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INTRODUCTION

     This thesis is devoted to the study of C*-algebras O
n and 

OA which are typical examples of simple C*-algebras . 

     These C*-algebras were first considered by Cuntz (121 , and 

Cuntz and Krieger £17] respectively. In 1977 , Cuntz introduced 

On as a C*-algebra generated by isometries S
i, ... , Sn 

acting on a Hilbert space such that E 
i S i S i * = 1. He proved 

that the isomorphism class of O
n does not depend on the choice 

of generators and 0
n is simple. 0n is an example of nuclear 

C*-algebras which are not strongly amenable . Now one of the 

great developments in the C*-algebra theory in 1970's is the 

extension theory due to Brown, Douglas and Fillmore , simply 

known as the BDF theory. This theory was followed up by the 

K-theory for C*-algebras. In the BDF theory , the C*-algebra 

C(T) of all continuous functions on the unit circle T in the 

plane is adopted as a model. Since C(T) is naturally regarded 

as 01, we may use 0
n as an available model for the BDF 

theory and K-theory. As a matter of fact , 0n was the first 

example of non-commutative C*-algebras taken up in the BDF 

theory. O
n and Om are not stably isomorphic if n ~ m, 

because the weak extension group of 0
n is isomorphic to 

Zn/(n-1)Zn, cf. E38] and C41]. 

    Afterwards, Cuntz and Krieger have generalized the Cuntz 

algebra On. Let A = (A(i,j)) be an n x n matrix whose 
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entries A(i,j) are 0 or I and not all zero in any row nor 

in any column. Then a C*- algebra 0A is generated by partial 

isometries S1, ... , Sn acting on a Hilbert space satisfying 

the conditions 

(A) Si*Sj = 0 (i y j), and Si*Si = z A(i,j)SSSS* 

for i = 1, ... , n. Under a suitable condition on the matrix 

A, the isomorphism class of 0A does not depend on the choice 

of generators. We call 0A the Cuntz-Krieger algebra 

(associated with A). Note that 0A = 0n if A is the n x n 

matrix whose entries are all 1. A C*-algebra OA is associ-

ated with the topological Markov chain (XA, CF A). 

    Now, it is known that a matrix A determining the C*-alge-

bra 0A corresponds to a digraph G as its adjacency matrix. 

Therefore we can attempt a graph theoretic approach to 0A. 

This method was initiated by Enomoto and Watatani 1291, and it 

plays one of the central roles in our study of 0A. 

    This thesis consists of four chapters. We explain briefly 

the contents of each chapter. 

    In the first chapter, we will be concerned with automorph-

isms on 0n. In [l], Archbold considered the 'flip-flop' auto-

morphism e of 02 = C*(S1, S2) determined by 

         e(S1) = S2 and e(S2) = S1, 

which is an analog of the flip-flop automorphism on tensor 

products. He proved that 0 is outer. This was generalized 

by Enomoto, Takehana and Watatani 126] as a representation to 
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automorphisms on 0
n of the symmetric group S(n) with degree 

n. Furthermore they considered a similar representation of the 

unitary group U(n) of all n x n unitary matrices; for u = 

(uij ) e U(n) 

           a
u(Sk) = z.ujkSi (k = 1, ... , n). 

By the uniqueness theorem on 0 
n , a u can be extended to an 

automorphism on 0n and they proved that the action a is 

outer. 

     Now 0n can be regarded as a semigroup version of the 

group von Neumann algebra R(Gn) of a free group Gn on n 

generators. Phillips E40] and Choda C9) showed that R(Gn) is 

isomorphic to the crossed product of R(Gk(
n-1)+1) by a single 

automorphism with period k. Choda [9] also determined the 

fixed point algebra of R(G2) under an automorphism with 

period k. 

    Now we shall determine the fixed point algebras of On 

under certain periodic automorphisms 

    Let z be a primitive k-th root of 1 and zle U(n). Then 

the fixed point algebra of 0
n under azl is generated by a 

UHF-algebra Fn of type n- and S1k, where S1 is a 

generator of 0n. Furthermore, the fixed point algebra is also 

a Cuntz algebra 0 k' 
n 

    Since the matrix (0 1) corresponding to the 'flip-flop' 
automorphism of 02 is unitarily equivalent to (1 -0 ), we 
consider the fixed point algebra of 02 = C*(S1, S2) under 

a
u, such that u = (1 0) with a primitive k-th root z of 1. 

We see that it is the subalgebra generated by S1, S2 and 
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{S2JS1S2*J; j = 1, ... , k-1}. In particular, the fixed point 

algebra under the 'flip-flop' automorphism is isomorphic to the 

C*-algebra generated by S1, S22 and S2S1S2*. 

    Here we have a problem; whether a -1 and the 'flip-flop' 

automorphism e on 02 are conjugate or not ? Since S2S1S2* 

is not an isometry, the fixed point algebra 020 seems to be 

not of type of 0 n. As a matter of fact, 020 is a Cuntz-

Krieger algebra. It will become clear in Chapter = that the 

fixed point algebras under a-1 and e are not stably iso-

morphic, so our problem is solved negatively. 

    In the last part of this chapter, we shall investigate the 

relation between the spectrum a(u) of u E U(n) and a(au) 

of au in the Banach algebra of all bounded linear maps on 0A. 

We prove that a(au) is the closed subgroup of the unit circle 

T in the plane generated by a(u), and for any closed subgroup 

G of T, there is a u c U(n) such that a(au) = G. 

     In the second chapter, we shall discuss extensions of 0 n 

and 0A by the compacts. In 1111, Coburn studied the C*-alge-

bra generated by an isometry acting on a Hilbert space H. He 

proved that the C*-algebra generated by a simple unilateral 

shift U on H contains the ideal K(H) of all compact 

operators on H and 

(1) 0 -k K(H) ~ C*(U+) C(T) -• 0 

is exact, that is, C*(U+) is an extension of C(T) by K(H). 

In the BDF theory, we know that the extension group Ext C(T) 

coincides with the additive group Z of all integers under the 
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correspondence n = - ind U+ n) where ind S stands for the 
index of a Fredholm operator S. 

     Cuntz 1123 proved further that if P n is the C*-algebra 

generated by isometries T1, ... , Tn on H such that 1 -

 E iTiTm* is a non-zero projection, then 

(2) 0-) K(H) --*Pn--+O n- - 0 

is exact. Ext On = Z was proved by Paschke and Salinas 1383. 

     In our discussion, we shall first point out that an ex-

tension of 0 n can be reduced to one of C(T) via a unilater-

al shift. Then we give a complete set of representatives for 

extensions of 0 . n 

     Next we shall discuss extensions of OA. One of our ob-

jectives is to find a condition for that a u defined in 

Chapter I can be extended to an automorphism on OA. Now, 

Evans 1303 and Katayama have independently realized a C*-alge-

bra Pn as a 'tensor algebra' on the full Fock space F(H), 

and constructed a unitary F(u) on F(H) for each u c U(n). 

In this realization, the automorphism a on P imolerriented 
                                            u n 

by F(u) corresponds to the automorphism a
u on On. We will 

here construct a subspace LA of F(H) associated with an 

n x n matrix A, and the C*-algebra PA generated by the 

compression to LA of the creation operators on F(H) is an 

extension of OA by K(H). Also we shall consider conditions 

on u EU(n) that LA reduces F(u) and F(u)HLA implements 

an.automorphism au on OA. As an application, we have a 

good characterization of 0n; if for all uE U(n) au can be 

extended to an automorphism on OA = C*(S1, ... , S
n), then OA 
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= 0
n. To make these discussions, the graph theoretic approach 

is very useful. OA will be sometimes written as OG if G 

is the graph with the adjacency matrix A. 

    Another extension of OA can be obtained by using the 

concept of adjoint graphs in the graph theory. We shall prove 

that 0G = 0G* when G* is the adjoint graph of G. As a 

consequence, we shall see that the reduced C*-algebra generated 

by the free category of a digraph G is an extension of OG 

by K(H). 

    The main purpose of the third chapter is to classify Cuntz-

Krieger algebras OA for A's with irreducible 3 x 3 

matrices. This will be done in section 3. The irreducibility 

of A implies the simplicity of OA. We will make an ef-

fective use of the K-theory in our classification problem. 

    We give attention to the 'position' of the unit 1 of a 

unital C*-algebra B in the corresponding I<0-group K0(B). It 

will be called the marker of B and denoted by mark(B). It is 

obvious that if unital C*-algebras B and C are isomorphic, 

then K0(B) = K0(C) and mark(B) = mark(C), but this fact is 

very important for the classification. Actually, we shall 

prove that the following statements are equivalent for 3 x 3 

irreducible matrices A and B ; 

    (1) OA is isomorphic to 0B, 

    (2) Ko(OA) = Ko(OB) and mark(OA) = mark(OB), and 

    (3) A is primitively equivalent to B. 

    As a preparatory task for this, we listed up all the 
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strongly connected digraphs with 3 vertices and 3 x 3 

irreducible matrices. We get 29 different matrices. Then we 

introduced a transformation of matrices by which 0A is left 

isomorphic. Primitive equivalence also introduced among 

matrices and this equivalence too makes corresponding algebras 

isomorphic. The relation (3) (1) -. (2) follows from these 

facts, and (2) ; (3) is then checked one by one. 

    Next we shall discuss how to change the marker under the 

tensor product with a matrix algebra Mk. As a corollary, we 

have another proof of a result on 0 n due to Paschke and 

Salinas [38I. 

    We also define the explosion as a generalization of the 

adjoint of a digraph. This again leaves isomorphic the corre-

sponding algebras. Using these notions, we can complete to 

give representatives in the classification. We also discuss 

the value det(l - A) because it is very important in the 

theory of Markov chains (XA, aA), and show that 0A and 0B 

are isomorphic for strongly shift equivalent matrices A and 

B under some additional assumptions. 

    Concluding this chapter, we shall point out that any 

finitely generated abelian group can be expressed as the weak 

extension group and also K0-group of a simple Cuntz-Krieger 

algebra. Additionally, we shall discuss the periodicity of the 

weak extension group of 0A associated with random walks. 

    In the final chapter, we shall study the existence of KMS 

states for gauge action on 0A. Here we note that the proof of 
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the uniqueness theorem on OA is based on the existence of the 

gauge automorphism at (t e R) on OA such that 

           at(Sj) it = e Sj j = 1, ... , n, 

where R is the group of real numbers. The action a is 

called the gauge action. Olesen and Pedersen [337 proved that 

the C*-dynamical system (On, R, a) admits a S-KMS state if 

and only if s = log n, and the corresponding KMS state is 

unique. Furthermore, the weak closure of the GNS represen-

tation of On by the unique KMS state is a factor of type =1/n' 

    On the other hand, there exist matrices A and B such 

that the spectral radii r(A) and r(B) are different though 

OA and OB are isomorphic. So we want to find out a con-

dition that spectral radii coincide. 

    We shall generalize the theorem of Olesen and Pedersen on 

(OA, R; a). We remark that r(A) = n if A is the n x n 

matrix whose entries are all 1 , that is, A corresponds to 

On. Now we prove that if A is irreducible, then (OA, R, a) 

admits a B-KMS state if and only if S = log r(A), and the 

corresponding KMS state is unique. It seems to be interesting 

that the Perron-Frobenius theorem for positive matrices is 

applied in this proof. Furthermore we obtain that the weak 

closure of the GNS representation of OA by the state is a 

factor of type III 
1/r(A)d(A), where d(A) is the period of A. 

Therefore, since log r(A) is the topological entropy h(QA), 

the pair (h(QA), d(A)) is an invariant for the conjugacy of 

C*-dynamical system (OA, R, a). In other words, the equiva-

lence of the subshift aA as a measure preserving transfor-
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mation is an invariant for the conjugacy because (log r(A), 

d(A)) is a complete invariant for aA as a measure preserving 

transformation. Finally, we discuss a relation between KMS 

states and eigenvalues of positive maps in a general setting. 

    The author would like to express his hearty thanks to 

Professor Masahiro Nakamura, and Professors Marie and Hisashi 

Choda for their constant encouragement and valuable suggestions. 

    Special thanks go to Professors Yoshikazu Katayama, Yasuo 

Watatani and Hiroaki Takehana and Mr. Masatoshi Enomoto for 

their stimulating discussions on the present material. 

    The author would like to express his deep gratitude to 

Professor Osamu Takenouchi for instructive suggestions and warm 

encouragement throughout the course of this research.
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              CHAPTER I AUTOMORPHISMS ON On 

     I-1. Action of U(n) on On. 

     A C*-algebra On considered by Cuntz is generated by 

isometries S1, ... , Sn acting on a Hilbert space such that 

EiSiSi* = 1. He proved the following uniqueness theorem on O
n: 

     The uniqueness theorem. The isomorphism class of On. does 

not depend on the choice of generators. 

     That is, if {T1, ... , T n } is another family of iso-

metries such that EiTiTi* = 1, then there is a canonical 

isomorphism of C*(Sl, ... , S n ) onto C*(T1, ... , Tn), where 

C*(S) is the C*-algebra generated by S. In other words, if 

{T1, ... , Tn} is as in above, then the map Si----Ti (15 i<_ n) 

can be extended to an isomorphism of C*(S1, ... , S n ) onto 

C*(T1, ... , Tn). 

    Inspired by the flip-flop automorphism of tensor products, 

Archbold [11 considered the 'flip-flop' automorphism e of 02 

  C*(S1, S2) determined by 

         e(S1) = S2 and e(S2) = S1. 

He proved that e is outer. This might be the first appli-

cation of the uniqueness theorem. 

    Following after Archbold, Enomoto, Takehana and Watatani 

[261 showed that the symmetric group S(n) has a represen-
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tation as a subgroup of outer automorphisms on 0n for n > 2. 

Furthermore they extended it as follows; the group U(n) of 

n x n unitary matrices is faithfully represented as a subgroup 

of outer automorphisms on On by 

          aU(Sk) = Ej ujkS. (k = 1, ... , n) 

for unitary u = (ujk). If we take u = (0 0), then au is 
the 'flip-flop' automorphism on 02. 

    Though Archbold considered On from the view point of 

tensor products, it can be regarded as a semigroup version of 

the group von Neumann algebra R(Gn) of a free group Gn on 

n generators, cf. [271. Phillips [40] and Choda [9] showed 

that R(Gn) is isomorphic to the crossed product of R(Gk(n-1)+1) 

by a single automorphism with period k. And Choda determined 

the fixed point algebra of R(G2) under a single automorphism 

with peroid k by R(Gk +1). Moreover, the fixed point algebra 

under the gauge automorphism group aT is determined by Olesen 

and Pedersen. 

    In the below, we shall investigate the fixed point algebra 

of On under a periodic automorphism a u for u e U(n).

     1-2. 

    First 

1,2.... ) 

1 S j(i) 

family of

 Fixed point algebras. 

 of all, we shall explain notation. Let Wnk (k = 

be the set of all k-tuples (j(1), ... , j(k)) with 

<_ n and let W
n° _ {0}. Let {S1, ... , Sn} be a 

 generators of On. Then we put 

SN Sj(1)Sj(2)...Sj(k) 
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for p = (j(i), ... , j(k)) E W n k and So = 1. Let Fnk be 

the C*-algebra generated by {S 
µ S u * ; y, u E W n k} and F n o = 

{l}. Finally let Fn be the C*-algebra generated by {Fnk ; 

k = 0,1,2, ...}.

    Theorem 1.1. Let z be a primitive k-th root of 1 and 

a = a
z1 the automorphism on On induced by z1E U(n). Then

the fixed point algebra B of 

by F
n and S1`<.

a is the C*-algebra generated

    Proof. If 1(u) = 1(u) where 1(Y) is the length of Y, 

then S
µSU* E B. Since Fn is generated by (S Ps,,*; 1(u) = 1(u)} 

and S1k E B, B includes the C*-algebra C 'generated by Fn 

and Stk. Conversely, let x E B and E > 0. Then there is y 

in the *-algebra Qn generated by {S1, ... , Sn} such that 

IIx - yll < E. It is known that y has a unique representation; 

          Y = E1 S1*la-i + ao + Ei aiS11, 
where ai c Qnn Fn. Putting S = (ak-1 + ak-2 + ... + a + 1)/k, 

every ai is fixed by S. Since 

     0 = zlk - 1 = (zl - i)(zl(k-1) + z1(k-2) + ... + zl + 1) 

for i = 1,2, ... , we have 

  8(y) = (1/k)E.m Ek-1z*13S *la + a + (1/k)E.m Ek-1z1Ja S 1 
                  1=1 j=0 1 -i 0 1=1 j=0 i 1 

           E
i=mkS1 a-i + a0 + Ei=mkaiS1 

so that 6(y) E C. On the other hand, we have  

IIx - s(Y)II (IIx - ak-1(Y)II + IIx - ak-2(y)11 + ... + 11x - yII)/k 

              (Ilak-1(x-Y)II + Ilak-2(x-Y)II + ... +IIx-yII)/k 

             =Ilx-yII <E. 

                                 12 -



    The following 

an automorphism

theorem 

a in the

shows 

 above

that 

 is

the 

also

fixed point algebra of 

a Cuntz algebra.

     Theorem 1.2 

point algebra B

Let 

is

  a be as in 

isomorphic to

Theorem 1. 

the Cuntz

1. Then the 

algebra 0
nk'

fixed

    Proof. First of all, we shall prove that B coincides 

with C = C*(S ; l(p) = k). Since B = C*(Fn, S 1 k ) by Theorem 

p 1.1 and B C clearly, it suffices to show that Fn C C, that 

is, S S * E C if l(p) = l(U). We may assume that 1(p) _ 
        p U 

l(U) < k. Then the length of S S * is enlarged as follows: 
                                       P U 

          S
pSU* = Sp(E i SiSi*)SU* 

                E i(S
pSi)(SUSi)* 

                 E i
,.7 (SVSiSi )(SUSiS 

Thus S pSU* is expressed as a finite sum of {SYS6*; 1(Y) _ 

l(s) = k} by repeating this calculation. 

    To prove that C is isomorphic to 0 k, we shall show that 
n 

{Sp; 1(p) = k} is a family of generators of 0 
nk such that 

E 
pSpSp* = 1 by induction. If k = 2, then 

      E
p SNSp* E 1}'(SiS~)(S.S~)* 

                   S1(E i SiSi*)Sl* + ... + Sn(z i SiSi*)Sn* 

                       S1S1* + ... + SnSn* 

                                   1_, 

Suppose that it is true for k = p. Then we have 

                     * _ *E 
1(p)=p+lSpSp Ei=1 n SiTSi 

where T = Z 1(
p)_p SpSp*. By the assumption of induction, we 

have T = 1 as desired.
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    Remark. Let z be a complex number such that IzI = 1 

and zk # 1 for all k. Then the fixed point algebra of azl 

is Fn by a result of Olesen and Pedersen [36; lemma 1J. 

    Next we shall discuss the fixed point algebra of auto-

morphism on 02 induced by (1 0) 

     Theorem 1.3. Let z be a complex number with period k 

and a the automorphism on 02 induced by (1 0). Then the 
fixed point algebra B is the C*-algebra C generated by S1, 

S 2 k and IS 2iSIS2*j; j = 1, ... , k-l}. 

     Proof. For given x E B and E > 0, there is y E Q = Q2 

such that jjx - yll <e. Putting w = (y+a(y)+ ... + ak-1(Y) )/k, 

we have w e B n Q and lix - wIl < e as in the proof of 

Theorem 1.1. So it follows that B n Q is dense in B. Since 

C S B, it suffices to show that B n Q S C. Every element y E 

Q has a unique representation; y = Eim1S1*la -i+a0+ Eiml aiS1i, 

where ai E Q n F2. Since a(y) = y iff a(ai) = ai for all 

i, we may confine ourselves to consider elements in F2. It is 

clear that S Su* E F2 is fixed by a iff m(p) = m(u) mod k, p 

where m(1) denotes the number of S2 in SY. If m(p) < k, 

then we have 

   S - S i(0)S j(1)S i(i)S j(2)... S j(r)S i(r) 
    u 1 2 1 2 2 1 

       S 1(0) (s j(1)S i(i)S 2*j(1))(S j(l)+j(2) S S 2*j(1)+j(2))          1 2 1 2 1 

             (S j(l)+j(2)+...+j(r-1) S i(r-1) S 2*j(l)+...+j(r))              2 1 

        S j(1)+...+j(r) S i(r)         2 1 
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so that S = XS2m(u)S1i for some X E C and integer i. In 

N particular, if m(p) = k, then S E C since k = j(1) + ... 

u + j(r). In general, if m(µ) = h mod k, then S
u = XS2hS1i 

for some X E C and some integer i. Therefore, if m(p) = h 

mod k and h < k, then 

    S
uSU* = XS 2hS1i(YS2hS1i)* = X(S2hS1iS2*h)(S2hSi*js2*h)Y*, 

so that S 
P S U * E C. Since B n Q is generated by F 2 and S 1 k 

we have B n Q C. Hence it follows that B = cl B n Q C 

where cl means the norm closure, so that B = C. 

    The matrix (0 1) corresponding to the 'flip-flop' auto-
morphism introduced by Archbold is unitarily equivalent to 

(1 -0 ). Therefore we have the following. 

    Corollary 1.4. The fixed point algebra of the 'flip-flop' 

automorphism on 02 is isomorphic to the C*-algebra generated 

by S1, S22 and S2S1S2*. 

    Remark. The fixed point algebra 02(2) of 02 under (2) 

  Z/2Z is isomorphic to 04 by Theorem 1.2. However, the 

crossed product 02x (2) of 02 by (2) is not isomorphic to 

04. In fact, if 02 x (2) = 04, then 02 is included in 04 

with the same unit, which is false. Furthermore, 04 x (2) is 

not isomorphic to 02. Actually, if 04 x (2) = 02, then 

04.® M2 = 02 x (2) by Takai's duality theorem for C*-algebras 

[42]. Since 04 ® M2 = 04, we have 04 = 02 x (2), which is a 

contradiction. 
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     I-3. Spectra of automorphisms. 

    Now we shall investigate the relation between the spectrum 

a(u) of u e U(n) and the spectrum a(au) of au in the 

Banach algebra of all bounded linear maps on On. 

    Theorem 1.5. (i) If U E U(n), then a(au) is the closed 

subgroup G of the unit circle T in the plane generated by 

a(u). (ii) For a closed subgoup G of T, there is u c U(n) 

such that a(a u) = G. 

    Proof. (i) We may assume that u is diagonal with eigen-

values (t1, ... , tn). Suppose that u is periodic with 

period k. Then G is generated by {tl, ... , tn}. If z eG, 

then there are integers s(1), ... , s(n) such that z = t1s(1) 

    tns(n) and 0 <_ s(i) < k-1 for all i. If we put 

           R = S S(1) S s(n)                   1 n ' 

then R # 0 and au (R) = zR. Since z e a(au), we have 

G C a(au). Conversely, since G = {exp(2Trim/k); 0< m <_ k-1} 

and (au)k = 1, we have a(au) S G by the spectral mapping 

theorem. If u is aperiodic, then G = T. Since au(S1m) _ 

t 1 m S 1 m for all m, we have a(au) = T = G. 

    (ii) If G = {exp(2Trim/k) ; 0 S m <_ k-1} for some k, 

then a(a u) = G for u = exp(2Tri/k). If G = T, then we take 

u = zl for some aperiodic z.
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Chapter II Extensions of OA

     II-1. Extensions of 0 . n 

    The purpose of this section is to show that extensions of 

On are reduced to the extensions of C(T) via a unilateral 

shift. In (111, Coburn studied the C*-algebra generated by an 

isometry acting on a Hilbert space H. He proved that if U+ 

is a simple unilateral shift on H, then the C*-algebra C*(U+) 

generated by U+ contains the ideal K(H) of all compact ope-

rators on H and 

(1) 0 ---• K (H) - C * (U+) ---* C (T) -+ 0 

is exact, where C(T) is the C*-algebra of all continuous 

functions on T. In other words, C*(U +) is an extension of 

C(T) by K(H). In the BDF theory (81, the extension group 

Ext C(T) coincides with the additive group Z of all integers. 

    Here we mention a proof of this fact: Let it be the 

quotient map of B(H) onto Q(H) = B(H)/K(H), where B(H) is 

the algebra of all bouded linear operators on H. An operator 

S is essentially normal if ur(S) is normal. A typical ex-

ample of an essentially normal operator is a simple unilateral 

shift U . The task to determine Ext C(T) is identified with 

the classification of essentially normal operators with es-

sential spectrum T. Moreover, it is known in (8; Theorem 3.11 

that such an operator S is unitarily equivalent to U k + K 

(resp. U+(0) + K and U + * k + K) if indS = - k < 0 (resp. ind S 
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= 0 and ind S = k > 0), where U+(0) is a simple bilateral 

shift, K is compact and ind S is the index of S. Hence a 

family of C*-algebras {C*(U+(k)) + K(H)} is a complete set 

of representatives for the extensions of C(T), and the identi-

fying map with Ext C(T) and Z is - ind U+(k)= k. We remark 

that C*(U+) + K(H) = C*(U+) by (1). 

     Let Pn be the C*-algebra generated by isometries T1,..., 

Tn such that 1 - Z.TiTi* is a non-zero projection. Then 

        0 --i K (H) - P                     n -> 0 n -* 0 

is exact according to 112; 3.1). Later, Enomoto, Takehana and 

Watatani realized Pn as the C*-algebra C*r(Gn+) generated 

by the left regular representations of a free semigroup G n + 

on n generators. And they proved that Pn is unique up to 

isomorphism as well as 0 n. Cuntz stated in 112; Remark 1 in 

§ 31 that it seems to be interesting to study more general 

extensions of 0n by the compacts. Paschke and Salinas proved 

that Ext 0n = Z by using an index of extensions and showed 

implicitly that a family {P n} is a complete set of representa-

tives for extensions of 0n corresponding to the negative 

integers. 

    The fact that Ext 0n = Z reminds us an analogy with 

Ext C(T) = Z. We shall give attention to the first isometry S1 

among the generators of 0n. A proof of Ext 0n = Z will be 

obtained by using the C*-algebras Pnk generated by {U+(k)Si' 

S2, ... S n } and K(H), where U+ is a simple unilateral 

shift on ran S1 and V(k) = Vk (k ? 0) and V*k (k < 0). As 

a matter of fact, Pnk is corresponding to an integer k = 
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- ind U
+(k ), which is the same as the case of C(T). 

     As usual, an extension of a unital separable C*-algebra B 

is a *-monomorphism of B into Q(H). Paschke and Salinas 

used the following index m for extensions of On to prove 

Ext 0n = Z: Let t be an extension of 0 n = C*(S1, ... , Sn) 

and v T the matrix in Q(H ® ... ® H) = Q(H) ® Mn with zeros 

in the second through n-th row and with T(S1)... T(Sn) in the 

first row. Then v T is isometric and vTvT* = K(PH), where 

PH is the projection of H ® ... ® H onto H ® 0 ® ... ® 0. 

So there is a partial isometry V = VT on H ® ... ® H such 

that w(V) = v T and VV* <_ PH 138; Lemma 1.11. They put m(T) 

= dim(1 - V*V) - dim(PH - VV*). Note that m(T) = ind V as 

an operator of H 6 ... ® H into H ® 0 ® ... ® 0, and so m(T) 

is well-defined. It is known that m(T) = m(TI) if , and 

T' are strongly equivalent, and that m(T) = 0 iff T is 

trivial. Since m(T ® T') = m(T) + m(T'), m is a homomorphism 

of Ext 0 into Z. The fact to be established is that m is n 

onto. Now we shall give a proof to this fact by using a uni-

lateral shift U . 

     Theorem 2.1. Ext 0 = Z. n 

    Proof. It suffices to show that m is onto. For the sake 

of simplicity, we consider the case of 02 = C*(S1, S2). Let 

V+.= U+ e 0 on H = ran S1 ® (ran S1)1. Let us put P2k = 
C*(V +(k)S1, S2) + K(H). Then it follows from the uniqueness 

theorem on 02 that P2k/K(H) is isomorphic to 02 via the 
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quotient map Tr. We define the extension Tk for each integer 

k by Tk(S1) = Tr(V+(k)S1) and Tk(S2) = Tr(S2). Since 

        {•tk(Sl) Tk(S2) T(k)Tr(S2)    vk 0 0 ) [r(v~sl) 0 0 , 
                           V (k)S s 

we have f(Vk) = vk for Vk= + 1 2 and 
                                0 0 

       m(Tk) = dim(l - Vk*Vk) - dim(PH - VkVk*) 

              dim(PH - (V+(k)S1)*(V+(k)S1)) 

                 dim(PH - (V +(k)S1)(V+(k)S1)*) 

                k. 

Hence this implies that m is onto. 

    We remark that P1 is the Coburn algebra and C(T) is 

regarded as 01. Putting Plk = C*(U +(k)U) + K(H), we can 

prove that Ext C(T) = Z. Actually, P1k/K(H) is isomorphic 

to C(T) = C*(U), where U is a simple bilateral shift. If 

Tk is the extension defined by Tk(U) = Tr(U+(k)U), then m(Tk) 

    k = ind U+(k). It is easily seen that {Pn}k is a complete 
set of representatives for extensions of 0n. 

     11-2. Extensions of 0A - tensor representation. 

     Cuntz and Krieger C171 constructed a new C*-algebra 0A 

which is associated with a topological Markov chain (X A' QA) 

Let A = (A(i,j)) be an n x n_matrix such that A(i.j) = 0 or 

1 and every row and column is non-zero. A C*-algebra 0A is 
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generated by non-zero partial isometries S1, ... , Sn acting 

on a Hilbert space satisfying the condition 

(A) Si*Sj = 0 for i ~ j, and Si*Si = E.A(i,j)S.S~* 

for all i. They proved: 

     The uniqueness theorem. The isomorphism class of 0A does 

not depend on the choice of generators if A satisfies the 

condition (I), see Lemma 2.1. Furthermore, if A is irreduci-

ble, i.e., it is not a permutation and for each i and j 

there is a k such that Ak(i,j) > 0, then 0A is uniquely 

determined and is simple. 

    We attempt a graph theoretic approach to Cuntz-Kriegr alge-

bras. A digraph G is an ensemble of a finite set V(G) of 

vertices 1,2, ... , n and a finite set E(G) of edges which 

are ordered pairs (i, j) of vertices. It is known that a 

digraph G is represented by an adjacency matrix A with 0 

and 1 as entries: A(i,j) = 1 if (i,j) e E(G) and A(i,j) 

= 0 if not. Thus we identify a digraph with its adjacency 

matrix. 

    Now a path from j to i in G is a finite sequence of 

edges {(ik -l,ik)} such that i1 = i and im = j. A vertex 

has an m-cycle if there is a path {(ik -l,ik)} from i to i 

with ik # i for 2 5 k S m-1. Particularly, a 1-cycle is 

called a loop. We note that a vertex i has at least two 

different cycles if and only if i e E0, where EO is refered 

to [173. Hence the condition (I) of Cuntz and Krieger is 
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rephrased as follows: 

    Lemma 2.1 A digraph G satisfies the condition (I) if 

and only if for each i E V(G) there is a path from j to i 

for some j E Z0' 

    This reformulation is very useful. For a digraph G 

satisfying the condition (I), 0G = 0A is unique up to 

isomorphism. In the below, we always assume that a matrix A 

and a digraph G satisfy the condition (I). 

    Now let Pn be as in the above an extension of 0n by the 

compacts. Evans [301 and Katayama showed independently that 

Pn is realized as a 'tensor algebra' on the full Fock space 

F(H), which is analogous to the construction of the CAR algebra 

on the anti-symmetric Fock space. Furthermore they constructed 

a unitary F(u) on F(H) for u e U(n). Then au on Pn 

implemented by F(u) corresponds to the automorphism au on 

0n discussed in the preceding chapter. 

    In this section, we shall construct a subspace LA of F(H) 

associated with a matrix A and consider the C*-algebra PA 

on LA generated by the compressions to LA of the creation 

operators on F(H). We shall see that PA is an extension of 

0A by the compacts. 

     For an n-dimensional Hilbert space H, let Hm = am H be 

the m-fold tensor product and F(H) _ £m-0® Hm the Fock space, 
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where H0 is the 1-dimensional Hilbert space spanned by the 

Fock vacuum unit vector n. For f e H, there is a bounded 

operator o(f) on F(H) such that 

    o(f)c = f, o(f)(f10 ... 0 fm) = f OD fl ... fm, 

and 

    o(f)*st = 0, o(f)*(f1a ... fm) _ (fl, f) f2 (a ... 0 fn. 

Then the C*-algebra generated by {o(f) ; f e H} is iso-

morphic to Pn which is called the Clifford C*-algebra in [45]. 

    Now we shall consider two subspaces of F(H). Let lei,      

, en} be an orthonormal basis of H. Let Lm be the sub-

space of Hm spanned by 

   {ei(i)0 ... 0 ei(m); A(i(k),i(k+1)) = 1 for 1 5 k< m-1} 

and LA = Em=0® Lm , where L0 = H0 and L1 = H1 = H. Let Mm 

be the subspace*of Hm spanned by 

                                   M-1 = 0} 
 {e,(1), ... I ei(m); II k=1 

and MA - ~m=0® Mm, where M0 = M1 = {0}. Then F(H) = LA ® MA 

and LA is called the sub-Fock space associated with A. Let 

us put Si = PL
A o(ei)ILA for 1 <_ i <_ n, where PLA is the 

projection onto LA. Then we denote by PA the C*-algebra 

generated by Isi ; 1 S i <- n}. 

     Theorem 2.2. The C*-algebra PA acts irreducibly on LA 

and contains the compacts K(LA). Moreover PA is an extension 

of 0A by K(LA), that is, 

(3). 0 -} K(LA) -~ PA 0A 0 

is exact.
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    To prove Theorem 2.2, we need following lemmas. 

    Lemma 2.3. Notation as in the above. Then each Sk is 

partial isometry such that Sk*Ska = s, SkSk*s~ = 0, 

    Sk*Sk(ei(1)® ... 0 ei(m)) = A(k,i(1))ei(i)0 ... 0 ei(m) 

and 

    SkSk*(ei(1)® ... ® ei(m)) = 6(k,i(l))ei(i) 0 0 ei(m) 

for all g = ei(1)0 ... 0 ei(m) E LA, where d(k,i) is 

Kronecker's delta. 

    Proof. We put P = PL
A, Pk = SkSk* and Qk = Sk*Sk for 

1 5 k s n. Then we have 

    Qko = Po(ek)*Po(ek)c = Po(ek)*Pek = Po(ek)*ek = PST = St. 

Since o(ek)*a = 0, it follows that P k a = 0. 

    Next we have 

    Qkei = Po(ek)*Po(ek)ei = Po(ek)*P(ek0ei) 

           = Po(ek)*A(k,i)ekO ei 

           =A(k,i)Pei = A(k,i)ei, 

so that Q k g = A(k,i)g for g e LA. Since o(ek)*ei = d(k,i)ei 

we have P k e i = 6(k,i)ei, which implies Pkg = s(k,i(l))g. 

     Lemma 2.4. If E is the projection onto L0 = H0, then 

(4) Sk*Sk = E j A(k,j)SjSj* + E. 

     Proof. Let Pk and Qk be as in above. Then we have 

     (E.A(k,j)P. + E)Q = a = Q< 

by Lemma 2.3. Next we have 
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    ( E j A(k,j)P. + E)ei = E j A(k,j)Pjei 

          E j A(k,j)d(j,i)ei = A(k,i)ei = Qkei. 

Hence it implies that ( z . A(k, j)P. + E)g = Qkg ' for g c LA. 

    Remark. It follows from (4) that E is in PA and 

(5) Ej Pj + E = 1 on LA. 

    Proof of Theorem 2.2. First of all, we shall prove that 

P A x is dense in LA for all 0 x e LA. Since x ~ 0, there 

is m such that the direct summand x of x on L is non-, 
                                          m m 

zero. If xm = E xm(i(1), ... , i(m))ei(1)o ... o ei(
m), where 

E is taken over (i(1), ... , i(m)) such that It k_iA(i(k), 
i(k+1)) = 1, then there is u = (i(l), ... , i(m)) such that 

xm(µ) ' 0. Since SP*x = xm(u)c + y for some y e Eh-leLh 
we have ES 

P*x = xm(p)g 0. Furthermore, for any z = e.(1), 

    0 ej(h) e LA we have 

    xm(u)-1Sj(1) ... Sj(h)ES
,*x ej(1)® ... ej(h), 

which implies that P A x is . dense in LA. Since E is rank 

one, PA contains the compact operators K(LA). 

    Let 7 be the quotient map of B(LA) onto Q(LA). Then 

1r(E) = 0. Noting that the range of P
i is infinite dimensional 

by the condition (I), we put Tk = 7r(Sk) ~ 0 for 1 <- k < n. 

Then 1r(PA) is generated by partial isometries T1, ... , T
n, 

and 

    Tk*Tk = E . A(k,j)T.T.* and E j T.T.* = 1 

by (4) and (5). Therefore Tr(PA) is isomorphic to OA. 
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     II-3. Extensions of OA - adjoint graphs. 

    According to 133, the adjoint graph G* of a digraph G 

is defined to be a digraph whose vertices ul, ... , um repre-

sent the edges of G and which has an edge ui<- uj if i2= 

ii where ui = (il,i2) and uj = (jl, j2). In this section, 
we shall prove that OG = 0G*. By using this, we shall give 

another extension of OA. 

    First of all, we show an example of an adjoint graph: 

           5 3 
~(4,5)---+(3,4)->(2,3) 
   G ~4~ 2 G* : (5,6)    ~~ N I N 

           6 1 (6,4)4-(4,1)E--(l,2) 

    Now we shall make sure that the adjoint graph of a digraph 

with the condition (I) satisfies (I) also. 

     Lemma 2.5. If a digraph G satisfies the condition (I), 

then so does the adjoint G* of G. 

     Proof. It suffices to show that for each (il,i2) E V(G*) 

there is a vertex (r,s) E E0 having a path P((il,i2),(r,s)) 

in G*. Since G satisfies the condition (I), a vertex i2 

of G has a path P(i2,i0) for some i0 E E0, which induces a 

path P((il,i2),(i2,i3),...,(ik-l,ik),(ik,i0)) in G*. On the 

other hand, since i0 E Z0, there are two different cycles E 

and F in G such that i0 E V(E) n V(F), so there is a path 

P((ik,i0),(r,s)). Hence there is a path P((ik,i0),(r,s)) and 

                                        - 26 -



(r,s) E E0, that is, G* satisfies (I). 

    Now we shall realize edges of G as partial isometries 

T= SiPj in 0G, where Pj = S.Sj*. 

    Lemma 2.6. Let 0A = C*(S1, .. Is n) and T. . = SiPj. I
li 

then TT i,j = 0 if and only if A(i,j) = 0. 

    Proof. Note that Ti
,j = 0 iff P.Si*SiPj = 0, or equi-

valently Si*SiPj = 0. If A(i,j) = 1, then Si*Si = 

E k A(i,k)Pk - P j. Therefore we.have Si*SiPj= P., so that 

Ti j = 0. Conversely, if A(i,j) = 0, then 

          Si*SiPj = E kA(i,k)PkP. = A(i,j)P. = 0. 

Hence it implies T. . = 0. I li 

Theorem 2.7. 0G* 0G. 

    Proof. Since OG coincides with the C*-algebra B gener-

ated by IT i
,j; A(i,j) = 1}, we shall show that B is the Cuntz 

Krieger algebra 0G*, that is, a family IT i
,j; A(i,j) = 1} 

satisfies the condition (A) and Z. ... ,... .* = 1. By Lemma                                               1,j 1j Ili 

2.6 we have 

E 
    A( ,j)=1T i,3 T. i,j * = E i,jsI jsj*si* = E isi(E jpj)5 * = 1. i 

    Next, if (i,j) (p,q) E E(G), then i j p or j j q. If 

i p, then T = T. T. .*Tp
,gTp q* = 0. On the other hand, if 

i = p and j q, then T = SiP.Si*SIPgTp ,q* SIP.PgTp,q* 0 

because PjPq = 0. Finally, by the definition of the adjoint 
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graph and Lemma 2.5 we have 

          £(i
,j)A*((p,q),(i,j))Ti1iTi1i 
          ~A(
q,j)=1A*((p,q),(q,j))SgPjSq* 
           ~j T

q,.Sq* Sq(zj P.)Sq* _ Pq. 
Since T p ,q *T p,q = P q S p *S p P q = P q , it follows that {T. .; 
A(i,j) = 1} satisfies the condition (A). 

    After C32J, we say that a category D(G) is the free cate-

gory of a digraph G if D(G) is a category whose morphisms 

consist of all paths in G and whose objects consist of V(G). 

Let s(g) be the source of g E D(G) and t(g) the target 

of g. Let 12(D(G)) be the Hilbert space of all square 

summable sequences on D(G) with the orthonormal basis {ed ; 

d E D(G)}, where ed(g) = 6d 
g for g E D(G). For each i E V(G) 

let Hi be the subspace of 12(D(G)) spanned by {ed ; d E 

D(G), s(d) = i}. Now we shall define the left regular repre-

sentation u of D(G) on 12(D(G)). For each g E D(G) , a 

partial isometry ug on 12(D(G)) is defined by ugeh =egh 

if s(g) = t(h) and ugeh = 0 if not. Let C*r(G) denote 

the C*-algebra generated by fu 
g; g E D(G)}. Since ug*uh= ek 

if h = gk for some k and u
g*eh = 0 if not, every Hi is 

invariant under C* r (G). So, putting p i (a) = aIH i for a e 
C*r(G) and i e V(G), then pi is a representation of C*r(G) 
on Hi and ® ieV(G)pi is the identity representation of 

C* (G) on 1 (D(g)). 

     Theorem 2.8. The representation p. i is irreducible for 
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C*r(G) and pi(C*r(G)) contains the compacts K(Hi). Further-

more, if G satisfies the condition (I), then 

          0 -' K(Hi) -> Pi(C*r(G)) --* 0G -; 0 

is exact. 

    Proof. By the definition of u
g, we have ug*ugeh = eh 

if s(g) = t(h) and ug*ugeh = 0 if not, and ugug*eb = eb 

if b = gh for some h and ugug*eb = 0 if not. Therefore 

ug*ug (resp. ugug*) is the projection on Ceh; s(g) = t(h)J 

(resp. Cegh; h E D(G)J), where (MI denotes the subspace 

spanned by M. Since P = 1 - E tE E(G) utut* is the pro-

jection on Lea; j E V(G)J, it follows that pi(P) is the pro-

jection CeiI for every i E V(G). 

    To show the irreducibility of Pi, we shall prove that 

pi(C*r(G))x is dense in H for all non-zero x E Hi. Let 

x Es(b) =ix(b)eb E Hi. Then there is g c D(G) such that 

s(g) = i and x(g) ~ 0. Since u
g*x = E x(gh)eh where E is 

taken over h such that s(h) = i and s(g) = t(h), we have 

Pu
g*x = x(gi)ei = x(g)e1 0. Moreover, if k e D(G) and s(k) 

  i, then 

    pi(uk)pi(P)pi(uk)*x = ukPuk*x = x(g)ukei= x(g)ek' 

Hence it follows that pi is irreducible on Hi. Since pi(P) 

is rank one, pi(C*r(G)) contains K(H.). 

    Let IT be the quotient map of B(Hi) onto Q(Hi). It is 

clear that Trpi(C*
r(G)) is generated by partial isometries 

{T 
g; g E E(G)}, where Tg = Trpi(ug). So we shall show that 

C*(T
g; g e E(G)) is the C*-algebra 0G*. Since pi(P) is 
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rank one, we have E T
gTg* = 1. Furthermore pi(ug)*pi(ug) 

(resp. P (ug)pi(ug)*) is the projection on Leh; s(g) = t(h), 

s(h) = i] (resp. Ce ; k = gh for some h e D(G) with s(h) _ 

i]). It follows that Tg*T
g = EhEE(G)A*(g,h)ThTh*, where A* 

is the adjacency matrix of G*. Hence it implies that C*(Tg; 

g E E(G)) = OG*, so that pi(C*r(G))/K(Hi) = 0G by the pre-

ceding theorem.

     11-4. Applications to automorphisms on OA. 

     In the first chapter, we have discussed a representation 

of the unitary group U(n) into the outer automorphisms on On. 

Unfortunately, for general OA= C*(T1, ... , T 
n ) there are 

unitaries u such that au (T i) = E kuk.Tk cannot be extended 

to automorphisms on OA. For example, if A = (i 0 ), then au 
can be extended to an automorphism on Op if and only if u 

is diagonal. As applications of extensions in 11-2, we shall 

characterize unitary matrices such that a 
u can be extended to 

automorphisms on OA. 

     Let H be an n-dimensional Hilbert space with an ortho-

normal basis fe.}. For each u E U(n), let us put U
o= 1 on 

Ho = H, Um = xm u on Hm = x m H for m z 1, and F(u) _ 

Em + Um on the full Fock space F(H). Then F(u) is unitary. 

Evans and Katayama showed that F(u) implements an auto-

morphism a u on PA = C*(o(ei); 1 s i sn) such that 

         a u(o(ei)) = F(u)o(ei)F(u)* Ek ukio(ek). 

First of all, we shall consider a condition on u E U(n) such 
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that the sub-Fock space LA associated with A reduces F(u). 

    Lemma 2.9. Let A = (A(i,j)) be an n x n matrix and u 

_ (uij) E U(n) such that A(i,j) = 0 and A(k,m) = 1 imply 

ukiumj = 0 for all i,j,k,m. Then the sub-Fock space LA 

associated with A is reducing for F(u). 

    Proof. It is obvious that UoMo = Uo{O}= {0} and U1 M1 = 

U1{0}= {0}. If ei OD ej E M2, i.e., A(i,j) = 0, then 

    U2(ei 0 e.) = (u a u)(ei ® ei ) = (E kukiek) 0 (E mumjem) 

       EA(k
,m)=0 ukiumjek em + E A(k,m)_lukiumjek o em 

      EA(k
,m)=0 ukiumjek em E M2 

by the assumption. Similarly we have UmMm c Mm for m z 3. 

     Theorem 2.10. Let OA = C*(T1, ... ) Tn). Then the follow-

ing statements are equivalent for u e U(n); 

    (1) au(Ti) = Ek u ki i can be extended to an automorphism 

on OA, 

    (2) (1 - A(i,j))A(k,m)ukiumj = 0 for all i,j,k,m, and 

    (3) A(i,j) = 0 and A(k,m) = 1 imply ukiumj = 0 for 

all i,j,k,m. 

    Proof. It is clear that (2) and (3) are equivalent by 

noting the case that A(i,j) = 0 and A(k,m) = 1. Suppose 

that (1) is hold. If A(i,j) = 0, then TiT. = 0, so that 

    0 = au (TiT.) = au(Ti)au(T.) _ (E k ukiTk)(Z m umjTm) 

         Ek
,mukiumjTkTm EA(k,m)=lukiumjTkTm' 
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Since {TkTm; A(k,m) = 1} is linearly independent, we have 

ukiu mj = 0 if A(k,m) = 1, which implies (3). 

     Conversely, suppose that u satisfies (3). By Lemma 2.9, 

a unitary F(u)IL & implements an automorphism y u on PA. 

For generators S 
i = Po(ei)ILA of PA where P = PLAY we have 

    Yu(Si) = F(u)SiF(u)*ILA = F(u)Po(ei)PF(u)*ILA 

           =PF(u)o(ei)F(u)* ILA = P E kukio(ek)IL A 

            = EkukiSk, 

Since YU(K(LA)) = K(LA), Yu induces an automorphism a u on 

such that au(u(X) ) = Tr(y u(X)) for X E PA by Theorem 2.8, 

where ii is the quotient map of PA onto OA and Ti = 1i(Si 

Moreover we have 

    au(Ti) = au(1(Si)) _ Tr(yu(Si)) = Tr( E kukisk) = E kukiTk' 

     Corollary 2.11. Let OA = C*(Ti; 1 <_ i <_ n). Then OA = 

On if and only if a u can be extended to an automorphism on 

OA for all u e U(n). 

    Proof. Suppose that a
u can be extended to an auto-

morphism on OA for all u e U(n). Then (2) in Theorem 2.10 

holds true for all u E U(n). For n 2 3, let q be the 

matrix whose entries are 1/n, and r = 2q - 1. Then we have 

         (1 - A(i,j))A(k,m) = 0 

for 1 < i,j,k,m <_ n. Since A(k,m) = 1 for some k and m, 

it follows that 1 - A(i,j) = 0 for all i and j, so that 

OA = On. If n = 2, then we consider r = (1 1)/-,/2. 

     Incidentally, we shall discuss outerness of automorphisms 
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on 0A. So we introduce a notion on vertices of digraphs. 

Vertices i and j of a digraph G are equivalent if A(i,k) 

= A(j,k) and A(k,i) = A(k,j) for all k e V(G). Typical 

examples are as follows; 

               1 \1< 

    4~ '-~ 3 4~ 3 
          "2 / "2~ 

Then 1 and 2 are equivalent. 

    Corollary 2.12. Let G be a digraph with n vertices 

such that 1, ... , m are equivalent. If u = (uij) is a 

unitary matrix such that. uij = 6ij for m+l <_ i,j n, then a 

can be extended to an automorphism on 0A. Furthermore, if G 

is strongly connected , then a u is outer except u = 1. 

    Proof. It suffices to show that A(i,j) = 1 or A(k,p) _ 

0 if ukiupj = 0. Note that k = i or 1 < k,i <- m if uki 

A 0. So we must consider the following four cases; (i) k = i 

and p = j, (ii) k = i and 1 <_ p, j <_ m, (iii) p = j and 

1 <_ k, i <_ m, and (iv) 1 <_ k, i < m and 1 < p, j < m. 

    (i) implies that A(i,j) = A(k,p). (ii) implies that 

A(k,p) = A(i,p) and A(i,p) = A(i,j) by the equivalence of p 

and j. Similarly (iii) implies that A(i,j) = A(k,p). Final-

ly.(iv) implies that A(k,p) = A(k,j) = A( .i,j). Hence we have 

A(i,j) = A(k,p) for all cases, so that A(i,j) = 1 or A(k,p) 

 0. 
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    Suppose 

is outer, we 

follows from 

a loop. If 

such that i 

<- q-1. (See 

for m+l <- j

that G is strongly connected. To prove that a u 

 may assume that u is diagonal and u11 ¢ 1. It 

 129; Remark in §31 that a 
u is outer if 1 has 

 1 has no loop, then 1 has a q-cycle {(ik -l,ik)} 

k¢ i p for k j p and m+1 < ik <_ n for 2 s k 

the above examples.) Since u11 # 1 and u.. = 1 
                                           JJ 

 <- n, it follows that a is outer. 
u
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Chapter III K-theory for OA

     III-1. Prologue. 

    Cuntz and Krieger proved that the weak extension group 

ExtwOA is isomorphic to Zn/(1 - A) Zn, the Bowen-Franks in-

variant for a subshift aA. And Cuntz [141 showed that Ko(0A) 

is isomorphic to Zn/(1 - tA)Zn. In addition, it is known that 

K0(B) is realized as Bp/z for any unital purely infinite 

simple C*-algebra B, where = is the von Neumann equivalence 

among the non-zero projections Bp in B, so that we identify 

the corresponding class in K0-group with the von Neumann equi-

valence class IPI= of P e Bp. Moreover Op is unital, 

purely infinite and simple for irreducible A. We here remark 

that A is irreducible if and only if the corresponding di-

graph G of A is strongly connected, i.e., for any vertices 

i J j of G there are paths P(i,j) and P(j,i). 

    Now we shall introduce a new invariant for unital C*-alge-

bras: Let B be a C*-algebra with unit 1. Then Ell stands 

for the corresponding class in K0(B) for 1. For g,hE K0(B) 

we write g - h if g a(h) for some automorphism a of 

K0(B). Putting K0(B) = K0(B)/- , the marker of B is the 

equivalence' class 1[11[ of 112. In particular, since K0(B) 

is _identified with Bp/= for a unital purely infinite simple 

C*-algebra B, we have mark(B) = Q1I4~ . 

    The following theorem is evident but very important: 
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    Theorem 3.1. If B and C are unital C*-algebras which 

are isomorphic, then K0(B) = K0(C) and mark(B) = mark(C). 

    Here we show simple examples to apply Theorem 1.1. 

                               1 1 1 t 
     Example 3.1.1. Let A = 1 1 1 and B = A, whose corre-              11 0 0 

sponding digraphs are as follows; 

           a •, 

        C 3 C,2 3 

It is easily seen that G and H are strongly connected and 

K0(0G) = K0(0H) = Z2 = (Z/2Z). Therefore K0(OG) = K0(OH) _ 
Z2 = {O, 1} . Since G and H are strongly connected, these 

C*-algebras are unital purely infinite and simple. If OG = 

C*(S1,S2,S3) and Pi = SiSi* for i = 1,2,3, then 

        [CP171 1 1 1 lip1I1 (lip 111 + ICP2I1 + 1IP31 

        QP21 = 1 1 1 1P2l = QP11 + TP21 + IP31 

        ItP3I 1 0 0 EP311 11P11 

so that Ill = TP111 1LP2I1 and (LP3I = lIP111. Hence 1111 must 

be a generator of Z2, that is, mark(OG) = 1 . On the other 

hand, we have mark(OH) = 0 . Actually Ill = [P1]! and IP11 

+ ICP21 = (LP21, so that Ill = [P11 is neutral in Ko(OH) . By 

Theorem 3.1, OG and OH are non-isomorphic. 

    Next we shall consider the case that Ko(B) = Z. 
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     Example 3.1.2. For each non-negative integer 

there is a Cuntz-Krieger algebra OG such that K
o 

and mark(OG) = n. 

    For n > 1, let A(n) be a matrix with degree 

                 1 1 1 1 
                 I 1 0 0 

                 1 0 1 1 1 
        A(n) = 0 1 0 1, ' . and A(O) = 1 

                     j .1 

                  

1 0 1 

Then K0(0G(n)) = Z and mark(0G( n)) = n for n >_

n c 

(0G)

Z ,

n+4 ;

1 

1 

0

0.

1 

0 

1i

Z

    111-2. Transfered graphs. 

    In order to classify simple Cuntz-Krieger algebras OA (for 

3 x 3 matrices A), we shall introduce transfered graphs of 

digraphs. First of all, we begin with the following simplest 

example:

S 2 S 

and

 Example 3. 

1*. Then 

  C*(T1,T2)

2.1. Let 

C*(T1,T2) 

 = C*(S1,s2

02 

is

  C*(S1,S2 

isomorphic 

as a set,

), T1 = 

 to OB, 

that is,

S1 and 

where B 

 02 = OB.

T2

(1 1 1) 
0

   The 

Let G 

stands

 above example 

be a digraph 

for the edge

 inspires 

and r_(i) 

(i,j).

us the following definition. 

{j E V(G) ; j----.-i} , where i-•j
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      Definition 3.2. Suppose that r-(k) = r-(m) for some k 

m e V(G). Then the transfered graph H = G(k -* m) from k to 

m is defined by V(H) = V(G) and E(H) _ (E(G) I\ {(m,i)e E(G); 

i cV(G)}) v {(m,k)}, that is, take away all edges whose targets 

are m and add the edge k m. 

    The adjacency matrix B of G(k -* m) is determined as 

_ follows: Let Ai be the i-th row vector of A. Then r -(k) 

r -(m) means Ak = Am. We then put 

                        A(i,j) for i m, 
              B(i,j) 

                            s k
,j for i = m. 

For the sake of convenience, we denote it by 

             A B. 

                  A'k- A m 

    So Example 3.2.1 is changed in the following form; 

    Example 3.2.2. 

          ~l r -* 2 Q -* 2 
            A (

1 1) A, - A2 B=(1 0 

     In general, we obtain that the transfered graph preserves 

isomorphisms between Cuntz-Krieger algebras. 

    Theorem 3.3. Let H = G(k -, m) be the transfered graph of 

a digraph G from k to m. Then 0H is isomorphic to 0G. 

    Proof. Let A and B be the adjacency matrices of G 

and H respectively, and 0A = CF(S1, .. , Sn). Since k ~ m 
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by definition, we assume that k = 2 and m = 1. Now we put 

Tl = S1S2* and Ti = Si for 2 <_ i <_ n. Since A1= A2 where 

Ai is the i-th row vector of A, we have S1*S1 = S2*S2 and so 

     T1T1* = S1S2*S2S1* = S1(Sl*S1)Sl* = S1S1*, 

so that T 
i T i * = SiSi* for 1 < i <_ n. Furthermore, since 

B(i,j) = A(i,j) for i 1 and B(1,j) = 62
.J, we have 

     T1*T1 = S2S1*S1S2* = S2S2*S2S2* = S2S2* = Ei 62
,JSJSj* 

            EJ B(l,j)SJSi = Ej B(l,j)TJTj*, 

and for 2 <_ i <_ n 

     Ti*Ti = Si* Si = Ei A(i,j)S.S.* = Ei B(i,j)T.T.*. 

Hence C*(Ti, ... , T n ) is isomorphic to the Cuntz-Krieger 

algebra OB. It is clear that C*(Ti,..., Tn) C C*(S1,..., Sn). 

On the other hand, since 

     T 1 T 2 = S1S2*S2 = S1S1*S1 = Si, 

we have C*(Sl, ... , S n ) = C*(Tl, ... , T n ) as a set. Since 

C*(Sl, ... , S 
n ) does not depend on the choice of generators, 

C*(T1, ... , T n ) is isomorphic to OB. 

    Next we shall generalize the above transfered graph of a 

digraph. 

     Definition 3.4. Let A be an n x n matrix, and Ei = 

(0,...,0,1,0,...,0) for 1 <_ i <_ n. Suppose that 

     A
p = Ek(l) + ... + Ek(r) + Am(1) + ... + Am(s) 

for. some k(1), ... , k(r), m(l), ... , m(s) which are mutual-

ly different and p {m(1), ... , m(s)}. Then an n x n 

matrix B is defined by 
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          (A(i,j) for i T p 

  B(i,j) = 1 for i= p and j e{k(1),..,k(r),m(1),..,m(s)} 

           10 otherwise, 

and B is called to be primitively transfered from A, in 

symbol, A pry B, or more precisely, 

(*) A B.                E
k(l) + ... + Ek(r) +A, (1) + ... + Am(S) -'AP 

    The primitive transformation '~ 
prim generates the 

following equivalence relation which is called the primitive 

equivalence; A 
prim B if and only if there are matrices C1, 

      C such that 
q 
     A<>C< ... C> 

          prim prim prim prim B, 
where C <> D means that C ~~ D or D ' > C. 

           prim prim prim 

     Example 3.2.3. 

        G2 +=0 3 C2 c -' I .-=3 

             \I 0 0~ A2+E3-•A1 10 0 0/ 

    Here we have a generarization of Theorem 3.3. 

    Theorem 3.5. If A is primitively equivalent to B, then 

0A is isomorphic to 0B. 

     Proof. We assume (*) and p = 1. Let 0
A = C*(S1,...,Sn), 

P 
i S i S i * and Q. = S i *S i . Then we put i 

       T
1 S1(Pk(1) + ... + Pk(r) + Sm(1)* + ... + Sm(s)*) 
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and T = S for i 1. Since 

        A 
1 = E k(l) + ... + E k(r) + A m(1) + ... + A m(s), 

it follows that 

       Ql Pk(l) + ... + Pk(r) + Qm(1) + ... + Qm(s). 

Then {Pk(i)' Qm(j)' 1 <- i <- r, 1 <_ j <_ s} is a family of 

orthogonal projections. Furthermore, since k(1), ... , k(r), 

m(l), ... ,m(s) are mutually different, a family {Pk(i),Pm(j) 

  1 < i <_ r, 1 <_ j <- s} is orthogonal. Hence we have 

       T1T1* = S1(S1*S1)S1, 

so that TiTi* = Pi for 1 <_ i <- n. On the other hand, 

      Ti*Ti= EjB(l,j)Pi = EjB(l,j)TiTj* 

and for i 1 

       Ti*Ti = Qi = E.A(i,j)Pj = EjB(i,j)TjTj*. 

Therefore C*(T1, ... T n ) is isomorphic to OB. It is clear 

that C*(T1, ... , Tn) C C*(S1, ... , Sn). Since 1 4 m(j) 

for 1 < j < s by definition, we have 

    T1(Tk(l)Tk(l)* + ... + Tk(r)Tk(r)* + Tm(1)+ . + Tm(s)) 

    = S1(Pk(l) + ... + Pk( r) + Qm(1) + ... + Qm(s)) 
    = S1(S1*S1) 

     = S1' 

so that C*(T1, ... , Tn) = C*(S1, ... , S n ) as a set. Hence 

it implies that OA is isomorphic to OB. Since OA does not 

depend on the choice of generators, OB does not depend on 

them either.
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    III-3. Classifications of OA. 

    Now we shall classify Cuntz-Krieger algebras OA for 3 x 3 

irreducible matrices A and pose a classification table 

expressed by the corresponding digraphs. 

    Theorem 3.6. Let A and B be 3 x 3 irreducible 

matrices. Then the followings are equivalent: 

    (1) OA is isomorphic to 0B, 

    (2) Ko(OA) = K (0B) and mark(OA) = mark(OB), and 

    (3) A is primitively equivalent to B. 

    Proof. By theorems 3.1 and 3.3, it suffices to show that 

(2) implies (3). By using a computer, we listed up all strong-

ly connected digraphs with 3 vertices satisfying the 

condition (I). (Note that A is irreducible if and only if 

the corresponding digraph G of A is strongly connected.) 

Then these digraphs are classified by K
o and marker of 0A, 

which are shown in the following classification table. The 

final step of the proof is to show that digraphs with the same 

Ko and marker in the table are primitively equivalent. This 

can be checked one by one.
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The classification table of r A for 3X3 irreducible matrices.

K0(CA) marker d i g r a p h representative

Cr`-J CY'-iD o Cr o

IA A 1 A
0 0 Cr '-O '--',D z

C.1

Z\

/d \1

A i~

03 0 At2

AAAA 03

723 k
cE - -~

04

724 2 I1 5 0 A12

71.207.2 0

a 0 k
Cr D
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The case that Ko(0G) = 0. 

              A(lII\1 o 1/ 
               C7 fiO 

           E,+A,-A, A,-A, j A,-A, A,+E,-A, 

      (01I\ 0 C?                                                     / /~ \? 0101/         I/1 \O (Oj00j iD             ) (I0/ CT 
            E,+Al-A, A,+A,--A, E1+A,-A, E,+A,-A, 

  (out j (°o°~ I'0')o~ j~iD               (101 
 ~~ ~                                                                            iD

A,=A, A,-A, A,-A, 

     Jp' 0 1 0,t 0 1 0` I0 1 0 '0 0 1 l   / 1 o 1 1/ j\ (00 1 11 0 11 ~~ 11 0 A I 
   C 11 0 1 l /+- 1 0 1 0 1 0 A,-+A, .-+. 0 1 l 0 

The case that Ko(0G) = Z2 and mark(OG) = 0, 

                           - \
.~ 1, 0~ 

                                                      

.~ _    I ~ 1 1 1 0 A3-A2 11 0 A,+A,-A,.~. I I 0 A,•-A,  - LS 
           A,-'A, A, A, 

       1 11 ol ('0 ~ ol   (H) 0       1 0~~ 0 1 0I 

The case that Ko(OG) = Z2 and mark(0G) = 1, 

      

1 I I AAA, 1010) A (1001 A 000~ 
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    The case that Ko(OG) = Z3 and mark(OG) = 1. 

                            it 01 1                      ~11 0 A,-A, 1 1 0 

    The case that K0(OG) = Z and mark(OG) = 0. 

           x(110) I11a~                                  /r l0 
                                       0 1 1 A,+E,-A,, _, O 1 l 

             J 1            CT 

This completes the proof except to determine the representa-

tives, which will be done in the following sections 4and 5. 

      Remark. In the first chapter, we have discussed fixed 

point algebras of periodic automorphisms on 0n and determined, 

the one of the 'flip-flop' automorphism e on 02 considered 

by Archbold. Now the fixed point algebra C*(S1,S22,S2S1S2*) 

of e is the Cuntz-Krieger algebra OA such that A(3,1) = 0 

and A(i,j) = 1 for otherwise i,j. Therefore it follows 

from the classification table that K
o(OA) = 0. On the other 

hand, it is known that the fixed point algebra of 02 under 

a -1 is isomorphic to 04, so that Z3 is its Ko-group. 

Hence they are not conjugate. 
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      III-4. Tensor products of 0A by matrix algebras. 

Paschke and Salinas 138] studies the tensor product of 0n by 

the matrix algebra Mk, and proved that 0n and 0n ® Mk are 

non-isomorphic if k and n - 1 are relatively prime. In 

this section, we shall investigate transferences of markers 

under the tensor product by Mk. Let us define k-x by (kx) 

for x e K0(B) and an integer k. (Since kx = x + ... + x 

(k times), k-x does not depend on representatives of x-, 

that is, k•x- is well-defined.) 

     Theorem 3.7. For a unital C*-algebra B, mark(B a Mk) _ 

k.mark(B). 

    Proof. Note that Mk 0 K(H) = K(Z i ® Hi) is spatially 
isomorphic to K(H) by an isomorphism 0-1, where Hi = H . 

Let e be a one-dimensional projection in K(H). Then O(e) 

is one-dimensional, so that we may assume that t(e) = e ® 0 

     ® 0 . Since 

    IC1 (1 ® e l) o ell= = Ill ® (e e ... ® e)I(= 

            = Q1 a (e®0® ... ®0)I= + ... + 111 ® (O® ... 60®e]I= 

           = k•ll € t(e)I1= = k•IC1 0 ell=, 

we have mark(B ® Mk) = k.mark(B). 

     Corollary 3.8. If K0(B) = Zn and mark(B) = I , then 

mark(B ® Mk) = k for 2 < n < where Zm = Z. 

     Corollary 3.9. (Paschke-Salinas) If k and n-1 are not 
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relatively prime, then On 0 Mk and On are non-isomorphic. 

    Proof. It is known that K0(On) = Zn-1 and the equivalence 

class of 1 is a generator of K
0(0n), 115; 3.71. Note that 

k is a generator of Zm if and only if a(l) = k for some a 

E Aut Zm, i.e., 1 = k . Hence we have mark(On) = 1 . Sup-

pose that On a Mk is isomorphic to 0n. Since 

        k = mark(O n 0 Mk) = mark(0n) = 1 

k is a generator of Zn-1. Therefore there is an integer j 

such that jk = 1 mod n-i. Furthermore, since jk + a(n-1) _ 

1 for some a E Z, k and n - 1 are relatively prime. 

    Remark. We point out that OA (a Mk is also a Cuntz-

Krieger algebra. Actually, since OA 0 Mk is generated by 

         Si (0 

         IPi l                                                    1 < i < n } , 

                                      P 01 

i we have 

                0 A 

          B = i . 

                       1 0 J 
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     As another application, we consider the inclusion among 

Cuntz algebras 0 n. 

    Theorem 3.10. 0 m is included in 0 n containing the unit 

if and only if m = n + (n - 1)k for some integer k > 0. 

    Proof. Assume that 0 includes 0 . Then it follows                              n m 

from r_13; Remark 71 that m < n. Furthermore, we have nIll = 

[1l = mill in K0(0n) so that (m - n)1C11f is the neutral 

element in Ko(0n) = Zn-1 Then m - n = k(n - 1) for some 

k. We prove the converse by induction. Let O
n = C*(Sl, ... , 

Sn). The case k = 0 is trivial. If m = n + (n - 1), then 

we put i= S1Sj for j = 1, ... , n and so C*(Tj, Sk; 1 < j 

< n, 2 < k < n) is isomorphic to 0
m. Next, if m = n + 2(n-1) 

then we put Ui = T1Si for i = 1, ... , n and also C*(Ui, 

T., S k ; 1 < i < n, 2 < j,k < n) is isomorphic to Om. We can 

construct C*-algebras isomorphic to Om in such a way. 

    111-5. Explosions of digraphs. 

    The adjoint graph G* of a digraph G is defined to be a 

digraph whose vertices u1, ... , u m represent the edges 

of G and which has an edge ui-uu if i2 = ill where ui = 

(il,i2) and uj= (ji,j2). We shall generalize the adjoint of 

a digraph in order to determine completely the repesentatives 

in the preceding classification of OA. This process will be 

called explosion. 
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      Definition 3.11. Let G be a digraph. Suppose that the 

number of r (i) is greater than 2 for some i E V(G). (For 

simplicity, assume that i = 1.) Decompose r -(l) = V U W 

such that 1 E V if 1 E r (1). Then the explosion H of G 

at 1 (with respect to V and W) is defined as follows; 

    V(H) =(V(G) \ {l}) u {v 0'WO}, and 

    E(H) = (E(G) \ {(l,j),(k,l); j,k EV(G) }) 

               U{(v0,V),(W0 W); V EV \{1}, W EW} 

              U{(i,v0),(i,w0); (i,l) E E(G)I, 

and if 1 E r-(1), {(v o,v0),(vo,w0)} is added to the set on 

the right hand side. This operation is called as explosion, 

and every digraph obtained by repeating explosions is called an 

explosion of G. 

     Example 3.5.1. Let G be a digraph; 

            lr 2 "4 

 ~3 

1 Then the explosion H of G at 1 is the following; 

2 

4 

         1"F-- 3 

Moreover, it is easily seen that the explosion of H at 3 is 

the adjoint G* of G. 
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    More generally, it is obvious that the adjoint of a digraph 

G is an explosion of G, and the adjoint operation multiplies 

the number of vertices. 

    Now, by using explosions, we can increase the number of 

vertices by one. As an application, the classification 

problem of 0A for n x n matrices A is included in one of 

0B for (n+1) x (n+l) matrices B by the following theorem, 

whose idea is the same as Theorem 2.7.

    Theorem 

graph G,

 3.12. If a 

then 0H is

digraph H is an explosion of a di-

isomorphic to 0G.

     Proof. We may assume that H is the explosion of G at 

1 and r (1) = V U W such as 1 E V if 1 E r ( 1) . Let OG 

= C*(S., ... . S
n), Pi = S i S i * and PY _ z. Pi. Then, if 

we put T V = 5 1 PV, T W = S 1 P W and T k = S k for 2 <_ k <- n, 

then we have 

    TVTV* + TWTW* = S1(PV + PW)S1* = S1(S1*S1)S1* = P1, 

so that 

    TVTV* + TWTW* + Ekn2TkTk* = Ek Pk. 

Furthermore, since TV*TV = PV and TW*TW = PWI the family of 

partial isometries TV, TW, T2, ... , Tn satisfies the 

condition (A). Hence the C*-algebra generated by them is the 

Cuntz-Krieger algebra 0H and is included in 0G. Since S1= 

TV + TW, it coincides with 0G, so that 0H is isomorphic to 

0G.

- 50 -



    The following corollary shows that there are many Cuntz-

Krieger algebras isomorphic to 02. 

    Corollary 3.13. If C(n) = 1 1 is of 
                                 1 0 

                                          1 0 

degree n, then 0C(n) is isomorphic to 02. 

    Proof. The case of n = 2 is Example 3.1.1. Consider the 

adjoint graph of C(n) and its transfered graph inductively; 

                     2 2 

1 
                              Al-'A2 ~         ~1 G1 3 3 

           C(2)* C(3) 

Theorems 3.12 and 3.3 implies that 0C(
n) is isomorphic to 02 

    Concluding this section, we shall complete the representa-

tives in the table by applying Theorems 3.3 and 3.11. The 

above corollary proves the case that Ko(OA) = 0. Next we 

shall prove the case that Ko(OA) = Z2 and mark(OA) = 0 . 

Let 03 = C*(S1, S2, S3). Then 03 ® Mk is generated by 

    0~ (
02 0 0] 1 C0 03, and 11 00 / 1 t 1 0  (01 0 

                                                      1 1 1 0 
so that 03 ® M2 is isomorphic to 0B, where B = 0 0 0 1 

                                                        1 1 1 0 
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We have 1 I 1 0 
                                 1 0 0 0 
  B C ~D = 0 0 0 1 

        B1-+ B4 C1-~ C2 1 0 0 0 

On the other hand, D is the explosion of G at 2, where 

                             1 1 0 
               G; , 1 1 0 1 
                   t- 1 0 0 

    In the case that Ko(OA) = Z3 and mark(OA) = 1 , if A 

is the 4 x 4 matrix whose entries are 1, i.e., OA = 04, 

then 

  A B C > D ~~ E, 

          A1-+A2 B1-a B3 C,----- C4 D4---- ~ D3 

and moreover E is the explosion of H at 3, where 

                o 1 1 1 
         H ; ~f 1 0 0 . 

                      -• 1 1 0 

    Finally, the case that Ko(OA) = Z4 and mark(OA) = 2 is 

stated in 117].

    111-6. Shift equivalence and determinant. 

    A matrix A is strongly shift equivalent to a matrix B 

if there are matrices R and S such that A = RS and B = 

SR, cf. 137]. If A and B are strongly shift equivalent, 

then OA and OB are stably isomorphic 117]. While we have 

the following example by the classification table: There are 

strongly shift equivalent matrices A and B such that 0 A 
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is not isomorphic to 0B. As a matter of fact, let A = RS 

and B = SR where 

         1 0 0 0 0 1).         R=C100I and S=(100 0 1 1 0 1 1
Then Ko(OA) = K0(0B) = Z2. On the other hand, since mark(OA) 

  1 and mark(O5) = 0 , OA is not isomorphic to OB. 

     The following theorem shows that, under an additional as-

sumption, OA and OB are isomorphic for strongly shift 

equivalent matrices A and B. 

     Theorem 3.14. Let R and S be matrices such that 

 E R(i,j) = 1 for all j, and RS and SR satisfy the 

condition (I). Then 0RS and 0SR are isomorphic. 

    Proof. Let R (resp. S) be an n x m (resp. m x n) matrix 

and put A = RS and B = SR. Let Hj(j = 1, ... , m) and Ki 

(i = 1, ... , n) be infinite dimensional Hilbert spaces, and 

Pi (resp. Qi) the projection of H = E ® Hi (resp. K = E e Ki) 

onto Hi (resp. Ki). Take partial isometries Ui and Vi of 

K into H such that 

(*) UiUi* = Qi, Ui* Ui= EjR(i,j)Pj, and 

(**) ViVj* = Pj, Vj* Vj= EkS(j,k)Qk. 

And let C (resp. D) be the C*-algebra generated by {UiVj; 

1 < i < n, 1 < j < m} (resp. IVjUi; 1 <_ i < n, 1 < j < m}). 

Then we shall prove that C (resp. D) is isomorphic to OA 

(resp. OB) and C is isomorhic to D. 
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    If we put Ti = Ui( E j Vj) , then TiTi* = Qi and 

       Ti*Ti= E.R(i,j)(E.Vj)*Pj( EjVi = EjR(i,j)Vi*Vi 

            = Ek( EjR(i,j)S(j,k))Qk = E kA(i,k)Qk 

for all i. Hence it implies that the C*-algebra C*(Ti; 1 <_ i 

< n) is isomorphic to 0A. On the other hand, since Vi*Vi = 

E kS(j,k)Qk = E kS(j,k)TkTk* and TiVj*Vj= R(i,j)UiV., we 

have C = C*(Ti; 1 < i < n) as a set, so that C is iso-

morphic to OA. Similarly D is isomorphic to OB. 

    By the assumption of R and (*), W = E iUi is an isometry 

from H onto K. Since 

   (W*U.Vi W)(W*UiV.W)* = R(i,j)PP and W*UiV.W(Ui*Ui) VjUi 

by (*) and (**), we have 

   C*(W*UiVjW; 1< i <n, 1< j <m) = C*(VjUi; 1< i< n, 1 < j< m) 

as a set. Therefore C and D are isomorphic. 

    Next we shall discuss an topological invatiant det(l - A). 

It is known that, identifying a digraph with its adjacency 

matrix as usual, for a digraph G, 

          det(x - G*) = xkdet(x - G), 

where k = V(G*)- - V(G)- and M= is the cardinal number of 

M. A key of a proof is to find matrices A and B such that 

G* = AB and G = BA. Inspired by this, we shall reformulate 

explosions of digraphs. Here a matrix A is represented by 

(aij). 

    Definition 3.15. Let G = (aij) be an n x n matrix (di-

graph) with r -(i)= ? 2. Then a digraph H is the'explosion 
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of G at 1 (with respect to V1 and V2) if H = G 0 E 0 

such that G0(resp. E0) is an (n+l) x n (resp. n x (n+1)) 

matrix expressed by 

                                p q 2....••n 1 2.....n 

           1 1 1                                                                        p all Qp2 .. .. apn 
                   2 1, q 0 aq2. ...aqn 

        Eo = and Go = 2 a2.. . . . . . a2,, 

                n 1                                                                                              It a„I...... an*" 

               1 if j e V1, 1 if j e V2, 
where a and a         pi - {0 if not, qj 0 if not. 

     Lemma 3.16. Definitions 3.11 and 3.15 are identical. 

Moreover, if notation is as in above, then E = E0G0. 

     Proof. We represent the original explosion of G as its 

adjacency matrix; 

                                              p q 2.......n 

                             p (all all ape ...... apn 

                              q 0 0 ag2.. . . . .aqn 

                H = 2 a21. ..a2,, 

                                                 .. anI. . . . . . . . . ..ann 

Thus elementary calculations lead us the conclusion. 

     The lemma gives us another proof of Theorem 3.11 by joining 

Theorem 3.14. 

     By the way, it is proved that Idet(l - A)l is a stable 
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invariant for 0A. And Cuntz conjectures 

a stable invariant for 0A. Now we have 

on det(l - A). 

    Theorem 3.17. If H is an explosion 

          det(x - H) = x det(x - G), 

and so det(1 - H) = det(1 - G). 

    Proof. Since V(H)= = V(G)= + 1, the 

from the preceding lemma. 

    Theorem 3.18. If H is a transfered 

det(l - H) = det(l - G). 

    Proof. Suppose that G 
                             EK+AM - Al 

and A = ss A. Since A = E + A      M 
J= l m(j) 1 K 

the definition of transfered graphs that 

      det(1 - G)                            ((E,\ - fE.,+A„)l= det 

= det

E1 

E2 

E n 

E1 

E2 

E n

EK+A M 

  A2 

A n 

/E

K+EI4 

  A2 

A n 
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ve the following results 

ion of a digraph G, then 

the statement follows 

red graph of G, then 

   H, where E = E r E 
Al K i=1 k(i) 
+ AM, it follows from 

at 

   = det E1-EK-EM 

           E2-A2 

            E -A            n n 

   = det(l - H).



     III-7. Weak extension groups of OA. 

     Let Q(H) be the Calkin algebra on an infinite dimensional 

separable Hilbert space H and 7 the quotient map of B(H) 

onto Q(H). For a separable unital C*-algebra B, let ext(B) 

be the set of all unital *-monomorphisms (extensions) of B 

into Q(H). Extensions T and a are weakly equivalent if 

there is a unitary u e Q(H) such that i(x) = u a(x)u* for 

all x e B. Let Ext (B) denote the set of all weak equiva-

lence classes in ext(B), which is called the weak extension 

group of B. Cuntz and Krieger determined the weak extension 

group of OA by the Bowen-Franks invariant Zn/(1 - A)Zn. 

     In this section, we shall prove that any finitely generated 

abelian group is represented by the weak extension group of a 

simple Cuntz-Krieger algebra. 

     Theorem 3.19. Let H be a finitely generated abelian 

group. Then there is a simple Cuntz-Kreiger algebra OA such 

that Extw0A = H. 

    Now it is known that every finitely generated abelian group 

H is represented; 

           H = Z e ... ® Z ® Z
n(1) ® ... ® Zn(m), 

where Zn Z/nZ. So we shall devide into several cases. In 

the beginning, we shall consider the simple case H = Z , which 

is.a key in the proof. It is known that Extw0
n+1 Zn' 

However, we shall pose another Cuntz-Krieger algebras OA 

with the same property. We omit often 0 entries of matrices 
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in the below. 

    Lemma 3.20. Let G(n) be the digraph whose (adjacency) 

matrix is of degree n+l and expressed by 

                       0 0 1 
1 

                               0 •                                                         • 
1 1 

Then ExtwO G(n) = Zn for n Z 1. Particularly, Extw0G(l) is 

trivial. 

    Proof. Since G(n) has an (n+l)-cycle and the vertex n+l 

has a loop, G(n) satisfies the condition (I) and is strongly 

connected. It implies that 0G( n) is simple. We have also 

         1 (1 - G(n)) 1 1 = 1 
2 

                                                 n 1 
           1 1 1 -n 

By the Elementarteilersatz [42; §1187, it follows that 

         Zn+1/(l - G(n) )Zn+l = Zn, 

so that Extw0G(n) = Zn. 

     Next we shall consider the case H = Z ® ... ® Z e Z . n 

    Lemma 3.21. Let G(k!n) be the digraph whose matrix is of 

degree k+n+l and expressed by 
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                       1. 1 0 

               1 i 0 
                                                  1....1 

                     - G(n) 

                                                  0••••0 

Then Extw0G(k1 m) = Z ® ... ® Z ® Zn, where Z ® ... ® Z is k-

copies of Z. Particularly, ExtwOG(kll) = Z ® ... ® Z. 

    Proof. Since A(i,k+n) = 1 for 1 < i S k, A(k+n,j) = 1 

for 1 <- j <_ k and the strongly connected digraph G(n) satis-

fies the condition (I), G(kln) satisfies the condition (I) 

and is strongly connected. So 0G(kln) is simple. Moreover 

we have 

         1 -1 (G(kIn)-1) 1. - 0 0 

                 1 -1 
            1 -

                       1 -1• ••-I 1 0 G(n)-1 
k 

By Lemma 3.20, it implies that Extw0G(kln) = Z ® ... ® Z ® Zn. 

    For the case H = Zm ® Z n, we shall apply Lemma 3.20 again. 

    Lemma 3.22. Let G(m,n) be the digraph which is expressed 

as follows. Then ExtwOG(m ,n) = Zm ® Zn' 
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1 

         G(m) 1 
0 
1 

1 

                      G(n) 
1 
0 

    Proof. Since A(m+l, 

fies (I) and is strongly 

by similar calculations, e 

      (G(m,n)-1) 1 1 

I 

                                       -1 •1 

It follows from Lemma 3.20 tha 

    Here we shall remark that 

define G(p,m,n) analogously. 

3.22. Let G(kim,n) be the c 

1 

                                                                                                        •1 

                                                                  I....I 

                           G( 

                                                          0•• -0

m+2) = 1 

connected 

w have

 A(m+2,m+1), G(m, 

  so that 0 
G(m,n)

n) 

 is

 1• G(
m) -1 

      1 -I 
1 

          1 G(n) -I 

that Extw0 G(m
,n) Zm ® Zn' 

at Extw0G(
p,m,n) Zp® Zm® 

ly. Now let us join Lemmas 

e digraph expressed by 

   1 0 1 

   1 0 1 
I 

 G(m) 1 
0 
1 

1 

        G(n) 
I 
0 
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simple
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we 
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Then we have

(G(klm,n)-1) 1

1

1

           

I 0 

           1 0 

1..... 

         G(m) - 1 

I.....1 

0 0

1 

1 

-1 .1

I

1

1

 -1 

1 -1 

1

                  \ G(n)-1 / 

On the other hand, G(klm,n) satisfies (I) 

connected by A(k,k+m) = 1 = A(k+m,k). So 

Lemma 3.21 that Extw0G(kl
m,n) - Z e .. . 

it is easily seen that there is a strongly 

= G(kfn(l),n(2), ... ,n(m)) such that Ext 

Z
n(1) e ... ® Zn(m), which completes the proof of 

     Finally we shall discuss the periodicity of 

groups of Cuntz-Krieger algebras associated with 

We consider the following example associated with 

PPRW reflecting at both boundaries, cf. [357. 

     Example 3.7.1. Let A(n) (n > 2) be the 
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 and is strongly 

it follows from 

Z ® Zm a Zn. Thus 

connected digraph G 

wO
G = Z e ... ® Z E) 

        Theorem 3.19.

weak extension 

random walks. 

 a random walk

digraph;



             t 2 f ... n -1 _ 0.    GI -

Then Extw0A(
n) = Z for n = 3m and 0 for 

     In fact, it is proved that Extw0B( n+l) _ 

ExtwO3(n -2) , where B(n) is the digraph; 

        1 2 

Since A(n) (resp. B(n)) is expressed by 

                 1 1. (resp. 0 I 
                             1. 0• 1. •. ._ 

                     0 I 0 1 
                      1 ] 1 1 

we have 

          1 (B(n+1)-1) 1 1 = -1 

                                            A(n)-1 

                          1 .1 

Therefore Extw0B(
n+l) = ExtwOA(n)• 

      Next, if we put

then

 I = 1 n 
        0• 
        -i 

we have 

 In(A(n)-1)J

1

n

and J = n

1

-1

I 

1•

-1 1 

1 

      1 0 
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I

1 -1

I

1

otherwise. 

 ExtwOA(n)

),

1 

  1 1

B(n-2) - 1

i



so that Extw0
A(n) = Extw0B(n-2)* 

     Next we shall replace the edges of a polygon by directed 

edges - , which is associated with a random walk CRW on a 

circle, cf. C331. 

     Example 3.7.2. Let C(n) (n ?3) be the digraph; 

        1- 2 - - k 

           T1 11 
                n ~ n-1 k+l 

It is somewhat surprising that Extw0 C(
n) is periodic with 

period 6: The weak extension group of 0 C(3) (resp. 0 C(4)' 

  0C(8)) is Z2 ® Z2 (resp. Z3, 0, Z ® Z, 0, Z3). 

     Note that C(n) = 0 1 1 

                                           1 '. 

                                           1 •1 •0 

Let us put 
                                                                  n-i 

        BO = 1;...1 (A - 1), Ji 

              1 1 1 

and Bi+l = B i J i for 1 < i 5 n-3. If we put bi(k)= B1(k,i) 

and ci(k)= Bi(k,n-i) for k = 1,2 and 1 S i S n-3, then 

B. (k,n-(i+1)) = ci(k)- bi(k)+ 1 and bi+1(k)- C4 (k). Hence  1+1 

we have 

(B) bi+2(k) bi+l(k)- bi(k) + 1 

for k = 1,2 and 1 <- i <_ n-4. Furthermore, since we have 
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                                (1) 

                              b„_3(2) 0 bn -2(1) 

                         1 1 0 

                                                         -1. 

                                                                             ' -1 

it follows that 

       B = n -2 B n-3 J n-3 = bn-2(1) bn_2(1)-bn-3(1)+1 

-

                                     bn-2(2) bn-2(2)-brt_3(2) 
                                                    -1 

so that ExtwOC(n) depends only on the matrix 

                        b11-2(l) bn-2(1) -bn_3(1) + 1 

                        bn-2(2) b,, _2(2) -bn_3(2) 

     On the other hand, if di+l di di -1' 

       di _ di -1 - di-2 - (di-2 di-3) - di-2 

             -d 
i-4 + di-5 - - (di-5 di-6) + di 

so that do is of period 6. Since di = 

that di+1 - di di -1 by (B), {bn} is of 

is Extw0C(n). In addition, since b1(1) = b 

and b2(2) = 2, the equation (B) implies the co 

     Finally we shall give an example of 

S(n) such that ExtwOs(n) is not period                                        periodic. 

edges of an n-simplex o(n) (n > 3) by 

we obtain the digraph S(n).

-1

 then 

     di -3 

-5 = di-6' 

 . - 1 satisfies b i 

period 6 and so 

2(1) - b1(2) = 1 

  nclusion.

a sequence of 

     Replacing 

directed edges

digraphs 

the 

'
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      Example 3.7.3. 

is given by A(i,j) 

     As a matter of

1 

01. • . I1 

(1

2

.2

1 

i

4-2n

 Let 

= 1 -

fact, 

    (1 -A) 

1

S(n) be the 

s . Then 

we have

1: ....1 

                   ~1

digraph whose 

Ext w 0s(n) _ Z2

1 

0 _1...._I

matrix 

n-2® Z

1 0 

1

A 

2n-4'
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Chapter IV KMS states on OA

     IV-1. KMS states. 

    A proof of the uniqueness theorem on OA is based on the 

existence of the gauge automorphism at(t e R) on OA by 

      at(Sj) = eitSj for 1 <- j << n, 

where R is the group of real numbers. The action a is 

called the gauge action on OA. Olesen and Pedersen 1361 

proved the following theorem on the C*-dynamical system (OA, 

R, a), cf. also 1301 : 

     Theorem 4.1. The C*-dynamical system (OA, R, a) admits a 

 B-KMS state if and only if B= log n, and the corresponding 

KMS state is unique. 

     Now we remark that if A(i,j) = 1 for 1 <_ i,j <_ n, then 

OA = On and the spectral radius r(A) of A is just n. 

     Under these situation, we shall give a natural generali-

zation of Theorem 4.1. As a matter of fact, we shall point out 

that the Perron-Frobenius theorem for positive matrices is 

applicable to the existence of KMS states on the C*-dynamical 

system (OA, R, a). More precisely, 

     Theorem 4.2. If A is irreducible, then (OA, R, a) admits 

a B-KMS state if and only if 8 = log r(A), and the corre-
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sponding KMS state is unique. 

    The topological entropy of a subshift aA is defined by 

h(aA) = log r(A). Therefore, the above theorem shows that the 

topological entropy of a subshift is the value e which gives 

a unique s-KMS state for (OA, R, a), and consequently, if C*-

dynamical systems (OA, R , a) and (0B' R, a) are conjugate, 

and A and B are irreducible, then their topological 

entropies coincide. 

    Incidentally, the period of A will be concerned with a 

factor representation of type IIIX in the following section, in 

which it will be proved that the period is also a conjugacy 

invariant for (OA, R, a). It is known that a pair of the 

topological entropy and the period is a complete invariant for 

subshifts as measure preserving transformations, 1371. As a 

consequence, the equivalence of subshifts as measure preserving 

transformations is a conjugacy invariant. 

     Let E _ {1,2, ... , n}. For a multiindex µ = (i(1), 

,i(p)) with i(m) e E, we denote by l(u) the length p of u 

and Sµ = Si(1)... Si(p). Then it is easily checked that S~ 
is a partial isometry and Sµ ~ 0 if and only if 

A(i(m),i(m+l)) = 1 for l<< m<- p-1. Now we begin with an 

elementary lemma stated in 1171, whose proof is an easy exer-

cise for the use of the condition (A). 

    Lemma 4.3. If l(µ) = 1(v) = k and S , S 0, then 
                                                  N v 
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        SV*S
u = 6p,v Sv(k)*Si(k). 

    It is known in [171 that the fixed point algebra FA of 

OA by a is an AF-algebra such as 

                            1 n             F
A = O Fm, Fn = Fm ® ... ® Fm 

and the inclusion is given by A. We refer to C4, 201 for AF-

algebras. For B c R, we put 

        LB = {y = (y. ) e R n ; Ay = eBy, yi > 0 and z yi = 11. 

In the following, we shall construct a trace on FA which is 

corresponding to each y0 e LB. Then we put y
m e-mBy0, 

dm(i) = dim Fm1 and wm(i) = dm(i)y m(i) for i c E. 

     Lemma 4.4. Notation as in above for a fixed 6c R and y0 

E LB. Then y0 induces a trace 0 on FA such as s(e(m,i)) 

  ym(i)., where e(m,i) is a one-dimensional projection in Fmi 

for i e E. 

    Proof. We define a trace o
m on Fm by 0m(e(m,i)) _ 

ym(i) for i e E. So it suffices to show that (0m) is 

compatible. We note that 00(1) = E
iy0(i) = 1 and i 

 m(Pr Fm 1) = dm()ym(i) = wm(i), where Pr Fm1 = O® ®0®1®0 

... ®O e F
m. Since ym = e-M$ yO, it follows that ym = Ay m+1 

for m >_ 0. Therefore we have 

       0m(1) = Ei ym(i)dm(i) = (ym' dm) _ (ym, tAdm-1) 

               = (Ay 
MY dm_1) _ (y M-11 dm-1) _ M-1 (1), 

and 

      wm(i) = Ej tA(j,i) wm+1(j) dm(i)/dm+l(j)-
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Hence (0m) is compatible and so we can define a trace 0 on 

FA by OIFm = 0m. 

     Lemma 4.5. Let 0 be a trace on FA in the preceding 

lemma and p = 1(p), q = 1(v), r = 1(g) and s = 1(n). If 

Su,Sv,S~,Sn~ 0 and p + r = q + s, then 

       O(SuS v*SESn*) = 61(Avs)(n(s)) if q S r 

                       d2(av
p)(u(p)) if q > r. 

Here 61 = 61(u,v,~,n) = 6
u,n 6v,E 6 6~                                       g (q+l),n(p+l) ..                                                         (r), n(s) 

and 62 = 62(u,v,C,n) = 6 6 s .. 6p(p) 
, (q)' 

where 6
v,E 6v(1),E(l) ... 6v(q^r) ,~(q^r) 

and 6
u,n 6u(1),n(1) 6u(p^s),n(p^s)' 

     Proof. We may assume that q < r. Then it follows from 

Lemma 4.3 that 

       S
usv*S~Sn* 6v,~SpSv(q)*SC(q)S~(q+1) . ...S~(r)Sn* 

                     6 v ~£h A(v(q),h)SpShSh*SE(q+1).....SE(r)Sn* 

                    6v'~A(v(q),C(q+l))SuS~(q+l) .. S&(r)Sn* 

                        6v, CSpSC(q+l) . . .. S&(r)Sn*. 

Noting that 0IF
m1 is a usual trace and putting Ph = ShSh* 

for h e E, we have 

   O(SuSv*SCSn*) = 6 v E h O(SuSE(q+1) ....S~(r)Ph5 *) 

                 = 61A(u(p),~(q+l)) E 
h O(SnPhSn*) 

                   61 zhA(n(s),h)0(S
nPhSn*). 

(In-particular, if q = r, then we have the above equality 

directly.) Since 0(S P S *) = y (h) if O(S P S *) 0, we 
                         n h n s n h n 

have O(S
uSv*S~Sn*) = 61 z hA(n(s),h)ys(h) = 61(Ays)(n(s)) 
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    Following after E7], we now use the following definition of 

KMS states: 

    Definition. Let (B, R, a) be a C*-dynamical system and a 

e R. Then a state o on B is a (a, B)-KMS state if 0 

satisfies 

      ~(aaiB(b)) = O(ba) 

for all a,b in a norm dense, a-invariant *-subalgebra of B , 

where B is the set of entire analytic elements for a. 

    Throughout this note, (a, B)-KMS states are called B-KMS 

states for brevity. The following shows the existence of KMS 

states on 0A. 

     Corollary 4.6. Let be a trace on FA in Lemma 4.4 

and e the expectation of 0A onto FA. Then fee is a 

B-KMS state on 0A, where B = log r(A). 

    Proof. It suffices to prove that o(S
µSv*aiB(S~Sn*)) _ 

(P(S~Sn*S NSv*) if 1(u) + l(E) = 1(v) + 1(n) and l(E) S 1(v). 

It follows from Lemma 4.5 that 

    m(S~Sv*aiB(SESn*)) = e(s-r)Bd1(P,v,c,n)(Ays)(n(s)) 

                          = e(s-r)B 6l(N,v,~,n)(Ay s)(C(r)) 

and 

    O(S~Sn*SµSv*) = 62(~,v,v,v)(Ayr)(&(r))• 

Since ym = e-ma y0 and 61(N,v,~,n) = 62(~,n,N,v), we have 

Ays= e-SBAy0 and so as desired. 
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Now we can state a main lemma as follows:

KMS 

LB.

Lemma 

states

4-.7. 

 for

For each a E R, let KB 

 a on OA. Then KB is

be the set of all B -

affine-isomorphic to

   Proof. Define a map f of K
B to Rn by f(4) = (4(Pi))i 

for KB, where Pi = SiS.* for i e E. Since 4 is a B-KMS 

state, we have 

      e8 (Pi) = 4(Siais(Si*)) = 4(Si*Si) = z. A(i,j)4(Pj), 

so that Ay = e a y for y = (4(Pi))i. Obviously f is w*-

continuous. 

    Next we shall show that f is a map of KB onto LB. By 

Lemma 4.4, y e LB induces a trace 4 on the fixed point alge-

bra FA such that 4(Pi) = y(i) for i e F. Let e be the 

expectation onto FA. Then e>4 is a B-KMS state on OA 

by Corollary 4.6 and, 

      f(P)(i) _ 'U(Pi) = 4(Pi) = Y(i), 

so that 4 E KB and f(P) = y. 

    Finally we shall prove that f is injective. For a fixed 

4E KB, let us put f(4) = x e Rn. Then x(m) = 4(Pm) for m 

E E. If 0 y = S
~Sµ* E FA, then 1(µ) = 1(v) = k and by 

Lemma 4.3 

    ek64(Y) = 4(S
uais(Sv*)) = 4(Sv*Su) su'v4(Sv(k)Su(k)) 

               6
µw z h A(N(k),h)4(Ph) = 5uv,Eh A(u(k),h) x(h) 

              6 
µ,v (Ax)(p(k)). 

Since x e LB, it follows that 
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       ek6 O(Y) = 6
P, v(Ax) (p(k)) 5 e6 x(p(k)) . 

Hence, if f(O) =f(4)) = x for o,i~ E Ks, then O(a) = 4,(a) 

for a E FA. Since 0,P E Ks, we have t(S.*n) = 0 for n > 1 

and so O(b) = 0 = *(b) for b E FA, so that f is injective. 

     Now we reach Theorem 4.2 after above several lemmas 

    Proof of Theorem 4.2. The proof is just to apply the 

Perron-Frobenius theorem to the preceding lemma. Since A is 

irreducible, r(A) is a unique positive eigenvalue of A with 

multiplicity 1 [9; (8.7)]. Therefore L
s has one element for 

s = log r(A) only. Hence the statement follows from Lemma 4.7. 

     Remark. Another refinement based on Theorem 4.1 is given 

by Bratteli, Elliott and Herman, who constructed, for each 

closed subset F of R, a C*-dynamica] system (B,R,t) admits 

a 8-KDS state if and only if B E F. Furthermore the 

corresponding state for each a e R is unique. Moreover, 

Bratteli, Elliott and Kishimoto 16] pursued this direction. 

     Remark. Finally, we can show nonexistence of ground states 

and ceiling states for C*-dynamical system (OA, R, a) as in 

17; Example 5.3.271.
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     IV-2. IIIa-representation of OA. 

    In the preceding section, we have the unique KMS state for 

the C*-dynamical system (OA, R, a) under the irreducibility 

of A. It is known that On is corresponding to a factor of 

type III 1/n* We shall determine the type of the factor gener-

ated by the GNS representation of OA by the unique KMS state. 

    Let A = (A(i,j)) be an n x n matrix whose entries are 0 

or 1. For i,j c E, put E(i,j) = {m c N ; Am(i,j) > 0} and 

E(i) = E(i,i). We define d(i), the peroid of a state i E E, 

by the greatest common devisor of E(i). Suppose that A is 

irreducible. Then d(i) = d(j) for any i,j E E. Hence we 

define d = d(A), the period of A, by d(A) = d(i) for any 

i E E. The matrix A is said to be periodic of period d if 

d >_ 2, and aperiodic if d = d(A) = 1. For r = 0,1,2,...,d-1, 

put 

         D(r) = {j e: E ; E(j,l) = r (mod d)}. 

    Then the following is known, e.g., 119;(8.15)1 If A has 

period d>2, then the state space E can be decomposed into 

distinct subset D(0), D(1),..., D(d-1), (not necessarily of 

same size) such that a one step translation from D(r) lead to 

a state D(r+l), (from D(d-1) to D(0)). Each D(r) will be 

invariant under Ad, and the restriction of Ad to the state 

of D(r) will be aperiodic. Therefore we have the following 

decomposition 

       Ad= B(0) ® B(1) ® ... ® B(d-l), 

where B(r) is aperiodic for r = 0,1,...,d-1. 

    These arguments may come in sight by a graph theoretic 
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approach. We present here a simple example: 

                        0 1 0 
     Example. Let A = 1 0 1 Then the corresponding 

                        0 1 0 
digraph of A is expressed by 

         1F 23 , 

and d(A) = 2. Moreover the state space E = {1, 2, 3} is 

decomposed into the subsets {2} and {1, 3). Incidentally, 

it follows from C29; Theorem 71 that the fixed point algebra of 

0A under the gauge action is not simple. 

    Though Si*Sj = 0 for i g j by the condition (A), S
iSj* 

# 0 in general. So we shall find that such i and j enjoy 

a relation, which is used in Lemma 4.8 (2). Define a map c 

of E onto {0,1, ... ,d-1} by 

         c(i) = r if i E D(r). 

    Sublemma. If SiSj# 0, then c(i) = c(j). 

    Proof. Since (Si*Si)(S.*Sj) 0, there is h E E with 

         A(i, h) = 1 = A(j, h) 

by the condition (A). Therefore, if h e D(r), then i, j E 

D(r+l) by a one step translation. 

    Now we define the projections corresponding to the subsets 

D(r) by 

         R(r) = Ei ED(r) SiSi* EiED(r) Pi 

for 0 <_ r <_ d-1. 
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     Lemma 4.8. The followings hold: 

 (1) For r = 0,1,...,d-1, m E dZ, there exist multiindices u 

and v such that 1(p) - 1(v) = m and R(r)S S *R(r) # 0. 
                                                        P v 

 (2) For r = 0,1,...,d-1, multiindices p and v, if l(u) _ 

1(v) mod d, then R(r)S
uSv*R(r) = 0. 

    Proof. (1) For r there exists k e E such that k E D(r). 

Putting 

          E*(k) = {x e Z ; x = u - v, u E E(k), v c E(k) }, 

then E*(k) coincides with dZ. Therefore there exist 

multiindices u and v such that 1(p) = u, 1(v) = v, u - v 

= m E dZ, and p(1) = p(m) = v(1) = v(m) = k, so that PkS
uSv*Pk 

= 0. Since projections Pi(ie D(r)) are mutually orthogonal 

and R(r) = E 1.ED(r) p1 , we have R(r)S p S V *R(r) ~ 0. 

    (2) Let k,m be in D(r). We shall show that P k S S *P 
                                                                           p v m 

  0. Assume that PkS
uSv*Pm 4 0. Then k = p(1) and m = 

v(1), so that c(p(l)) = c(v(l)). Since S
p(Ipi)Sv(Ivl)* # 0' 

we have c(p(Ipl)) = c(v(IvI)) by Sublemma, where ICI = l(C). 

Furthermore, since Su, Sv 4 0, it follows that 

        c(p(l)) = c(p(IpI)) + IpI - 1 (mod d) 

and 

        c(v(l)) = c(v(jvl)) + Ivy - 1 (mod d). 

Hence we have IpI = IvI (mod d), which is a contradiction. 

    We shall review some notation [103. Let (M, R, a) be a 

W*-system. For f e L1(R), let of be a a-weakly continuous 

linear map of M into M such that 
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        w(af(x)) = f f(t)u(at(x)) dt 

for w e M*, x E M. The Arveson spectrum of a is defined by 

         sp(a) = n{Z(f) ; f E L1(R), of = 0}. 

Here Z(f) = {r E R f"(r) = 0}, where R" is the dual group 

of R and f- is the Fourier transform of f. The Connes 

spectrum of a is defined to be 

        r(a) = F sp( a IpMp), 
where p runs all non zero projections in Ma n (Ma)', the 

center of the fixed point algebra Ma of M under a. 

     In the below we assume that 0-1 matrix A is irreducible, 

r(A) is the spectral radius of A, d = d(A) is the period of 

A, 0 is the unique log r(A) - KMS state for (0A'R, a) in 

Theorem 4.2. Let (Tr,~ , H~) be the cyclic representation 

induced by 0. 

     Theorem 4.9. The von Neumann algebra M = Tr0(OA) gener-

ated by Tr~(0A) is a factor of type III 1/r(A)d(A). 

    Proof. Put B = log r(A). Since 0 is the unique B-KMS 

state, 0 is a factor state by [7;5.3.30], that is, M is a 

factor. Let a be an action of R on a C*-algebra OA such 

that at(Sj) = e-1BtSj (j = 1, 2,...,n), that is, at = a _ $t' 

Since 0 is a B-K.MS state for (0A,R,a), is a (-l)-KMS state 

for (0A'R,a). Since 0 is a-invariant, a can be extended 

to the automorphism on the factor M, denoted also by a. 

Thus (at)t is the modular automorphism group of M associ-

ated with 0. 
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      Next we shall consider the fixed point algebra Ma of M 

under a. We claim that Ma = 7r0(0Aa), the a-weak closure of 

Tr0(0A0). It is trivial that Tr0(OA a) C Mo. Conversely, if x e 

a M , then we choose x
n e 7 (0Aa) such that xn converges to 

x a-weakly in M. Putting 

         yn = rT at(xn)dt, 

then yn E 7r~(0Aa) . For w c M#, we have 

          w(x - y n) = w(I at (x - xn)dt) T 

                      f
T (at(x) - at(xn))dt ^ 0. 

Thus M a C Tr
0(0Aa) , so that Ma = 7r~(0Aa)-. 

    Let Ad = B(0) + B(1) + ... + B(d-1), where B(r) is 

aperiodic for r = 0,1,2,...,d-1. Then 0Aa = FA = FB(0)® "' 

® FB(d-1)' Since each B(r) is aperiodic, FB(r) is a simple 
unital C*-algebra with a unique trace Tr. Moreover N r 
7ro(FB(r))- is a II1-factor. In fact, let p be a non-zero 

central projection of Nr. Since '(x) _ (x~o, E~) for x E M 
and ~~ is separating for M, 0 is a faithful normal state on 

M. Since 0 is a KMS state for (M, R, a), OjMa is a trace. 

If we put T'(x) = O(Tr,(x)p)/O(p) for x E FB(r), then Tr is 
a trace on FB(r). By the unicity of traces on FB(r), we have 

         Tr(x) = 0(Tr,(x)p)/0(p) _ fi(x) = Tr(x) 
for x E FB(r). Since 0 is normal, O(ap) = O(a)O(p) for a 

e Nr, so that o(p) _ O(p)2. Since 0 is faithful and p 4 0, 
it follows that p = 1. Then Nr is a II1-factor with a trace 
HINr. For a projection p in Ma (1 (Ma)', we define an auto-

morphism atP on pMp by 

       atp(pxp) = PCt(pxp)p for x E M. 
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Then we have 
                                                          d-1 

    r(a) ll{sp(aP) ; 0 r P E Man (M a)' } = fl sp(aR(r))• 
                                                          r=O 

     Next we shall show that for r = O,l,...,d-1, 

          sp(aR(r)) _ {nBd e R = R~; n c Z} 

So we first show that sp(aR r~ D {n8d E R - R^; n c Z}. For 

a fixed n c Z, it follows from Lemma 4.8 (1) that there exist 

multiindices u and v such that 

         1(u) - -l(,)) = nd and R(r)SuSv*R(r) # 0. 

If f e Ker aR(r), then 

      afR(r)(S uSv*) = R(r)af(SuSv*)R(r) = 0. 
On the other hand, we have 

      a
fR(r)(SuSv*) = R(r)af(S11Sv*)R(r) 

                   = R(r)(ff(t)at(S
MS\*)dt)R(r) 

                     = R(r)(ff(t)e-insd S
4Sv*dt)R(r) 
                     = f^(nsd)R(r)S

uSv*R(r). 

Therefore fTn Bd) = 0 and so n Bd E sp(aR(r)) as desired. 

    Conversely, let r e R and r jsdZ c R. Then there exists 

a function f E L1(R) such that f_(r) = 1 and f-ledZ = 0. 

We shall show that f is in Ker aR(r). Since the *-algebra 

generated algebraically by {51,...,Sn} is a-weakly dense in 

M, it is enough to show that 

        af R(r) (R(r)S 
u S V *R(r)) = 0 

for multiindices u and v. While we have 

        of R(r)(R(r)S Sv*R(r)) = R(r)af(S u S v *)R(r) 

                   = R(r)(ff(t)at(S
pSv*)dt)R(r) 
                    = R(r)(ff(t)e-(1(µ)-1(V))stS

uSv*dt)R(r) 

                      f-((1(µ)-l(v))s)R(r)SpSv*R(r). 
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If 1(N)-l(v) E dZ, then f~((1(,)-l(v))8) = 0 by the 

nition of f. If l(µ)-l(v) ' dZ, then R(r)S
uSv*R(r) 

Lemma 4.8 (2). In both cases we have afR(r)(R(r)S u Sv 

0, so that f is in Ker aR(r). Since f_(r) = 1, it 

that r ~ sp(aR(r)). Therefore we have sp(a R(r) in 

n c Z} for r = 0,1,..-,d-1-

    Hence it follows that 

         r(a) = sp(aR(r)) = {nBd e R ; n e: Z}. 
                    r=0 

Since 8= log r(A), M is a type III factor, where 

1/r(A) d .

deli-

 = 0 by 

*R(r)) = 

 implies 

8 d e R

a =

     IV-3, Eigenvalue problem. 

    Finally, we shall reformulate the argument in [181, which 

is based on the discussion of §1. Precisely, for certain 

simple C*-algebras with periodic dynamics there is a Banach 

lattice F and a positive operator R on F such that the 

C*-dynamical system has a 8-KMS state if and only if e8 is 

an eigenvalue of R. Moreover the set K of all 8-KMS states 

is affine isomorphic to the set L8 of all normalized positive 

eigenvectors corresponding with the eigenvalue e8. Thus to 

find 8-KMS states can be formulated as the eigenvalue problem. 

    Let A be a unital C*-algebra and {at}teR a strongly 

continuous and periodic one-parameter automorphism group on A 

with period 27r. The spectral subspace A(n) for n E Z is 

defined by 

          A(n) _ {xc A; at (x) = eintx for t E R}. 
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A projection of norm one from A onto the fixed point algebra 

A(0) is given by 

(1) e(x) = to at(x)dt/2r for x E A. 
It is known that the linear span of {A(n); n e Z } is dense in 

A and A(n)A(m) e A(n+m) for n,m e Z, e.g., 1391. 

    Let F be the subspace of A(0)* consisting of all self-

adjoint and tracial functionals. Then F is a real Banach 

lattice whose positive cone F+ is the set of all positive 

functionals in F, cf. [2I. The following lemma is a slight 

modification of an asymmetric Riesz decomposition theorem 143; 

Theorem 7.7 in Ch.IJ and so we omit a proof. 

     Lemma 4.10. Let F be as in above, and {ui, vi' xi, y.; 

i=1,2,...., m } C--A(n) for a fixed n E Z. Then f(Eivi*ui) 

  f( E iy i*xi) for f e F if z i uivi* = E i xiyi*. 

    A bounded linear operator R on F is said to be a re-

verse operator associated with (A, R, a) if 

         (Rf)(xy*) = f(y*x) 

for f e F and x,y E A(l). Here we shall discuss on the 

existence of a reverse operator. 

    Lemma 4.11. If A(0) is simple, then there exists a 

unique reverse operator R associated with (A, R, a). 

    Proof. Since A(0) is simple, we have A(1)A(1)* = A(0). 

For each fixed a E A(0), there is a family {xi, yi ; i=1,2,.. 
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.., m} S A(l) such that a = E.x.y.*. Then it follows from 

Lemma 4.10 that (Rf) (a) = f(E i yi*xi) is well-defined, and 

Rf is a tracial linear functional on A(0). 

   Next we shall show that Rf is bounded and R is a bounded 

linear map on F. Note that 1 = Z.sit.* for some si, ti e 

A(l). For b e A(0), we have 

(2) (Rf)(b) = Rf(Eibsiti*) = f(Eiti*bsi), 

so that 

        I(Rf)(b)I = If(Eiti*bsi)I < 11f11 EilltiII IIsi11llbll• 

It implies that Rf is bounded and moreover llRll <_ EilltilIllsill-

Since R is linear by (3), R is a bounded linear operator on 

F. 

    Theorem 4.12. Let Ls = {f e F
+; Rf = e8f, Ilfll = 1} for 

each a e R. Let (A, R, a) be a C*-dynamical system with 

period 2Tr such that A is unital and the fixed point algebra 

A(0) is simple. Let R be the reverse operator associated 

with (A, R, a). Then Ks is affine isomorphic to Ls for 

each S e R. 

    Proof. Putting H(g) = glA(0) for g e Ks, then H(g) is 

tracial, so that H(g) c F. Now we shall prove that H is a 

w*-continuous affine isomorphism of Ks onto L8. Since g 

is a B-KMS state, we have 

         esg(bst*) = g(bsais(t*)) = g(t*bs .) 

for b e A(0) and s,t e A(l). It. follows from (2) that H(g) 

E L 8 because 
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          (RH(g))(b) = H(g)(E t.*bs.) = g( E.t.*bs.) 

                   = eag( Eibsiti*) = eag(b) = eaH(g)(b). 

Thus H is a w*-continuous affine map of K8 into L8. 

    Let e be the norm one projection of A onto A(O) 

defined by (2) and put G(f) = f•e for f e La. By similar 

calculations, G is also a w*-continuous affine map of Ls 

into Ks, and HoG = id on L8. Moreover since g(A(n) = 0 

for n = 0 and g E K8, we have G-H = id on Ks. Hence it 

implies that H is a bijection. 

    Remark. In the case where there exists a family ts1, 

s k } c A(1) such that Ei sisi* = 1, the reverse operator R is 

positive.
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