loxodromic. We replace v; by
v1v;. Then S reduces to a set of generators in the previous case (I).

3.4. The case (III) where S consists of elliptic elements only: We
shall first prove the following two lemmas.

Lemma 3.1. Let v and 8 be linear transformations with the matrix represen-

tations of the forms (6-'9 3_,-9), 0<|0| <m, and (: g), ad—bc=1, respectively. If
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a+d is real and if d==a, then 5 is loxodromic.

Proof. Set a=a,+ia, and d=d,+id, with real numbers a,, a,, d,, d,.
Then d,—=—a, and a,#d,. Hence we see that the trace of ¥§ is not real.
Therefore, 8 is loxodromic.

Lemma 3.2. Let v and 8 be elliptic. If all four fixed points of them do
not lie on a line nor on a circle, then 3 is loxodromic.

Proof. Without loss of generality we may assume that the fixed points of
v are 0 and oo and that 82(‘: 2), ad—bc=1,b+0and c£0. Seta=a,+ia,and

d=d,+id, with real numbers a,, a,, d;, d,. Since & is elliptic, we see that
d,=—a,. If d=a, then, by writing c=|c|e®, we see that the fixed points of §
are

a—d+V (a+dyY—4 _ 2ai+V4—(atd)i

2c 2|c|e®
— 2(12:[-_-\/2‘;-—' (a+d)2ei(1t/2—9)
c b

because (a+d)*<4. Hence all fixed points of ¥ and 8 lie on the line which
passes through 0 and makes an angle z/2—6 with the real axis. This contra-
dicts our assumption. Hence we obtain that d4a. By Lemma 3.1, ¥§ is
loxodromic.

If S contains two elements v;, 7, whose all four fixed points do not lie on
a circle nor on a line, then Lemma 3.2 implies that the changing v; into 7,7,
takes S into a set of generators in the case (I). On the other hand, we shall
see in the following that, under our assumption that G is neither a function
group nor a Z,-extention of a quasi-Fuchsian group, S or its changed set by our
operation contains such 7; and v ;as stated above.

For the purpose, we assume that, for any two elements of S (or its changed
set by our operations), all their fixed points lie on a circle or a line. Since this
property is invariant under the conjugation by a linear transformation, we may
assume that the fixed points of v, are 0 and co. Let L; be a line on which the
fixed points of v; lie. Since G is non-elementary, there is an element v, of S
which does not leave oo invariant. Then L, passes through 0. If v, (&7,) has
oo as a fixed point, then L; must be identical with L,.

3.5. We first treat the case where there is an element v; of S with L; =+ L,.
Then v;, has the finite fixed points and L;, passes through 0.

Lemma 3.3. Under these circumferences, each element of S except for 7y,
has the finite and non-zero fixed points.
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Proof. If v, has 0 as a fixed point, then 7;, fixed above must have 0 as a
fixed point. This is also true for all 7; with L J.=|=L2. Further, since v;, has
another fixed point different from oo as already mentioned, we see 7; satisfying
L,=L, must have 0 as a fixed point. This shows that every element of .S and
of G has 0 as the fixed point, so that G is elementary, a contradiction. Hence
the fixed points of 7, are different from 0. So each ¥; with L= L, and, in
particular, 7; has not 0 as a fixed point. Therefore 7, (j+1) satisfying L, =L,
has not 0 or oo as a fixed point. Thus we have our lemma.

Let &, &’ be the fixed points of 7,. Without loss of generality we may
assume that [&&,/|=1. By an elementary geometric consideration we see
that if the line segment &&,” includes (or does not include) 0, then the line
segment &; £; ’ includes (or does not include) 0 and |&;&;,/| =1, where &;,, &;/
are the fixed points of v;. Hence, it is not difficult to see that in both cases
these are also true for each 7y ; (7=2)of S. Inthecase where the line segment &,£,
does not contain 0, this implies that the fixed points of each element of S lie
in the mirror images with respect to the circle C={z||z|=1}, so that C is
invariant under the action of each element of S, hence, of G. Hence A(G)CC.
This contradicts our assumption that G is neither a function group nor a Z,-
extension of a quasi-Fuchsian group. Hence this case does not occur. Before
going to treat the case where the line segment &£, includes 0, we show the
following.

Lemma 3.4. Let v, and v, be elliptic transformations. If vv; has the
fixed points r €' and —r7'e’® (j=1, 2) and if these four points lie on a line or a
circle, then vv,7y, is the identity or an elliptic transformation with the fixed points of
the similar forms, where, if r,=0, then r7'e’® means .

Proof. If 7, and 7, have the same fixed points, then the assertion is
clear. Hence we assume that the fixed points of v, are different from those
of v,. If the fixed points of v, are finite, we may assume that 8,=0 and we
consider a transformation

1 z—n

rn -+t
Then A7v,A7" has 0 and oo as the fixed points and the fixed points of Avy,47! lie
on a line passing through 0 and separate 0 and oo on the line. If 7,=0 or =oo,

then the fixed points of 4v,47! are —r, and r7'. If 0<<r,<<oo, then the fixed
points of 4v,A! are

Az

1 7,e%—r, and 1 —r7le®—r,
T e . 1 - T 1 & . 41
1, 1! r, —r7te 41!

and clearly the absolute value of the product of these two numbers is equal to 1.
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Thus we may assume without loss of generality that

_ (&% 0 )
i (0 e~

and
rilei0 et —gfiat g it
. D D
Y. = — 62t e7i%  p,pitai yrlpmi0
D D

where D=r,+r;' and 6, is not a multiple of z. Then the matrix represen-
tation of 7,7, is

()

75 16O+t y o=i(0:-0) —#(01702) | pi(0;~02)
— D D
— 7 H(01702) | p=i(0,+0) 723‘5(91"92)—}-75'le—i(01+02)
D D

and the trace of 7,7, is

atd= 9 COS (6,4 6,)+75 cos (6,—8,) .
1472

Hence we have —2=<tracev,y,<2. The equalities occur only when
cos (0,40,)=cos (6,—8,)=-41. These imply that 6,4-0,=kx and 0,—0,=
kz+2mz, where k, m are integers, and hence 6, and 6, are multiples of .
Hence 7, and v, are the identity transformations. Therefore, the equalities
do not occur and 7,7, is elliptic. We see easily that the product of the fixed
points of 7,7, has the absolute value 1. In order to complete the proof of
our lemma we have only to show that the line segment connecting the fixed points
of 7,7, includes 0. It is easy to see that the ratio of the fixed points of 7,7, is
real. Hence it sufficies to show that the absolute value of the difference of
the fixed points is greater than that of the sum of them, or equivalently, to
show |(a+d))*—4|>|a—d|? which can be easily verified. Hence the line
segment connecting the fixed points of 7,7, includes 0. Thus we have com-
pleted the proof of our lemma.

Now we return to the case where the line segment ££,’ includes 0. As
was already mentioned, the line segment &£/ has the same property (j=2),
where £, and £ are the fixed points of v,€S. By Lemma 3.4, we see that
any product of a finite number of elements of S is an elliptic transformation or
the identity, so that G is a finite group, a contradiction. Hence this case also
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does not occur. Therefore, we have shown that if there is an element 7; of S
with L;== L,, then S contains two elements whose four fixed points do not lie on
a circle nor a line.

3.6. We next treat the case where the fixed points of each element of S
lie on L,. If the order of each element of S is two, then L, is invariant under
the actions of .S and of G, so that A(G)CL,. This contradicts our assumption
that G is neither a function group nor a Z,-extension of a quasi-Fuchsian group.
Hence there is an element of .S whose order is greater than two. We may assume
that the order of v, is greater than two. We shall show that S contains at least
one more element which is different from v, and v,. Assume contrary that
S={v,, 7;}. Since G is non-elementary, the fixed points of v, are finite and
different from 0. If the line segment connecting the fixed points of v, does
not contain 0, then there is a circle with the center 0 being invariant under 7,.
This circle is also invariant under 7,. Hence the limit set of G is contained
in the circle, a contradiction. If the line segment connecting the fixed points
of 7, contains 0, then, by Lemma 3.4, we see that G is elementary, a contra-
diction. Thus we have shown that S contains an element v; (>>2) with
the fixed points on L,. We change S into {v,, v,, ---, %, 7v:v7%, -+, ¥,}. Since
the order of 7, is greater than 2, the line on which the fixed points of v,v,v7*
(>2) lie is different from L,. Hence this case reduces to the case discussed
already.

Therefore the case where each element of S is elliptic can be reduced to
the case where S contains at least one loxodromic element. Thus we have
completed to change S into the set of generators of G, which consists of loxo-
dromic elements only and the number of elements of which is not greater than
that of S.

4. Loxodromic elements with the fixed points on A (G)

4.1. Let S be a set of generators of G consisting of loxodromic elements
only. As the second step of the proof of Theorem 1.1 we shall change S into
a set of generators of G, which consists of loxodromic elements only and con-
taining at least one element with fixed points on Ay(G) and the number of elements
of which is not greater than that of S. Without loss of generality we may as-
sume that coc=Q(G). We shall first prove the following four lemmas.

Lemma 4.1. Let 7v; and v . be loxodromic elements of G with no common
fixed point and let £, £/ be the repelling and the attractive fixed points of v,
respectively. Then, for a sufficiently large integer m, v, y7? is loxodromic and the
repelling and the attractive fixed points of .Y} converge to &, and to v(§)),
respectively, as m tends to 0.

Proof. For an arbitrary positive number €>0, there is a neighbourhood
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U of v4E/) such that Unvy7' (U)=0, Une ;=0 and the diameter of U is
smaller than &. Let m be an integer and let C,, be the isometric circle of 7.
For a sufficiently large m, we see that the diameter of C,, is smaller than & and
that C,, is contained in an open disc with center &; and radius € and v7(C,)C
97 (U). Then 7,7 sends the exterior of C,, into U. Hence, for a large m,
v} is loxodromic and the distance between the repelling (or the attractive)
fixed point of 7,7} and &; (or ¥,(§/)) is smaller than &, which are to be shown.

Lemma 4.2. Let v; and v, be loxodromic elements of G whose fixed points
are different from each other and do not lie on Ay(G). If there is no component of
G, on whose boundary all the fixed points of vv; and 7v; lie, then there is an integer
m such that v} is a loxodromic element with the fixed points on AyG).

Proof. Let &; and & be the repelling and the attractive fixed points of
7, respectively. Then, by our assumption and by Theorem 2.11, £; and &/
lie on the boundary of a component of G. Since G is Kleinian, 7,(£/)%£,, so
that d=|&—v,(¢/)|>0. By Lemma 2.10, there is a finite number of com-
ponents of G whose diameters exceed d/2. Let §, (or §,) be the minimum of the
distances between £; (or 7,(§/)) and the components whose diameters exceed
d|2 and whose boundaries do not contain &, (or ¥,(£/)). Let & be a positive
number smaller than min (3, &, d/4). Lemma 4.1 implies that we can find an
integer m sufficiently large such that the distances between £; and the repelling
fixed point of 7,77 and between 7v,(£,”) and the attractive fixed point of v,v7 are
smaller than 8 and such that 7,77 is loxodromic. If there is a component on
whose boundary the fixed points of v;¥7 lie, then we see from the definition
of 8 that £, and 7¥,(£/) must lie on the boundary of that component. Since &;
and v,(£/) are the fixed points of ¥, and ¥,7,77", respectively, we see by
Theorem 2.11 that & j' and (& J.) also lie on the same boundary. Hence, by
Theorem 2.6, there are at most two components of G on whose boundaries
the fixed points of v;¥7 lie. Let A be such a one. Then the rotation order
of v, v* for A is at most 2. Let 7 be the rotation order of ; for A and take
m as a multiple of . Then rotation order of v,¥7 for A must be 2. In fact,
otherwise, v,¥7EG4s or ¥,£G,, so that the fixed points of «; lie on the
boundary of A, which contradicts our assumption. Hence v, ¥7v,¥7€Ga
or 7;¥7v;£Gs. On the other hand, since v,¥}y7! is an element of G,,) and
has the fixed points on the boundary of A, we see by Theorem 2.14 that
v75vi'eG,. Hence we have ¥ G, so that the fixed points of v¥; lie on
the boundary of A. This contradicts our assumption that four fixed points
of ;, 7; do not lie on boundary of a single component of G. Therefore, for a
large integer m there is no component on whose boundary the fixed points of
v:v7 lie. Thus 7,77 is a loxodromic element with the fixed points on Ay(G).

Lemma 4.3. Let v; and v; be loxodromic elements of G, let A be a compo-
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nent of G on whose boundary the fixed points of vv; lie and let D be the auxiliary
domain of A with respect to v,(A). If the rotation order of 7v; for A is greater
than 1 and if the fixed points of v, lie in D, then, for a large integer m, v,¥7 is a
loxodromic element with the fixed points on AyG).

Proof. Letf,, & ;/ be the repelling and the attractive fixed points of 7,
respectively. By Lemma 2.13, D and v,D) lie outside of each other and
contain the points &; and 7,(§/), respectively. Lemma 4.1 shows that, for a
large integer m, the repelling and the attractive fixed points of 7,7 liein D and
in vy(D), respectively. Hence the fixed points of v;¥7? are separated by the
separator 0D. Therefore we see easily that the fixed points of ;77 lie on
A(G) (cf. [1]).

Lemmad4.4. Let v; and v; be loxodromic elements of G, let A be a component
of G on whose boundary the fixed points of vv; lie and let D be the auxiliary domain
of A with respect to v, (A). If the rotation order of v; for A is greater than 2 and
if the fixed points of v; lie on 0D and are different from the fixed points of v, then,
for a large integer m, v, v7 is a loxodromic element with the fixed points on AyG).

Proof. We assume that the conclusion of the lemma is false. By Lemma
2.13, we see that D, vy(D), -+, vi"(D) lie outside of each other and have the
fixed points of v; as the common boundary points, rwhere 7 is the rotation order
of v; for A. As we have seen in the proof of Lemma 4.2, for a sufficiently large
integer m, the components which have the fixed points of ;77 on the boun-
daries, must have the four fixed points of ¥ ; and v:v;vi' on the boundaries.
Let C, (or C;) be the subarc of 0D which has the end points at the fixed points
of v; and on which the repelling fixed point of 7; lies (or does not lie). If the
attractive fixed point of v, lies on C,, then the component which has the fixed
points of 7,¥7 on the boundary, must be identical with A, so that the rotation
order of v,¥7 for Ais 1. Take m=sk with an integer k, where s is the rotation
order of ¥, for A. Then v,¥7 =v(7;))€ G4 or v;& G4, which contradicts the
assumption that the rotation order of 7; for A is greater than 2. Hence the
attractive fixed point of 7, lies on C;. Here we shall say that 7,(C;) (or 7,(C))
faces to C, (or C,) if the component of the complement of v,(C,)UC; (or
7{C;)UC)) containing D includes all vi{(D), 0=I/<r—1. Note that v,(C))
and v,(C,) are the subboundaries of ¢,(D) with the common terminal points
being the fixed points of ;. We see easily that if v,(C,) (or ¥,(C,)) does not
face to C; (or C)), then there is no component of G on whose boundary the fixed
points of v;¥7 lie. If v,(C,) faces to C,, then, since the fixed points of ¥,7;77’
lie on v,(C),), the component which has the fixed points of v;¥7 on the boundary,
must be identical with A. So we have the same contradiction stated just above.
Hence 7,(C,) must face to C,, so that the component which has the fixed points
of 7,77 on the boundary, must be identical with v,(A) and the rotation order of
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v:v} for v, (A) is 1. Then v7'y,y7y,€G, or ¥7v,EG,. Taking m=sk with
integers k and s being the rotation order of 7; for A, we have the same contra-
diction as before. Thus we have proved our lemma.

4.2. If there are elements of S with the common fixed points, then we
shall replace one of them by another one as follows: Let ¥; and v; be ele-
ments of .S with the common fixed points and let v, be an element of .S with no
common fixed point with ¥;. Lemma 4.1 implies that, for a large integer m,
v:vi is a loxodromic element with no common fixed point with Y; and 7,.
The new set, S with the replacement of 7; by v,7¥, has the same property as S
stated at the beginning of this §. Making such replacements, if necessary, we
may assume that the fixed points set of each element of S is different from that
of any other element of S. If there are elements 7;, 7, of S satisfying one of the
conditions of Lemmas 4.2~4.4, then we change 7; into v,¥7 with a suitable
integer m so that we have the desired conclusion in this §. Hence we assume
that there are no elements 7;, v, in .S satisfying one of the conditions of Lemmas
4.2~4.4. So we may consider the case where, for any two elements of S, there
is a component of G on whose boundary all the fixed points of them lie.

4.3. We shall first treat the case where there is a component A of G on
whose boundary the fixed points of each element of S lie. Since G is not a
function group, there is at least one element, say *;, of S whose rotation order
for A is not 1. Let D be the auxiliary domain of A with respect to ¥,(A).
Since, by Lemma 2.12 and Lemma 2.8, each element of S has both fixed points
in D or on 8D simultaneously and since we have assumed that there are no
elements v;, 7; in S satisfying one of conditions of Lemma 4.2~4.4, we see
that each element of S has both fixed points on 9D and that the rotation order
of 7, for Ais 2. Let ; be an element of S different from ;. By the same
reasoning as above, the rotation order of 7, for A is equal to 1 or 2. We
assert that if, for any large inetger m, the fixed points of ¥;¥7 do not lie on
A(G), then either v(D)=D and v (v{D))=7(D) or v{(D)=v(D) and
'Y,(')’i(D))=D-

To prove our assertion, we recall the following facts: As we have seen in
the proof of Lemma 4.2, the components, whose boundary contains the fixed
points of v;v} for a large integer m, have four fixed points of 7, and 7;7,77' on
the boundary and the rotation order of 7,97 for such a component is at most two.
Moreover, as we have seen in the proof of Lemma 4.4, such a component is A
or 7,(A).

First we consider the case where the rotation order of ¢ ; for Ais 1. If
the fixed points of ;77 lie on 0A, then v, ¥7y,¥7(A)=A or v ¥7v(A)=A. If
the fixed points of 47 lie on 0v,(A), then %7 77v(A)=v(A) or
Y777 (A)=A or, equivalently, 7,77v;(A)=A. In both cases we have that
v:77v(A)=A. Since v}(A)=A, we see that ¥7v,(A)=77'(A)=7,(4A), so that
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7, has the fixed points on 97,(A). By Theorem 2.14, we see that the roation
order of v, for v,(A) is 1. Applying Lemma 2.16 to A (or v,(A)) and the
auxiliary domain D (or 7,(D)) of A (or v,(A)), we obtain that ¢ (D)=D and
7 (Vd{D))="7«(D).

Next we consider the case where the rotation order of v, for A is 2. Let
m be an odd number. If the fixed points of 7;y7 lie on 0A, then v, ¥7(A)=
7:7(A)=*F7(A) so that 7,77(A)=A. Hence we obtain from 7,7, (A)=A that
v{(A)=7,(4). If the fixed points of 7,77 lie on 3v,(A), then either v,v7v,(A)=
vi(A) or v;¥7v,(A)=A holds. The latter case corresponds to the case where the
rotation order of ¥,¥7 for v;(A) is 2. So, if this case occurs, we see
Y:777:(A)=7/A) for an odd m, which is absord. Hence the latter case does
not occur. Therefore, it holds that ¥7v,(A)=v,(A). This implies that
Y7v(A)=A so that 7,7,(A)=A and 7,(A)=7(A). In both cases we have
7{A)=74(A). Since the auxiliary domain of A with respect to 7,(A) is then
identical with D, we obtain v (D)=v,(D) and 7v,v{(D)=7%D)=D by Lemma
2.13 and Lemma 2.16. Thus our assertion is established.

By what just has been proved, we see that if, for each element 7v; of S and
for any large integer m, the fixed points of 7,77 does not lie on AyG), then
9D U dvy(D) is invariant under S and hence under G, so that A(G)=0D U dv,(D).
But, we shall show that this does not occur. Since DN vy(D)=@ by Lemma
2.13, the equality A(G)=0D U 0v,(D) implies D N A(G)=@. Therefore, we have
D=A by Lemma 2.8, so that G, is a quasi-Fuchsian group with the invariant
curve 0D. If 0D=0v(D), then A(G)=0A. This contradicts our assumption
that G is not a Z,-extension of a quasi-Fuchsian group. Hence 0D=0v,(D).
Since A(G) and 0D are invariant under G,, the set d,(D)\0D is invariant under
Gs. Letp be a point on 0D not lying on 9v,(D) and let d be the distance
between p and 0v,(D). Itis well known that there is a loxodromic element
of G, such that the distance between p and the attractive fixed point of ¥ is
smaller than d. Then, for a sufficiently large integer m, the distance between
p and ¥"(0v,(D)\0D) is smaller than d. Since ¥"(0v,(D)\0D)=0v,(D)\oD, we
have a contradiction. Thus the equality A(G)=0D U dv,(D) does not occur.
Therefore, there are an element 7; of S and an integer m such that v, ¥7 is a
loxodromic element with the fixed points on Ay(G). Thus we can change S
into the desired one in the beginning of this section.

4.4. Now we shall treat the case where there is no component of G on
whose boundary the fixed points of all elements of S lie. First we shall show
that there are elements 7;, v » Vi of S and components A, A, A, of G such
that the fixed points of 7;, v; and v, lie on (BAj NOA\OA,, (0A,N 6Aj)\6A]. and
(0A; NOA)\BA,, respectively. Let A be a component of G on whose boundary
the fixed points of vy, v,&.S lie. By Theorem 2.6, there is, except for A, at
most one component A’ on whose boundary the fixed points of v, and ¥, lie.
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If A’ does not exist, then let v;=%;, ¥,=%,, 7, be an element of S whose fixed
points do not lie on 0A, A; (or A;) be a component of G on whose boundary
the fixed points of 7, 7, (or v v;) lie, and A,=A. If A’ exists and if there is.
an element 7, of S whose fixed points do not lie on 0AUOA’, then let
V=1 ¥;=% V=71 A; (or A)) be a component of G on whose boundary the
fixed points of v,, ¥; (or vy, v,) lie, and A,=A. If A’ exists and if the fixed
points of all elements of S lie on JAUJA’, then there are elements v,, v,e5
whose fixed points lie on 9A’\OA and on 0A\JA/, respectively. Let A” be a
component of G on whose boundary the fixed points of v, and v, lie. It is easy
to see that A”=+A and A”==A’. Hence the fixed points of v, and v, do not lie
on 0A” simultaneously. Let v; be either , or v, whose fixed points do not lie
on dA”, ¥; =, V=4 A=A", A;=A and A;=A’. It is easy to see that, in
each case stated just above, these v;, Yj» Vi i A; and A, have the desired
property.

Next, by using 7;, 7, 7, we shall change .S into a set of generators of G,
which satisfies the property stated in the beginning of this section. Let D,,
be the auxiliary domain of A, with respect to A, p, g=1,j, k. Since 0A ;N0A,
contains both fixed points of «;, it follows from Theorem 2.7 that A; and
A, are not included in the distinct components of G,,. Hence we see that
D;=D;. By the same reasoning as above, we see that D ;=D and D,,=D,..
For simplicity, we shall denote D,, by D,, p=i, j, k. Let £, and £,’ be the
attractive and the repelling fixed points of v, respectively, p=i,j, k. Then, we
see by Lemma 2.8 that £; and £/ lie on (0D;N0D,)\0D;. Let r be the rotation
order of ; for A Clearly ¥Y€G,;. Then by Theorem 2.14, v/eG,,. By
Lemma 2.16, we see that ¥i(D,)=D; and v{(D;)=D,. We consider the element.
of the form 7"y,yi"™ with a positive integer m. Since ¥;"(0D;)=0D, and
vi"(0D,)=0D,, we see that, for a sufficiently large m, ¥;™(0D,) lies near &; and
meets to 0D, (or 0D,) at vi™(§;) (or ¥i"(& ;)), and that the fixed points of ¥}™y,y;7™
lie on (8D; Nvi"(0D;))\0D,. On the other hand, we can easily verify that, for
any integer /, there is a Jordan curve lying in D,UD,U v} (D,)U {&,, VI(E
9i(E)}. Therefore, there is no component of G on whose boundary the fixed
points of both p and y}™y,vi7™ lie. Hence vy ; and 7"y,v7"" satisfy the assump-
tion of Lemma 4.2. Changing v, into ¥;™y,y;7™ and applying Lemma 4.2, we
can change S into a desired set of generators of G.

4.5. We can easily see that the results in this section give an alternative
proof of the following.

Theorem [2]. Let G be a finitely generated Kleinian group. Then Ay(G)=0
if and only if G is either a function group or a Z,-extension of a quasi-Fuchsian
group.
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5. Final step of the proof of Theorem 1.1

5.1. Let S be a set of generators of G which consists of loxodromic ele-
‘ments only and one of which has the fixed points on Ay(G). We shall change
.S into S, in Theorem 1.1. Without loss of generality we may assume that
o QG) and 7,8 has the fixed points on Ay(G). Let & and &’ be the
tepelling and the attractive fixed points of 7,, respectively, and let v; be an
-element of S whose fixed points do not lie on AyG). By Lemma 4.1, for a
sufficiently large integer m, 7,77 is loxodromic and the repelling and the at-
tractive fixed points of 7,7 lie near £, and v,(€)’), respectively. Let d be the
distance between &, and v,(§,). By Lemma 2.10, there is a finite number of
.components of G whose diameters are greater than d/2. Let & be the minimum
.of the distances of & or 7,(%’) from the components whose diameters are
greater than d/2. Since &, and 7,(Z,’) are the points on Ay(G), 8 is positive.
Let m be so large that the distance between £, (or v,(£,")) and the repelling (or
the attractive) fixed point of 7,¥? is smaller than 8. Then there is no component
.of G whose diameter is greater than d/2 and on whose boundary the fixed points
.of v;v7 lie. By Theorem 2.11, we see that there is no component on whose
boundary the fixed points of v;¥7 lie. Hence, for a large integer m, y,¥T isa
loxodromic element with the fixed points on Ay(G). Changing each v, of S,
whose fixed points do not lie on Ay(G), into 7,77, we obtain the desired S,. Since
.our operations do not increase the number of elements of the set of gener-
ators, the second property of S, is clear. Thus we have completed the proof
.of Theorem 1.1.

6. Non-web groups

6.1. Among the set of finitely generated Kleinian groups with the non-
-empty residual limit sets there is a class of web groups. A finitely generated
(non-elementary) Kleinian group G is called a web group if, for each component
A of G, the component subgroup G, is quasi-Fuchsian [2]. Usually those
-group which are themselves quasi-Fuchsian are excluded from the class. If G
is a finitely generated Kleinian group with the non-empty residual limit set and
is not a web group, then there is a subset L,(G) of Ay(G) consisting of the
points, to each of which there is a converging nest sequence of the separators of
‘G [2]. A sequence {C,}n_, of Jordan curves, which converges to a point p,
is called a nest sequence if pe£C,, and C,,., separates p from C,, for every m. In
this § we shall improve Theorem 1.1 and Corollary 1.2 for those groups G
with non-empty sets L,(G).

6.2. Later we need the followings.

Lemma 6.1. Let G be a finitely generated Kleinian group and let D be a
Jordan domain whose boundary is a separator of G. Assume that the fixed points
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of a loxodromic element «v of G lie on Ay(G). If DC (D), then the fixed points of
o lie on L (G).

Proof. The assumption that DCvy(D) implies that the repelling and
the attractive fixed points of ¥ liein D and in the complement of (D), respec-
tively. Since the fixed points of ¥ do not lie on 3D, they are separated by a
separator 0D. Then {y"(0D)}n_, (or {y ™(0D)};-,) forms a nest sequence of
separators converging to the attractive (or the repelling) fixed point of v. Hence
the fixed points of v lie on L,(G).

Lemma 6.2. Let G be a finitely generated Kleinian group and let A and
v be a component and a loxodromic element G, respectively. Assume that the
fixed points of v lie on A(G)\L,(G) and denote by D and D’ the auxiliary domains of
A and of v(A) with respect to Y(A) and A, respectively. Then v(D)=D' so that
DNy(D)=0.

Proof. Since both ¥(D) and D’ contain 7(A), we have only to prove
that y(0D)=0D’. If it is not true, then ¥(0D)ND’#@ and 7(6D) lies in
D', because D’Dy(B). Hence either ¥(D) or the exterior of ¥(D) is contained
in D’. If (D)% D, then there are points of dD'\v(D) (Cy(B)\y(D)). This
contardicts the fact that y(A)Cy(D). Hence the exterior of ¥(D) is contained
in D’. Therefore the exterior of D’ is contained in ¥(D). Since DND'=@, we
have DC (D). By Lemma 6.1, the fixed points of ¥ lie on L)(G), a contradic-
tion. Hence we have 9(0D)=0D’ and our lemma.

Lemma 6.3. Let G be a finitely generated Kleinian group and let A and
v be a component and a loxodromic element of G, respectively. If the fixed points
of v lie on A(G)\L,(G), then v~ (A) is contained in the component of G, which
contains Y(A).

Proof. Let D be the auxiliary domain of A with respect to v(A). Note
that the exterior of D is a component of G,. We shall show that both ¢(A) and
v7Y(A) are contained in the exterior of D. By Lemma 6.2, we have only to
show this for v7!(A). If it is not true, then y"'(A)cD. If y"¥(D)CD, then
by Lemma 6.1 we see that the fixed points of ¥~! lie on L,(G), which con-
tradicts the assumption of the lemma. Hence v '(D)d&D. On the other
hand, ¥y Y(A)CD implies 8y Y(D)cD. This implies that ¥ YD) contains
the exterior of D. Hence by Lemma 6.2, v~{(D)Dv(D) or Dcy ¥ D). By
Lemma 6.1, the fixed points of 7 lie on L,(G), a contradiction. Hence y~}(A)
is contained in the exterior of D. Thus we have our lemma.

6.3. Now we shall prove the following.

Theorem 6.4. Let G be a finitely generated Kleinian group and let S be a
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finite set of generators of G. If G is neither a function group nor a web group, then

S can be changed into a set of generators S; of G with the following properties:
1) each element of S, is loxodromic and its fixed points lie on L\(G), and
il) the number of elements of S, is not greater than that of S.

To prove our theorem, we first change .S into S, which has the properties
i) and ii) in Theorem 1.1. We shall next change S, by our operation stated in
§3.1 into a set which consists of loxodromic elements only and contains at
least one element with the fixed points on L;(G). Assume that each element of
S, has the fixed points on AyG)\L,(G). Then we assert that there are ele-
ments 7;, ¥; of S; and a component A of G such that the components ,(A) and
7/(A) lie in the distinct components of the component subgroup Ga.

In order to prove this assertion we assume that there is no triple (v;, 7;, A)
with the property stated just above. Let A be a component of G, for which the
component subgroup G, is not quasi-Fuchsian. Then, by Theorem 2.2, each
component of G, which is different from A is a non-invariant component of
G,. Let A’ be the component of G, which contains the component v,(A) of
G, v,€S,. Then, from the assumption just stated above, A’ contains each
component 7;(A) of G, v;€S8,. Let D be the auxiliary domain of A with
respect to 7;(A), v;€S,. Clearly 0D=0A’. Since A’ is a non-invariant com-
ponent of Ga, there are a component A” (#A’) of G, and an element g of
G, such that g(A’)=A". Itis easy to see that A”&ED and 0A” ND==@. Let
8=gv,g. Then & maps A to a component §(A)=A* of G lying in A” and we
have §(D)ND=@. Let D* be the auxiliary domain of A* with respect to A.
We can see that §(0D) N gv,(D)=gv7,(0A”) N gvy(D)=%@. On the other hand, we
have easily gv,(D)=D*. So we obtain §(0D)=+0D*. Therefore, §(D) is not
contained in D and §(D) does not contain D. Since § is an element of G, we
can represent it by elements of S, as §=34,9,,-,::-6;, where §; (1=1, 2, .-+, m) is
an element of S, or its inverse and §,5;_, is not identity (2=:=m). We set
E=08:0p-1"0 (1=k=m).

Lemma 6.2 implies &(D)ND=@. It may happen for some k (2<<k=m)
that &_,(D)ND=0. By noting Lemma 2.4, we see that following three cases
may occur:

(1)1 Eai(D)CD,

(2)i-1: Ei(D)DD,
and

(3);-1: D°Cé€,_4(D), where D° is the complementary set of D.

We also denote by (0), the property &,(D)ND=@.

[I1 The property (1),-, implies the property (0),. In fact, (1),-; means
&-1(D)C D, so we have E,(D)=38,(€;-(D))C8,(D). On the other hand, Lemma
6.2 and Lemma 6.3 yield §,(D) N D=@. Hence &,(D)ND=0.

[II] The property (2),-, implies the property (0),. In fact, the property
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(0),: &(D) N D=0 shows &,(A)ND=@. Hence §,(&(A)) N 8,(D)=38:(&(A)N D)=
@¢. Lemma 6.3 and the assumption for elements of S, and for components of G
imply that E(A)NE(D)=@. By the same reasoning, we can see that &(A)N
&(D)=0 implies &(A)NE&(D)=@. Repeating this procedure, we obtain
E(A)NE(D)=0. Therefore, &,_,(D) is an auxiliary domain of &,_,(A) with
respect to £(A). Lemma 6.2 yields (D)NE,_,(D)=@. Since &,_,(D)DD, we
have &(D)ND=4¢.

[III] If the property (0),-, holds, then the property (3), does not hold
(1<k=m). In fact, (0),_, implies D°DE,_ (D), which contradicts (3),.

Now we recall that the property (0), holds. The propositions [I], [1I]
and [I1I] show that (3),, does not occur. So we see that the one of two relations
3(D)c D and §(D)DD must hold, becuase §(D)ND=@. This contradicts the
fact obtained already. Thus we have the assertion that there is a triple
(7i» v, A) such that 7,(A) and 7,(A) lie in the distinct components of the
component subgroups G,.

6.4. Let D; and D, be the auxiliary domains of ;(A) and 7v,(A) with
respect to A, respectively. Since they are included in the distinct components
of G4, we see by Theorem 2.7 that D; N D,;=¢@ and that 8D; 9D, consists of
at most one point. We shall show that 7,77 is loxodromic and its repelling and
attractive fixed points lie in D, and in D, respectively. Since two fixed
points of v,¥;! are separated from each other by a separator of G, the fixed
points of ¥;¥;* lie on Ly(G). Since 7,(A)CD; and v (A)CD,, it suffices to show
that v,77'(dD,)#0D; and that if D;N0D,={p}, then v, y7'(p)*+p. In fact,
from these properties, we see easily that v,v7'(D,)2D, and that v,7;" can be
neither parabolic nor elliptic so that Lemma 6.1 implies the assertion. Let D¥
and D¥ be the auxiliary domains of A with respect to v;(A) and v,(A), respec-
tively. Then v(D¥)=D;, v(D¥)=D; and 0D¥=0D¥. Lemma 6.2 shows
vi(D¥)=0D; and v,(0D¥)=0D, and we see that v,y (0D ;)=",(0D¥)=*v,(0D})=
0D,. If 3D;N0D={p}, then, by Theorem 2.7, p is the fixed point of a parabolic
element of G. Since 7, is loxodromic, we see v;7'(p)#p and v;'(p)=0oD¥.
Hence, by Theorem 2.7, we have v7'(p)ee0D¥. Hence we have v,v7'(p)€E0D;,
so that v,v7'(p)=p.

Thus we have shown that ;97" is loxodromic and has the fixed points on
L(G). Changing 7v; by 777", we obtain the desired set of generators, which
we shall denote by S¢.

Lastly we shall change S§ into S;. Without loss of generality we may
assume that co =Q(G) and that the fixed points of v, lie on L(G). Let &, and
g/’ be the repelling and the attractive fixed points of f,, respectively. Then
there is a nest sequence of separators of G which converges to £,. Let v; be
an element of S§¥ and let m be an integer such that 7,7 is loxodromic and that
the fixed points of v;¥!" are separated by a separator. The existence of such
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m is assured by Lemma 4.1. Then clearly v,¥7 is the desired loxodromic
element. Changing each element «; of S§ which has the fixed points on Ay(G)\
L,(G) by the element of the form v,y7, we obtain the desired S, and complete
the proof of Theorem 6.4.

6.5. Choosing S in Theorem 6.4 to be the minimal set of generators, we
have the following.

Corollary 6.5. Among the minimal sets of generators of a finitely generated
Kleinian group G which is neither a function group nor a web group, there is a set
consisting of only loxodromic elements with the fixed points on L\(G).
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