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INTRODUCTION

This thesis is devoted to the study of C*-algebras On and

OA which are typical examples of simple C*-algebras.

These C*-algebras were first considered by Cuntz [121, and
Cuntz and Krieger [17] respectively. 1In 1977, Cuntz introduced

17 e o Sn

acting on a Hilbert space such that T iSiSi* = 1. He proved

On as a C*-algebra generated by isometries §
that the isomorphism class of On does not depend on the choice
of generators and On is simple. On 'is an example of nuclear
C*-algebras which are not strongly amenable. Now one of the
great developments in the C*-algebra theory in 1970's is the
extension theory due to Brown, Douglas and Fillmore, simply
known as the BDF theory. This theory was followed up by the
K-theory for C*-algebras. In the BDF theory, the C*-algebra
C(T) of all continuous functions on the unit circle T in the
plane is adopted as a model. Since C(T) is naturally regarded

as O we may use On as an available model for the BDF

17
theory and K-theory. As a matter of fact, On was the first
example of>non—commutative C*-algebras taken up in the BDF
theory. On and Om are not stably isomorphic if n # m,

. because the weak extension group of On is isomorphic to
z"/(n-1)z", cf. 1381 and (41].

Afterwards, Cuntz and Krieger have generalized the Cuntz

algebra O . Let A = (A(i,j)) be an n x n matrix whose



entries A(i,j) are O or 1 and not all zero in any row nor
in any column. Then a C¥- algebra OA is generated by partial

isometries S Sn acting on a Hilbert space satisfying

10 e

the conditions

- _ . . N .. -
(A) $;*8; =0 (1 # j), and §;*S; = ZJ.A(l,J)SjSJ.
for i = 1, ... , n. Under a suitable condition on the matrix

A, the isomorphism class of OA does not depend on the choice

of generators. We call O the Cuntz-Krieger algebra

A
(associated with A). Note that OA = On if A 1is the n xn
matrix whose entries are all 1. A C*-algebra O is associ-

A
ated with the topological Markov chain (XA, cA).

Now, it is known that a matrix A determining the C*-alge-
bra OA corresponds to a digraph G as its adjacency matrix.
Therefore we can attempt a graph theoretic approach to OA'
This method was initiated by Enomoto and Watatani (291, and it

plays one of the central roles in our study of OA‘

This thesis consists of four chapters. We explain briefly

the contents of each chapter.

In the first chapter, we will be concerned with automorph-
isms on On' In. [11, Archbold considered the 'flip-flop' auto-
morphism e of 0, = C*(Sl, SZ) determined by

e(Sl) = 52 and 9(52) = Sl,
which is an analog of the flip-flop automorphism on tensor

products. He proved that 6 1is outer. This was generalized

by Enomoto, Takehana and Watatani [26] as a representation to



automorphisms on On of the symmetric group S(n) -with degree
n. Furthermore they considered a similar representation of the
unitary group U(n) of all n x n unitary matrices; for u =
(uij) e U(n)

au(Sk) Zjujksj (k =1, ... , n).

By the uniqueness theorem on On’ uu can be extended to an
automorphism on On and they proved that the action o 1is
outer.

Now 0n can be regarded as a semigroup version of the
group von Neumann algebra R(Gn) of a free group Gn on n
generators. Phillips [40] and Choda [9] showed that R(Gn) is

isomorphic to the crossed product of R(G ) by a single

k{n-1)+1
automorphism with period k. Choda [91 also determined the

fixed point algebra of R(Gz) under an automorphism with
period k.

Now we shall determine the fixed point algebras of On
under certaiq periodic automorphisms

Let =z Dbe a primitive k-th root of 1 and 2zleU(n). Then

the fixed point algebra of On under azl is generated by a

UHF-algebra F_  of type n~  and slk, where S, is a

generator of On' Furthermore, the fixed point algebra is also

a Cuntz algebra O , .
nk

Since the matrix (O 1 corresponding to the 'flip-flop!'

1 O)
is unitarily equivalent to (é _?

S2) under

automorphism of O ), we

2
consider the fixed point algebra of O2 = C*(S

10
0 z)

We see that it is the subalgebra generated by Sl’ S

1 ’
with a primitive k-th root =z of 1.

k
2

a , such that u = (
u

and



{5235152*3; j=1, ..., k-1}. In particular, the fixed point

algebra under the 'flip-flop' automorphism is isomorphic to the
5

C*-algebra generated by Sl’ 82 and stlse*.

Here we have a problem; whether @y and the 'flip-flop'
automorphism 6 on O2 are conjugate or not ? Since 828152*
is not an isometry, the fixed point algebra 029 seems to be
not of type of On' As a matter of fact, 02e is a Cuntz-

Krieger algebra. It will become clear in Chapter II that the
fixed point algebras under ey and & are not stably iso-
morphic, so our problem is solved negatively.

In the last part of this chapter, we shall investigate the
relation between the spectrum o(u) of u e U(n) and c(au)
of oy in the Banach algebra of all bounded linear maps on OA'
We prove that o(au) is the closed subgroup of the unit circle

T in the plane generated by o(u), and for any closed subgroup

G of T, there is a u ¢ U(n) such that o(au) = G.

In the second chapter, we shall discuss extensions of On
and OA by the compacts. In [11]1, Coburn studied the C*-alge-
bra generated by an isometry acting on a Hilbert space H. He
proved that the C*-algebra generated by a simple unilateral
shift U+ on H contains the ideal K(H) of all compact
operators on H and
(1) 0 — K(H) — C*(U+) — C(T) — O
is exact, that is, C*(U+) is an extension of C(T) by K(H).
In the BDF theory, we know that the extension group Ext C(T)

coincides with the additive group Z of all integers under the



n
correspondence n = - ind Ui 2 where 1ind S stands for the

index of a Fredholm operator S.

Cuntz [12] proved further that if Pn is the C*-algebra

generated by isometries Tl, cee Tn on H such that 1 -
z iTiTi* is a non-zero projection, then
(2) 0 —— K(H) P o, o

is exact. Ext On = Z was proved by Paschke and Salinas ([381].

In our discussion, we shall first point out that an ex-
tension of On can be reduced to one of C(T) via z uﬁilater—
al shift. Then we give a complete set of representatives for
extensions of On'

Next we shall discuss extensions of OA' One of our ob-
jectives is to find a condition for that uu defined in
Chapter I can be extended to an automorphism on OA' Now,
Evans [30] and Katayama have independently realized & C*-alge-
bra Pn as a 'tensor algebra' on the full Fock space F(H),
and constructed a unitary F(u) on F(H) for each u ¢ U(h).
In this realization, the automorphism Eu on Pn implemented
by F(u) corresponds to the automorphism @, on On' We will
here construct a subspace LA of F(H) associated with an
n xn matrix A, and the C*-algebra PA generated by the
compression to LA of the creation operators on F(H) is an
extension of OA by K(H). Also we shall consider conditions
on uceU(n) that LA reduces F(u) and F(u)lLA implements
an .automorphism @, on OA' As an application, we have a

good characterization of On; if for all wue U(n) au can be

extended to an automorphism on OA = C*(Sl, e Sn), then OA



= On' To_make these discussions, the graph theoretic approach
is very useful. OA will be sometimes written as OG if G
is the graph with the adjacency matrix A.

Another extension of OA can be obtained by using the
concept of adjoint graphs in the graph theory. We shall prove
that OG = OG* when G* 1is the adjoint graph of G. As a
consequence, we shall see that the reduced C*-algebra generated

by the free category of a digraph G 1is an extension of OG

by K(H).

The main purpose of the third chapter is to classify Cuntz-
Krieger algebras OA for A's with irreducible 3 x 3
matrices. This will be done in section 3. The irreducibility
of A implies the simplicity of OA‘ We will make an ef-~
fective use of the K-theory in our classification problem.

We give attention to the 'position' of the unit 1 of a
unital C*-algebra B in the corresponding K -group KO(B). It
will be called the marker of B and denoted by mark(B). It is
obvious that if unital C*-algebras B and C are isomorphic,
then KO(B) = KO(C) and mark(B) = mark(C), but this fact is
very important for the classification. Actually, we shall
prove that the following statements are equivalent for 3 x 3
irreducible matrices A and B ;

(1) o is isomorphic to OB’

A
(2) KO(OA) = KO(OB) and mark(OA) = mark(OB), and
(3) A is primitively equivalent to B.

As a preparatory task for this, we listed up all the



strongly connected digraphs with 3 vertices and 3 x 3
irreducible matrices. We get 29 different matrices. Then we
introduced a transformation of matrices by which OA is left
isomorphic. Primitive equivalence also introduced among
matrices and this equivalence too makes corresponding algebras
isomorphic. The relation (3) - (1) -» (2) follows from these
facts, and (2) - (3) is then checked one by one.

Next we shall discuss how to change the marker under the
tensor product with a matrix algebra Mk’ As a corollary, we
have another proof of a result on Orl due to Paschke and
Salinas [387.

We also define the explosion as a generalization of the
adjoint of a digraph. This again leaves isomorphic the corre-
sponding algebras. Using these notions, we can complete to
give representatives in the classification. We also discuss
the value det(l - A) because it is very important in the
theory of Markov chains (XA’ cA), and show that OA and OB
are isomorphic for strongly shift equivalent matrices A and
B under some additional assumptions.

Concluding this chapter, we shall point out that any
finitely generated abelian group can be expressed as the weak
extension group and also Ko-group of a simple Cuntz-Krieger
algebra. Additionally, we shall discuss the periodicity of the

weak extension group of OA associated with random walks.

In the final chapter, we shall study the existence of KMS

states for gauge action on OA‘ Here we note that the proof of

-7 -



the uniqueness theorem on O is based on the existence of the

A
gauge automorphism @ (t e R) on OA such that
it .
at(Sj) = e Sj j=11, ... , n,
where R 1is the group of real numbers. The action o 1is

called the gauge action. Olesen and Pedersen [33] proved that
the C*-dynamical system (On’ R, o) admits a B8-KMS state if
and only if B8 = log n, and the corresponding KMS state is
unique. Furthermore, the weak closure of the GNS represen-
tation of On by the unique KMS state is a factor of type IElhf

On the other hand, there exist matrices A and B such
that the spectral radii r(A) and r(B) are different though
OA and Op are isomorphic. So we want to find out a con-
dition that spectral radii coincide.

We shall generalize the theorem of Olesen and Pedersen on

(o R, a). We remark that r(A) = n if A 1is the n x n

A
matrix whose entries are all 1 , that is, A corresponds to
On. Now we prove that if A 1is irreducible, then (OA, R, a)
admits a g-KMS state if and only if 8 = log r(A), and the
corresponding KMS state is unique. It seems to be interesting
that the Perron-Frobenius theorem for positive matrices is
applied in this proof. Furthermore we obtain that the weak
closure of the GNS representation of OA by the state is a

factor of type IIT where d(A) is the period of A.

1/p(a)d(A”
Therefore, since 1log r(A) 1is the topological entropy h(cA),
the pair (h(cA), d(A)) 1is an invariant for the conjugacy of

C*¥-dynamical system (OA’ R, o). In other words, the equiva-

lence of the subshift o, as a measure preserving transfor-



mation is an invariant for the conjugacy because (log r(A),

d(A)) 1is a complete invariant for o as a measure preserving

A
transformation. Finally, we discuss a relation between KMS

states and eigenvalues of positive maps in a general setting.

The author would like to express his hearty thanks to
Professor Masahiro Nakamura, and Professors Marie and Hisashi
Choda for their constant encouragement and valuable suggestions.

Special thanks go to Professors Yoshikazu Katayama, Yasuo
Watatani and Hiroaki Takehana and Mr. Masatoshi Enomoto for
their stimulating discussions on the present material.

The author would like to express his deep gratitude to
Professor Osamu Takenouchi for instructive suggestions and warm

encouragement throughout the course of this research.



CHAPTER I AUTOMORPHISMS ON On

I-1. Action of U(n) on On'

A C*-algebra On considered by Cuntz is generated by

isometries S Sn acting on a Hilbert space such that

10 s

EiSiSi* = 1. He proved the following uniqueness theorem on On:

The uniqueness theorem. The isomorphism class of On- does
not depend on the choice of generators.

That is, if (T Tn} is another family of iso-

10 e
metries such that ZiTiTi* = 1, then there is a canonical

. o x x .
isomorphism of C (Sl’ cee Sn) onto C (Tl, cee Tn), where

C*(S) is the C*-algebra generated by S. .In other words, if

{Tl’ e Tn} is as in above, then the map Si—-—»Ti (1<ign)
can be extended to an isomorphism of C*(Sl, e Sn) onto
C*(Tl, e Tn)‘

Inspired by the flip-flop automorphism of tensor products,
Archbold (11 considered the 'flip-flop' automorphism ¢ of O2

= C*(Sl, S determined by

5)

e(Sl) = 5, and 9(52) = 8.

He proved that 6 1is outer. This might be the first appli-
cation of the uniqueness theorem,

Following after Archbold, Enomoto, Takehana and Watatani

[26] showed that the symmetric group S(n) has a represen-

- 10 -



tation as a subgroup of outer automorphisms on On for n > 2.
Furthermore they extended it as follows; the group U(n) of

n x n unitary matrices is faithfully represented as a subgroup
of outer automorphisms on On by

(k =1, ... , n)

01
10

au(Sk) = I 3 uijj

for unitary u = (u, If we take u = (

Jk)'
the 'flip-flop' automorphism on O

), then a is
u
o
Though Archbold considered On from the view point of
tensor products, it can be regarded as a semigroup version of
the group von Neumann algebra R(Gn) of a free group G on

n generators, cf. [(271. Phillips [40] and Choda [9] showed

that R(Gn) is isomorphic to the crossed product of R(Gmh—D+f

by a single automorphism with period k. And Choda determined
the fixed point algebra of R(G2) under a single automorphism

with peroid k by R(G ). Moreover, the fixed point algebra

k+1

under the gauge automorphism group e is determined by Olesen

and Pedersen.
In the below, we shall investigate the fixed point algebra

of 0, under a periodic automorphism o« for u e U(n).

I-2. Fixed point algebras.

First of all, we shall explain notation. Let wnk (k =

1,2,...) be the set of all k-tuples (j(1), ... , j(k)) with

15 3(i) ¢<n and let W ° = {0}. Let (S .., S} bea

1 ’
family of generators of On. Then we put

Su = S58%52) S50

- 11 -



k k

for o= (j(i), ... , j(k)) e wn and SO = 1. Let Fn be
the C*-algebra generated by {SuSU* 5 B, L E wnk} and Fno =
{1}. Finally 1let Fn be the C*-algebra generated by {Fnk ;
k = 0,1,2, ...}.

Theorem 1.1. Let 2z be a primitive k-th root of 1 and
a = azl the automorphism on On induced by zle¢U(n). Then
the fixed point algebra B of e 1is the C*-algebra generated
k
by Fn and S1 .
Proof. If 1(u) = 1(v) where 1(y) is the length of v,
then SpSU* ¢ B. Since F_ is generated by {SUSU*; 1(u) = 1(v)}
and Slk e B, B includes the C*-algebra C generated by Fn

and Slk. Conversely, let x ¢ B and ¢ >0. Then there is ¥y

in the *-algebra Qn generated by {Sl; e Sn} such that
Ix = yJl < e. It is known that y 'has a unique representation;
y = ZT Sl*ia_i + ao + ZT aisli’
where a, e QN Fn. Putting 8 = (ck—l + K2 ve. + oo+ 1)/Kk,
every a; is fixed by 8. Since
0=-2%_1-2 (zi - l)(zi(k—l) + zi(k_z) T D
for i =1,2, , we have
8(y) = (1/k)2i2121§;éz* Is *ta v ag + (110027, zl;;ézijalsli
= TimS1t s v %0t TSy
so that B(y) € C. On the other hand, we have
x = sl < (ix = &* 72l + D = X720+ on + llx - vk
L S I Y B 1 O Y S P4 PV

lx -yl <e.

i}

- 12 -



The following theorem shows that the fixed point algebra of

an automorphism o in the above is also a Cuntz algebra.

Theorem 1.2. Let <«

point algebra B

Proof.

First of all,

with C = c*(su; 1(u) =

1.1 and B 2 C

be as in Theorem 1.1. Then the fixed

k).

is isomorphic to the Cuntz algebra Onk‘

we shall prove that B coincides

k

Since B = C*(Fn, S1 ) by Theorem

clearly, it suffices to show that Fn < C, that

is, SUSU* e C if 1{(y) = 1(v). We may assume that 1(yu) =
1(y) < k. Then the length of SpSU* is enlarged as follows:
SuSu* = SU(E iSiSi*)SU*
=2 ,(5,8;)(8,8;)*
= 4; (susisj)(susisj)*. ‘
Thus S S * 1is expressed -as a finite sum of {SYSG*; 1(Y) =
1(8) = k} by repeating this calculation.

To prove that C 1is isomorphic to Onk, we shall show that
{8, 1(w) = k} is a family of generators of Onk such that
z ususu* = 1 by induction. If k = 2, then

Zu Susu* = Zi,j(sisj)<sisj)*
= Sl(zi_sisi*)sl* + ...+ Sn(zj_sisi*)sn*
= Slsl* + ... + Snsn*

= 1.

Suppose that it is true for k = p. Then we have

z
l(p)=p+l

where

have

T

T =

1

SpSu* = I

n
i=1

S S *

z
I(w)=p "u"u
as desired.

S.TS

R #*
ivvi

By the assumption of induction, we

- 13 -



Remark. Let 2z be a complex number such that Jlz| =1

and zk # 1 for all k. Then the fixed point algebra of ¢

zl
is Fn by a result of Olesen and Pedersen [36; lemma 11].

Next we shall discuss the fixed point algebra of auto-
morphism on 0, induced by (é 2).

Theorem 1.3. Let =z be a complex number with period "k
and <« the automorphism on 02 induced by (é 2). Then the
fixed point algebra B 1is the C*-algebra C generated by Sl’

k J J.os .
S2 and {52 Slsz* i Jo=1, «.. , k-1}.

Proof. For given x ¢ B and € > O, there is y e Q = Q2
such that ||x - y || <e. Putting w = (y+a(y)+ ... + ak—%y))/k,
we have w e Bn Q@ and Jlx - wll < ¢ as in the proof of
Theorem 1.1. So it follows that B~ Q 1is dense in B. Since

C € B, it suffices to show that B~ Q &€ C. Every element y e
Q has a unique representation; y = I ™ s *ia +a + £," a.s i
’ i=171 -1 70 i=1 7i"1 ’

where a, ¢ QN F Since «a(y) =y 1iff a(ai) = ay for all

5
i, we may confine ourselves to consider elements in F2. It is

clear that SuSU* e F is fixed by o iff m(yp) = m(v) mod Kk,

2

where m(y) denotes the number of S, in SY. If m(yp) < k,

then we have

s =g 10)g 3(1)g i(1)g J(2) = 4 J(r)g ilr)

H 1 2 1 2 M 2 1
= Sli(O)(Szj(l)sli(l)s2*jﬂJ)(Szj(l)+j(2)5182*j(1)+j(2))
L (523(1)+j(2)+...+j(r—1) Sli(r—l)s2*j(1)+...+j(r))

J)+...+j(r) i(r)
52 S1 ,

- 14 -~



so that Su= stm(“)sli for some X ¢ C and integer i. 1In
particular, if m(u) = k, then Su e C since k = j(1) +
+ j(r). 1In general, if m(n) = h mod k, then sp = XSZhsli
for some X € C and some integer i. Therefore, if m(uw) = h
mod Kk and h < k, then

5.8 = xs,'s b (vs, s, I)x = x(s,"s Ts, M) (s, s, s Py,
so that SPSU* e C. Since B N Q 1is generated by F2 and Slk

we have B n Q €C. Hence it follows that B =cl BN Q &C

where ¢l means the norm closure, so that B cC.

01

The matrix (1 O) corresponding to the 'flip-flop' auto-
morphism introduced by Archbold is unitarily equivalent to
(é _?). Therefore we have the following.

Corollary 1.4. The fixed point algebra of the 'flip-flop"

automorphism on O2 is isomorphic to the C*-algebra generated
2
S and 525182*.

by Sl’ >

Remark. The fixed point algebra 02(2) of O under (2)

2
= Z/2Z is isomorphic to O4 by Theorem 1.2. However, the
crossed product 02x (2) of O2 by (2) is not isomorphic to
04. In fact, if O2 x (2) = O4, then 02 is included in O4

with the same unit, which is false.  Furthermore, 04 x (2) 1is

not isomorphic to O Actually, if O4 x (2) = O then

2° 27
04.® M2 = O2 x (2) by Takai's duality theorem for C*-algebras

we have 0, Z 0. x (2), which is a

[421. Since 04 @ M, =0 4 = 9

2: 43

contradiction.

- 15 -



I-3. Spectra of automorphisms.

Now we shall investigate the relation between the spectrum
og(u) of u e U(n) and the spectrum U(au) of @y in the
Banach algebra of all bounded linear maps on O .

n

Theorem 1.5. (i) If u ¢ U(n), then c(au) is the closed
subgroup G of the unit circle T 1in the plane generated by
o(u). (ii) For a closed subgoup G of T, there is u e U(n)

such that c(au) = G.

Proof. (i) We may assume that u is diagonal with eigen-

values (tl’ e tn)' Suppose that wu 1is periodic with
period k. Then G 1is generated by {tl, , tn}. If z € G,
then there are integers s(1), ... , s(n) such that =z = tls(l)

tns(“) and 0 ¢ s(i) € k-1 for all i. If we put

R = Sls(l) . Sns(n)’

then R £ O and au(R) = zR. Since =z e c(au), we have
G Q;c(au). Conversely, since G = {exp(2mim/k); O< m < k-11}
and (au)k = 1, we have o(au) € G by the spectral mapping

theorem. If u 1is aperiodic, then G

]

. m
T. Since au(S1 ) =

m, m
tl S1 for all m, we have o(au) =T

(ii) If G = {exp(2mim/k) ; O < m

G.

]

IA

k-1} for some Kk,
then O(Gu) =G for u = exp(2wi/k). If G = T, then we take

u = z1 for some aperiodic =z.

- 16 -



Chapter II Extensions of OA

II-1. Extensions of On‘

The purpose of this section is to show that extensions of
On are reduced to the extensions of C(T) via a unilateral
shift. In [111, Coburn studied the C*-algebra generated by an
isometry acting on a Hilbert space H. He proved that if U+
is a simple unilateral shift on H, then the C*-algebra C*(U+)
generated by U+ contains the ideal K(H) of ail compact ope-
rators on H and
(1) 0 —— K(H) — C*(U+) — C(T) — O
is exact; where C(T) 1is the C*-algebra of all continuous
functions on T. In other words, C*(U+) is an extension of
C(T) by K(H). 1In the BDF theory (81, the extension group
Ext C(T) coincides with the additive group Z _of all integers.

Here we mention a proof of this fact: Let 7w be the
quotient map of B(H) onto Q(H) = B(H)/K(H), where B(H) is
the algebra of all bouded linear operators on H. An operator
S is essentially normal if w(S) is normal. A typical ex-
ample of an essentially normal operator is a simple unilateral
shift U . The task to determine Ext C(T) is identified with
the classification of essentially normal operators with es~

sential spectrum T. Moreover, it is known in [8; Theorem 3.11
k

that such an operator S 1is unitarily equivalent to U+ + K
(resp. Uf(n + K and U+*k + K) if indS = - k < O (resp. ind S

- 17 -



=0 and ind S = k > 0), where is a simple bilateral

)
+
shift, K is compact and ind S 1is the index of S. Hence a
family of C*-algebras {C*(U+(k)) + K(H)} 1is a complete set
of representatives for the extensions of C(T), and the identi-
fying map with Ext C(T) and Z is - ind U+(k)= k. We remark
that C*(U+) + K(H) = C*(U+) by (1).
Let Pn be the C*-algebra generated by isometries Tl""’

Tn such that 1 - ZiTiTi* is a non-zero projection. Then

0 — K(H) P > O > O
n n

is exact according to [12; 3.1). Later, Enomoto, Takehana and
+
)

Watatani realized Pn as the C¥*-algebra c*r(Gn generated

by the left regular representations of a free semigroup Gn+

on n generators. And they proved that Pn is unique up to
isomorphism as well as On' Cuntz stated in (12; Remark 1 in

§ 31 thHat it seems to be interesting to study more general
extensions of On by the compacts. Paschke and Salinas proved
that Ext On = Z by using an index of extensions and showed
implicitly that a family {Pn} is a complete set of representa-
tives for extensions of On corresponding to the negative
integers.

The fact that Ext On = Z reminds us an analogy with

Ext C(T) = Z. We shall give attention to the first isometry S1

among the generators of On' A proof of Ext On = Z will be

obtained by using the C*-algebras Pnk generated by {U+(k)Sl,

S . Sn}' and K(H), where U+ is a simple unilateral

2?
shift on ran Sl and V(k) = Vk (k 2 0) and V’*k (k < 0). As

a matter of fact, Pnk is corresponding to an integer Kk =
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- indU+(k>, which is the same as the case of C(T).
As usual, an extension of a unital separable C*-algebra B
is a *-monomorphism of B into Q(H). Paschke and Salinas

used the following index m for extensions of On to prove

Ext O = Z: Let Tt be an extension of 0O_ = C*(S,, ... , S)
n n 1 n
and v, the matrix in Q(He ... @ H) = Q(H) ® Mn with zeros
in the second through n-th row and with r(Sl)... T(Sn)‘ in the
first row. Then v is isometric and vTvT* = n(PH), where
PH is the projection of H® ... ® H onto He 0& ... & O.
So there is a partial isometry V = VT on H® ... ® H such

that w(V) = v and VV* < PH £38; Lemma 1.11. They put m(7)

= dim(1 - V*V) - dim(PH - VV*). Note that m(r) = ind V as

an operator of He® ... ®H into He® O ® ... ® 0, and so m(1)
is well-defined. It is known that m({) =m(t') if 1 and

1! are strongly equivalent, and that m(:) = 0 iff ¢ 1is
trivial. Since m{(t ® 1') = m{(t) + m(z'), m is a homomorphism
of Ext On into Z. The fact to be established is that m 1is
onto. Now we shall give a proof to this fact by using a uni-

lateral shift U+
Theorem 2.1. Ext On = Z.

Proof. It suffices to show that m is onto. For the sake

of simplicity, we consider the case of 0, = C*(Sl, S2). Let

+ k
V,=U,e0 on H=ran Sl ® (ran Sl) . Let us put P2 =
c*(v+(k)sl, 82) + K(H). Then it follows from the uniqueness
theorem on O

that sz/K(H) is isomorphic to O via the

2 2
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quotient map 7§ . We define the extension Tk for each integer
_ (k) _ .
k by tk(Sl) = Tr(V+ Sl) and rk(Se) = w(SZ). Since

(k)
v - 7 (87) rk(SZ)J ) [n(v+ $;) n(sz)j’

0 0} 0 0
V+(k)81 52
we have n(Vk) = vy for Vk: and
0 0

m(rk) = dim(1 - Vk*Vk) - dim(PH - Vka*)

aim(P,, - (v+(k)sl)*(v+(k)sl))

- dim(P, - (V+(k)Sl)(V+(k)Sl)*)
= - k.

Hence this implies that m 1is onto.

We remark that Pl is the Coburn algebra and C(T) ié
regarded as 0,. Putting plk = C*(U+(k)U) + K(H), we can
prove that Ext C(T) = Z. Actually, Plk/K(H) is isomorphic
to C(T) = C*(U), where U 1is a simple bilateral shift. If
is the extension defined by rk(U) = ﬂ(U+(k)U), then m(Tk)
= - k = ind U+(k). It is easily seen that {P;Sk is 2 complete

set of representatives for extensions of On.

II-2. Extensions of OA - tensor representation.

Cuntz and Krieger (171 constructed a new C*-algetra .OA
which is associated with a topological Markov chain (XA, aA).
Let A = (A(i,j)) be an n x n.matrix such that A(i,j) = 0 or

1 and every row and column is non-zero. A C*-algebrsa 'OA is

- 20 -



generated by non-zero partial isometries S s Sn acting

1!
on a Hilbert space satisfying the condition
A S.*S. =0 for i j, and S.*S, = 1 .A(i,j)S.s.*
(a) {*S, 3 %S, AL, 3)8 5
for all i. They proved:

The uniqueness theorem. The isomorphism class of OA does
not depend on the choice of generators if A satisfies the
condition (I), see Lemma 2.1. Furthermore, if A is irreduci-
ble, i.e., it is not a bermutation and for each i and J

there is a k such that AK(i,j) > O, then O©

A 1S uniquely

determined and is simple.

We attempt a graph theoretic approach to Cuntz-Kriegr alge-
bras. A digraph G 1is an ensemble of a finite set V(G) of
vertices 1,2, ... , n and a finite set E(G) of edges which
are ordered pairs (i, j) of vertices. It is known that a
digraph G 1is represented by an adjacency matrix A with O
and 1 as entries: A(i,j) =1 1if (i,j) = E(G) and A(i,J)
= 0 if not. Thus we identify a digraph with its adjacency
matrix.

Now a path from j to i in G 1is a finite sequence of

edges { (i such that i, = 1 and im = j. A vertex

k-1 1! 1

has an m-cycle if there is a path {(ik_l,ik)} from i to i
with ik # 1 for 2 < k ¢ m-1. Particularly, a l-cycle is
called a loop. We note that a vertex 1 has at least two

EO’ where ZO is refered
to [171. Hence the condition (I) of Cuntz and Krieger is

different cycles if and only if i ¢
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rephrased as follows:

Lemma 2.1 A digraph G satisfies the condition (I) if
and only if for each i ¢ V(G) there is a path from j to i
l z
for some j ¢ 0°
This reformulation is very useful. For a digraph G
satisfying the condition (I), Og = 0, is unique up to

isomorphism. 1In the below, we always assume that a matrix A

and a digraph G satisfy the condition (I).

Now let Pn be as in the above an extension of On by the
compacts. Evans [30]1 and Katayama showed independently that
Pn is realized as a 'tensor algebra' on the full Fock space
F(H), which is analogous to the construction of the CAR algebra
on the anti-symmetric Fock space. Furthermore they constructed
a unitary F(u) on F(H) for u e U(n). Then Eu on Pn
implemented by F(u) corresponds to the automorphism @, on
On discussed in the preceding chapter.

In this section, we shall construct a subspace L, of F(H)

A

associated with a matrix A and consider the C*-algebra PA

on L generated by the compressions to L of the creation

A A
operators on F(H). We shall see that PA is an extension of
OA by the ceompacts.

For an n-dimensional Hilbert space H, let H_ = ®m H Dbe

m

the m-fold tensor product and F(H) = X;ioe Hm the Fock space,
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where HO is the 1-dimensional Hilbert space spanned by the

Fock vacuum unit vector €. For f ¢ H, there is a bounded

operator of(f) on F(H) such that

o(f)ea f, o(f)(fla e @ fm) =fQ f1 ® ... @& £,

and

o(f)*a o, o(f)*(le L. 8 fm) = (f f) fé@ R - N

1’ m

Then the C*-algebra generated by {o(f) ; £ ¢ HF is iso-
morphic to Pn which is called the Clifford C*—algebpa in [45].
Now we shall consider two subspaces of F(H). Let {él,

, en} be an orthonormal basis of H. Let Lm be the sub-
space of Hm spanned by
{ei(1)® cee @ ey A(i(k),i(k+1)) =1 for 1 < k < m-1}

and LA = xmzoe Lm , where LO = HO and Ll = Hl = H. Let Mm

be the subspace of H, spanned by

{ e 4 ] ] i i =
e(])® @ e.( ), H A(l(k),l(k+l)) O}
- I = M = =
and M! = O@ M, where MO = xl = {0}. Then F(H) LE ® M!

and LA is called the sub-Fock space associated with A. Let

us put Si = PLAo(ei)ILA for 1 < i < n, where PLA is the
projection onto Ly Then we denote by EA

generated by {Si ;1 £ 1 < nt.

the C*-algebra

Theorem 2.2. The C*-algebra P acts irreducibly on L

A A
and contains the compacts K(LA). Moreover PA is an extension
of N by K(LA), that is,

(3). 0 — K(L,) > P, >0, > 0
is exact.
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To prove Theorem 2.2, we need following lemmas.

Lemma 2.3. Notation as in the above. Then each Sk is

partial isometry such that § *S e = @, SkSk*Q = 0,

k Tk
* _ .

Sk Sk(ei(l)® ve. B ei(m)) = A(k,l(l))ei(l)Q e @ ei(m)

and
* _ .

Sksk (ei(1)® e @ ei(m)) = a(k,l(l))ei(l) @ ... ® ei(m)
for all g = e (1)® - @ €y © L,, where §(k,i) is
Kronecker's delta.

-— — - 3*

Proof. We put P = PLA’ Pk = Sksk* and Qk = Sk Sk for
1 £ k £ n. Then we have

Qe = Po(ek)*Po(ek)n = Po(ek)*Pek = Po(ek)*ek = Pa = Q.

Since o(ek)*n = 0, it follows that Pkn = 0.

Next we have

le Po(ek)*Po(ek)ei = Po(ek)*P(ek®ei)

i

Po(ek)*A(k,i)ek® e

=A(k,1)Pei = A(k,l)ei,

so that Qg = A(k,i)g for g e L,. Since ole )*e; = s(k,i)e,

we have P e; = 6(k,i)ei, which implies P = &(k,i(1))g.

K k&

Lemma 2.4. If E is the projection onto L, = H then

0 Q’

(4) S,*Sy, = Iy A(k,J)Sij* + E.

Proof. Let Pk and Qk be as in above. Then we have
z i = =
( jA(k,J)Pj + E)Q Q Q. ®

by Lemma 2.3. Next we have
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(¢ j A(k,j)Pj + E)ei = j A(k,j)Pjei
= L 3 A(k,j)s(J,i)ei = A(k,i)ei = lei'

Hence it implies that ( & j A(k,J)Pj + E)g = q(g for g« LA'

Remark. It follows from (4) that E 1is in PA and

(5 I. P, +E =1 on L,.
) J o J A

Proof of Theorem 2.2. First of all, we shall prove that
PAx is dense in L for all O # x € L

A A°
is m such that the direct summand xm of x on Lm‘ is non- .

Since x # 0, there

zero. If X, = z xm(i(l), oo i(m))ei(l>® cee B ei(m)’ where
I is taken over (i(1), ... , i{m)) such that 1 E;iA(i(k),
i(k+1)) = 1, then there is pw = (i(1), ... , i(m)) such that
xm(u) # 0. Since Su*x = xm(p)ﬂ +y for some y ¢ z;=1®Lh’
we have Esp*x = xm(u)ﬂ # 0. Furthermore, for any =z = ej(l)®
e @ ej(h) € LA we have

xmﬁo—lsj(l) ... Sj(h)ESu*x = ej(l)® e B ej(h)’
which implies that PAX is dense in LA. Since E 1is rank
one, PA contains the compact operators K(LA).

Let T be the quotient map of B(LA) onto Q(LA). Then
m(E) = 0. Noting that the range of Pi is infinite dimensional

by the condition (1), we put T, = n(Sk) #0 for 1 < k < n.

k
Then H(PA) is generated by partial isometries Tl’ e Tn’
and
T *T = & . A(k,j)T.T.,* and ¢ . T.,T.* = 1
k "k J (k. 3) J d J 373
by (4) and (5). Therefore ﬂ(PA) is isomorphic to OA'
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II-3. Extensions of O - adjoint graphs.

A
According to (37, the adjoint graph G* of a digraph G

is defined to be a digraph whose vertices u » Up repre-

19
sent the edges of G and which has an edge U e uj if i2=
3 where u, = (11,12) and u\j = (Jl, 32). In this section,
we shall prove that OG = OG*' By using this, we shall give

another extension of OA'

First of all, we show an example of an adjoint graph:

5 (4,5)—(3,4)—(2,3)

G : I‘\\4'//3\\\2 G* : (5,6)// 1 I
N N

(6,4)—(4,1)(1,2)

Now we shall make sure that the adjoint graph of a digraph

with the condition (I) satisfies (I) also.

Lemma 2.5. If a digraph G satisfies the condition (I),

then so does the adjoint G* of G.

Proof. It suffices to show that for each (il’iZ) e V(G*)
there is a vertex (r,s) e« £, having a path P((il,iz),(r,s))
in G¥*. Since G satisfies the condition (I), a vertex 12

of G has a path P(iZ’iO) for some iO € ZO, which induces a

path P(<il’12)’(i2’i3)”'"(ik—l’ik)’(ik’io>) in G*. On the

other hand, since iO € ZO’ there are two different cycles E

and F in G such that io e V(E) n V(F), so there is a path

P((ik,io),(r,s)). Hence there is a path P((ik,lo),(r,s)) and
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(r,s) et that is, G* satisfies (I).

O’
Now we shall realize edges of G as partial isometries

T. . =8.P. in O where P. = S_.S.*.
13 J J

i,J G’ J
- * —
Lemma 2.6. Let OA = C (Sl’ v ’Sn) and Ti,j = Sin.
then Ti j = 0 if and only if A(i,j) = O.
b
Proof. Note that T. ., =0 iff P_.S5.*S.P, = 0, or equi-
1, J 1 1 J

valently S.*S.P. = 0. If A(i,j) = 1, then S.*S, =
i ¥itj i Vi

z A(i,k)P, > P,. Therefore we have S_.*¥S.P.= P., so that
k k J i1 J

J
Ti 5= 0. Conversely, if A(i,J) = 0, then
Si*sipj = I kA(:L,k)PkPj = A(l,J)Pj = 0.
Hence it implies Ti j = 0.
Theorem 2.7. OG* = OG‘

Proof. Since OG coincides with the C*-algebra B gener-

ated by {Ti J.; A(i,j) = 1}, we shall show that B 1is the Cuntz
s
Krieger algebra OG*’ that is, a family {Ti J.; A(i,j) = 11}
satisfies the condition (A) and <, .T. .T. .* = 1. By Lemma
i,J 1,J 1,3
2.6 we have

* - z * * = I z * = B
a1, 3)-1"1,571, 3 1,551%5%5751" = TS P8t = 0

Next, if (i,j) # (p,q) ¢ E(G), then i # p or j # q. If
i 4 p, then T =T, .T. _.*T T * = 0. On the other hand, if
1,J 1,3 P>q P,qQ :
i=p and j # q, then T = S.P.S . *3S.P T * = S PPT * = 0
131 1qp,q 1J 49qpP,q
because Pqu = 0. Finally, by the definition of the adjoint
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graph and Lemma 2.5 we have

By, AT (Ra@) (1,907 Ty

=2, .\ _.A*((p,q),(q,3))S P.S *
Alq,§)=1 ((p,a),(q,3)) &£i%q
= I, T S * =35 (L, P.)S * =P .
J a,J 9q q J J Qq q
Since T *T =P S *S P =P , it follows that ({T. .;
pP,-qd P,q qap pPq q i,J

A(i,j) = 1} satisfies the condition (A).

After [32], we say that a category D(G) is the free cate-
gory of a digraph G if D(G) 1is a category whose morphisms
consist of all paths in G and whose objects consist of V(G).
Let s(g) be the source of g ¢ D(G) and t(g) the target
of g. Let 12(D(G)) be the Hilbert space of all square
summable sequences on D(G) with the orthonormal basis {ed H
d € D(G)}, where ed(g) = Gd for g € D(G). For eéch ieV(G)

' g
let Hi be the subspace of 12(D(G)) spanned by {ed ; d e
D(G), s(d) = i}. Now we shall define the left regular repre-
sentation u of D(G) on 12(D(G)). For each g ¢ D(G) , a

partial isometry ug on 12(D(G)) is defined by u e, =e

g h gh
if s(g) = t(h) and ugeh =0 if not. Let C*r(G) denote
the C*-algebra generated by {ug; g ¢ D(G)}. Since ug*uhz &
if h = gk for some Kk apd ug*eh =0 1if not, every Hi is
invariant under C*r(G)' So, putting pi(a) = a]Hi for a e

C*r(G) and i e V(G), then oy is a representation of C*r(G)

on Hi and <] is the identity representation of

iev(g)®i
C*r(G) on 12(D(g>).

Theorem 2.8. The representation pi is irreducible for
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C*r(G) and oi(C*r(G)) contains the compacts K(Hi)' Further-
more, if G satisfies the condition (I), then -
* ——n
0 — K(Hi) - pi(C r(G)) OG — 0

is exact.

* =
ug l.lgeh = eh

=0 if not, and u_u _*e
g g

Proof. By the definition of ug, we have

b = %o

= 0 1if not. Therefore

if s(g) = t(h) and ug*ugeh

if b = gh for some h and u_u *e
g g’z b

ug*ug (resp. ugug*) is the projection on Iie s(g) = t(h)3

h’

(resp. (e h € D(G)1), where [MlI denotes the subspace

gn’

spanned by M. Since P =1 - is the pro-

PteE(e) Mt
jection on [ej; J € v(G)I, it follows that Di(P) is the pro-
Jjection le;1 for every i e V(G).

To show the irreducibility of oi, we shall prove that
pi(c*r(G))x is dense in H for all non-zero x € Hi‘ Let

X x(b)eb ¢ H;. Then there is g ¢ D(G) such that

= Ts(o)=i
s(g) =i and x(g) # 0. Since ug*x = Z x(gh)eh where I is
taken over h such that s(h) =i and s(g) = t(h), we have
Pug*x = x(gi)ei = x(g)ei£ 0. Moreover, if k e D(G) and s(k)
= 1, then

pilu)e; (Pe, (upd*x = uPu *x = x(glue = x(gle,.
Hence it follows that N is irreducible on Hi’ Since oi(R)
is rank one, °i<c*r(G)) contains K(Hi)'

Let 1m Dbe the quotient map of B(Hi) onto Q(Hi). It is
clear that "pi(c*r<G)) is generated by partial isometries
{Tg; g ¢ E(G)1}, where Tg = npi(ug). So we shall show that

Since oi(P) is

C*(Tg; g ¢ E(G)) 1is the C*-algebra O -
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rank one, we have I T T * = 1. Furthermore o.(u )*po.(u )
g g i‘Tg i‘Tg
(resp. of(ug)pi(ug)*) is the projection on [eh; s(g) = t(h),
s(h) = 11 (resp. [e ; k = gh for some h ¢ D(G) with s(h) =
— * *
g = EhsE(G)A*(g’h)ThTh , where A

is the adjacency matrix of G¥*. Hence it implies that C*(Tg;

i1). It follows that Tg*T

g ¢ E(G)) = 0O so that pi(C*r(G))/K(Hi) =0 by the pre-

G*’ G

ceding theorem.

II-4. Applications to automorphisms on 0,-

In the first chapter, we have discussed a representation

of the unitary group U(n) into the outer automorphisms on On'

Unfortunately, for general O, = C*(T Tn) there are

A 10
i i T = I i

unitaries u such that au(“i kukiTk cannot be extended

to automorphisms on OA' For example, if A = (i é), then .

can be extended to an automorphism on O if and only if u

A

is diagonal. As applications of extensions in II-2, we shall
characterize unitary matrices such that au can be extended to

automorphisms on OA'

Let H be an n-dimensional Hilbert space with an ortho-

normal basis {ei}. For each u ¢ U(n), let us put UB: 1 on

H =H, U = x4 on H = x™H for m2 1, and F(u) =
o m m

I+ Um on the full Fock space F(H). Then F(u) 1is unitary.

Evans and Katayama showed that F(u) inmplements an auto-

morphism Eu on PA = C*(o(ei); 1 <ign) such that

Eu(O(ei)) = F(u)o(e )F(u)* = o(e, ).

Ly Yys

First of all, we shall consider a condition on u ¢ U(n) such
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that the sub-Fock space L

A associated with A reduces F(u).

Lemma 2.9. Let A = (A(i,j)) be an n x n matrix and u
= (uij) e U(n) such that A(i,j) = 0 and A(k,m) = 1 imply

=0 for all i,j,k,m. Then the sub-Fock space L

Ykimj A

associated with A is reducing for F(u).

Proof. It is obvious that UM = U {0O}= {0} and UM =
[elNe] ] 11

i.e., A(i,j) = O, then

U1{0}= {0} 1If e ® ej € M2,
U2(ei'® ej) = (u® u)(ei ® ej) = (z kukiek) ® (z mumjem)
= Ia(k,m)=0 "ki"mi® ® ®m * T a(k,m)=1"%i"mi®k P °m
= A(k,m)=0 %ki’mj®k © ®m ¢ Y2
by the assumption. Similarly we have UmMm QEMm for m > 3.
Theorem 2.10. Let OA = C*(Tl, e Tn). Then the follow-
ing statements are equivalent for wu e U(n);
(1) au(Ti) = zkllki:i can be extended to an automorphism
on OA’
(2) (1 - A(i,j))A(k,m)ukiumj =0 for all i,j,k,m, and
(3) A(i,j) =0 and A(k,m) =1 imply wu =0 for

kimj
all 1i,j,k,m.

Proof. It is clear that (2) and (3) are equivalent by

noting. the case that A(i,j) = O and A(k,m)

1. Suppose

]

that (1) is hold. If A(i,j) = O, then TiTj 0, so that

0

0 (T3Ty) = 0, (Te (T = (B pu, T pug T
= z .
zk,mukiuijkTm A(k,m)=1ukiuijkTm
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Since (T A(k,m) = 1} 1is linearly independent, we have

kTm;
ukiumj =0 if A(k,m) = 1, which implies (3).

Conversely, suppose that u satisfies (3). By Lemma 2.9,
a unitary F(u)ILA implements an automorphism Y, on PA.

For generators Si= Po(ei)ILA of PA where P = PLA’ we have

Yu(Si) = F(u)SiF(u)*]LA = F(u)Po(ei)PF(u)*lLA

=PF(u)o(ei)F(u)*[LA = szukio(ek)lLA

= ISy
Since Yu(K(LA)) = K(LA), Y4 induces an automorphism @, on OA

such that au(ﬂ(X)) = ﬂ(vu(X)) for X e PA by Theorem 2.8,

where 7 1is the quotient map of P, onto 0, and Ti = ﬂ(SiL

Moreover we have

au(Ti) = au(n(si)) = ﬁ(Yu(Si)) =7n(z kukisk) = 3 kukiTk‘

Corollary 2.11. Let OA = C*(Ti; 1 €1 ¢<n). Then OA =
On if and only if @, can be extended to an automorphism on
OA for all u e U(n).

Proof. Suppose that au can be extended to an auto-
morphism on OA for all u ¢ U{n). Then (2) in Theorem 2.10
holds true for all u € U(n). For n 2 3, let q Dbe the
matrix whose entries are 1/n, and r = 29 - 1. Then we have

(1 - A(1,3))A(k,m) =0
for 1< i,j,k,m < n. Since A(k,m) =1 for some k and m,
it follows that 1 - A(i,j) = O for all i and j, so that
_ _ . 1 -1
OA = On' If n = 2, then we consider r = (1 1)/\/2.

Incidentally, we shall discuss outerness of automorphisms
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on OA‘ So we introduce a notion on vertices of digraphs.
Vertices i and j of a digraph G are equivalent if A(i,k)
= A(j,k) and A(k,i) = A(k,j) for all k e V(G). Typical

examples are as follows;

1 ()

Then 1 and 2 are equivalent.

Corollary 2.12. 'Let G be a digraph with n vertices

such that 1, ... , m are eguivalent. If u = (uij) is a

unitary matrix such that. u = for m+l ¢ i,j ¢ n, then g4

ij = %43 u

can be extended to an automorphism on OA' Furthermore, if G

is strongly connected , then e, is outer except u = 1.

Proof. It suffices to show that A(i,j) =1 or A(k,p) =

0 if uy, .u_, = 0. Note that k =1 or 1 k,i <m if wu .
ki pJ ki

I

# 0. So we must consider the following four cases; (i) k = 1
and p=J, (ii) k =i and 1 < p, j ¢m, (iii) p = J and
1 <k,i ¢<m, and (iv) 1 < k,i < m and 1 < p,j < m.

(i) implies that A(i,j) = A(k,p). (ii) implies that

A(k,p) = A(i,p) and A(i,p) = A(i,j) Dby the equivalence of p
and j. Similarly (iii) -implies that A(i,j) = A(k,p). Final-
ly (iv) implies that A(k,p) = A(k,j) = A(i,j). Hence we have
A(i,j) = A(k,p) for all cases, so that A(i,j) =1 or A(k,p)

= 0.
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Suppose that G 1s strongly connected. To prove that .

is outer, we may assume that u is diagonal and ull 4 1. It
follows from [29; Remark in § 31 that au is outer if 1  has

a loop. If 1 has no loop, then 1 has a g-cycle {(i i

k-1""k
such that ik + ip for k #p and m+l < ik < n for 2 <K
< g-1. (See the above examples.) Since v 4 1 and ujj =1

for m+l £ j < n, it follows that au is outer.
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Chapter III K-theory for OA

ITI-1. Prologue.
Cuntz and Krieger proved that the weak extension group
ExtwOA is isomorphic to Zn/(l - A)Zn, the Bowen-Franks in-

variant for a subshift o And Cuntz [141 showed that KO(OA)

A°
is isomorphic to zR/ (1 tA)Zn. In addition, it is known that
KO(B) is realized as Bp/: for any unital purely infinite
simple C*-algebra B, where = 1is the von Neumann equivalence
among the non-zero projections BP in B, so that we identify
the corresponding class in Ko~gfoup with the von Neumann equi-

valence class [IPIx of P ¢ BP. Moreover 0, .is unital,

A
purely infinite and simple for irreducible A. We here remark
that A 1is irreducible if and only if the corresponding di-
graph G of A 1is strongly connected, i.e., for any vertices
i 43 of G there are paths P(i,j) and P(j,i).

Now we shall introduce a new invariant for unital C*-alge-
bras: Let B be a C*-algebra with unit 1. Then [I11 stands
for the corresponding class in KO(B) for 1. For g,hce KO(B)
we write g ~ h if g = a(h) for some automorphism o of
K (B). Putting K_(B)™ = K,(B)/~ , the marker of B is the
equivalence class [11 of [1Q. 1In particular, since KO(B)
is identified with Bp/z for a unital purely infinite simple
C*-algebra B, we have mark(B) = [13_. .

The following theorem is evident but very important:
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Theorem 3.1. If B and C are unital C*-algebras which

are isomorphic, then KO(B) = KO(C) and mark(B) = mark(C).
Here we show simple examples to apply Theorem 1.1.

111
Example 3.1.1. Let A = [l 1 l] and B = tA, whose corre -
100

sponding digraphs are as follows;

@\ (
c/—k ” C/_\B

It is easily seen that G and H are strongly connected and
KO(OG) = KO(OH) = 22 (Z/ZZ). Therefore Ko(OG) = KO(OH) =

“ - 0, T}y . Since G and H are strongly connected, these

i

Zy

C*-algebras are unital purely infinite and simple. If OG =

C*(sl’SZ’Sa) and Pi = 5;8,* for i =1,2,3, then

EP1] 111 EPIB EPlﬂ + EPZH + EPSI

EPzﬂ =11 11 KPzﬂ = EPll + EP23 + IPsﬂ

EPSI 100 EP3D EPl]
so that [1I = EPlﬂ =‘IP2B and EP3] = EPlﬂ. Hence [11 must
be a generator of Z,, that is, mark(OG) =1 . On the other

hand, we have mark(OH) =0 . Actually I[11 = EPlﬂ and EPll

+ EPZH = Ipzﬂ, so that [I11 = EPll is neutral in KO(OH). By

Theorem 3.1, OG and OH are non—isomdrphic.

Next we shall consider the case that KO(B) = Z.
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Example 3.1.2. For each non-negative integer n ¢ Z ,
there is a Cuntz-Krieger algebra OG such that KO(OG) = Z

and mark(OG) = n.

For n > 1, 1let A(n) be a matrix with degree n+4 ;

1111
1100
1011 111

A(n) = 0101 and A(O0) =!11 0].
. . 101
i s
10 ‘1

Then Ko(OG(n)) = Z and mark(OG(n)) =n for n > O.

III-2. Transfered graphs.
In order to classify simple Cuntz-Krieger aigebras OA (for
3 x 3 matrices A), we shall introduce transfered graphs of

digraphs. First of all, we begin with the following simplest

example:

Example 3.2.1. Let 02 = C*(Sl,Sz), T1 = S1 and T2 =

S

S Then C*(Tl’TZ) is isomorphic to OB’ where B =

+*
271 °
and C*(Tl’TZ) = C*(Sl,Sa) as é set, that is, O2 = OB'

The above example inspires us the following definition.

Let G be a digraph and T (i) = {j e V(G); j—+i}, where i—j

stands for the edge (i,J).
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Definition 3.2. Suppose that r7(k) = r (m) for some k #
m e V(G). Then the transfered graph H = G(k » m) from k to
m is defined by V(H) = V(G) and E(H) = (E(G) \{(m,1) € E(G);
ieVv(G)}) u {(m,k)}, that is, take away all edges whose targets
are m and add the edge k - m.
The adjacency matrix B of G(k - m) 1is determined as
follows: Let A, be the i-th row vector of A. Then T (k) =

r (m) means A, = A . We then put

A(iyJ) for i ;é m,
B(l)J) ={

s . for i = m.
k,J
For the sake of convenience, we denote it by
A::B.
A AL

So Example 3.2.1 is changed in the following form;

Example 3.2.2.

Qe=—=12) C==2

A=(Il> A, — 4, B=(1])
11 10

In general, we obtain that the transfered graph preserves

. isomorphisms between Cuntz-Krieger algebras.

Theorem 3.3. Let H = G(k -» m) be the transfered graph of

a digraph G from k to m. Then O is isomorphic to O

H G’

Proof. Let A and B be the adjacency matrices of G

and H respectively, and OA = C*(Sl, e Sn). Since k # m
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by definition, we assume that k 2 and m = 1. Ncw we put

T1 = Slsz* and Ti = Si for 2 < i < n. Since A1= A2 where

Ai is the i-th row vector of A, we have Sl*Sl = 32*52 and so
TiTy™ = 5.8,78,5,7

so that TiTi* = SiSi* for 1 < i < n. Furthermore, since

= 5;(81%8)8,;* = §;8;%,

we have

B(1i,j) = A(i,J) for i # 1 and B(1,j) = 8,5

TyrTy = Sp8788,% = S558,%8,8,% = 5,58,% = I8, 5555

£, B(1,3)S.5.* = £. B(1,j)T.T.*,
J (1,3 i3 J (1,3 JJ

and for 2 <1 < n

T T, = S.*S. =L A(i,)S.5.% =z, B(i,j)T.T.*.
i iSi g A(1,3)8,48; 5 B IIT4T

Hence C*(T1 R Tn) is isomorphic to the Cuntz-Krieger

S ).

t is clear that C*(T 170000 Sy

algebra O ooy Tn) C C*(s

B

On the other hand, since

1°

T1T2 = 5182*52 = slsl*s = 8

1 1’
3* — *
we have C (Sl’ e Sn) = C*(T

10 v oo Tn) as a set. Since

C*(Sl, ooy Sn) does not depend on the choice of generators,

1° , Tn) is isomorphic to Og-

Next we shall generalize the above transfered graph of a

digraph.
Definition 3.4. Let A be an n x n matrix, and Ei =
&3
(0,...,0,1,0,...,0) for 1 < i < n. Suppose that
Ap = Ek(l) + + Ek(r) + Am(l) + + Am(s)
for. some k(1), ... , k(r), m(1), ... , m(s) which are mutual-
ly different and p ¢ (m(1), ... , m(s)}. Then an n x n

matrix B is defined by
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fA(i,j) for i # p

B(i,j) ={1 for i = p and j e {k(1),..,k(r),m(1),..,m(s)}
lo otherwise,

and B is called to be primitively transfered from A, in

symbol, A =;;§ﬁ B, or more precisely,

(*) A B.
Ek(l)"' P +£k(r)+‘4m(1)* ves "'Am(s)_")Ap

The primitive transformation '==——= ' generates the
prim

following equivalence relation which is called the primitive

equivalence; A B if and only if there are matrices Cl,

prin
I such that
q

A Cé& ... &= C =B,
prim prim prim prim
where C¢&——=> D means that Cc——>D or Dc——= C.
prim . prim prim
Example 3.2.3.
Cz—’Q-—*3 Cre—17=—3
111 Ayt E3— 4, 011
(l 1 0) (l 1 0)
100 100

Here we have a generarization of Theorem 3.3.

Theorem 3.5. If A is primitively equivalent to B, then

(0] is isomorphic to O_.
A B

Proof. -We assume (*) and p = 1. Let OA = C*(Sl,...,Sn),

P. =SS * and Q. = S _*S. . Then we put
i ii i i i
T =S

1 1(Pk(1) + + ... + S *)

* Pk(r) * Sm(l)* m(s)

- 40 -



and T =S, for 1 # 1. Since-
i i

+ Am(s)’

A =FE
1 k(1)
it follows that

+ Ek(r) + Am(l)

Ql = Pk(l) + s.. + Pk(r) + Qm(l) + ... + Qm(s)'
Then {Pk(i)’ Qm(j); 1 <i<r, 1 <J <g<st is a family of

orthogonal projections. - Furthermore, since k(1), ... , k(r),
m(1), ... ,m(s) are mutually different, a family {Pk(i)}pm(j)
; 1 €1 <r, 1 £j ¢£s} 1is orthogonal. Hence we have

T,T.* =S

171 l(Sl%sl)S

1’
so that T,T,* =P, for 1 <i <n. On the other hand,
T.*T.= $.B(1,3)P. = .B(1,3)T,T.*
¥ i ( J)rJ i (1,3) 373
and for i # 1
*T . = . o= . i,j)P. = B(i, ] TL*,
Tl 5 Ql XJA(l 3) j ZJB(l J)TJTJ
Therefore C*(Tl, e Tn) is isomorphic to OB. It is clear
that C*(Tl, cee 5 T g;c*(sl, «v+ , S ). Since 1 4 m(3)
for 1 < j ¢ s by definition, we have
Tl(Tk(l)Tk(l)* + .. + Tk(r)Tk(r)* + Tm(1)+ e + Tm(s))
= Sl(Pk(l) + .. + Pk(r) + Qm(l) + .. + Qm(s))
= 5,(8,%5,)
= Sl,
so that C*(Tl, cee Tn) = C*(Sl, oo Sn) as a set. Hence

it implies that OA is isomorphic to OB‘ Since 0A does not
depend on the choice of generators, OB does not depend on

them either.
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III-3. Classifications of OA'

Now we shall classify Cuntz-Krieger algebras OA for 3 x 3
irreducible matrices ‘A and pose a classification table

expressed by the corresponding digraphs.

Theorem 3.6. Let A and B be 3 x 3 irreducible
matrices. Then the followings are equivalent:

(1) OA is isomorphic to OB’

(2) KO(OA) =K (OB) and mark(OA) = mark(OB), and

(3) A is primitively equivalent to B.

Proof. By theorems 3.1 and 3.3, it suffices to show that
(2) implies (3). By using a computer, we listed up all strong-
ly connected digraphs with 3 vertices satisfying the
condition (I). (Note that A is irreducible if and only if
the corresponding digraph G of A is strongly connected.)
Then these digraphs are classified by KO and marker of OA’
which are shown in the following classification table. The
final step of the proof is to show that digraphs with the same
KO and marker in the table are primitively equivalent. This

can be checked one by one.
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Ky ﬂ"A marker digraph | representative

VANVANANVAY
c/—\\o '//*—\o ‘//\o o‘/—\o
VANRVANRY SRVAN

I\
G

A DA AP

JVAWAWAWANIE

=
VA

& ‘475 ® M,

z@zZ,| 0 //P\\.

A A
g O ©
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The case that KO(OG) = 0.

jl EytAsmd, ll Ar=4, Ay AyHE,~A,
A AR A/ \Jézz

lL EqtAyi, JL Ay tAg—d, Jl Eytds—d, Jl Ey+Ay~A,
AR AR A AR

/O

Jl Ay-a, ll Ay—A, \ A=A,

WGHIRWNG RR

-0 0

= A

The case that KO(OG) = Z and mark(OG) = 0.

2

//\\iié 73/(\.,(:“%/\\ — //\l?ié
ji,m Jl Agrry
Al gt

G G

The case that K (O ) = 22 and mark(OG) = 1.

Al = A = A = A
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The case that KO(OG) = 23 and mark(OG) = 1.

AL = Al

SN

The case that X _(0;) = Z and mark(0.) = 0.

AL /AL

This completes the procf except to determine the representa-

tives, which will be done in the following sections 4 and 5.

Remark. In the first chapter, we have discussed fixed
point algebras of periodic automorphisms on On and determined

the one of the 'flip-flop' automorphism 6 on 0, censidered

by Archbold. Now the fixed point algebra C*(Sl,522,525182*)
of & 1is the Cuntz-Krieger algebra 0, such that A(3,1) = 0O
and A(i,j) = 1 for otherwise i,j. Therefore it follows
from the classification table that KO(OA) = 0. On the other
hand, it is known that the fixed point algebra of O2 under
a_l is isomorphic to 04, so tnat 23 is its Ko—group.

Henée they are not conjugate.
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I11I-4. Tensor products of OA by matrix algebras.

Paschke and Salinas [381 studies the tensor product of On by
the matrix algebra Mk’ and proved that On and On ] Mk are
non-isomorphic if k and n - 1 are relatively prime. In
this>section, we shall investigate transferences of markers
under the tensor product by Mk' Let us define k-x by (kx)~
for x KO(B)— and an integer k. (Since kx = X + ... + X
(k times), k-x  does not depend on representatives of x ,

that is, k-x  is well-defined.)

Theorem 3.7. For a unital C*-algebra B, mark(B ® Mk) =
k-mark(B).
kK
1

Proof. Note that Mk ® K(H) = K(z. ® Hi) is spatially

isomorphic to K(H) by an isomorphism ¢—1, where Hi = H

Let e Dbe a one-dimensional projection in K(H). Then ¢(e)
is one-dimensional, so that we may assume that ¢(e) =¢e © 0 &
... ® 0 . Since
[l (le ... 1) 8 el==I1l o (e ... ® e)l=
=1 ® (e®@0® ... ®)I= + ... + [1 @ (O® ... aOpelx
= k-I[1 ® ¢(e)l~ = k-[1 @ el=x,

we have mark(B ® Mk) = k.mark(B).

Zn and mark(B) = 1 , then

]

Corollary 3.8. 1If KO(B)

mark(B @ Mk) =k for 2 < n

N

«, where Zm = Z.

Corollary 3.9. (Paschke-Salinas) If k and n-1 are not

- 46 -



and On are non-isomorphic.

relatively prime, then On [ Mk

Proof. It is known that KO(On) = Zn—l and the equivalence

class of 1 1is a generator of Ko(On)’ [15; 3.71. Note that
k is a generator of Zm if and only if a(1) = k for some a

€ Aut 2, i.e., 1 = k . Hence we have mark(On) =1 . Sup-

pose that Orl Q@ M is isomorphic to On' Since

k
k = mark(on @ Mk) = mark(On) =1 ,

k 1is a generator of Z Therefore there is an integer j

n-1"
such that jk = 1 mod n-1. Furthermore, since jk + a(n-1) =

1 for some a e Z, k and n - 1 are relatively prime.

Remark. We point out that OA Q@ Mk is also a Cuntz-

Krieger algebra. Actually, since OA [ Mk is generated by

) 2 (o
{ LT ‘;1<isn},
)

| e

we have

(0 A

10
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As another application, we consider the inclusion among

Cuntz algebras On

Theorem 3.10. Om is included in O,1 containing the unit
1

if and only if m = n + (n - 1)k for some integer k > O.

Proof. Assume that On includes Om. Then it follows

from £13; Remark 71 that m < n. Furthermore, we have nIlI =
11 = mf11 in KO(On) ,S0 that (m - n)L13 is the neutral

element in KO(On) = Zn_1 . Then m - n = k(n - 1) for some

k. We prove the converse by induction. Let On = C*(Sl, e

Sn)’ The case %k = 0 is trivial. If m=n+ (n - 1), then

we put- T,= S.8. for j =1, ... , n and so C*(Tj, Sk; 1<

12

n, 2 <k <n) is isomorphic to g Next, if m = n + 2(n-1)

then we put Ui = Tlsi for i =1, ... , n and also C*(Ui,
Tj’ Sk; 1 <i<n, 2 < Jj,k <n) is isomorphic to Om. We can
construct C*-algebras isomorphic to O in such a way.

m

ITI-5. Explosions of digraphs.

The adjoint graph G* of a digraph G 1is defined to be a
digraph whose vertices Ups eee s Yo represent the edges
of G and which has an edge uie——uj if i2 = jl’ where u, =
(il,iz) and uj= (jl,jz). We shall generalize the adjoint of
a digraph in order to determine completely the repesentatives

in the preceding classification of OA. This process will be

called explosion.



Definition 3.11. Let G be a digraph. Suppose that the
number of T (i) 1is greater than 2 for some i e V(G). (For
simplicity, assuﬁe that 1 = 1.) Decompose r (1) = vVuw
such that 1 € V if 1 e I (1). Then the explosion H of G
at 1 (with respect to V and W) is defined as follows;

V(H) =(V(G) \ {1}) v {v,w_}, and
Uilv,v), (w ,w); veV\{l}, weW}
uili,v ), (i,w ) (1,1) ¢ E(G)1I,
and if 1 ¢ I (1), {(v_,v.),(v_,w )} is added to the set on
o’ "o o’"o
the right hand side. This operation is called as explosion,

and every digraph obtained by repeating explosions is called an

explosion of G.

Example 3.5.1. Let G be a digraph;

2

T,
T~

Then the explosion H of G at 1 is the following;

1" «—— 2
«\\\\\\\

Moreover, it is easily seen that the explosion of H at 3 is

the adjoint G* of G.
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More generally, it is obvious that the adjoint of a digraph
G 1is an explosion of G, and the adjoint operation multiplies
the number of vertices.

Now, by using explosions, we can increase the number of
vertices by one. As an application, the classification
problem of OA for n x n matrices A is included in one of
0 for (n+1) x (n+l1) matrices B by the following theorem,

B

whose idea is the same as Theorem 2.7.

Theorem 3.12. If a digraph H 1is an explosion of a di-
graph G, then OH is isomorpnic to OG'
Proof. We may assume that H 1is the explosion of G at

1 and T (1) = VUW suchas 1 ¢ V if 1er (1). Let O

G
- — * — i
= C (81, e Sn)’ Pi = Sisi and PY = EieY Pi' Then, if
we put TV = SlPV, Tw = Sle and Tk = Sk for 2 <k <n,
then we have
%* - - 3* L —
TVTV + TWTW = Sl(PV + PW)Sl = Sl(sl Sl)Sl = Pl,
so that
* » 4 ¢ B * = z
TVTV + TWTW + k=2Tka K Pk.
1, 'Q * = 3% - ~ Fal
Furthermore, since TV TV PV and Tw Tw Pw, the family of
partial isometries TV’ Tw, T2, ey Tn satisfies the

condition (A). Hence the C*-algebra generated by them is the

Cuntz-Krieger algebra Oy and is included in O. ‘Since 5 =
Tv + Tw, it coincides with OG’ so that OH is isomorphic to
OG'



The following corollary shows that there are many Cuntz-

Krieger algebras isomorphic to 02.

Corollary 3.13, If C(n) = 1 1} is of

10

degree n, then OC(n) is isomorphic to O

5
Proof. The case of n = 2 1is Example 3.1.1. Consider the
adjoint graph of C(n) and its transfered graph inductively;
2 2
Q<n —
3 A1 4, K\\\B
c(2)* C(3)

Theorems 3.12 and 3.3 implies that O ) is isomorphic to O

C(n 2

Concluding this section, we shall complete the representa-
tives in the table by applying Theorems 3.3 and 3.11. The
above corollary proves the case that KO(OA) = 0. Next we
shall prove the case that KO(OA) = 22 and mark(OA) =0 .

S Then O, @ M

Let 0, = C*(Sl, S 3). 3 k 1is generated by

3 27
{
S1 o) , S, O] s [O S3 and o 0y,
O O 0O O O O 1 0

so that O3 [r:4 M2

is isomorphic to O where B =

B’

—_ O =
— O e
—_ O e e
o — o o
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We have

B¢

<
(@]
v
w]
I

_ O =
o o O —
S o o~
o - O o

Bl-————> B4 Cl-—> 02

On the other hand, D 1is the explosion of G at 2, where

Q 110

G; -//\ 101).
v e 100

In the case that KO(OA) = Z3 .and mark(OA) =1, if A

is the 4 x 4 matrix whose entries are 1, i.e., OA = 04,

then

A > B > C D eerrere— E,

A1—>~ A2 Bl———> B3

and moreover E 1is the explosion of H at 3, where

C1—>C4 D4.--—>D3

Q 111
v N\ (1o

Finally, the case that KO(OA) = Z4 and mark(oA) = 2 is

stated in [171}.

III-6. Shift equivalence and determinant.

A matrix A 1is strongly shift equivalent to a matrix B
if there are matrices R and S such that A = RS and B =
SR, cf. [37)]. If A and B are strongly shift equivalent,

then O and QB are stably isomorphic [171. While we have

A
the following example by the classification table: There are

strongly shift equivalent matrices A and B such that OA
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is not isomorphic to OB. As a matter of fact, let A = RS

and B = SR where

100 001
R=]100 and S =|100].
011 011

Then KO(OA) = KO(OB) = Z,. On the other hand, since mark(OA)
=1 and mark(0p) = 0, 0, is not isomorphic to Og.

The following theorem shows that, under an additional as-
sumption, OA and OB are isomorphic for strongly shift

equivalent'matrices A and B.

Theorem 3.14. Let R and S be matrices such that
z iR(i,j) =1 for all j, and RS and SR satisfy the
condition (I). Then ORS and OSR are isomorphic.

Proof. Let R (resp. S) be an n x m (resp. m x n) matrix
and put A = RS and B = SR. Let Hj(j =1, ... , m) and Ki
(i =1, ... , n) Dbe infinite diménsional Hilbert spaces, and
Pj (resp. Qi) the projection of H = I @ Hj (resp. K = 7 ® Ki)
onto Hj (resp. Ki). Take partial isometries Ui and Vj of

K into H such that

(*) UiUi*

i

Q

* _ ..
i Ui Ui jR(l,J)Pj, and

"

* % V.V * P,, V.* V.=2 S(j,k .
(**) R I R IS ROLY
And let C (resp. D) be the C*¥-algebra generated by {UiVj;

n, 1 <j <m} (resp. {VjUi; 1 ¢ig¢<n, 1 ¢ jgmi).

1 <1

A

Then we shall prove that C (resp. D) is isomorphic to OA

(resp. OB) and 'C 1is isomorhic to D.
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If we put T;= Ui( ZjVj), then TiTi* = Q; and

T *T.= £ R(i,j)( % .V.)*P.( ¢.V.
Ty J(13)(33) J(JJ)

= I .R(i,j)V.*V.
3RUE 35V,

for all 1i. Hence it implies that the C*-algebra C*(Ti; 1 <1
<n) is isomorphic to O, On the other hand, since Vj*Vj =
., we

J

have C = C*(Ti; 1 <i <n) as a set, so that C 1is iso-

bt kS(J,k)Qk = I kS(j,k)Tka* and TiVj*ij R(i,j)UiV

morphic to OA' Similarly D 1is isomorphic to OB'
By the assumption of R and (*), W= £ iUi is an isometry
from H onto K. Since
3¢ »* * - 1 5 3* * -
(w UiVjW)(W UiVjW) = R(l,J)Pj and W Uivjw(Ui Ui) = V.U,
by (*) and (**), we have

C*(W*UiVjW; l<ign, 1<jcm) = C*(VJ.Ui; l<ic<n, 1<jem)

as a set. Therefore C and D are isomorphic.

Next we shall discuss an topological invatiant det(l1 - A).
It is known that, identifying a digraph with its adjacency
matrix as usual, for a digraph G,

‘det(x - G*) = x"det(x - G),

where k = V(G*)~ - V(G)T and M~ is the cardinal number of
M. A key of a proof is to find matrices A and B such that
G* = AB and G = BA. Inspired by this, we shall reformulate
explosions of digraphs. Here a matrix A 1is represented by
(aij)-

Definition 3.15. Let G = (aij) be an n x n matrix (di-

graph) with T (1)T > 2. Then a digraph H is the explosion
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of G at 1 (with respect to Vl and V2) if H = G_E

such that Go(resp. Eo) is an (n+1) x n (resp. n x (n+1))

matrix expressed by

1 2..... n
111 P (% dp an
? 1 q]0 Qg2 ag,
EO = ,‘ and GO = ? a‘“ ...... as, f
n i a\a,,------ ar;"
1 if J e V‘l’ 1 if J e V2,
where a_. = { and a = {
PJ 0 if not, ad O 1if not.

Lemma 3.16. Definitions 3.11 and 3.15 are identical.

Moreover, if notation is a&s in above, then E = EOGO.

Proof. We represent the original explosion of G as its

adjacency matrix;

r q 2 n
P (@& ay Gpy- - - v - apn
q| 0 0 a4, gn
H = 2] 31+ - v o0 e e e e ayn
n\ dn; © o c8un

Thus elementary calculations lead us the conclusion.

The lemma gives us another proof of Theorem 3.11 by joining

Theorem 3.14.

By the way, it is proved that |[det(1 - A)|] 1is a stable
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invariant for OA' And Cuntz conjectures that det(l - A is
a stable invariant for OA' Now we have the following results

on det(1 - A).

Theorem 3.17. If H is an explosion of a digraph G, then
det(x - H) = x det(x - G),

and so det(l - H) = det(1 - G).

Proof. Since V(H)T = V(G)T + 1, the statement follows

from the preceding lemma.

Theorem 3.18. If H 1is a transfered graph of G, then

det(1 - H) = det(1 - G).

Proof. that G ————— 3 H, wh E =17 E

roo Suppose a G EK+AM — Al where « i=lnk(1)
and A_ = 35 A . Since A_ = E A, it follows from
M- Zi=1"m(3) 1 x T u '

the definition of transfered graphs that

]
Q.
o
cr
tx
»l
|
23}
+
>
]

det(1l - G) det El—EK—E

1 ki M
E, Ay Ey-8,
2 N E_-A_
= — \
det ((El\ rEK+EM\ = det(1 - H).
E, Ay
A
nf L Pn )
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ITI-7. Weak extension groups of OA'

Let Q(H) be the Calkin algebra on an infinite dimensional
separable Hilbert space H and 7 the quotient map of B(H)
onto Q(H). For a separable unital C*-algebra B, let ext(B)
be the set of all unital *-monomorphisms (extensions) of B
into Q(H). Extensions 1 and o are weakly equivalent if
there is a unitary u e Q(H) such that 1(x) = u o(x)u* for
all x e B. Let Ext (B) denote the set of all weak equiva-
lence classes in ext(B), which is called the weék extension
group of ‘B. Cuntz and Krieger determined the weak extension

group of O by the Bowen-Franks invariant Zn/(l - A)z™.

A
In this section, we shall prove that any finitely generated
abelian group is represented by the weak extension group of a

simple Cuntz-Krieger algebra.

Theorem 3.19. Let H be a finitely generated abelian
group. Then there is a simple Cuntz-Kreiger algebra OA such
that Ext"0, = H. |

A

Now it is known that every finitely generated abelian group

H 1is represented;

H=2® ... 2 ® Zn(l) & ... @ Zn(m)’
where Zn = Z/nZ. So we shall devide into several cases. In
the beginning, we shall cénsider fhe simple case H = Z , which
is a key in the proof. It is known that Ext"0 =z .

: n+1 n

However, we shall pose another Cuntz-Krieger algebras OA

with the same property. We omit often O entries of matrices

- 57 =



in the below.

Lemma 3.20. Let G{(n) be the digraph whose (adjacency)

matrix is of degree n+l1 and expressed by

01

= O

O -

w . \J .
Then Ext OG(n) = Zn for n > 1. Particularly, Ext OG(l) is

trivial.

Proof. Since G(n) has an'(n+1)—cycle and the vertex n+l
has a loop, G(n) satisfies the condition (I) and is strongly
connected. It implies that oG(n) is simple. We have also

= (1

.

1 (1 - G(n)) (1

s s R

(el ]
[

By the Elementarteilersatz (42; §118], it follows that

Zn+1/(l _ G(n))Zn+l - Zq’
w
so that Ext OG(n) = Zn'
Next we shall consider the case H =2 6 ... & Z & Zn'

Lemma 3.21. Let G(k!n) be the digraph whose matrix is of

degree k+n+l and expressed by
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G(n)

Then Ext%0 =2@® ... 92972 , where Z ® ... ® Z is k-
G(k|m) n

copies of Z. Particularly, Extwo ) =2 & ... & 2.

G(k|1
Proof. Since A(i,k+n) =1 for 1<i <k, A(k+n,j) =1
for 1 < j <k and the strongly connected digraph G(n) satis-

fies the condition (I), G(k|n) satisfies the condition (I)

and is strongly connected. So OG(kIn) is simple. Moreover
we have
1 -1 G(kln)—1 i =
. LG o o
1 -1
1
" . 0 G(n)—1
1 —1eem] 1 ()
%

A . w
By Lemma 3.20, it implies that Ext OG(kIn) =Z® ... 2 0 Zn'

For the case H = Zm ® Zn, we shall apply Lemma 3.20 again.
Lemma 3.22. Let G(m,n) be the digraph which is expressed

W
as follows. Then Ext OG(m,n) = Zm ®© Zn'
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1 .
G(m) 1
0
1
1
. G(n)
1
0
Proof. Since A(m+1,m+2) = 1 = A(m+2,m+1), G(m,n) satis-
fies (I) and is strongly connected, so that OG( n) is simple
m!
by similar calculations, we have
(G(m,n)—1)( 1 1, =
T, S G(m)—1 *
1 1o-1
1 1
-1 1 ‘ 1 G(n)—1
It follows from Lemma 3.20 that Ext"0 -7 ©27..
G(m,n) m n
Here we shall remark that Ext"0 =Z®Z ®Z if we
Glp,m,n) p m n

define G(p,m,n) anologously. Now let us join Lemmas 3.21 and

3.22. Let G(k|m,n) be the digraph expressed by

Lo o .
1 1 01
1o-0 11 1
©Gm) 1
‘1 0
0----0 1
1
CG)
1
0
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Then we have

(G(k{m,n)-1) /1 \YAR )
1 1
1 1
.-l
1 1 ~1
1 1
-1 1 1
= 1 q -
10
) 1
G(m)—1
1 . 1
0 0
G(n)—1

On the other hand, G(k|m,n) satisfies (I) and is strongly
connected by A(k,k+m) = 1 = A(k+m,k). So it follows from

Lemma 3.21 that Ext"0 =Z2e ...0Z®Z ©Z. Thus

G(k|m,n) n

it is easily seen that there is a strongly connected digraph G
= G(kIn(1),n(2), ... ,n(m)) such that Ext'O, =2e ... ® Z @

Zn(l) ® ... & Zn(m)’ which completes the proof of Theorem 3.19.

Finally we shall discuss the periodicity of weak extension
groups of Cuntz-Krieger algebras associated with random walks.
We consider the following example associated with a random walk

PPRW reflecting at both boundaries, cf. [35].

Example 3.7.1. Let A(n) (n 2 2) be the digraph;
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Q; 2 n~x'—"§__,O.

Then ExtwOA(n) =2 for n =3m and O for otherwise..
In fact, it is proved that ExtwOB(n+l) = ExtwOA(n) =
ExtWOB(n_Z) , Where B(n) is the digraph;
1‘_____2*__---4_:;1—14____@,

Since A(n) (resp. B{(n)) is expressed by

11 (resp. (o0 1, ),

we have

il
|
R

1. Br+H-1(1 1

_ A(n)—1
" -

w w
Therefore Ext OB(n+1) = Ext 0O

A(n)*
Next, if we put
In = l and Jn = 1' 1.—1 1 s
0 1- 1 1
—1
1 1 1 1
then we have
I (A(n)-1)J = /1 =/1 ,
—1 —1
—1. 1
I.'
RERIE B(n—2)—1
‘-.—.l .1 .
1 0
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so that Ext"0 = Ext"0 .
A(n) B(n-2)
Next we shall replace the edges of a polygon by directed
edges —— , which is associated with a random walk CRW on a

f— P

circle, cf. (331.

Example 3.7.2. Let C(n) (n2>3) be the digraph;

1= 2 —Z - &
Tl T4
n T n—-1 = T k+1l
It is somewhat surprising that Extwoc(n) is periodic with
eriod 6: The weak extension group of O resp. O , ..
P group c(3)( P- Ociy
, O i Z . Z , Z, 0, .
C(8)) is 22 ®Z, (resp 3’ 0, Z ® 0 ZS)
Note that C(n) = (o0 1 1).
|
‘. ‘1 s
1 ‘170
Let us put

n—-i
By 1;.---g (A -1), J; = (1. -l 1.
- T. 1....‘.1_‘ (n—i
.1 '.l .-1

) . ' ) o
and Bi+1 = BiJi for 1 < i ¢ n-3. If we put bi = Bi(k,l)

1]

and ci(k): Bi(k,n—i) for k=1,2 and 1 ¢ i ¢ n-3, then

Bi+l(k,n—(i+l)) = ci(k)— bi(k)+ 1  and bi+1(k)= ci(k). Hence
we have
(B) b (k)_ p. (k) _ b.(k)+ 1

for k =1,2 and 1 £ i < n-4. Furthermore, since we have
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n-3 = n—2
bn—z(z) 0 bn-z(” *
i 1 0
-1.
-1
it follows that
B, 5 =B 3d 5= (50 by @ —py 041 . )

bn—2(2) bn_z(l) "bn—a(z)

so that Ext"0 depends only on the matrix

C(n)
bu-2D bna ) b5V 41

bn-z(z) bn—z(z)"bn—z(z)

On the other hand, if d. = d, - d. , then
i+1 i i-1
4y = di—l -y o= (d 5 -dy g) - dy 5= - d;5 4
=-dy g+t d5 5= (4 5-9d56) ¥ 9.5 =9d4

so that dn is of period 6. Since di = bi - 1 satisfies
that di+1 = di - di—l by (B), {bn} is of period 6 and so
i W - . (1) _ . (1) _ . (2) _
is Ext OC(n)‘ In addition, since bl = b2 = bl = 1
and b2(2) = 2, the equation (B) implies the conclusion.

Finally we shall give an example of a sequence of digraphs

S(n) such that Ext"0 is not periodic. Replacing the

s(n)
edges of an n-simplex a(n) (n > 3) by directed edges _—,

we obtain the digraph S(n).
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Example 3.7.3. Let S(n) be the digraph whose matrix A
. . . s W n-2
is given by A(i,j) =1 - si,j' Then Ext Os(n) = 22 ) Zzn—4'

As a matter of fact, we have

—
—
~
[
EN
~—
[
—
—
—
o
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Chapter IV KMS states on O

A
Iv-1. KMS states.
A proof of the uniqueness theorem on OA is based on the
‘existence of the gauge automorphism ut(t e R) on OA by
| a,(S.) = eitS. for 1 <3 <n,
t 7 J

where R is the group of real numbers. The action o is
called the gauge action on OA' Olesen and Pedersen (361
proved the following theorem on the C*-dynamical system (OA,

R, ¢), cf. also [30]

Theorem 4.1. The C*-dynamical system (OA, R, «) admits a
g -KMS state if and only if 8= log n, and the corresponding

KMS state is unique.

Now we remark that if A(i,j) = 1 for 1 < i,j < n, then

OA = On and the spectral radius r(A) of A 1s just n.
Under these situation, we shall give a natural generali-
zation of Theorem 4.1. ‘As a matter of fact, we shall point out

that the Perron-Frobenius theorem for positive matrices is

applicable to the existence of KMS states on the C*-dynamical

system (OA, R, @). More precisely,

Theorem 4.2. If A is irreducible, then (OA, R, o) admits

a B-KMS state if and only if B8 = log r(A), and the corre-
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sponding KMS state is unique.

The topological entropy of a subshift I is defined by
h(oA) = log r(A). Therefore, the above theorem shows that fhe
topological entropy of a subshift is the value g which gives
a unique B-KMS state for (OA’ R, @), and consequently, if C¥*-

dynamical systems. (O R, @) and (OB, R, o) are conjugate,

A’
and A and B are irreducible, then their topological
entropies coincide.

Incidentally, the period of A will be concerned with a
faﬁtor representation of type III, in the follbwing section, in
which it will be proved that the period is also a conjugacy

invariant for (O R, a). It is known that a pair of the

A’
topological entropy and the period is a'complete invariant for
subshifts as measure preserving transformations, [37]. As a

consequence, the equivalence of subshifts as measure preserving

transformations is a conjugacy invariant.

Let E = {1,2, ... , n}. For a multiindex u = (i(1), ...
,i({p)) with i(m) e E, we denote by 1(p) the length p of

and Su Then it is easily checked that Su

= S, vee S, .
i(1) i(p)

is a partial isometry and Su # 0 if and only if

A(i(m),i(m+1)) = 1 for 1lg<mgp-1. Now we begin with an

elementary lemma stated in (171, whose proof is an easy exer-

cise for the use of the condition (A).

Lemma 4.3. If 1{(y) = 1(v) = k and Sp, Sv # 0, then
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3* — 6 * .
5,%8, wv S (k) S (k)

It is known in [171 that the fixed point algebra FA of

OA by a is an AF-algebra such as

L F=Flo ... oF
m m m

*® n
FA = Azé F

and the inclusion is given by A. We refer to [4, 201 for AF-

m

algebras. For B8 ¢ R, we put

n 8
Ly = ly = (yi) e R; Ay = e vy, y; 20 and Ly, =1t

In the following, we shall construct a trace on FA which is

-mB

corresponding to each Yo ¢ L Then we put Yo = © Yo

g
i

dm(i) = dim Fm and wm(i) = dm(i)ym(i) for i e E.

Lemma 4.4. Notation as in above for a fixed 8 ¢R and yO
€ LB' Then Yo induces a trace ¢ on FA such as ¢(e(m,i))
= ym(i), where e(m,i) is a one-dimensional projection in le

for i ¢ E.

Proof. We define a trace ¢, on F_ by @m(e(m,i)) =
ym(i) for 1 e E. So it suffices to show that (¢m) is

compatible. We note that ¢.(1) = 2.y, (i) =1 and
0 i“0 i
i . Sy . R i e
‘¢m(PP Fo ) = dm(l)ym(l) = wm(l), where Pr F_~ = 0@ 800160
.. 8 ¢ F . Since y_=e "°

m yo, it follows that Yo = Aym+1

for m > 0. Therefore we have

¢m(1) = I, ym(i)dm(i) =(y , d ) = (y_ , "Ad

= (v, 4 ) = (y

m-1

and

wali) = T PAGE) W (9) 4 (i) /d ()
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Hence (¢m) is compatible and so we can define a trace ¢ on

Fp by O|F =0

A m°

Lemma 4.5. Let ¢  be a trace on FA in the preceding

lemma and p = 1(u), g = 1(v), r = 1(¢) and s = 1(n). If
Sp,Sv,SE,Sn# 0 and p+ r =g + s, then
¢(SpSv*SgSn*) = Gl(AYS)(n(S)) if g g¢r
= dg(ayp)(u(p)) if q > r.
Here ¢, = sl(p,v,g,n) =8, S, e S (g+1), n(p+l) -~ %(r),n<s)
and 8, = 8,(k,vEun) = Suan o e S ulse1), u(re1) "'éu(p),v(q)’

where ¢ =.§ ee. 8
v.E o Sv(1),£(1) *v(g~r),£(g~r)

and & = § -
won o Y1), n (1) i (pas),n(ps)"

Proof. We may assume that q < r. Then it follows from

Lemma 4.3 that

SuS T80T = 8 550 () S Brarn) S (S,
ev’gzhA(v(q),h)SuShSh*SE(Q+1) ..... Se(mSh
sv,CA(v(q),g(q+l))SpS€(q+l)... 'Sg(r) 2 ¥

- ‘5V,55p55(q+1)- Ce S (St
Noting that ¢IFmi is a usual trace and putting Ph = Shsh*
for h e E, we have
¢(5,8,%8,.8,%) = ¢ Zh¢(SuS€(q+1)""Sg(r)Phsn*)
= S, A(u(p),e(a+1)) & ¢(snPhsn*)

[}

§1EpAln(s),h)e(s P s *).
(In particular, if g = r, then we have the above equality

directly.) Since ¢(S P S *) =y (h) if ¢(S P_S *) £ 0O, we
n n s n hy

h
have ¢(susv*s€sn*) = slzhA(n(s),h)yS(h) :51(Ays)(n(S)).
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Following after [71, we now use the following definition of

KMS states:

Definition. Let (B, R, a) be a C*¥-dynamical system and 3
€ R. Then a state ¢ on B is a (a, B )-KMS state if ¢
satisfies

¢(ao (b)) = o(ba)
for all a,b in a norm dense, a-invariant *-subalgebra of B ,

where B 1is the set of entire aznalytic elements for «a.

Throughout this note, (a, B )-KMS states are called IB—KMS
states for brevity. The following shows the existence of KMS
states on OA'

Corollary 4.6. Let ¢ be a trace on F in Lemma 4.4
and e the expectation of O onto F,. Then ¢.e 1is a

A A

B-KMS state on O where 8 = log r(A).

A ¥

< ¥* —

Proof. It suffices to prove that ¢(SuSv aiB(Sgsn*)) =
0(SS,*s 8 %) if 1{w) + 1(¢) = 1(v) + 1(n) and 1(5) < 1(v).

It follows from Lemma 4.5 that

e(s—r)e

0(S,8, %0, (5.5,%)) 5, (b, vy 85 n) (AY ) (n(s))

- e(S—F)S5l(p,v,g,n)(Ays)(€(F))

and

¢(s€sn*susv*) = se(g,v,u,v)(Ayr)(s(r)).

-mg

Since y_=-e€ "y, and 61(u,v,z,n) = 8,(g,n,p,v), we have

0
Ays= e_SBAyO and so as desired.
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Now we can state a main lemma as follows:

Lemma 4.7. For each B8 ¢ R, let K8 be the set of all g -

KMS states for o on OA' Then KB is affine-isomorphic to

LB.

Proof. Define a map f of K to R"

8

for KB’ where Pi = Sisi* for i ¢ E. Since ¢ 1is a g-KMS

by £(e) = (6(P)),

state, we have

e® (Py) = o(S;a;,(S,%)) = o(S.*S;) = 1, A(1,3)e(P)),

so that Ay = e’y for y = (¢(P)),. Obviously £ 1is w*-
continuous.
Next we shall shocw that f is a map of KB onto LB' By

Lemma 4.4, y « LB induces a trace ¢ on the fixed point alge-

bra FA such that ¢(Pi) = y(i) for i e E. Let e be the

expectation onto FA‘ Then ¢ = es¢ 1is a B-KMS state on O
by Corollary 4.6 and .

A

£(¥) (i) = w(Pi) = o(Pi) y(i),
so that ¥ ¢ K, and f(¥) = y.

Finally we shall prove that f is injective. For a fixed

n

¢ €Ky, let us put f(¢) = x e R'. Then x(m) = ¢(Pm) for m
e E. If O #y = SpSu* € FA’ then 1(u) = 1(v) = k and by
Lemma 4.3
RB —_ * — ¥* - *
e o(y) = ¢(Sp_uiB(SV )) = e(S Su) = Gp,v“’(sv(k)sp(k))

]

6,3 h A(p(k),h)@(Ph) = 5, . A(u(k),h) x(h)

5, (A% (u (k).

Since Xx € LB’ it follows that
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oy = 5, (A0 (w(x)) = 5 fxluli)).

Hence, if f(¢) = f(v) = x for ¢,¥ e K then ¢(a) = ¢{(a)

B 2

for a e FA. Since ¢,V = Kﬁ, we have ¢(Sv*n)

=0 for n 21
and so ¢(b) = 0 = ¥(b) for b e FA’ so that f dis injective.

Now we reach Theorem 4.2 after above several lemmas

Proof of Theorem 4.2. The proof is just to apply the
Perron-Frobenius theorem to the preceding lemma. Since A is
irreducible, r(A) is a unique positive eigenvalue of A with
multiplicity 1 [9; (8.7)1. Therefore LB has one element for

g = log r(A) only. Hence the statement follows from Lemma 4.7,

Remark. Another refinement based on Theorem 4.1 is given
by Bratteli, Elliott and Herman, who constructed, for each
closed subset F of R, a C¥-dynamical system (B,R,t) admits
a g-KMS state if and only if g ¢ F. Furthermore the
corresponding state for each g ¢ R is unigue. Moreover,

Bratteli, Elliott and Kishimoto [6] pursued this direction.
Remark. Finally, we can show nonexistence of ground states

and ceiling states for C¥-dynamical system (OA, R, o) as in

[7; Example 5.3.271.
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iv-2. IIIx—representation of OA'

In the preceding section, we have the unique KMS state for
the C*-dynamical system (OA, R, o) under the irreducibility
of A. It is known that On is corresponding to a factor of
type IIIl/n‘ We shall determine the type of the factor gener-
ated by the GNS representation of OA by the unique KMS state.

Let A = (A(i,j)) be an n x n matrix whose entries are O
or 1. For i,j € E, put E(i,j) = {me N ; Am(i,j) > 0} and
E(i) = E(i,i). We define d(i), the peroid of a state 1ic¢E,
by the greatest common devisor of E(i). Suppose that A 1is
irreducible. Then d(i) = d(j) for any Vi;j e E. Hence we
define d = d(A), the period of A, by d(A) = d(i) for any
i ¢ E. The matrix A 1is said to be periodic of period d if
d > 2, and aperiodic if d = d(A) = 1. For r = 0,1,2,...,d-1,
put '

D(r) = {j e E ; ﬁ(j,l) =r (mod d)}.

Then the following is known, e.g., [19;(8.15)1 : If A has
period 4 22, then the state space E can be decomposed into
distinct subset D(0), D(1),..., D(d-1), (not necessarily of
same size) such that a one step translation from D(r) 1lead to
a state D(r+1l), (from D(d-1) to D(0)). Each D(r) will be
invariant under Ad, and the restriction of Ad to the state
of D(r) will be aperiodic. Therefore we have the following
decomposition

2% B(0) @ B(1) ® ... ® B(d-1),
where B(r) is aperiodic for r = 0,1,...,d-1.

These arguments may come in sight by a graph theoretic
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approach. We present here a simple example:

Example. Let A =
010
digraph of A is expressed by

010
1 01} . Then the corresponding

1l&e&=22—=3,
and d(A) = 2. Moreover the state space E = {1, 2, 3} is
decomposed into the subsets {2} and {1, 3}. 1Incidentally,
it follows from [29; Theorem 71 that the fixed point algebra of
0, under the gauge action is not simple.

Though Si*Sj =0 for i # jJ by the condition (A), SiSj*
# 0 1in general. So we shall find that such i and j enjoy
a relation, which is used in Lemma 4.8 (2). Define a map ¢
of E onto {0,1i, ... ,d-1} by

c(i) = r if i e D(r).
Sublemma. If SiSj* # 0, then c¢(i) = c(j).

Proof. Since (5;%5,)(S;*S,) # 0, there is h ¢ E with

\

A(i, h) 1 = A(j, h)
by the condition (A). Therefore, if h e D(r), then i, j ¢

D(r+1) by a one step translation.

Now we define the projections corresponding to the subsets
D(r) by

S

*
ROe) = 2, ey Si5:™ = Biep(r) P
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Lemma 4.8. The followings hold:
(1) For r = 0,1,...,d-1, m ¢ dZ, there exist multiindices wu
and v such that 1(u) - 1(v) = m and R(r)S“Sv*R(r) # O.
(2) For r =0,1,...,d-1, multiindices u and v, if 1(y) =

1(v) mod d, then R(r)S“Sv*R(r) = 0.

Proof. (1) For r there exists k ¢ E such that k ¢ D(r).
Putting
E¥(k) = {x € Z ; x=u-v, ue E(k), ve EKk)},
then E*(k) coincides with dZ. Therefore there exist

multiindices pw and v such that 1(u)

u, 1(v) =v, u-v

=m € dZ, and u(1) = u(m) = v(1) = v(m) = k, so that PkSpSV*P

= 0. Since projections Pi(ie D(r)) are mutually orthogonal

k

and R(r) = we have R(r)SuSV*R(r) £ 0.

ieD(r)pi ’

(2) Let k,m be in D(r). We shall show that PkS Sv*Prn
p 1

= 0. Assume that PkSuSV*Pm #£ 0. Then k = p(1) and m =

= . i *
v(1), so that c(u(1)) c{v(1)) Since Su(lul)sv(lv[) £ 0,
we have c(u(fnl)) = c(v(]lv])) by Sublemma, where l&] = 1(g).

Furthermore, since . S Sv £ 0, it follows that

p?

c(u(1)) = cCu(liul)) + |pnl -1 (mod d)
and
c(v(1)) = c(v(]v])) + Iv] -1 (mod d).
Hence we have |u] = |v] (mod d), which is a ¢ontradiction.
We shall review some notation [10J. Let (M, R, ¢) be a

W*-system. For f ¢ Ll(R), let o be a o-weakly continuous

£

linear map of M into M such that
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w(op(x)) = 7 £(B)ulo (%)) dt
for w e M,, x ¢ M. The Arveson spectrum of ¢ "is defined by
sp(o) = NIZ(£) 5 £ ¢ LY(R), o, =0%
Here Z(f) = {r ¢ R™; £™(r) = 0}, where R~ is the dual group.
of R and f~ is the Fourier transform of f. The Connes
spectrum of ¢ 1is defined to be
r(o) = @ sp( o |pMp),
where p runs all non zerc projections in M’ N (Mc)', the
center of the fixed point algebra M° of M under g .
In the below we assume that O0-1 matrix A 1s irreducible,
r(A) is the spectral radius of A, d = d(A) 1is the pericd of

A, ¢ is the unique log r(A) - KMS state for (0,,R, @) 1in

Theorem 4.2. Let (ﬂ¢,5¢, H¢) be the cyclic representation
induced by ¢.
Theorem 4.9. The von Neumann algebra M = 1%(OA)_ gener-
i £
ated by n¢(OA) is a factor of type IIIl/r(A)d(A)'

Proof. Put g = log r{A). Since ¢ is the unique B8-KMS
state, ¢ is a factor state by (7;5.3.301, that is, M is a

factor. Let ¢ be an action of R on a C¥-algebra OA such

-igt . .
that ct(Sj) = e 8 (3 =1, 2,...,n), that is, o =20 _ ..

Since ¢ is a B-KMS state for (OA,R,a), 6 is'a (~1)-KMS state
for (OA,R,G). Since ¢ is o-invariant, g cén be extended
to the automorphism on the factor M, denoted also by ©o.

Thus is the modular automorphism group of M associ-

(o)
ated with ¢ .
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Next we shall consider the fixed point algebra M% of M

~under o. We claim that M° = ﬂ&(OAof; the o-weak closure of

1%(OAG). It is trivial that Tro(oA °y < M°. Conversely, if x e
Mo, then we choose X, € ﬂ¢(OAF) such that X, converges to
X O-weakly in M. Putting

Y = J'Tot(xn)dt,

n
then Vg € 1% OA°). For o ¢ M,, we have
w(x - yn) = m(ITat(x - xn)dt)
= IT (ct(x) - o.(x))dt ——— 0.
Thus M°<  7.(0,°)7, so that M7 - n¢(oA°)”.
d

Let A” = B(O) + B(1) + ... + B(d-1), where B(r) is

. . - —_ q -— ; —
aperiodic for r = 0,1,2,...,d-1. Then OA = FA = FB(O)Q .
@ FB(d—lY Since each B(r) is aperiodic, FB(r) is a simple

unital C*-algebra with a unique trace Tr' Moreover Nr =

ﬂ¢(FB(r)) is a IIl—factor. In fact, let p be a non-zero

central projection of Nr' Since ¢(x) = (x€¢, £ ) for xe M

]
and EQ is separating for M, ¢ 1s a faithful normal state on
M. Since ¢ is a KMS state for (M, R, o), ¢|M° 1is a trace.

_ Vs
If we put r;(x) = ¢(ﬂ¢(x)p)/¢(p) for X e FB(F), then < is

a trace on FB(r)' By the unicity of traces on FB(r)’ we have
= ( - =
Ti(x) = ¢(n¢\x)p)/¢(p) = o(x) = 1 (x)
for x ¢ F Since ¢ is normal, ¢(ap) = ¢(a)e(p) for a

B(r)"

€ Nr’ so that o¢(p) = ¢(p)2. Since ¢ is faithful and p # O,
it follows that p = 1. Then Nr is a IIl—factor with a trace
¢1Nr. For a projection p in M9N (M9 ", we define an auto-~
morphism ctp on pMp by

th(pxp) = pct(pxp)p for x e M.

- 77 -



Then we have

d-1
(o) = Misp®) 5 0 #p en’n (M) = () sp(oR(7)).
r=0
Next we snhall show that for r = 0,1,...,d-1,
sp(oR(F)y fngd e R 2 R™; n ¢ 2}

\ ~
So we first show that sp(cR(rO D ned e RZ R ; ne Z}. For

a fixed n ¢ Z, it follows from Lemma 4.8 (1) that there exist
multiindices w and v such that

1(w) - 1(v) = nd and R(r)SpSV*R(r) # 0.

R(r)

If f € Ker o then

ch(r)(SpSv*) = R{r) o.(S S *)R(r) = O.

On the other hand, we have

°fR(r)(SuSv*) = R(r) o.(5,5,*)R(r)

= R{r)(/£(t)o (S 5 *)dt)R(r)
= R(r)(s£(r)e” P8 s 5 »at)R(r)

= f“(ned)R(r)susv*R(r>.
R(r))

Therefore f{n 8d) = 0 and so n8d e sp(o as desired.

Conversely, let r ¢ R and r ¢8dZ &« R. Then there exists

2 function f e LY(R) such that f£7(r) = 1 and £"|8dz = O.

R(r)_

[}

We shall show that f 1is in Ker ¢ Since the *-algebra

generated algebraically by {3 ,Sn} is o-weakly dense in

R
M, it is enough to show that
ofR(r)(R(r)S s *R(r)) = O
pov

for multiindices ¢ and v. While we have

ng(r)(R(r)SuSv*R(r)) = R(F)Uf(susv*)ﬁ(r)

1]

R(r)(If(t)ct(SuS“*)dt)R(r)

R(r)(ff(t)e”(l(“)'l(“))Btsusv*dt)a(r)

]

]

£7((1(1)=1(v))B)IR(r)S S *R(r).
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If 1(w)-1(v) e dZ, then £ ((1(p)-1(v))8) = O by the defi-
nition of f. If 1(u)-1(v) ¢ dzZ, then R(r)SuSv*R(r) =0 by

Lemma 4.8 (2). In both cases we have ufR(r)(R(r)SpSv*R(r)) =

0, so that f is in Ker GR(r). Since £ (r) = 1, it implies

R(r%. R(r))

that r ¢ sp(o Therefore we have sp(o = {ngdeR ;

nezt for r =0,1,...,d-1.

Hence it follows that
d-1
(o) = ,~ sp(cR(r))
r=0
Since 8= log r{(A), M 1is a type IIIX factor, where i =

{ned ¢ R ; ne Z}.

1/r(a) 9.

IVv-3. Eigenvalue problem.

Finally, we shall reformulate the argument in 181, which
is based on the discussion of §1. Precisely, for certain
simple C*-algebras with periodic dynamics there is a Banach
lattice F and a positive operator R on F such that the
C*-dynamical system has a B8-KMS state if and only if eB is
an eigenvalue of R. Moreover the set K of all 8-KMS states
is affine isomorphic to the set LB of all normalized positive
eigenvectors corresponding with the eigenvalue es. Thus to
find . B-KMS states can be formulated as the eigenvalue problem.
at)teR a strongly

continuous and periodic one-parameter automorphism group on A

Let A be a unital C*-algebra and |

with period 27. The spectral subspace A(n) for ne Z 1is
defined by

A(n) = {xeA; at(x) = eintx for t € R}.
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A projection of norm one from A onto the fixed point algebra
A(O) 1is given by

(1) e(x) = féﬂat(x)dt/Zﬂ for x e A.

It is known that the linear span of {A(n); n ¢ Z} is dense in
A and A(n)A(m) € A(n+m) for n,m € Z, e.g., [391.

Let F be the subspace of A(0)* consisting of all self-
adjoint and tracial functionals. Then F is a real Banach
lattice whose positive cone F+ is the set of all positive
functionals in F, cf. [2]1. The following lemma is a slight
modificétion of an asymmetric Riesz decomposition theorem [43;

Theorem 7.7 in Ch.I]l and so we omit a proof.

Lemma 4.10. Let F be as in above, and [ui, Vi’ Xis yi;
i=1,2,-..., m} € A(n) for a fixed n ¢ Z. Then f£( zivi*ui)
— . * 5 * E 3
= f(zj_yi xi) for f ¢ F if 3 F WVt o= E Xy

A bounded linear operator R on F 1is said to be a re-
verse operator associated with (A, R, a) 1if
(Rf) (xy*) = £(y*x)
for f e F and x,y ¢ A(1). Here we shall discuss on the

existence of a reverse operator.

Lemma 4.11. If A(0) is simple, then there exists a

unique reverse operator R associated with (A, R, a).

Proof. Since A(0O) is simple, we have A(1)A(1)* = A(O).

For each fixed a ¢ A(O), there is a family {xi, vy s i=1,2,..
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..,m} € A(1) such that a = zixiyi*. Then it follows from

Lemma 4.10 that (Rf)(a) = f(z,y.*x is well-defined, and

i“i i)
Rf 1is a tracial linear functional on A(O).

Next we shall show that Rf is bounded and R 1is a bounded
linear map on F. ©Note that 1 = I,s.t.* for some s_., t., ¢

i7i7i i i
A(1). For b e A(O), we have
1 = f * = *
(2) (Rf)(b) = RE( I, bs t.*) £z, 8, bs,),
so that
LRE)(0)| = 1£CT, to0s )| < HEH 2 lieg i syl

It implies that Rf is bounded and moreover ||R|] < zintinﬂsiu.

Since R is linear by (3), R 1is a bounded linear operator on

F.

Theorem 4.12. Let L, = {f ¢ F ; Rf = eff, £l = 1} for
each 8 ¢ R. Let (A, R, a) be a C*—dynamicél system with
period 2w such that A is unital and the fixea point algebra
A{0) 1is simple. Let R be the reverse operator associated

with (A, R, o). Then KB is affine isomorphic to LB for

each B ¢ R.

Proof. Putting H(g) = g|A(0) for g ¢ Ke» then H(g) 1is
tracial, so that H(g) € F. Now we shall prove that H 1is a

w*~continuous affine isomorphism of KB onto L Since g

6"
is a B-KMS state, we have

e®g(bst®) = g(bsa, (t*)) = g(t*bs)
for b e A(0O) and s,t ¢ A(1). 1It.follows from (2) that H(g)

€ LB because
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(RH(g)) (b)

It

o * ¥ pu— *
H(s)(ziti osi) = g( 2ty bsi)

1l

eBg(zibsjﬁi*) = esg(b) = eEH(g)(b).

Thus H 1is a w*-continuous affine map of KB into LS'

Let e be the norm one projection of A onto A(Q)

defined by (2) and put G(f) = fee for £ e Lg- By similar

calculations, G is also a w*-continuous affine map of LB

into Kg, and HeG = id on L,. Moreover since g[A(n) =0

for n =0 and g =€ KB’ we have GoH = id on K Hence it

8-

implies that H 1is a bijection.

Remark. In the case where there exists a family {sl,

sk}glk(l) such that zi sisi* = 1, the reverse operator R is

positive.
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