

Title	Solvability of groups of order $2^a p^b$
Author(s)	Matsuyama, Hiroshi
Citation	Osaka Journal of Mathematics. 1973, 10(2), p. 375-378
Version Type	VoR
URL	https://doi.org/10.18910/9541
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Matsuyama, H.
Osaka J. Math.
10 (1973), 375-378

SOLVABILITY OF GROUPS OF ORDER $2^a p^b$

HIROSHI MATSUYAMA

(Received October 13, 1972)

1. Introduction

At the beginning of this century Burnside proved his famous $p^a q^b$ -theorem by the help of character theory. Group-theoretic proof of the theorem was given by Goldschmidt [2] for odd primes in 1970.

The object of this paper is to give a simple group-theoretic proof of the following

Theorem.¹⁾ *Groups of order $2^a p^b$ are solvable.*

Lemma 1, 4 and 5 are due to Goldschmidt [2]. Notation used here follows Gorenstein [3].

2. Preliminaries

Lemma 1. *Suppose \mathfrak{P} is a p -subgroup of the p -solvable group \mathfrak{G} . Then $0_p'(N_{\mathfrak{G}}(\mathfrak{P})) \subseteq 0_p'(\mathfrak{G})$*

Proof. See Goldschmidt [2], lemma 2.

Next lemma plays an important role in this paper.

Lemma 2. *Suppose \mathfrak{G} is a p -group and \mathfrak{H} is a subgroup of \mathfrak{G} . Then $\mathfrak{H} \trianglelefteq \mathfrak{G}$ or $N_{\mathfrak{G}}(\mathfrak{H}) \supseteq \mathfrak{H}^X (\neq \mathfrak{H})$ for some $X \in \mathfrak{G}$.*

Proof. Let Δ be a \mathfrak{G} -conjugate class containing \mathfrak{H} . If $|\Delta| \neq 1$, then \mathfrak{H} acts on $\Delta - \{\mathfrak{H}\}$ by conjugation. Since $p \nmid |\Delta - \{\mathfrak{H}\}|$, \mathfrak{H} fixes some element $\mathfrak{H}^{x^{-1}}$. Then $\mathfrak{H} \subseteq N_{\mathfrak{G}}(\mathfrak{H}^{x^{-1}})$ and hence $\mathfrak{H}^x \subseteq N_{\mathfrak{G}}(\mathfrak{H})$.

Lemma 3. (Suzuki-Thompson) *Suppose Δ is a conjugate class of a group \mathfrak{G} . If any two elements of Δ generate a p -group, then $\Delta \subseteq 0_p(\mathfrak{G})$.*

Proof. See [3], 3.8.2.

1) After finishing this work the author has found that Bender [1] has also obtained a group-theoretic proof of the theorem in the general case.

3. The Minimal counter example

In this section let \mathfrak{G} be a minimal counter example to the theorem. It is immediate to show that \mathfrak{G} is simple and any proper subgroup of \mathfrak{G} is solvable.

Let r be either prime divisor of $|\mathfrak{G}|$.

Lemma 4. *A sylow r -subgroup of \mathfrak{G} normalizes no non-identity r' -subgroup of \mathfrak{G} .*

Proof. See Goldschmidt [2], Lemma 3.

Lemma 5. (Bender) *Suppose \mathfrak{M} is a maximal subgroup of \mathfrak{G} . Then the Fitting subgroup of \mathfrak{M} is an r -group.*

Proof. We set $\mathfrak{F}=F(\mathfrak{M})$, the Fitting subgroup of \mathfrak{M} . Let $\mathfrak{F}=\mathfrak{F}_2 \times \mathfrak{F}_p$ be the primary decomposition, and $\mathfrak{Z}=Z(\mathfrak{F})=\mathfrak{Z}_2 \times \mathfrak{Z}_p$, the center of \mathfrak{F} .

Suppose lemma 5 is false, then $\mathfrak{F}_2 \neq 1$, $\mathfrak{F}_p \neq 1$. We first prove the next assertion [A].

[A] \mathfrak{F}_r has two distinct subgroups of order r , for some $r \in \{2, p\}$.

Suppose [A] is false, then \mathfrak{F}_p is cyclic, and \mathfrak{F}_2 is cyclic or a quaternion group.

(i) In the case \mathfrak{F}_2 is cyclic.

Let \mathfrak{P} be a Sylow p -subgroup of \mathfrak{M} . Since $\mathfrak{P}/C_{\mathfrak{P}}(\mathfrak{F}_2)$ is a 2-group, $\mathfrak{P}=C_{\mathfrak{P}}(\mathfrak{F}_2)$. Then $Z(\mathfrak{P}) \subseteq C_{\mathfrak{M}}(\mathfrak{F})$, and hence $Z(\mathfrak{P}) \subseteq \mathfrak{F}_p$ by Fitting's theorem. (See [3], 6.1.3.) Since \mathfrak{F}_p is cyclic, $Z(\mathfrak{P})$ is a characteristic subgroup of \mathfrak{F}_p . Then $\mathfrak{M}=N_{\mathfrak{G}}(Z(\mathfrak{P}))$ and \mathfrak{P} is a Sylow p -subgroup of \mathfrak{G} , contrary to lemma 4.

(ii) In the case \mathfrak{F}_2 is a quaternion group.

Let \mathfrak{Q} be a Sylow 2-group of \mathfrak{M} . Since $\mathfrak{Q}/C_{\mathfrak{Q}}(\mathfrak{F}_p)$ is abelian, $\mathfrak{Q}' \subseteq C_{\mathfrak{Q}}(\mathfrak{F}_p)$. Then $Z(\mathfrak{Q}) \cap \mathfrak{Q}' \subseteq \mathfrak{F}_2$. $Z(\mathfrak{Q}) \cap \mathfrak{Q}'$ contains a unique subgroup \mathfrak{H} of order 2. So \mathfrak{H} is a characteristic subgroup of \mathfrak{Q} . Since $\mathfrak{M}=N_{\mathfrak{G}}(\mathfrak{H}) \supseteq N_{\mathfrak{G}}(\mathfrak{Q})$, it follows that \mathfrak{Q} is a Sylow 2-subgroup of \mathfrak{G} . A contradiction.

By (i) and (ii), we have [A].

Next we prove the following statement [B].

[B] Let $\bar{\mathfrak{M}}$ be a maximal subgroup of \mathfrak{G} containing \mathfrak{Z} . Then $\bar{\mathfrak{M}}=\mathfrak{M}$

Let $\bar{\mathfrak{F}}=F(\bar{\mathfrak{M}})=\bar{\mathfrak{F}}_2 \times \bar{\mathfrak{F}}_p$ be the Fitting subgroup of $\bar{\mathfrak{M}}$ and $\bar{\mathfrak{Z}}=\bar{\mathfrak{Z}}_2 \times \bar{\mathfrak{Z}}_p$ be the centre of $\bar{\mathfrak{F}}$. Since $\bar{\mathfrak{Z}}_2 \times \bar{\mathfrak{Z}}_p$ is contained in $\bar{\mathfrak{M}}$, $O_p(N_{\bar{\mathfrak{M}}}(\bar{\mathfrak{Z}}_2)) \subseteq \bar{\mathfrak{F}}_p = O_p(\bar{\mathfrak{M}})$ by lemma 1. Now $\bar{\mathfrak{Z}}_p$ is a normal subgroup of $N_{\bar{\mathfrak{M}}}(\bar{\mathfrak{Z}}_2)$ we have $\bar{\mathfrak{Z}}_p \subseteq O_p(N_{\bar{\mathfrak{M}}}(\bar{\mathfrak{Z}}_2))$. Then $[\bar{\mathfrak{Z}}_p, \bar{\mathfrak{F}}_2]=1$. So $\bar{\mathfrak{F}}_2 \subseteq N_{\mathfrak{G}}(\bar{\mathfrak{Z}}_p)=\mathfrak{M}$. In the same way, we have $\bar{\mathfrak{F}}_p \subseteq \mathfrak{M}$. Then in the same way as above we have $\bar{\mathfrak{F}}_2 \subseteq O_2(N_{\mathfrak{M}}(\bar{\mathfrak{F}}_p)) \subseteq \bar{\mathfrak{F}}_2$. Interchanging \mathfrak{M} and $\bar{\mathfrak{M}}$ in the above argument, we obtain $\bar{\mathfrak{F}}_2 \subseteq \bar{\mathfrak{F}}_2$. Then $\bar{\mathfrak{F}}_2=\bar{\mathfrak{F}}_2$ and we have $\bar{\mathfrak{M}}=\mathfrak{M}$. Thus [B] holds.

Now we prove lemma 5. By [A] we may assume that \mathfrak{F}_r contains an abelian subgroup \mathfrak{A} of type (r, r) . Let \mathfrak{R} be a Sylow r -subgroup of \mathfrak{M} . If \mathfrak{R} is an r' -subgroup of \mathfrak{G} normalized by \mathfrak{F}_r , then $\mathfrak{R}=\prod_{x \in \mathfrak{A} - \{1\}} C_{\mathfrak{G}}(X)$. (See [3], 5.3.16.) Since

$C_{\mathfrak{R}}(X) \subseteq C_{\mathfrak{G}}(X)$ and $C_{\mathfrak{G}}(X) \cong \mathfrak{Z}$, $C_{\mathfrak{R}}(X) \subseteq \mathfrak{M}$ by [B]. It follows $\mathfrak{R} \subseteq \mathfrak{M}$. Then $\mathfrak{F}_{r'}$ is the unique maximal r' -subgroup of \mathfrak{G} normalized by \mathfrak{R} . So $N_{\mathfrak{G}}(\mathfrak{R}) \subseteq N_{\mathfrak{G}}(\mathfrak{F}_{r'}) = \mathfrak{M}$. Then \mathfrak{R} is a Sylow r -subgroup of \mathfrak{G} . A contradiction.

q.e.d.

Lemma 6. \mathfrak{G} contains a maximal subgroup \mathfrak{M} which satisfies the following condition;

$$\mathfrak{M} \cap Z(\mathfrak{P}) \neq 1, \mathfrak{M} \cap Z(\mathfrak{Q}) \neq 1$$

for some Sylow p -subgroup \mathfrak{P} and Sylow 2-subgroup \mathfrak{Q} of \mathfrak{G} .

Proof. Let \mathfrak{Q} be a Sylow 2-subgroup of \mathfrak{G} and X be an involution contained in $Z(\mathfrak{Q})$. Suppose Δ is a conjugate class of \mathfrak{G} containing X . By lemma 3, Δ contains two elements X_1, X_2 such that $\langle X_1, X_2 \rangle$ is not a 2-group. Since $\langle X_1, X_2 \rangle$ is a dihedral group, $|X_1 \cdot X_2|$ is not a power of 2. Then $\langle X_1 \cdot X_2 \rangle$ contains a unique subgroup \mathfrak{H} of order P . Let \mathfrak{M} be a maximal subgroup containing $N_{\mathfrak{G}}(\mathfrak{H})$. It is immediate to show that \mathfrak{M} satisfies the condition of the lemma. q.e.d.

Proof of the theorem. Let \mathfrak{M} be a maximal subgroup of \mathfrak{G} which satisfies the condition of lemma 6. By lemma 5 $F(\mathfrak{M})$ is an r -group. Let G be an element of \mathfrak{M} contained in the centre of some Sylow r' -subgroup \mathfrak{R} of \mathfrak{G} , and let \mathfrak{N} be a Sylow r -subgroup of \mathfrak{G} containing $\mathfrak{F}_r = F(\mathfrak{M})$. Since $\mathfrak{M} = N_{\mathfrak{G}}(\mathfrak{F}_r)$, it follows $Z(\mathfrak{R}) \subseteq \mathfrak{F}_r$ by Fitting. Then $\mathfrak{N}_0 = \langle Z(\mathfrak{R})^X : X \in \langle G \rangle \rangle \subseteq \mathfrak{F}_r$, and hence it is an r -group normalized by G . Let Ω be a complete \mathfrak{G} -conjugate class containing $Z(\mathfrak{R})$ and $\Omega = \Omega_1 + \cdots + \Omega_s$ be a disjoint sum of $\langle G \rangle$ -orbits. Let \mathfrak{N}_i be a group generated by Ω_i . For some element $Y \in \mathfrak{N}$, $Z(\mathfrak{R})^Y \in \Omega_i$, then $\Omega_i = \langle Z(\mathfrak{R})^{YX} : X \in \langle G \rangle \rangle = \langle Z(\mathfrak{R})^{XY} : X \in \langle G \rangle \rangle$. It follows that $\mathfrak{N}_i = \mathfrak{N}_0^Y$. Then \mathfrak{N}_i is an r -group normalized by $G^Y = G$ for $i = 1, \dots, s$. So there exist $\Omega_{i_1}, \dots, \Omega_{i_l}$ such that the group generated by $\Omega_{i_1} \cup \dots \cup \Omega_{i_l}$ is an r -group normalized by G . ($l \geq 1$) Let l be maximal. We may assume $\{i_1, \dots, i_l\} = \{1, \dots, l\}$ and $\mathfrak{N} = \langle \Omega_1 \cup \dots \cup \Omega_l \rangle$. It is trivial to show that $N_{\mathfrak{G}}(\mathfrak{N}) \ni G$. Let \mathfrak{N}_0 be a Sylow r -subgroup of \mathfrak{G} containing \mathfrak{N} . By lemma 2, $\mathfrak{N} \trianglelefteq \mathfrak{N}_0$ or $N_{\mathfrak{G}}(\mathfrak{N}) \cong \mathfrak{N}^X (\neq \mathfrak{N})$ for some $X \in \mathfrak{N}_0$. If $\mathfrak{N} \trianglelefteq \mathfrak{N}_0$, then $N_{\mathfrak{G}}(\mathfrak{N})$ contains a complete conjugate class of \mathfrak{G} containing G . A contradiction. If $N_{\mathfrak{G}}(\mathfrak{N}) \cong \mathfrak{N}^X (\neq \mathfrak{N})$, then since $\Omega_1^X \cup \dots \cup \Omega_l^X \not\subseteq \mathfrak{N}$, there exists some element Y of \mathfrak{N} such that $Z(\mathfrak{R})^Y \subseteq \mathfrak{N}^X$ and $Z(\mathfrak{R})^Y \not\subseteq \mathfrak{N}$. Suppose $Z(\mathfrak{R})^Y$ is an element of Ω_i , ($i > l$), then $\mathfrak{N}_i \subseteq N_{\mathfrak{G}}(\mathfrak{N})$ from $N_{\mathfrak{G}}(\mathfrak{N}) \ni G$ and $N_{\mathfrak{G}}(\mathfrak{N}) \cong Z(\mathfrak{R})^Y$. Now $\mathfrak{N} \cdot \mathfrak{N}_i$ is an r -group normalized by G and generated by $\Omega_1 \cup \dots \cup \Omega_l \cup \Omega_i$, contrary to our choice of \mathfrak{N} . Thus we proved the theorem. q.e.d.

References

- [1] H.Bender: *A group theoretic proof of Burnside's $p^a q^b$ -theorem*, Math. Z. **126** (1972), 327–338.
- [2] D.M. Goldschmidt: *A group-theoretic proof of the $p^a q^b$ -theorem for odd primes*, Math. Z. **113** (1970), 373–375.
- [3] D. Gorenstein: *Finite Groups*, New York, Harper & Row, 1968.