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1. Introduction

In the previous paper [3], we studied the boundary behavior for non-nega-
tive finely superharmonic functions in a Green space at the Martin boundary.
In this paper, as an application of Main Theorem in [3] we give a theorem of
a Littlewood type (cf. [2, Theorem]) for non-negative finely superharmonic
functions in the upper half space H of the rf-dimensional Euclidean space (d>2).

2. Theorem of a Littlewood type

Theorem. Let U be a finely open subset of H and let A1(U)={ζ^dH:
H\U is minimally thin at ζ}. Suppose that u is a non-negative finely super-
harmonic in U. Then, at almost every point ζ of Δx(ί7) with respect to the (d—l)-
dimensional Lebesgue measure, there exists a polar subset N(ζ) of the unit sphere
with center ζ satisfying the following property: u(z) converges to f-lim u(x) as a

point z in U approaches ζ along every ray issued from ζ which does not meet N(ζ).

For the definitions of notations and terminologies used in Main Theorem,
we refer to [3] and the word "almost every" will be later used to mean "except
for a null set with respect to the (d— l)-dimensional Lebesgue measure".

Proof of Theorem. Let u be a non-negative finely superharmonic func-
tion in a finely open subset U in H. Then, Main Theorem in [3] states that u
has a fine limit at almost every point ζ of Δ^U). From Nairn's result [4,
Thόorέme 12], we see that, at almost every point ζ of Δ^U), there exists a
finely open subset V(ζ) of U such that H\V(ζ) is minimally thin at ζ and that
u{z) converges to /-lim u(x) as a point z in V(ζ) approaches ζ in the sense of

the Euclidean topology in Rd. On the other hand, by Lelong-Ferrand [1,
Thέorέme in §8], there exists a polar subset N of the unit sphere with center ζ
in Rd satifying the following property: for every ray / in H issued from ζ which
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dose not meet Nt there exists a positive p such that (lΏB(ζ9p))\iζ}dU9

where B(ζ, p) is the ball with center ξ and radius p in R?. Therefore, we ob-

tained the desired result.
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